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Abstract

The state-of-the-art in multiprocessing today employs thousands of high-performance
microprocessors. As system sizes continue to grow, increasing care must be taken to design
cost-efficient, balanced (i.e. scalable) systems. This thesis addresses the scalability of shared-
memory multiprocessors, presenting a practical treatment of scalability, and proceeding to focus
on aspects of two critical areas of large-scale system design: interconnection networks and cache
coherence mechanisms. In these areas, pipelined-channel interconnection networks and
pruning-cache directories are investigated, respectively.

Pipelined-channel interconnection networks allow multiple bits to be simultaneously in
flight on a single wire, decoupling channel throughput from channel latency. The first published
performance analysis of the SCI ring, a new IEEE standard employing pipelined channels, is
presented. This study serves as a proof-of-concept for pipelined-channel networks, demonstrat-
ing their very high performance potential. This analysis is followed by a performance study of
large, multi-dimensional, pipelined-channel networks under various physical constraints. Design
tradeoffs for multi-dimensional networks have been previously analyzed for non-pipelined-
channel networks, leading to the conclusion that low-dimensional networks are superior. It is
shown that the design tradeoffs are significantly changed when pipelined channels are used. Asa
result, the optimal dimensionality of a pipelined-channel network is higher than that of a non-
. pipelined-channel network. In addition, the radix (number of nodes per dimension) of a
pipelined-channel network should be kept roughly constant as network size is increased. In non-
pipelined networks, the optimal radix increases significantly as network size increases, thereby
reducing the traffic capacity of the network.

Pruning-cache directories cache sharing information to allow multicasting of invalidations
in hierarchical and cube-based, shared-memory multiprocessors. The performance of pruning-
cache directories is investigated through both analysis and simulation, and shown to scale well to
very large system sizes, while requiring only a modest amount of storage overhead. Pruning
caches are shown to perform better than a similar scheme employing the multi-level inclusion
property, while providing better performance in the face of contention than other directory-based
coherence protocols. Several issues relating to pruning cache implementation and management

are investigated.
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Chapter 1

Introduction

Large-scale multiprocessors offer the possibility of enormous computing power. Further-
more, by riding the crest of microprocessor technology, this power should come at a low cost-
performance ratio. Unfortunately, the simple extension of existing system designs to large
numbers of processors may not be feasible or may lead to significant per-processor performance
degradation.

Intuitively, a design must be scalable in order to be efficient with large numbers of proces-
sors. The exact meaning of “scalability”, however, is far from clear; despite its wide use, the
term has no accepted definition. A serviceable first definition for scalable is simply “efficient for
very large systems”. This implies that the performance of the various system components must
be well balanced and bottlenecks must be avoided. System cost and complexity must be manage-
able as well, avoiding, for example, physical resources that must grow as the square of the system
size (number of processors).

This thesis addresses the scalability of shared-memory multiprocessors. It is expected that
in any large multiprocessor the memory is physically distributed among the nodes of the
" machine. “Shared memory,” therefore, means simply that the address space is shared, presenting
a uniform naming mechanism for all of memory. While parts of the thesis are specific to shared-
memory machines, other parts are applicable to distributed-memory (or message passing)
machines as well.

The primary distinction between shared- and distributed-memory machines is the abstrac-
tion presented to the programmer. A shared-memory machine presents the programmer with the
abstraction of a single shared memory space, which is then used for communicating data values
and often for synchronization. In a distributed-memory machine, the programmer must specify
interprocessor communication explicitly, through message passing or memory transfers. Shared-
memory multiprocessors may be further divided into those providing cache coherence in
hardware, and those requiring software support (or disallowing caching).

It is widely believed that the shared-memory model is a more natural or convenient abstrac-
tion for the programmer. Moreover, the software overhead for communicating through shared
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memory is typically much smaller than that for message passing, so that distributed-memory
algorithms are generally restricted to coarser grain sizes. Regardless of the technical merits of
shared memory, however, the model demands continued focus due to its wide acceptance and
success in the marketplace. There is a perception, however, that shared memory machines — and
in particular those with hardware-maintained cache coherence — are difficult to scale to very
large sizes. This perception is not without some validity, and thus begets a challenge to the
designers of shared-memory machines.

There are many problems that must be overcome in order to build efficient, large-scale mul-
tiprocessors of any sort. Chief among these is the design of an interconnection structure that pro-
vides sufficient throughput for interprocessor communication and memory requests, while
delivering acceptable communication latency. For systems guaranteeing cache coherence in
hardware, a coherence mechanism must be devised that provides an acceptable balance between
cost and performance. Hardware coherence mechanisms in use today are not well suited (for a
variety of reasons) for systems built with thousands of processors. The processors themselves
must be designed with latency toleration in mind, and with appropriate features to facilitate inter-
rupt handling, memory management, synchronization operations and a host of other requirements
related to multiprocessing. Synchronization mechanisms must be developed that are capable of
efficiently coordinating large numbers of processors. Renewed attention must be paid to fault
tolerance, which becomes increasingly difficult to provide as system size increases. Packaging,
cooling, testing and other implementation aspects are very difficult challenges for large systems.
Progress is needed on the software front as well. Many operating system issues, such as memory
management and process scheduling, become more difficult as system sizes increase. Lastly —
and this is by no means a comprehensive list — continued progress in parallel algorithms, pro-
gramming models, programming tools and compilers is essential to the future of parallel comput-

ing in general.

The overall topic of large-scale, shared-memory multiprocessor design is obviously
extremely broad. While the end goal of this thesis is the design of efficient and powerful large-
scale multiprocessors, the contributions contained here, as the first word of the title suggests, are
" only one step toward this goal. The thesis deals primarily with the issues of interconnection net-
works and hardware cache coherence mechanisms. These are two of the most direct challenges to
multiprocessor hardware designers, and are critical to large system performance. In both of these
areas, a promising design alternative is investigated in depth.
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I begin by discussing the concept of scalability. While it is a mistake to value scalability
over performance, and while a precise (but useful) definition for scalability may not exist, I
believe that the concept of scalability is indeed useful, and can lend valuable insight into the
behavior of design alternatives for large-scale implementations. Chapter 2 discusses this topic
and presents a working definition for scalability, based upon bandwidth, latency and cost con-
siderations. While not providing a simple predicate (is system X scalable?) the definition
presented in Chapter 2 provides a useful framework for discussing and evaluating any number of
issues related to multiprocessor design. This framework is a valuable contribution in its own
right.

Scalability arguments are then applied to various topologies and cache coherence mechan-
isms. Based upon simplified assumptions (ignoring transmission delay and wiring constraints),
* the k-ary n-cube is identified as a promising interconnection topology. Consideration of
transmission delay points out limitations to the scalability of conventional networks. Pipelined-
channel interconnection networks are proposed to address this problem. In a pipelined-channel
network, the network cycle time is determined by the speed of the switching circuitry, indepen-
dent of wire lengths. Thus, multiple bits may be simultaneously in flight on a single wire.

Chapters 3 and 4 investigate pipelined-channel interconnection networks in more detail.
Chapter 3 presents a performance study of the Scalable Coherent Interface (SCI), a new IEEE
standard that uses pipelined channels [TEEE92]. Modeling and simulation are used to analyze the
performance of a single SCI ring, the basic building block of all SCI systems. The study serves
two primary purposes. It is important in its own right, as the first comprehensive analysis of a
new IEEE standard. It provides a useful summary of the ring’s operation, a unique analytical
model, and performance results that should be of interest to those in the SCI community and
those interested in high performance multiprocessor interconnects. In addition, for the purposes
of this thesis, it serves as a “proof of concept” of pipelined channels, establishing the high perfor-

mance of an actual, implementable design.

Chapter 4 extends consideration of pipelined channels to large, multi-dimensional net-
works. It is shown that not only do pipelined channels provide performance superior to non-
pipelined channels for large networks, but that they fundamentally alter the network design trade-
offs. Previous studies of non-pipelined-channel networks [Dall90, Agar91] have shown that low-
dimensional networks provide the best performance. By changing the effects of wire length on
network performance, pipelined channels argue for higher dimensjonality. Moreover, the optimal
manner in which networks are grown is changed in such a way as to better preserve the per-
processor bandwidth provided by smaller networks and more closely match the intuition
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developed in Chapter 2 when wire delay was ignored. These results should have a significant
effect on the way in which future large-scale networks are designed.

The focus of Chapters 5 and 6 switches to cache coherence mechanisms. Chapter 5 presents
a summary of existing and proposed cache coherence mechanisms and describes a novel
approach for maintaining coherence in hierarchical or cube-based multiprocessors. Approximate
directory information is held in special-purpose pruning caches [Good89, Scot91], and used to
limit the propagation of broadcast invalidations to those parts of the hierarchy that need to receive
them. This scheme approximates the performance of a full hierarchical directory, but at consider-
ably less cost. Pruning-cache performance is analyzed for cache line invalidations under various
distributions of shared lines. Scalability arguments are used to show that the size of pruning
caches must grow only as the log of the system size. In addition, because of their hierarchical
structure, pruning caches are compatible with hierarchical read combining. A mechanism for
read combining in hierarchical or k-ary n-cube networks is described, and the performance

analyzed under various sharing assumptions.

Chapter 6 delves deeper into the performance of pruning caches. Simulation is used to
investigate performance of pruning-cache systems under a variety of workloads and system sizes.
In addition, pruning caches are compared against a similar coherence mechanism based on the
multi-level inclusion (MLI) property that has been previously proposed for hierarchical systems.
Pruning caches are shown to provide superior performance at lower cost. Several pruning cache
management issues are also explored in Chapter 6. Various alternatives are simulated, and
. optimizations to the basic protocol are proposed and simulated.

Finally, Chapter 7 presents concluding remarks and discusses possible avenues for further

research,



Chapter 2

Scalability

Scalability is not an end goal, in itself. For a given implementation, cost and performance
are the primary concemns. However, as system size increases, a scalable design will eventually
provide higher performance than a non-scalable design. For example, a ring interconnect may
provide higher performance than a 3-dimensional mesh for small system sizes, due to faster
switching times. However, the traffic over a link in the ring (assuming uniform communication)
is proportional to the system size, while the traffic over a link in the mesh is proportional to the
cube root of the system size. A 3-dimensional mesh, therefore, will perform better than a ring for
sufficiently large systems. Even a 3-dimensional mesh will saturate eventually, however. 1 am
interested in designs that can be efficiently implemented with thousands, or tens of thousands, of
processors. How a design scales can lend valuable intuition as to its behavior for such large sys-
tem sizes.

As was mentioned in Chapter 1, this thesis focuses on shared-memory multiprocessors with
hardware-maintained cache coherence. The bottlenecks in such systems can be due to software,
hardware (i.e. the topology) or the communication protocol (i.e. the cache coherence mechan-
ism). Any one of these factors may inhibit scalability. However, the three components cannot
always be considered in isolation, as their interaction can significantly affect scalability. For
example, certain workloads may scale on one machine while not scaling on another. Therefore,
we typically cannot make statements about the scalability of a given component or aspect of a
system, without making assumptions about the remaining components of the system. This point

is addressed with regard to workload assumptions in particular later in the chapter.

Section 1 of this chapter presents some background on the topic of scalability. A working
definition of scalability is then presented in Section 2. Section 3 briefly discusses the effect of

software on scalability. Finally, sections 4 and 5 apply scalability arguments to network topolo-
gies and cache coherence mechanisms, respectively.

1. Background

The issue of scalability has surfaced many times since the introduction of parallel comput-
ers. Amdahl [Amda67] originally observed that the efficiency of a parallel computer will
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decrease as more processors are used to solve a fixed-size problem. This is due to the (reason-
able) assumption of a fixed serial portion of the algorithm. As the number of processors execut-
ing the parallel portion of the algorithm increases, the relative time spent performing the serial
computation increases.

The relationship can be roughly characterized as follows. Let fbe the fraction of inherently
serial work in a program. Assume that the remaining fraction (1-f) is perfectly parallelizable and
ignore any communication overhead. If T’y is the running time of the program on a single proces-
. sor, then T}, the running time of the program using p processors, is given by

T,=fT + ———(1_{) )11 @.1)

It is clear that regardless of the number of processors used, the absolute maximum speedup of this

T
program, -, will be bounded by -}—
14

of the program by using more processors. Flatt and Kennedy [Flat89], in fact, showed that for

. This eventually dooms attempts to speed up the execution

real programs a maximum speedup is obtained using some number of processors, beyond which

additional processors can only increase the running time.

Gustafson [Gust88] suggested that instead of increasing the number of processors used to
solve a fixed-size problem, we should measure speedup by holding execution time constant, and
growing the parallel portion of the problem with the number of processors. This reflects the
nature of at least some actual parallel codes [Benn88] and would appear to be a necessary condi-
tion in order to maintain high processor efficiency for very large systems. This model fits nicely
with the idea that the amount of time people are willing to wait for a computer program to com-
plete has remained roughly constant through the years; rather than solve problems faster, we tend
to solve bigger problems in the same amount of time.

Given this primary assumption of scalable software, we need not quit before we have
begun, and can continue to define a scalable system. There have been several suggestions as to
what scalability means. Patton [Patt85] stated that a scalable design “can be adjusted up or down
in size without loss of functionality to scale effects”. Goodman, Hill and Woest [Good89] define
a scalable algorithm as one whose serial portion does not grow with problem size and whose
parallel portion contains parallelism at least proportional to the algorithm’s complexity. This
strict definition requires a scalable algorithm to be solvable in a constant amount of time, regard-
less of problem size, on an idealized multiprocessor. They define a scalable system according to
the speed at which it executes a scalable algorithm, allowing limited reductions in speed due to

communication latency.
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Nussbaum and Agarwal [Nuss91] provide a more general definition of scalability, that
. assigns a scalability value to any pair of machine and algorithm. Their metric is the asymptotic
speedup of a given, fixed-size algorithm on a real machine with unlimited processors relative to
the speedup of the same algorithm on an EREW PRAM [Fort78]. Their definition is precise, but
rather theoretical in nature, dealing only with asymptotic behavior and ignoring any cost or
efficiency considerations.

Johnson [John90] presents a rigorous set of definitions for scalable hardware which is
independent of the workload. Using asymptotic behavior, he defines 11 classes of scalability,
including uniformly, architecturally and implementationally scalable.

On the other hand, Hill [Hill90], questions whether scalability can be usefully defined at all.
He challenges the technical community to either define the term rigorously, or stop using it alto-
gether. Others [Leno90, Cher89, Hage89] use the term without accompanying definition, relying
on the readers’ intuitive definitions.

I believe that a rigorous definition of scalability may be of little use, but that we can arrive
at a useful working definition. Several qualifications need to be offered at the start, however.
First, scalability is not a simple binary property; certain designs may be more or less scalable than
others. However that does not in practice preclude some designs from being clearly not scalable
(in the same manner, we can say that a package is very heavy or that a person is not tall, though
weight and height are not binary properties). Second, scalability, in and of itself, says nothing
about the cost or performance of a given, fixed-size system. It is useful primarily for providing
insight into the behavior of a system as the number of processors grows. Third, even though I am
interested in the performance of very large systems, asymptotic behavior of a system may not be
of interest. The state of the art is pushing thousands of processors. The behavior of systems with
billions of processors is simply not relevant for the foreseeable future.

2. A Working Definition of Scalability

I define scalability in terms of three metrics: cost, latency, and bandwidth. Each of these
can be approximated as growing by some order of N, the number of processors in the system. A
system can be considered scalable if it scales well with regard to each of these metrics.

Cost: The cost of the system is measured in terms of the required hardware. A full crossbar
. interconnect, for instance, requires O (N?) switching elements. An Omega network requires
O (N logN) switching elements. A ring requires only O (V) switching elements. Another effect
on the cost metric is the size of memory needed to store directory information. If a directory
scheme requires that every line of memory be accompanied by a tag that is proportional to N in
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size, then the tag memory must grow as O (N 2y (assuming that the size of main memory grows
linearly with N). Some costs should be ignored, as they are practically constant for all but truly
asymptotic behavior. For instance, the number of bits used to specify a processor grows as
O (logN). But if a single word (32 bits) is used, this effect is not seen until the number of proces-
sors exceeds 232. This sort of behavior can be ignored for scalability considerations. For a sys-
tem to be considered scalable at all, the cost should be less than O (N 2, By this measure, a full
crossbar is not considered scalable. Beyond that, a system may scale better or worse than another
regarding cost. For example, a 2-dimensional mesh scales better in cost (O (N)) than an Omega
network (O (N logN)).

Latency: The latency metric is the average latency of a memory request. This is affected
by the topology of the system, and can also be affected by the communication protocol and the
workload. Ideally, we would like the average latency to remain O (1) as system size increases.
Realistically, this is not possible for more than incremental growth of the system. Several inter-
connection networks (such as the Omega network) provide O (logN) latency upon first approxi-
mation. Eventually, however, wire lengths grow, and latency must increase at least as O (N '/?),
due to propagation of signals in 3-dimensional space. A three dimensional cube topology, which
can be implemented with constant length wires, provides latency of O (N 173y for uniform com-

munication.

I argue, however, that asymptotically, the latency of any system must increase as at least
O (NV2). Consider an idealized sphere of processors with radius r. The sphere contains O (r%)
processors. The communication distance between two random processors is O (r). The bisection
. area of the sphere is O (r?). The traffic across the bisection (assuming uniform communication)
is proportional to the number of processors, or O (r®). Thus the traffic density across the bisec-
tion increases as r. This cannot be supported asymptotically. If the traffic density is kept con-
stant, then the sphere may only be packed with O (r?) processors. The communication latency is
then O (N'/2). At what size this asymptotic behavior becomes relevant is not clear, and will
depend upon the technology being used. However, as an example of this principle applied, the
Tera Computer System populates a 3-dimensional mesh of size r* with only r? processors
[Alve90].

Considering this, the tightest absolute requirement that we can impose is that latency cannot
grow faster than O (N 172y Even for very large systems, however, we may be able to ignore the
asymptotic latency of a design, so certain topologies may scale better than others (O (N '/*) versus
O (N1/2), for instance). Recall, also, that for a given size (even a very large one) a specific sys-
tem may perform better than another, even if the other has better scaling properties.
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Bandwidth: The bandwidth metric is the maximum of the average traffic over each wire
resulting from every processor issuing a single memory request. Note that the unit here is not
traffic per second, but rather traffic per request, which allows us to consider this metric indepen-
dently of the latency metric. The traffic is caused by the requests themselves, any associated
data, and any traffic generated by the cache coherence mechanism (to retrieve data from another
processor or to invalidate lines after a write, for instance).

If the bandwidth metric is greater than O (1), then the load across some link will increase as
the system size increases. Unless the original system was designed with bandwidth to spare, the
rate at which processors can generate requests will decrease accordingly. For limited scalability,
a link may be able to handle O (logN) or O (N'/?) traffic, but eventually this will saturate the
available bandwidth. Ideally, the bandwidth metric should be O (1).

3. The Effect of Software on Scalability

The three scalability metrics are affected by a combination of hardware, software and the
communication protocol.! The default assumption regarding software is the uniform workload
model. The processors’ non-local references are uniformly distributed across the memory
modules of the system. In addition, the percentage of accesses that are writes to shared variables
_ remains fixed as system size increases. This means that the number of invalidations per request
per processor remains roughly constant. If the scalability of a topology is discussed without men-
tion of the software, it is the uniform workload model that is being assumed.

Under a hot-spot workload, processors make a higher than average fraction of their requests
to a particular memory location or module. This will prevent a system from scaling unless the
hardware or communication protocol takes explicit steps to handle it. Concurrent read requests
are expected to occur frequently. Shared data or instructions read after exiting a barrier are prime
candidates. Concurrent write requests are not expected to occur often.

In contrast to the hot-spot workload, a conspirator workload can make a multiprocessor
scalable that otherwise would not be scalable. For example, if the workload has high geographic
locality of communication that matches the physical layout of the system, and the communication
protocol allows for localized communication, then the average message will traverse only a

! For the purposes of this thesis, “communication protocol” refers to the cache coherence protocol,
but other protocols can also have an impact. A routing algorithm, for example, could adversely affect sca-
lability by making unequal use of network links.
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fraction of the distance across the system, and an otherwise non-scalable system may scale.
Another example of a conspirator workload is one whose fraction of writes to shared variables
decreases with system size. This makes the rate of invalidations per request per processor
decrease as system size grows larger. This sort of workload occurs, for example, when shared
variables are read by all processors between successive writes.

4, Scalable Networks

The framework of Section 2 can now be used to discuss candidate multiprocessor topolo-
. gies. This is done in Section 4.1, under some simplifying assumptions, which are then addressed
in Section 4.2. This section does not attempt to present a complete survey of interconnection net-
works.

4.1. Preliminary analysis

The primary simplifying assumption of this section is to ignore wire transmission delay.
Therefore, latency is related only to the number of “hops” that a message traverses, and not to the
length of the wires. The number of wires in the network is assumed only to be constrained by the
cost requirement for scalable systems.

A ring interconnect will not scale for uniform workloads because both the rate of traffic
across each link and the average communication latency increase as O (N). Extreme conspirator
workloads, such as one in which nodes communicate only with nearest neighbors in one dimen-
sion, can scale on a ring. A single shared bus will not scale, because the traffic on the bus
increases as O (N). In addition, though it may not be immediately apparent, the latency of shared
bus accesses increases with N (even without the increased queueing delay). This is because the
physical length of the bus, as well as its capacitance, increases with N [Wins88].

This suggests an important point: a ring of point-to-point links can be used to simulate a
bus. Both have the same scaling properties, but point-to-point links can be clocked at a higher
rate (independent of N), leading to higher performance. A broadcast operation is simulated by
passing a message completely around the ring. This does not provide global event ordering, how-
ever, so modifications are necessary for snooping protocols that depend on this.

One topology that has been widely studied for large numbers of processors
[Wils87, Baer88, Wins88, Vern89, Yang92] is the bus hierarchy (see Figure 2.1). This topology
will not scale, however, for uniform workloads. Each time a line is written, if a copy exists in
any of the other primary subtrees of the hierarchy, an invalidate or update message will have to
travel over the root bus. Even if a software coherence mechanism that did not use invalidates
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were being used, a write to a line that is subsequently read in another subtree requires traffic over
the root bus. Thus the traffic over this bus is O (NV), and the system does not scale. For a con-
spirator workload, where the fraction of writes to shared variables decreases with N, the traffic
over the root bus can remain O (1). Root traffic can also remain constant with respect to N if
strict communication locality can be maintained.

Vemon, Jog and Sohi [Vern89], in an analysis of hierarchical bus-based multiprocessors,
concluded that the systems scale well only if the average fraction of processors that read a shared
line between writes, fzy, remains large as system size increases. This can only be accomplished
with a conspirator workload in which the fraction of references that are shared writes decreases
. with system size. If the fraction of references that are writes to shared variables, fiys, remains

constant, then the average number of processors that read a shared line between writes must be

1- 1~
Fws . Thus, fr S -ﬂ, which decreases with system size. Their analysis showed that

fws Nfws

when fx; is small, the system is extremely inefficient for large numbers of processors (due to con-

S

tention for the root bus).

Another widely studied class of network topologies is multistage interconnection networks,
such as the omega network [Lawr75]. The omega network uses log;N stages of kxk crossbar
switches to connect N inputs to N outputs. Typically, either the processors and memory modules
are at opposite ends of the network (the “dance hall” configuration), or the memory is packaged
along with the processors and the network wraps around such that the processor modules are con-
nected to both the network inputs and outputs. Figure 2.2 shows an 8x8 omega network using
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2x2 switches and the dance hall configuration.

The cost of an omega network is O (Nlog,N), the communication latency (ignoring wire
delay) is O (logiN), and the bandwidth metric is O (1). The omega network, therefore, scales
better than the bus hierarchy. It does not, however, allow locality to be exploited; all memory
modules and processors are equi-distant from each other.

Another widely advocated topology is the k-ary n-cube [Sull77]). Rings, 2-dimensional tori,
3-dimensional tori and hypercubes are all sub-classes of this topology. The k-ary n-cube has n
dimensions, with k processors in each dimension, for a total of N = k" processors. For example, a
2-dimensional torus with 64 processors is a 8-ary 2-cube. While “k-ary n-cube” generally refers
to a network of point-to-point links, a similar network can be implemented using buses, with k
processors per bus and n buses per processor. Goodman and Woest [Good88] refer to such a net-
work as a multicube. Figure 2.3 shows a 4-ary 3-cube multiprocessor, implemented with uni-
directional links.

The k-ary n-cube has the desirable property that, while it avoids the bottleneck of a single
root, it retains a hierarchical structure with respect to any individual root node (see Figure 2.3(b)).
Therefore, communications protocols that rely on a hierarchical structure such as that in Figure
2.1 can be implemented on the k-ary n-cube. Pruning-cache directories, which are discussed in
Chapters 5 and 6, make use of this hierarchical structure.

PPPPPPRY
POOOOOOE

Figure 2.2: An 8x8 omega network
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(a) The complete 3-cube (b) One of 16 distinct trees
Figure 2.3: A 4-ary 3-cube multiprocessor (N =64, k=4, n=3)

Each processor is connected to n rings (with an in and out link for each ring), and each ring consists of k
processors (if implemented with buses, each processor would connect to n buses, and each bus would con-
nect to k processors). Although not explicitly shown, all rings include end-around connections as illustrat-
ed in part (a). Each processor is accompanied by a portion of main memory and one or more levels of
cache. Memory is interleaved by cache lines amongst the memory modules. For any given memory
module, a tree of rings (or buses) is formed as shown in part (b). This tree is equivalent to a conventional
tree hierarchy, given that each parent node (those in the rightmost plane of part (b)) is allowed also to be
one of its children. This allows communication protocols based on a hierarchical topology to be imple-
mented.

The k-ary n-cube is scalable, if grown in the proper way. The cost is O (Nn), where
n =log,N. There are N processors and Nn links (—IYI-C'}- buses). The average distance between two

processors is O (nk) link hops (O (n) bus hops). Thus, assuming uniform traffic, the latency ofa
communication request is O (nk), and the traffic over a link or bus is O (k). The cost and latency
metrics do not preclude scaling, by the definition of Section 2, regardless of how the system is
grown. The cost metric favors low dimensional networks, while the latency metric favors high

_ dimensional networks. Bandwidth requirements, however, dictate that the network should be
grown by increasing the dimensionality (n). A fixed dimension network (a 2-dimensional torus
for instance), does not scale well, due to increasing link traffic. This of course does not exclude
limited scalability when n is fixed, especially when n» is large.
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4.2. Realistic analysis

When wire delay is considered, the scalability of k-ary n-cubes is potentially limited due to
physical penalties for high-dimensional networks. When the number of logical dimensions
exceeds the number of physical dimensions in which the network is implemented (which, alas, is
fundamentally limited to three), then the processors can no longer be connected solely to physi-
cally close neighbors, and the network wire lengths must grow [Dall90]. This means that the hop
latency is no longer O (1) for high-dimensional networks.

A similar phenomenon occurs for omega networks, where even small- to medium-scale net-
works have long wires. Although the length of the longest wire is O (V) if the network is laid out
as shown in Figure 2.2, a good three dimensional layout can result in maximum wire lengths of
© O(NY2) [Gott83]. The remainder of this thesis will consider only k-ary n-cube networks,
although much of the analysis would be germane to multistage networks as well. This choice is
partially because k-ary n-cubes provide a very flexible and general interconnect to study (allow-
ing many configurations, from rings to hypercubes), and partially because they provide an excel-
lent platform for the cache coherence scheme investigated in Chapters 5 and 6.

More important than the actual transmission latency to traverse long wires is the effect that
this latency has on the network cycle time. In a conventional, non-pipelined-channel network,
the network cycle time must be grown to accommodate the transmission delay across the longest
wire in the network. This larger cycle time adds to the switching latency and to the latency of
traversing all links, regardless of their length. It also effectively decreases the per-processor
throughput of the network, by decreasing the rate at which new data can be clocked onto the
links. These effects exact a large penalty on high-dimensional networks, which have inherently
longer wires than do low-dimensional networks.

This thesis proposes the use of pipelined-channel networks to overcome this problem. As
mentioned in Chapter 1, the cycle time in a pipelined-channel network is independent of wire
length, allowing multiple bits to be simultaneously in flight on longer wires. Chapter 4 demon-
strates that a pipelined-channel network is optimally grown by holding the radix (k) constant and
increasing the dimensionality (n). This allows networks to scale well, according to the definition
of Section 2.

In addition to wire length, high-dimensional networks can also be penalized by various wir-
ing constraints [Dall90, Agar91]. The constant node size constraint, motivated by board- and
chip-level pin limitations, holds the number of wires per node constant as the dimensionality of a
fixed sized network is varied. If applied to scalability (i.e. holding the number of wires per node
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constant as the system size is varied), it would cause the link traffic to increase as O(n) and
. asymptotically place an upper bound on the network dimensionality, causing link traffic to grow
as some root of N. This constraint is equivalent to tightening the restriction on system cost,
allowing the cost (number of wires in this case) to increase only linearly with system size.

The constant bisection constraint, motivated by wiring density limitations, holds the
number of wires crossing the bisection of the network constant as the dimensionality is varied.
This constraint more severely limits scalability, causing the link traffic to increase as O (N 3 1t
is essentially equivalent to the argument used in Section 2 regarding asymptotic scalability. A
network that is truly bisection constrained is already in the region where bandwidth cannot scale
with the number of processors. The only remedy for this situation is to either populate the net-
work with fewer processors, or rely on communication locality (a conspirator workload) to limit
bandwidth requirements.

These issues are more thoroughly explored in Chapter 4. It is shown that even for wire-
constrained networks, optimal growth of k-ary n-cube networks holds the radix constant. This is
a significant departure from non-pipelined-channel networks, in which the optimal radix increases
significantly for large networks.

5. Scalable Cache Coherence

The basic function of a cache coherence mechanism is to make sure that after a memory
location is modified, subsequent reads to that location return the new (modified) value. Unfor-
tunately, in a multiprocessor, it is difficult to specify the exact time of a write; because of non-
deterministic delays to access memory, requests to different locations and from different proces-
sors may complete in a different order than that in which they were issued. In addition, as system
sizes increase, so does the interval of time between when an event occurs, and when that event
can be observed in other parts of the system. The cache coherence mechanism need only make
the following two guarantees. First, writes to a given memory location by a given processor, can-
not be observed by any processor to occur out of program order. Second, there must exist some
global ordering of reads and writes to a given memory location, such that no processor observes

any other order.

In addition to cache coherence, a multiprocessor may provide sequential consistency
~ [Lamp78], or some weaker form of memory consistency [Dubo86, Adve90,Ghar90], which
makes a guarantee about the global ordering of reads and writes to different memory locations .
Providing some form of memory consistency can significantly impact the cache coherence
mechanism. In order to provide ordering of memory operations, the system must be able to
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determine when all processors have seen the new value of a write (or at least can no longer see
the old value). This thesis does not address the issue of sequential consistency other than by plac-
ing this constraint (the ability to determine when coherence actions have completed) upon the

cache coherence mechanism.

It is assumed that coherence is maintained over cache lines, and that each line of memory
has an associated state (such as modified, shared or private) in each processor cache where it
resides and possibly in main memory as well. When a line is written, all shared copies of the line
must be either updated or invalidated, using a write update or write invalidate protocol respec-
tively. If all or most processors that have a copy of a line when it is written will be re-reading the
line, and if multiple writes to the same line by a single processor can be delayed such that only a
single update message is sent, then a write update protocol should outperform a write invalidate
protocol. However, when one of the above conditions does not hold, a write update protocol may
cause excessive update traffic and a write invalidate protocol may perform better.

The choice of whether an update or invalidate protocol should be used has been analyzed by
Eggers and Katz for single-bus multis [Egge89]. They concluded that invalidate protocols were
preferable for the workloads they analyzed. I argue that given that write invalidate performs
better than write update for a single-bus multi, that its performance advantages remain the same
or increase as system size increases. If all previous readers of a line re-read the line after it is
" written, then the write update protocol must be performing worse because of multiple update
messages, and increasing the system size will not change this. However, if the update protocol
results in extraneous updates (updates to cache lines that will not be read again), then its perfor-
mance relative to the invalidate protocol should become worse as system size increases. This is
because, as the system size grows beyond a single bus, the bandwidth used to broadcast an update
to all previous readers becomes increasingly larger relative to the bandwidth used to send an
update to a single processor. whereas the bandwidth used for an update in a multi is independent
of the number of caches being updated. This increases the penalty for extraneous updates. For
this reason, and because invalidate protocols appear to be in more widespread favor, this thesis

assumes the use of write invalidates.
Scalability arguments can help determine if a particular cache coherence mechanism is well

suited for large-scale implementations. I consider two simple coherence mechanisms here, and
postpone further analysis until Chapter 5.
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5.1. Broadcast invalidate

One simple coherence mechanism is to broadcast an invalidate to all processors whenever a
shared line is written. This is the primary approach used for single bus multiprocessors, where a
broadcast requires only a single bus transaction. We can immediately see, however, that this
approach will not scale for uniform workloads. As the system size increases, each processor will
receive invalidations at a rate proportional to N. This will saturate the network or the processors’
cache controllers at some point, regardless of topology, and therefore this mechanism is not
_ appropriate for very large systems.

Formally, if the fraction of requests that are writes to shared variables remains fixed (the
uniform workload assumption), then O (N) invalidations are generated on each request, each of
which must be sent to every processor. From a latency viewpoint, queueing of messages in the
network implies that the average latency of a request will grow as O (N), clearly violating the
requirement for scalability. From a bandwidth viewpoint, since the number of input lines to any
processor can grow by at most O (logN) (the cost requirement for scalability), and the number of
incoming invalidation messages per request is O (NV), the traffic per line per request grows as at
least O(N /logN), again, clearly violating the requirement for scalability.

It should be noted that for a conspirator workload in which the fraction of writes to shared
variables decreases as O(1/N), a broadcast invalidate protocol can scale. In addition, for
sufficiently small implementations, a broadcast invalidate protocol may be quite feasible and
relatively simple to implement.

5.2. Full-width global directory

Another possible coherence mechanism is to keep track of all shared copies of a line in a
global directory. The directory can be distributed along with the memory of the system (as
opposed to a "centralized" directory as proposed by Tang[Tang76] ). Censier and Feautrier
[Cens78] proposed keeping a bit vector of size N for each line, with the corresponding bit set for
every processor that has a copy of the line. When the line is invalidated, individual messages are
sent to each processor whose bit is set. This does not violate the bandwidth requirement for sca-
lability, assuming that general read traffic scales, because the number of invalidation messages is
directly proportional to the number of original read requests that caused the directory bits to be
set. However, it clearly violates the cost requirement. The amount of memory storage needed to
implement this directory is O (N 2y (assuming that the size of the memory is O (N)). In addition,
the latency of such an invalidate grows linearly with the number of shared copies, which pre-
cludes scalability for workloads with heavy read sharing.
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6. Summary

This chapter presented a working definition of scalability and demonstrated its use on
several topologies and cache coherence mechanisms. The definition is purposefully informal; the
intent being to trade rigor for ease of use. The basic notion is to keep the cost, communication
latency and link traffic from growing too fast as system size increases. When used in the wrong
way (considering scalability before performance, for instance), the concept of scalability can be
abused, but when used correctly, scalability provides useful intuition about the behavior of very
large systems.

The k-ary n-cube is a promising topology for future, large-scale multiprocessors. Upon first
approximation, k-ary n-cube networks scale very well when the radix is held constant and the
dimensionality increased with size. The use of pipelined channels allows the dimensionality to
exceed three without causing a corresponding increase in the cycle time of the network, thereby
avoiding one of the primary scalability limitations of conventional networks. Wiring constraints,
however, can still limit scalability for large systems, as will be explored in Chapter 4.

K-ary n-cubes also provide a substitute for single-tree-based networks (which do not scale
for uniform workloads) as a platform for hierarchical communication protocols. The equivalence
of buses and rings allowys for cube networks to be implemented with either technology, and still
employ the same basic protocols. It is likely that "simulated" buses, constructed from point-to-
point links, will provide higher bandwidth than their conventional counterparts as logic speeds
continue to outpace bus speeds.

Cache coherence mechanisms can greatly affect the scalability of a multiprocessor. A
mechanism is needed that scales in space, latency and bandwidth. This chapter briefly explored
two coherence mechanisms. The simple broadcast invalidate mechanism scales well with regard
to cost, but clearly does not scale with regard to bandwidth. At the other end of the spectrum, the
full map directory scales with regard to bandwidth, but clearly does not scale with regard to cost,
. and may not scale for certain workloads with regard to latency. There is a lot of middle ground
between these two extremes. Chapter 5 will provide some additional background on proposed
cache coherence mechanisms, and present a scalable alternative, pruning-cache directories.
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Chapter 3

Analysis of a Pipelined-Channel Ring

In order to recommend pipelined-channel networks, it is not enough to show simply that
they are more scalable than non-pipelined-channel networks. It is important that they deliver
higher performance as well. The purpose of this chapter is to demonstrate just that, by analyzing
" the performance of a small, pipelined-channel network. Once the base performance of a
pipelined-channel design is established, we can move on to assess the impact of pipelined chan-
nels on the design and scalability of larger networks.

A performance analysis of pipelined-channel networks must be careful to take into con-
sideration any overhead or side effects resulting from the pipelined operation. Care must be
taken also to assure that the design being analyzed is realistic and implementable. An ideal
method of doing this is to study an existing, “industrial strength” design. A prime candidate for
this purpose is the Scalable Coherent Interface (SCI).

1. Background

SCI is a new IEEE standard (1596) that provides very-high-performance, shared-bus-like
functionality to a large number of processor nodes [IEEE92,Jame90, Gust92]. Although SCI is
an interface standard, rather than a network standard, the nature of its operation implies pipelined
channels. The cycle time is fixed and independent of wire lengths, so that sufficiently long wires
will have multiple bits in flight concurrently. Using a packet-based communication protocol over
a network of unidirectional links, it provides a shared-memory interface, including cache coher-
ence, to the nodes. The protocol has been developed over a period of approximately four years,
has included participation by representatives of dozens of companies and universities, and has
assembled appropriate expertise in many different disciplines to solve the plethora of problems

associated with a novel design.

There are three major components to the SCI standard: the physical, logical and cache-
coherence layers. The logical layer provides the protocol for reliably transmitting packets
between nodes. The node interface consists of two unidirectional links, an input and an output,
which are used to connect nodes together in the basic topology of a ring. The ring can in theory
be arbitrarily large (up to 64K nodes), but performance considerations lead to the expectation that
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a ring will be limited to a modest number of processors, numbering at most a few dozen and
perhaps as few as two (even one is possible). Larger systems can be built by connecting together
multiple rings by means of switches (nodes containing more than a single interface). Figure 3.1,
for instance, shows a two-dimensional torus constructed from rings. A multistage interconnec-
tion network (such as the Omega network) could be implemented by replacing every bi-
directional link with a ring of size two, or by more elaborate, higher-performance schemes
[John91].

The ring is unusual in that each node provides a bypass buffer capable of temporarily stor-
ing a packet arriving from its upstream neighbor while it is transmitting a packet. This buffer
allows nodes to transmit concurrently rather than having to wait for a token, but results in long
latency if all nodes happen to initiate transmission simultaneously on an idle ring. The basic
structure of the SCI ring is similar in nature to the register insertion ring [Stal84].

Because of the novel construction of the ring and the attendant clock rates achievable in the
design, very high performance is expected, and a peak bandwidth of one gigabyte per second is
easy to demonstrate. The nature of the protocol, however, makes both the achievable bandwidth
and the observed latency harder to predict. Presented in this chapter is the most detailed study to
date attempting to analyze the performance of a single SCI ring. The study deals strictly with the
logical layer. The primary criteria for judging the design are its throughput-latency characteris-
tics and its robustness. Performance is analyzed under a variety of workloads and ring sizes. In
addition, a mechanism to assure fairness in the ring is investigated to assess its impact on the

Figure 3.1: A 2-D torus constructed from rings
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performance. The SCI protocol does provide priority scheduling, but this aspect of the protocol
is not investigated in this study. The ring is studied via analytical modeling and simulation.

The remainder of the chapter is organized as follows. Section 2 describes the protocol of
the SCI logical layer. Section 3 describes the analytical model. Section 4 presents and analyzes
the results of the study, and Section 5 summarizes the conclusions.

2. The SCI Logical-layer Protocol

The key idea behind the SCI logical layer protocol is the use of unidirectional, point-to-
point links that can be clocked at a rate independent of the signal latency between nodes. The
basic building block of an SCI system is a ring (sometimes called a ringlet) of two or more nodes
connected by these links. The protocol is designed such that, short of an actual hardware failure,
packets are guaranteed to be accepted at full speed by each node that they pass through as they
traverse the ring. Therefore, a node can output a symbol of information on every clock cycle, and
there is no direct feedback from a node to its upstream neighbor. A packet might niot be accepted
by its destination, however, due to queue congestion. The protocol uses packet-level ack-
nowledgements to deal with this issue.

2.1. Basic protocol

This section presents a summary of the basic protocol. Details such as ring initialization
and error detection/recovery are not covered, nor is all the functionality of the standard presented.
- Buffer management is somewhat simplified; I assume a single transmit and receive queue per
node, whereas the actual system requires dual queues in order to support a higher level protocol.
The cache coherence layer of the SCI standard is not considered at all. Much more detail can be
found in the standard [IEEE92].

A packet traversing an SCI ring is sent from a source node to a target node in the form of a
send packet. The target node then strips the send packet, and returns an echo packet around the
remainder of the ring. This echo packet tells the source node whether or not the send packet was
accepted by the target. If the packet was not accepted, then the source must retransmit it.

A send packet consists of a 16 byte header and an optional data component of up to 256
bytes. The header contains command and control information, a 16-bit CRC (Cyclic Redundancy
Check) and a 64-bit memory address (16-bit node id and 48-bit intra-node address). I assume a
data component size of 64 bytes, which corresponds to the SCI cache line size. Echo packets are
8 bytes long. The link width is 16 bits (the standard defines both a 16 bit copper implementation
and a serial, fiber optic implementation)
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Figure 3.2 shows a block diagram of an SCI node and ring interface. A node transmits a
symbol onto its output link on every SCI cycle. When a node has no packet to transmit, it sends
an idle symbol. When a source desires to send a packet over the ring, it places the packet in its
transmit queue. If the ring buffer is empty and the node is not currently transmitting a packet
from the stripper, the send packet is immediately output onto the ring. When a source node
transmits a packet onto the ring, a copy must either must be saved at the head of the queue (thus
_ blocking further transmissions) or placed into an optional active buffer. The copy is either dis-
carded or used for retransmission when the echo packet is received.

Upon arrival at the downstream node, a send packet is parsed and either stripped or passed
along the ring. In the absence of contention, a passing packet may be routed directly from the
stripper to the output link. If the ring buffer is not empty or the transmit queue at the node is
currently transmitting a packet, the passing packet is routed into the ring buffer. If a passing
packet and packet in the transmit queue are ready to transmit on the same cycle, the transmit
queue is given priority and the passing packet is routed to the ring buffer.

When the transmit queue is done transmitting a packet, if the ring buffer has accumulated
any symbols, output resumes from the ring buffer (which may still be receiving symbols from the
stripper). This is known as the recovery stage, and lasts until the ring buffer is completely emp-
tied. The node is not allowed to transmit another source packet during the recovery stage. To
empty the ring buffer, the node either must see gaps in the stream of incoming packets, or create

Node i §
i Node Interface E
i Transmit Receive i
5 Queue Queve |
Output Link | | M [| Buffer L . ! Input Link
to i+1 X (parse) from i-1

Figure 3.2: An SCI node
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gaps in the packet stream by stripping packets for which it is the target. During these gaps, the
buffer can be drained while not being simultaneously filled. If the ring buffer is empty after a
source transmission completes, then there is no recovery stage.

When a send packet reaches its target, it is stripped and either placed into the receive queue
(space permitting) or discarded. The node uses the bandwidth created by stripping the packet to
insert idle symbols, transmit symbols from the transmit queue or drain the ring buffer. The last
four symbols of the send packet are replaced with an echo packet that continues its way around
the ring to the packet’s source. At the source, the echo packet is matched with a saved send
packet in an active buffer or at the head of the transmit queue, and the appropriate action is taken
(discarding or retransmitting the send packet).

One last feature of the protocol that needs mentioning is that packets are always separated
by at least one idle symbol. This allows the stripper to periodically delete an idle symbol, if
necessary, to adjust for a slowly varying clock period between neighbors (this is known as elasti-
city). It also assures timely distribution of priority and other information carried in the idle sym-
bols. I do not consider elasticity or priorities here, but do require the intervening idle symbols.
For the purposes of the basic model, this is equivalent to increasing the length of all packets by
one symbol.

2.2. Flow control

The basic protocol described above works fine for uniform traffic rates and routing distribu-
tions. However, it allows for nodes to be unfairly starved in the presence of certain non-uniform
. traffic patterns. Consider a node that partially fills its ring buffer during a transmit queue
transmission. If the node then receives a continuous stream of passing packets, then its recovery
stage can take arbitrarily long, denying it the chance to transmit another packet. For this reason,
the SCI protocol includes a flow control mechanism that uses go bits in the idle symbols to
enforce an approximate round robin ordering under heavy loads. The flow control mechanism is
complicated by a priority mechanism that partitions the ring’s bandwidth between high and low
priority nodes. While the priority mechanism has certain special uses, such as in real-time sys-
tems, it is not likely to be used for general purpose multiprocessors. I assume that all nodes have
equal priority, and present the simpler flow control mechanism that results.

Each idle symbol contains a go bit which is either set (making it a go-idle) or cleared (mak-
ing it a stop-idle). The stripper passes all idles and passing packets (as well as echos for packets
that it strips) to the transmitter stage of the node interface. When it strips a packet, it fills the
empty slots with idle symbols. When a node is not transmitting a packet from its transmit queue



Ch.3 24

and is not in the recovery stage, it simply passes all symbols — send, echo and idle — from the
stripper to its output link. Whenever the transmitter emits a go-idle, it continues to emit go-idles
until the next packet boundary, possibly converting passing stop-idles into go-idles (this is called
go-bit extension).

A node may only transmit a source packet immediately following a go-idle. During
transmission of a packet, a node maintains the inclusive-OR of all go bits it receives from the
stripper. If the ring buffer does not fill up at all during transmission, then the node postpends an
" jdle symbol to its packet using the saved go bit it maintained during the transmission, and then
continues to either transmit another source packet or output symbols from the stripper.

If the ring buffer does fill up at all during transmit queue transmission, then the node enters
the recovery stage. All idles sent during the recovery stage, including the idle postpended to the
original source transmission, are stop-idles. The node continues, however, to maintain the
inclusive-OR of go bits it receives throughout the recovery stage. When the recovery stage ends
(the last symbol is drained from the ring buffer), the saved go bit is released in the postpending
idle just as it was for the postpending idle of a source transmission when the recovery state was
not entered.

The stop idles that are transmitted during a recovery stage inhibit the downstream neighbors
from sending new packets and eventually provide enough slack in the incoming packet stream for
the node to drain its ring buffer and send a packet. In the absence of contention, all idles on the
ring will be go-idles, and a newly arriving send packet can always be sent immediately.

3. Analytical Model

This section presents an analytical performance model of the SCI ring. The model is useful
for a variety of reasons: it allows the quick exploration of a large state space, it’s precisely
defined and can be implemented by other researchers and engineers, and it helps us gain insight
into the processes being modeled. Results from the model, as well as from detailed simulations,
are presented in section 4.

The model is based upon an approximate, iterative solution of the M/G/1 queue [Klei75]
(see Figure 3.3). It does not consider flow control, limited active buffers or target queue
overflow. The effect of these factors can be determined from simulation results. The model does
consider, and effectively deals with, ring buffer fill-up during transmit queue transmissions, the
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Figure 3.3: Overview of the M/G/1 queue

A - customer arrival rate (arrivals are Poisson); § - mean service time (service time distribution is complete-
ly arbitrary); V - variance of service time; ¢ - coefficient of variation; p - utilization; 0 - mean number of
customers in queue (including any customer in service); L - mean residual life of customer in service; W -
mean wait time for a customer before service begins; R - mean response time.

2 non-homogeneous

transmission recovery process, the formation and effect of packet trains,
packet arrival rates and non-uniform packet destination probabilities, delays due to queueing in

ring buffers and variance of transmit queue service times.

Figure 3.4 presents a high-level overview of the model. The bulk of the model concentrates
on computing the mean and variance of the transmit queue service time. Service time includes
. the time to transmit the head of the transmit queue onto the output link and drain any accumu-
lated symbols from the ring buffer. After this period, the next packet in the transmit queue will
be able to start its service. Given the mean and variance of this service time, the total waiting
time in the transmit queue can be calculated using the solution to M/G/1 queue illustrated in Fig-
ure 3.3.

A unique feature of the model is that it considers the formation of packet trains on the ring.
The extent to which packets are bunched together into trains is characterized by coupling proba-
bilities, which are computed separately for each node and link on the ring. The coupling proba-
bility on a link denotes the fraction of packets traversing the link that immediately follow the
packet in front of them. As will be explained in the following sections, the consideration of
packet trains leads to a cyclic dependency in the model equations, which is handled by an itera-

tive solution.

2 These packet trains arise from collisions between passing packets and source packets as well as
from the insertion of trains at source nodes.
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Figure 3.4: Overview of SCI model

3.1. Model inputs

Inputs to the model are the ring size (N), packet arrival rates (A;), routing probabilities (zij)»
packet lengths (lsddr, ldata, lecho), Packet type ratio (fuua, fadar), transmission delay (Ty.) and
parsing delay (Tpar). Note that each node has a distinct arrival rate and a distinct, possibly non-
uniform packet destination probability distribution.

3.2. Discussion of model equations

This section provides a brief overview of the model equations. The equations are presented
in detail in Appendix A. Equations (A.1) - (A.16) are straightforward. In the first twelve equa-
tions quantities such as mean and variance of packets lengths, link utilizations, and various
throughputs and ratios are derived directly from the inputs. Note that packet lengths include the
idle symbol that is postpended to every packet. The model then ignores these idles and considers
only the remaining “free” idles.

Equations (A.13) through (A.16) compute quantities relating to packet trains, which depend
upon coupling probabilities. Two key assumptions in the model are that packet trains contain a
geometrically distributed number of packets and that the number of idle symbols between packet
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trains is geometrically distributed.? Thus the mean number of packets in a train is given by the
reciprocal of the probability that a packet is not followed directly by another packet (Equation
(A.13)), and the probability that an idle symbol is directly followed by a packet, Ppy ;, is the
reciprocal of the mean space between packet trains (Equation (A.16)).

The transmit queue service time includes the recovery period, which lasts until the ring
buffer is empty. Each cycle in which an idle symbol arrives from the stripper allows us to
transmit a symbol of information without having to simultaneously place a passing symbol into
the ring buffer, thus reducing by one the remaining symbols to send. The service time is over
after observing a number of passing idle symbols equal to the length of the packet.

There are two possibilities when transmitting a packet (Equation (A.18)). If a packet
arrives when the transmit queue is busy or when the queue is idle and there is currently no pass-
ing traffic, then the time required to observe the required number of passing idles is given by a
simple binomial distribution (Equation (A.19)). After each idle symbol, another packet train
passes through with probability P, ;. If a packet arrives when the transmit queue is idle but a
packet train is passing through the node, then the residual life of the passing packet and the possi-
ble interruption of the train must be taken into account as well (Equation (A.20)).

Equations (A.22) - (A.26) compute new estimates of the coupling probabilities. Equation
(A.22) considers new couplings that are formed when a send packet is injected at node i. Equa-
tion (A.23) calculates the mean number of coupled packets that enter the stripper at node i for
each packet stripped, where stripped packets include echo packets that are consumed and send
packets that are converted into echo packets. Equations (A.24) and (A.25) consider couplings
_ from the upstream neighbor that are removed when a packet is stripped at node i. Equation
(A.26) computes the net effect of stripping packets. Note that these equations assume that cou-
pling probabilities are not correlated with packet length. The relation between service time and
coupling probabilities is cyclic. The equations are solved iteratively until the coupling probabili-
ties converge.

After the above convergence, several metrics can be computed. The variance of the packet
train length (Equation (A.28)) is computed using the geometric distribution of the number of
packets in a packet train. Equations (A.29) - (A.33) compute the variance of the transmit queue
service time. This calculation involves an approximation involving the correlation between two

3 1 comment on the accuracy of these and other model assumptions in section 4.8.
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components of the service time. Equations (A.34) - (A.37) compute other values relating to the
solution of the M/G/1 queue.

The mean backlog seen by a packet paséing through node i (Equation (A.38)) is computed
by dividing the total backlog created by an injected packet, by the mean number of passing pack-
ets per injected packet. Finally, the mean transit time (Equation (A.39)) and mean overall
response time (Equation (A .40)) are computed.

Experience implementing this model has shown that convergence is faster for smaller ring
sizes. The convergence criteria used in this study is an average change in coupling probabilities
of less than 1075, Approximately 10 iterations were needed for N=4, 30 for N=16 and 110 for
N=64. Total time to solve the model for N=64 on a DECstation 3100 is about 1 second. Com-
parable simulation time (simulating 9.3 million cycles, as was done in this study) is over 4 hours.

4. Resuits

This section presents results derived from both the analytical model and a detailed,
" parameter-driven simulator of the SCI ring. The inputs to the model and to the simulator are
identical. The ring is modeled as an open system (Poisson arrivals), with the arrival rates, packet
lengths, mix of packet types, routing probabilities, ring size, wire transmission delay and packet
parsing delay specified as inputs. The simulator has the additional ability to consider flow control
and limited buffer space (active buffers and receive queues). Since the ring is modeled as an
open system, latency becomes infinite as saturation is reached. An actual system, of course,
would have a limit to the number of queued or outstanding requests, and nodes would be stalled
at some point rather than continuing to add requests (i.e. actual systems would likely be closed
rather than open). Section 4.6 illustrates the component of total delay that is due to queueing.

The unit of length in the model and simulator is one link width, and the unit of time is one
clock cycle. A 16-bit link with a 2 ns cycle time are used, as per the standard. Using these
assumptions, output latencies are presented in ns and throughputs in bytes per ns. Throughputs
are calculated using the entire packet, including address, command and control information. Sec-
tion 4.7 considers sustained data throughput using a read request/read response model.

Many other parameters have been fixed or limited in order to make the problem space tract-
able. Since the number of nodes in a ring is expected to be small, ring sizes of 4 and 16 nodes are
analyzed. Except where noted, 60% of send packets are address/command only (16 bytes), and
40% include data blocks (80 bytes) (these are referred to as address packets and data packets,
respectively). This corresponds to a workload in which most of the traffic consists of paired
address and data packets. A fixed minimum delay of 4 cycles per node traversed by a packet is
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used: one cycle to gate a symbol onto an output link, one cycle for the symbol to reach its down-
stream neighbor and two cycles to parse a symbol before routing it to the local node or to the next
output link. Message latencies also include one cycle to originally queue the packet, and a delay
equal to the packet length to consume the packet as it arrives at the target node. Unlimited active

" buffers are assumed at each node, but only one or two active buffers are actually needed to
approximate this [Scot92].

The simulator implements the protocol described in section 2 on a cycle by cycle basis,
explicitly tracking each symbol on the ring. Simulations were run for 9.3 million cycles each,
and 90% confidence intervals were computed using the method of batched means. Confidence
intervals were generally under or about 1%, except near saturation, where they sometimes
increased to a few percent.

4.1, Uniform traffic

Figure 3.5 shows the performance of 4- and 16-node SCI rings with uniform arrival rates
and routing probabilities and no flow control. Each graph includes three sets of data, one with all
address packets, one with all data packets and one with 40% data packets. Both simulation and
model results are shown. The model is very accurate for the 4-node ring. For the 16-node ring,
the model is accurate for the all-address-packet workload, but underestimates latency under
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moderate to heavy loading for the other workloads. Even for the worst case, however, the model
provides a good estimate for the behavior of the ring. The reason for the error is identified and
discussed in section 4.9.

Throughput is higher for the workload with larger packet sizes. There are two reasons for
this. First, a smaller proportion of the ring bandwidth is used for the idle symbols that must
separate each packet. Second, the bandwidth consumed by echo packets becomes smaller relative
to the bandwidth used by send packets. Throughput could also be increased by use of packet
locality. Unlike a shared bus, a ring requires less bandwidth if the packets are sent a shorter dis-
tance (message latency is similarly reduced). For the purposes of this study, equally distributed
destinations are assumed.

Figure 3.6 illustrates the effect of flow control on uniform traffic for ring sizes of 4 and 16.
Each graph includes two sets of data, one with all address packets, and one with all data packets.
Results for the mixed address/data workload fall in between these. We can see that even with
uniform traffic loading, flow control significantly reduces the maximum throughput. The reason
for this is that there are times when a node cannot transmit a source packet, even though there are
available slots in which to do so, because another node has stopped sending go bits in order to
clear its ring buffer. The degradation is greater for the 16-node ring than for the 4-node ring.
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Simulations indicate that the throughput degradation from flow control is greatest for ring sizes in
the 10 to 20 range, and actually lessens slightly for larger rings [Scot92].

4.2, Node starvation

This section examines the situation in which a node is inhibited from transmitting by reduc-
" ing the number of breaks it sees in its pass-though traffic. Figure 3.7 presents the performance for
4- and 16-node rings where all nodes are routing uniformly, except that no packets are routed to
node 0 (the starved node). Mean message latencies are plotted for individual source nodes
(labeled PO, P1, etc.). In Figure 3.7(a), we see that PO saturates before the other nodes. As the
throughput per node reaches about 3.2 bytes/node/ns, PO’s arrivals can no longer be satisfied and
its message latency goes to infinity (recall that this is simulated as an open system). As P1, P2
and P3 increase their throughput beyond this point, the realized throughput of PO is actually
driven back down to 0. This causes the unusual shape in the curves for P1 and P2. P1, P2 and P3
all reach the same saturation bandwidth.

The equations in the model assume that the system is not in saturation, so in order to model
the behavior after PO has saturated, the model detects saturated queues, and automatically throt-
tles back the corresponding arrival rates to keep the transmit queue utilization at exactly one. The
model qualitatively predicts correct behavior, including the throttling of PO’s throughput and the
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- corresponding inflection points in the P1 curve. However, the model underestimates the impact
of the non-uniform traffic, and quantitative error is fairly large when the starved node is in satura-
tion.

For a ring size of 16 (Figure 3.7(b)), the disparity between nodes is not as pronounced. The
starved node reaches almost as high a bandwidth as the other nodes before it saturates. This is
because the non-uniform routing causes smaller differences in link utilizations for the larger ring.
The model correctly predicts the spread in performance between the starved node (PO) and the
least affected node (P15). The absolute error, however, is fairly significant under heavy loads.

Figure 3.8 demonstrates the effect of flow control on node starvation. Parts (2) and (b)
show the message latency for each node as the traffic is varied. In parts (c) and (d), the ring is in
saturation (all nodes are trying to send as often as possible), and the realized throughput for each

node is shown.

In Figure 3.8(a), we see that the addition of flow control reduces the disparity between the
performance of the four nodes, but at an overall reduction in throughput. The throughput of PO is
not driven back down by the other nodes, as it is without flow control. Note, however, that the
performance is not fully equalized; PO achieves a smaller maximum throughput than P1, P1
achieves a smaller maximum throughput than P2, etc.

Figure 3.8(c) shows the saturation bandwidths for the 4-node ring with PO still being
starved. Without flow control, P1, P2 and P3 all achieve the same throughput, but PO is com-
pletely starved. Because the ring is fully utilized and it is not receiving any packets, it has no
opportunities in which to transmit a packet (i.e: it enters an infinite recovery stage). The flow
control mechanism successfully deals with this problem. With flow control, the total ring
throughput is reduced slightly, and the throughput of the non-starved nodes is reduced
significantly, but the starved node is no longer kept from transmitting. The flow control mechan-
ism does not achieve full equal partitioning of bandwidth, however. The throughput of a node is
limited by how quickly it can empty its ring buffer after a transmission, and the flow control pro-
tocol guarantees that even a starved node will make forward progress in the recovery stage by
throttling downstream transmissions and thus creating gaps in its incoming packet stream. How-
ever, a node whose pass-through traffic is lower overall (due to non-uniform traffic) will still be
" able to recovery more quickly on average.

Figure 3.8(b) shows the effect of flow control for a ring size of 16 with PO being starved.

The addition of flow control almost completely equalizes the performance of the various nodes
(again at an overall reduction in ring capacity). Figure 3.8(d) shows the saturation bandwidths for
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Figure 3.8: Effect of flow control on node starvation

the 16-node ring. Although the impact on PO was small under light to medium traffic, PO is com-
pletely starved when the ring is fully loaded. Flow control reduces the realized throughput of the
non-starved nodes and allows the starved node to transmit. The bandwidth is much more equally
divided than it was for the 4-node ring. This is because the differences in link utilizations caused
by the non-uniform traffic are smaller for the larger ring.




Ch.3 34

4.3, Hot sender

This section examines the ring’s behavior in the presence of a “hot sender” (a node that
attempts to use as much ring bandwidth as possible). Figure 3.9 presents the performance for 4-
and 16-node rings where packet destinations are uniformly distributed, but node 0 always wants
to transmit a packet. P1, the first downstream node from the hot sender, is severely affected by
the extra traffic. The hot node degrades the performance of all other nodes on the ring, affecting
the closest nodes more heavily.

The model is very accurate for a ring size of four (Figure 3.9(a)). For a ring size of 16 (Fig-

- ure 3.9(b)), the model is qualitatively accurate, but slightly underestimates latency for most of the

nodes, and significantly overestimates the latency for the immediate downstream neighbor of the

hot node (the reason that the model overestimates P1’s latency is actually that it underestimates
PO’s latency (the hot node), allowing PO to send more than it would in reality).

Figure 3.10 demonstrates the effect of flow control on a hot sender. Parts (a) and (b) show
the message latencies for each node as a function of throughput. The addition of flow control
equalizes the effect of the hot node on the message latency for the other nodes on the ring, Per-
formance is improved for some nodes and degraded for others, but the hot node’s downstream
neighbor is no longer severely penalized.
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Figure 3.10: Effect of flow control on hot sender

This phenomenon can be clearly seen in parts (c) and (d), which show vertical slices of the
throughput-latency curves under moderate throughput from the “cold” nodes (0.194 bytes/ns in
Figure 3.10(c), 0.048 bytes/ns in Figure 3.10(d)). Without flow control, the mean message laten-
cies experienced by the cold nodes vary significantly, with the closest downstream nodes being
affected the most. With flow control, the hot node affects all other nodes approximately equally.
The nearest downstream node, in particular, is no longer subjected to extremely large latencies.
The improved ring faimess is achieved at the expense of the hot sender’s throughput. Without
flow control, it realizes a rate of 0.670 bytes/ns on the 4-node ring. With flow control, it realizes
" only 0.550 bytes/ns. For the 16-node ring, the hot sender’s throughput is reduced from 0.526
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bytes/ns to 0.293 bytes/ns. For certain applications, most notably real-time systems, it may be
desirable to allow one node or a set of nodes to consume more than their share of ring bandwidth.
SCI provides a priority mechanism to satisfy this requirement.

In addition to hot senders and node starvation, I have examined producer-consumer and
other non-uniform workloads. Though not presented here, the results are similar. The flow con-
trol mechanism reduces the effects of greedy nodes on the rest of the ring, and provides all nodes
with a reasonable approximation to their share of the bandwidth, regardless of the non-
uniformities present in the communication pattern.

4.4. Varying the number of active buffers

Active buffers are used to sfo;e transmitted packets while awaiting acknowledgements.
Figure 3.11 illustrates the effect of varying the number of active buffers in the ring interfaces.
With no active buffers, only a single send packet can be outstanding from a node at any time.
Each additional active buffer allows another packet to be transmitted before the first packet is
acknowledged. Both the 4- and 16-node rings benefit from a single active buffer, and the 4-node
ring benefits from a second active buffer. There is very little incremental benefit from additional
buffers.

It is somewhat counter-intuitive that the smaller ring benefits more from additional active
buffers, because the time between transmitting a packet and receiving the acknowledgement is
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Figure 3.11: Varying the number of active buffers
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greater for the larger ring. The smaller ring, however, has a greater per-node packet arrival rate,
given the same ring utilization. This increases the need for multiple outstanding requests at one
node. Another way to view this is that the overall packet arrival rates for the rings are the same,
and thus the smaller ring needs to be able to buffer more active packets per node. Certain types
of systems may require a greater number of active buffers, perhaps only at specific nodes on the

ring.
4.5. Comparison to a conventional bus

This section compares the SCI ring to a conventional, synchronous bus. Conventional wis-
dom holds that, while rings may provide higher throughput than shared buses, the buses provide
lower latency. The results in this section show that this need not be the case.

The prime advantage of SCI, at the logical layer, is its use of fast, point-to-point links. The
unidirectional nature of the communication allows the cycle time to be limited only by the speed
of the technology. Standard ECL circuitry available in 1992 allows a 2 ns clock. To compare
this against a conventional bus, a simple M/G/1 bus model was used. The model assumes no
overhead for arbitration, and single-cycle synchronous transmission in 32-bit chunks (the pin-out
for an SCI interface is also 32 bits: a 16-bit input link plus a 16-bit output link). The means ser-
vice time for the bus model is simply the mean packet length in bus widths, and the service time
variance is simply the packet length variance. The response time is then given by the standard
M/G/1 solution (see Figure 3.3).

Figure 3.12 compares the throughput-latency characteristics of an SCI ring to a bus as the
bus cycle time is varied. Data for the SCI ring are from the simulator with flow control in effect.
The workload is 60% address packets (16 bytes) and 40% data packets (80 bytes). Ring/bus sizes
of 4 and 16 nodes are used. If a synchronous bus had the same cycle time as the SCI ring, it
would clearly provide better performance. This is due not only to the bus’ greater width, but to
the single cycle broadcast latency. With a bus cycle time of 4ns, latency is still lower when-
lightly loaded, but the maximum throughput is also lower. This is due to the bus’ lack of con-
. currency.

As the bus cycle time is increased, the latency goes up significantly, and the maximum
throughput drops off significantly. Realistic bus cycle times range from 20 to 100 ns. A typical
high performance shared bus has a 30 ns cycle time. The Stardent Titan graphics supercomputer
uses a 31.25 ns bus [Siew91], for example, and the Silicon Graphics Power Series computers use
a 30 ns bus [SGI89]. The ELXSI System 6400 used expensive twisted-pair ECL with differential
signaling for their shared backplane, achieving a cycle time of 25 ns [Olso83]. The SCI ring
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Figure 3.12: SCI ring vs conventional bus

provides far greater bandwidth and lower latency than a bus of comparable width running at 20 ns

or slower.

As the number of nodes on a ring increases, the average message latency will increase. As
the number of nodes on a bus increases, the average message latency will also increase, due to
greater contention for the bus and because the cycle time of the bus will have to be increased to
accommodate the greater capacitive loading and longer physical distances. Because of the
increased cycle time, the total bandwidth of the bus will decrease as well. The cycle time of an
SCI ring is independent of ring size.

4.6. Sustained data throughput using a request/response model

This section considers total sustained data transfer rates on a ring. I assume that the ring
traffic consists solely of read request packets and their associated read response packets. Laten-
cies represent an address packet transmission from a processor to a memory, followed by a data
packet transmission from the memory to the processor including receipt of the entire data block
(memory lookup time is not included). The data block size is 64 bytes, and the throughput
includes only the data bytes.

The results are shown in Figure 3.13. Since an address packet is 16 bytes and a data packet
includes a 16 byte header along with the 64 bytes of data, exactly two thirds of the send packet
symbols contain data. The actual data throughput is thus two thirds of the total throughput. The
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Figure 3.13: Sustained data throughput

throughput shown in Figure 3.13 is the total ring throughput, measured in gigabytes per second.

4.7. Breakdown of message latency
In this section, the mean message latency is broken into several components. Figure 3.14
plots results from the analytical model for ring sizes of 4 and 16. The packet traffic is uniform,
with 40% of the packets containing 64-byte data blocks. The latency is broken into 4 com-
ponents. The Fixed curve represents latency due to wire transmission delay and fixed switching
overheads. The Transit curve represents the time from when a transmit queue begins transmitting
until the packet is consumed at the destination. The difference between these two curves is due to
delays passing through the ring buffers. The Idle Source curve represents the latency seen by a
packet arriving at an idle transmit queue (there are no packets in front of it and the node is not in
the recovery stage). The difference between the Transit curve and this curve represents the time a
source packet may have to wait while a packet finishes passing through the node. The Total
curve represents total, end-to-end latency. The gap between the Transit curve and this curve
represents the total time a packet is queued at a transmit queue before receiving permission to

transmit.
Most of the latency under heavy loads is due to waiting in the transmit queues. In a closed

system (where there is a limit on the number of queued packets), the delay due to transmit queue-
ing would level off at some point. Delay due to buffer backlog becomes more significant relative
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Figure 3.14: Breakdown of message latency

to transmit queueing delay as the ring size is increased from 4 to 16. For very large rings,
transmission delay becomes dominant except when the ring is very close to saturation.

4.8. Discussion of model error

In this section, several possible sources of error in the analytical model are identified, and
the likely significance of each is discussed.

First, the model assumes geometrically distributed inter-packet-train spacing, whereas
simulations show that certain lengths of spaces are much more common. For example, the space
created by replacing an address packet with an echo packet occurs with high frequency. How-
ever, simulation estimates of the coefficient of variation of the inter-packet-train spacing, are very
close to 1. Thus, I do not anticipate that this assumption causes significant error.

Second, in computing the variance of the recovery period, the correlation between the resi-
dual life of a passing packet train and the remaining portion is unknown. As an approximation,
the model assumes a correlation of one, and treats the portion due to residual life of a passing
packet train as a constant multiplier to the remaining recovery time (Equation (A.25)). This
slightly overestimates the service time variance, but I do not believe this causes significant error.

Finally, the model assumes that the transmit queue utilization and the pass-through ring
. utilization are independent. That is, that we see the same rate of passing packets regardless of
whether the transmit queue is in use. This is the primary source of error in the model.
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Simulation statistics indicate that the pass-through traffic is lower than average when the transmit
queue is idle, and higher than average when the transmit queue is active (during the
transmission/recovery stage). This causes the model to underestimate the length of the recovery
stage, thus underestimating the overall message latency. The error increases as the mean length
of the recovery period increases, which causes the error to grow for larger rings and packet sizes.

Two worthwhile directions for future research are to reduce the error in the current model
and to extend the model to account for flow control.

5. Conclusions

This chapter presented a performance study of the SCI ring, including a description of the
logical-layer protocol, an efficient, analytical performance model, and extensive simulation
results. The performance of the SCI ring was analyzed under uniform and non-uniform work-
loads and with and without the flow control mechanism. The SCI ring was also compared to a
conventional shared bus.

The analytical model developed for the SCI ring did not consider the flow control mechan-
ism, but was found to be accurate for both uniform and non-uniform communication patterns.
Where quantitative error was greater, qualitative behavior was still predicted correctly. The pri-
mary source of error in the model was identified, and will be the topic of further research, along
with extensions to model flow control mechanisms.

The SCI flow control mechanism effectively prevents node starvation, providing all nodes
with their approximate fair share of the ring bandwidth. Non-uniform routing still affects the
realized node throughputs to some extent, however, with the effect being greater for smaller ring
sizes. The flow control mechanism also equalizes the negative impact that a hot node has on the
rest of the ring. Without flow control, the downstream neighbors of a hot node see substantially
increased message latencies.

The faimess provided by the flow control mechanism comes at the cost of overall ring
throughput. Maximum throughput is reduced by up to 30%. The impact is greatest for ring sizes
of 8 to 32, and is negligible for a ring size of 2. Possible modifications to the flow control
mechanism are being investigated that would gracefully increase maximum ring throughput in
return for reduced faimess.

Buffering issues were also briefly analyzed. The performance of an SCI ring can be appre-

ciably improved by the addition of a single active buffer at each ring interface (allowing two out-
standing packets from each node). Additional active buffers have very limited added benefit,
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" although they help smaller rings more than larger rings.

In comparing the SCI ring to a conventional bus, the clock speed was considered along with
the number of cycles needed to convey a message. Although the number of cycles is larger for
the ring, the faster clock speed gives a significant advantage. A 32-bit bus would have to have a 4
ns clock to be competitive with a 16-bit wide SCI ring with a 2 ns clock (and even then it would
have a lower saturation bandwidth). While a 2 ns clock for SCI is realizable in 1992 with stan-
dard ECL circuitry, typical high performance multiprocessor buses have cycle times of about 30
ns.

With a 16-bit width and 2 ns cycle time, the SCI ring provides a total peak throughput of
over 1 gigabyte per second for uniform traffic. Communication locality can increase this max-
imum. The flow control protocol decreases maximum throughput, but partitions the ring
bandwidth fairly and provides uniform message latency to all nodes. The SCI standard leaves
room for future improvements by both increasing the link width and decreasing the cycle time.

The overall conclusion we can draw from this study is that an actual pipelined-channel net-
work, complete with flow control and error-handling mechanisms, can deliver very high perfor-
mance for small system sizes. Coupled with the superior scaling properties of pipelined-channel
networks, as discussed in Chapter 2, the case for using pipelined channels in large-scale networks
is compelling. The next chapter explores the trade-offs in multi-dimension, pipelined-channel
~ networks in great detail.
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Chapter 4

Large-Scale Pipelined-Channel Networks

Arguments presented in Chapter 2 of this thesis suggested the use of the k-ary n-cube topol-
ogy, based both upon its scalability properties and its suitability as a framework for hierarchical
communication protocols. The consideration of wire transmission latency led to the suggestion
of pipelined-channel networks to avoid the constricting effect of long wires on network cycle
times. Chapter 3 addressed the basic performance of a pipelined-channel design, demonstrating
that even for small system sizes, the small cycle time achievable using pipelined channels leads
to very high network performance. The task of this chapter, then, is to thoroughly analyze the
effects of pipelined channels on large, multi-dimensional networks.

1. Background

A wide variety of interconnection networks have been proposed in the literature (see
[Feng81] or [Sieg79] for a summary), each of which can be classified as either direct or indirect.
Indirect networks, such as the omega network [Lawr75], connect processors and memories
through multiple intermediate stages of switching elements. Direct networks incorporate the pro-
cessing elements within the network itself, allowing for direct communication between proces-
sors, and therefore allowing communication locality to be exploited [Seit84]. Direct networks are
gaining in popularity and have been employed in many recent existing or proposed machines,
including the Thinking Machines CM2 [Hill85], Intel iPSC and Paragon, Cosmic Cube [Seit85],
MIT Alewife [Agar90], Tera supercomputer [Alve90], CMU-Intel iWarp [Bork90], and Stanford
DASH multiprocessor [Leno89].

The most commonly used direct networks are variants of the k-ary n-cube. Recall that a k-
ary n-cube consists of N=k" nodes, arranged in » dimensions with £ nodes per dimension. Figure
4.1 illustrates several different k-ary n-cubes. Each node is connected via a direct link to its
nearest neighbors in each of n dimensions. Links can be bi- or uni-directional, and, if bi-
directional, the wrap-around links may be omitted. Examples of k-ary n-cubes include the ring
(n=1), 2-dimensional mesh or torus (r=2), 3-dimensional mesh or torus (n=3) and hypercube
" (k=2). The generality and flexibility of the k-ary n-cube make it an excellent choice for exploring
network design tradeoffs.
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Figure 4.1: Example k-ary n-cube networks
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For a given system size, the primary design choice is the dimensionality of the network.
Varying the dimensionality of a network affects the average number of links that messages must
traverse and the average rate of traffic across the links. As discussed in Chapter 2, it may have
other effects on system design and performance as well. Most previous network studies have
made the simplifying assumptions used in Section 4.1 of Chapter 2: that communication latency
is measured only in hops (with a single network hop taking constant time) and that link width is
independent of dimensionality. Under these assumptions, binary hypercubes appear very attrac-

“ tive, delivering the lowest latency and link traffic of any k-ary n-cube configuration. These
assumptions are unrealistic, however.

Dally has investigated network performance while taking wire delay into account and
applying the constant bisection constraint [Dall90]. This constraint holds the number of wires
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crossing the bisection of a network constant as the dimensionality is varied, which causes the link
width to decrease as dimensionality is increased. The constraint is motivated by wiring density
limitations in VLSI, but may also hold for multi-chip or multi-board implementations. Dally’s
conclusion, given a linear delay model for wire transmission time, was that the dimensionality of
a network should be equal to the number of physical dimensions in which the network is imple-
mented, regardless of network size. The result of this is that the optimal radix of the network
increases significantly for large systems.

Agarwal [Agar91] extended Dally’s analysis in two important ways. First, he included
switching time in the latency equations, which was missing in Dally’s study. Second, he con-
sidered a weaker wiring constraint: constant node size. This constraint is motivated by pin limi-
tations on boards and chips, and holds the number of wires connected to each network node con-
stant as the dimensionality is varied. This also causes the link width to decrease as dimensional-
ity is increased, but more slowly than does the constant bisection constraint. Agarwal concluded
that the optimal dimensionality was generally higher than the number of physical dimensions.
While he did not specifically address scaling networks, his analysis leads to the conclusion that
both n and & should be increased as network size is grown.

Both Dally’s and Agarwal’s work assumed the use of non-pipelined-channel networks, in
which the cycle time of the network includes the transmission time across the longest wire in the
network. This exacts a heavy penalty on high-dimensional networks because their longer wires
give rise to longer cycle times. In a pipelined-channel network, data is clocked onto the wires at
a rate determined solely by the switching speed, allowing multiple bits to be simultaneously in
flight on sufficiently long network wires. This decouples link throughput from link latency, and
fundamentally changes the network design tradeoffs.

The pipelined-channel routing protocol described in Section 2.1 of this chapter also pro-
. vides some of the same benefits as virtual channels [Dall87, Dall92]. By guaranteeing that buffer
congestion occurs only when entering/exiting a dimension, deadlock free routing is provided for
uni-directional k-ary n-cubes. In addition, sustained throughput is able to come close to max-
imum throughput, especially when £ is large (see [Scot92] and Section 4 of this chapter). Con-
ventional networks using flit-level flow control typically provide half or less of their maximum
throughput, due to coupled resource allocation [Dall90]. Note, however, that the switches
described in Section 2.1 require buffers able to contain an entire packet.

Pipelined channels have long been used in wide area networks and local area networks,
since the physical delays involved compel their use. There is an abundance of research in the
literature regarding transmission protocols, reliability, flow control, routing, performance and
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many other issues regarding these networks [Tane88]. Pipelined channels are not widely used in
multiprocessor interconnects, however. Limited pipelined channels (allowing a small, fixed
number of bits on a wire) are used in the CMU-Intel iWarp [Bork90], various Cray Research
machines[Smit92] and the Thinking Machines CMS5 [TMC91]. A higher degree of pipelining is
achievable using the Caltech Slack chip [Seit92], which is designed to allow tightly-coupled
Mosaic channels to communicate efficiently over long cables. The IEEE Scalable Coherent Inter-
face (SCI) [IEEE92], on which I base my model, allows an arbitrary amount of pipelining.

The remainder of this chapter presents a performance study of pipelined-channel k-ary n-
cube networks, with particular emphasis on how the design tradeoffs differ from those of non-
pipelined-channel networks. Section 2 develops equations for latency in an unloaded network
. and shows how pipelining argues for higher dimensionality. Section 3 discusses network
bandwidth and presents simulation results for pipelined-channel and non-pipelined-channel net-
works. Section 4 investigates the effects of switching overhead and packet length. Concluding
remarks are presented in Section 5.

2. Unloaded Latency

An important metric of network performance is the mean latency of packet transmission in
the absence of contention (the unloaded latency). Both switching and wire transmission delay
contribute to this latency. The manner in which switching and transmission delays interact is a
primary difference between pipelined-channel and non-pipelined-channel networks. This is
further explained in the following sections. Section 2.1 describes the network node model and
other assumptions. Sections 2.2 and 2.3 derive formulas for the unloaded latency in uni-
directional, pipelined- and non-pipelined-channel networks. Sections 2.4 and 2.5 discuss wire
length and link width. Section 2.6 discusses bi-directional networks. Finally, Section 2.7 uses
the results from earlier sections to calculate the optimal dimensionality of a network under vari-
ous assumptions and constraints.

The unit of time used in all the analysis is the switch cycle time, not including wire
transmission delay. For pipelined-channel networks, this is the network cycle time, and so
reported latencies are in units of cycles. For non-pipelined-channel networks, for which the cycle
time must include wire transmission delay, reported latencies are equal to the number of cycles
times the relative increase in cycle time due to wire transmission delay.
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2.1. Model and assumptions

The first assumption made in this work is that we are dealing with uni-directional links.
There are two reasons for doing this. First, previous analysis [Dall90, Agar91] has focused on
uni-directional networks. Second, pipelined channels are naturally uni-directional. While the
results are qualitatively similar for bi-directional networks, some of the details change (see Sec-
tion 2.6).

The network node model used here is shown in Figure 4.2. To route a packet between two

points in the network, the packet is transmitted over # rings, one in each dimension. A dimension
is skipped if the packet source and destination have the same ordinate in that dimension. A low-
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Figure 4.2: A node from a pipelined-channel k-ary n-cube network



Ch. 4 48

level protocol handles the transmission around each ring, independent of the other dimensions
and any higher-level, end-to-end protocol. The ring interfaces are based loosely on the IEEE SCI
logical layer protocol discussed in Chapter 3 [Scot92, IEEE92]. The links are W bits wide, so a
packet of L bits is decomposed into P flits, with P given by

| L
P= [W} 4.1)

Routing is similar to virtual cut through [Kerm79]. On being placed in the input queue by the
CPU, a packet is switched to the output queue for the appropriate dimension and gated onto the
output link (requiring Ty cycles). It then uses Ty, Cycles to travel to the next network node,
where T, may vary, depending upon the wire length. A copy of the packet is saved iocally for
possible retransmission. When the head of the packet arrives at a node, Tgecoqe Cycles are spent
decoding the packet. The number of decode cycles is determined by the number of flits needed to
form the node address of the packet destination:

logyN
ok2 l 4.2)

Tiecode = { W

If continuing in the current dimension, the packet is routed through the ring buffer and gated onto
the ring output link (requiring T, Cycles). If changing dimensions, the packet is routed through
the input queue, switched to the appropriate output queue and gated onto the output link for the
new dimension (requiring Ty,uch Cycles).

Values of Tpoe=1 and T,ip=2 are assumed. The overhead for changing dimensions is
greater than that for continuing in the same dimension, due to the extra switching step involved.
To reduce complexity and increase switching speed, the switch could be implemented as a n-
element ring. Contention on the ring would be minimal, because most traffic would be routing to
the next dimension and would thus need to travel only one hop along the ring (much like a cube
connected cycle). In this case, of course, the switching delay would be greater for packets chang-
ing to other than the next highest dimension.

Low-level routing in each dimension is modeled after the logical layer of the SCI protocol
[IEEE92]. When a packet is removed from a ring (either switched to the processor or to a dif-
ferent dimension), an echo packet is routed the remainder of the way around the ring to ack-
nowledge the receipt of the packet on this ring. Packets are stored at the node in which they first
enter a ring until the ring acknowledgement is received. It is possible that an input queue will
have insufficient space to accept a packet (due to contention), in which case a negative ack-

nowledgement is returned around the ring instead. When a negative acknowledgement is
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received, the packet is retransmitted.

Ring level acknowledgements are used to avoid the round-trip latency of handshaking
between nodes on every flit. An alternative would be to perform handshaking on blocks of data,
allowing for data within the blocks to be pipelined, and thus amortizing (or hiding) the handshak-
ing latency over several flits. Ring acknowledgements avoid handshaking latency altogether and
retain performance as transmission delays increase. In addition, they can be used to provide fault
tolerance by checking a CRC (cyclic redundancy check) at the end of the packet [IEEE92].
Unlike the input queue, the ring buffer is guaranteed to be able to accept a flit on every cycle. An
output queue may only initiate a packet transmission on the output link if the ring buffer has
enough free space to hold a packet of equal length. In this way the ring buffer cannot fill up
before the packet has been completely drained from the output queue. The SCI protocol, on
which this is based, is discussed in more detail in Chapter 3, Section 2.

2.2, Latency in a pipelined-channel network

The unloaded latency can be derived by simply accounting for the delays described in Sec-
tion 2.1. The mean number of hops (assuming uniformly distributed destinations) between nodes
in a uni-directional, k-ary n-cube t’?_ﬂus is

P

i=0
h,,,,,' mark=n %

o4 @3

Since the switching overhead is greater for changing dimensions than for continuing in the same
dimension, we must break this down by dimension. A packet routes in a dimension with proba-

bility _I_c_k-:l_, and traverses a mean of —g— hops in a taken dimension. The total mean unloaded

latency, in cycles, is

k-1| k k
Latencyp;pe = Towitch+n| —— —(Twire +T gecode —-1 Tpa.s's"'Tswitch +P-1 “44)
k 2 - 2

Note that the delay due to wire transmission is added to decoding and switching delays; it does
not affect the switch cycle time. This allows the cycle time to be kept small and prevents
transmission delay from affecting the queueing delay in the switches and the delay between
receiving the head and tail of a packet. Ty, is the average number of cycles spent traversing a
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link. The number of cycles spent traversing a link must be integral, but it may vary for different
links, depending upon wire lengths. The values of Ty, and W are explored in later sections.

2.3. Latency in a non-pipelined-channel network

In a non-pipelined-channel network, the cycle time must include both switch operation and
wire transmission. As such, the maximum wire transmission delay has a multiplicative effect on
overall latency. It is reasonable to assume for a non-pipelined-channel network, with its larger
cycle time, that Tpuss =Twirch, and so I use only Tyirch (and assume a value of 1 cycle), simplify-
ing the expression for latency. The non-pipelined-channel latency is given by

k-1

Latencon-pipe = e, [Tswam [——2——] [Fuceote + i) +P =1 @5

" Recall that the time unit in Equation (4.5) is the switch cycle time not including wire transmis-
sion delay, which allows for direct comparison with Equation (4.4). In this case, t,,, _ is the

time spent traversing the longest link in the network (and is not an integer in general). Thus, the

first factor, [1+tw,-,,m} , represents the increase in cycle time of the non-pipelined-channel net-

work due to wire transmission delay. The remaining factor represents the number of cycles used
to transmit the packet. Equation (4.5) is similar to Equation (4.4), save that wire delay is taken
out of the cycle count, and instead is used to increase the cycle length.

2.4. Wire length

Wire lengths depend upon network dimensionality and layout. I assume that the network is
being implemented in three physical dimensions (this differs from [Dall90], where two dimen-
sions are assumed). I also make the simplifying assumption that interprocessor spacing is equal
in all dimensions. The long wraparound links in a torus (see Figure 4.1(a)) can be avoided by
folding the network as shown in Figure 4.1(b). All wire lengths are doubled (over those of a
mesh), except for the two end links. Let /3 be the maximum wire length in a folded, three-

dimensional torus. The mean wire length is I3 [T] , which is smaller due to the two shorter

links per ring. This can now be used as a base to compute wire lengths for higher-dimensional
networks.

For a network with n>3 dimensions, not all links can connect close physical neighbors.
Assume that processors are arranged in a three-dimensional cube with k™3 nodes in each dimen-
sion. We can embed n/3 logical dimensions in each of the three physical dimensions in the
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following manner. Address the nodes along a physical dimension as O through (k"°-1). A
node’s address is composed of n/3 k-bit digits, which represent its ordinate in each of the n/3
logical dimensions. Each node has n/3 output links in each physical dimension, connecting it to
its downstream neighbors in each of the n/3 logical dimensions. The address of the downstream
neighbor in dimension i is obtained by adding one, modulo £, to the i** digit of the node address.
Figure 4.3 illustrates this embedding, with folding, in a single physical dimension.

3 L

=k 3 . Recall, however,

that two of the folded links in each logical dimension are shorter than the others (see Figure

The length of the longest wire in such a network grows as

OB @ ¥ @ B @ @ W a & @ © ) @O
(a) One logical dimension (k=16)

(c) Four logical dimensions (k=2)
(each arc represents 2 links in this figure)

Figure 4.3: Embedding multiple logical dimensions in a single physical dimension
The networks with k£ >2 are folded.
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4.3(a)). For this reason, a binary hypercube actually needs no folding, and the longest wire when
k=2 (Figure 4.3(c)) is the same length as the longest wire when k=4 (Figure 4.3(b)).

In non-pipelined-channel networks, the maximum wire length is important, as it determines
the cycle time of the network. Let § be the ratio of switch cycle time (not including wire
transmission) to wire transmission time in a three-dimensional torus. We can now compute
Lyire,,, » the time to transmit across the longest wire in the network:

i
1 [n13) ‘
el e ifk>2
k \. S P

tyire,,.. =1 i A 4.6)
1[N irg=n
4 \ S P

Since the maximum wire delay is suffered over all links, including the short ones, the total delay
due to wire transmission is increased as the dimensionality of a network is increased
[Dall90, Agar91].

In a pipelined-channel network, the number of cycles spent traversing a given wire is deter-
mined by that wire’s length only. Thus Tyire,, is a function of the mean wire length rather than

the maximum wire length. The mean wire length in an n-dimensional network, n>3, is given by

e8] e

(&) [k1])(3
RIS

-

[31,(V13-1)
= — @7
and the average number of cycles to traverse a wire is given by
3 Nl/3_1
Tyire,, = [—(-—ngg—l] 4.8)

To obtain an accurate value for Tyire,,,» the wire transmission delay must be rounded up to an
integral number of cycles for each link before averaging, taking into account the two shorter links
per ring. If the number of logical dimensions is not a multiple of three, then » div 3 logical
dimensions are embedded in each of the physical dimensions, and n mod 3 of the logical
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dimensions are embedded across all three physical dimensions. The wire lengths for these left-

over dimensions can be short (approximately /3), and the wire length for all other dimensions is

n mod 3

increased by a factorof k& 3

While higher dimensionality leads to greater maximum wire length, it does not increase the
total wire length traversed by a packet. Let d,,; be the mean total distance traversed by a packet
in a uni-directional torus. If we multiply the mean number of hops (Equation (4.3)) by the mean
wire length (Equation (4.7)), we obtain

k-1
Guni = [T]

which actually decreases slightly as the dimensionality is increased. Therefore, wire delay is not

%13(1\7 v 3—l)} @.9)

an impediment to increasing the dimensionality of pipelined-channel k-ary n-cubes. Note that
this result does not hold for bi-directional meshes, as is discussed in Section 2.6.

2.5. Link width

The link width, W, is affected by the dimensionality of the network and the constraint under
which it is being designed. The default assumption is the constant link width constraint (which is
really no constraint at all). It assumes that the link width, which determines the number of flits
into which a packet must be decomposed, is independent of the dimensionality of the network.
Since the number of wires attached to a node is equal to 2nW, this causes the total number of
* wires per node to increase as the dimensionality of a network is increased.

The constant node size constraint keeps the wires per node fixed as the dimensionality is
varied. The link width is then some constant divided by n. The constant bisection constraint
keeps the number of wires across the bisection fixed as the dimensionality is varied. The number
of wires across the bisection is B = 2Wk"~}, so link width is given by

B
Weonst_bisec = k[-z—N-] ok (4.10)

The constant bisection constraint was used by Dally[Dall90] in order to reflect the limited
wiring area of a network implemented on a single VLSI substrate. A multiprocessor imple-
mented across multiple boards may also be bisection constrained, or may be node-size con-
strained due to pin limitations off-chip and off-board. The constant link width constraint may be
realistic for sufficiently small systems, depending upon the technology used to implement the net-
work. Intra-node data paths, for example, may dictate the link width and the pin limitations may
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not be restrictive. Agarwal [Agar91] considers all three constraints, with the emphasis on the
constant node size constraint.

2.6. Bi-directional networks

Pipelined channels are naturally uni-directional, and the analysis thus far has assumed uni-
directional networks. This section briefly discusses bi-directional networks. Although routing is
simpler in uni-directional networks, there are some disadvantages to their use as well. The first is
that the mean number of hops that a packet must traverse is greater for a uni-directional network.
The second is that locality is harder to exploit because a node can’t communicate directly with its
“upstream” neighbor. Both factors are less important when the radix is small.

Bi-directional k-ary n-cubes can be either tori or meshes. The mean number of hops
between nodes in a bi-directional, k-ary n-cube torus is

r

=

(&
4 for even k

.

hbi__lorus =1 “4.11)

r

k_—_l_/_lg] for odd k
4

.
.

" The mean number of hops between nodes in a bi-directional, k-ary n-cube mesh is

k=1 k] 4.12)

-

Bi-directional tori must be folded to avoid long wrap-around links, but meshes do not, and hence
1
their base wire length is only -;—

While pipelined-channels lend themselves to uni-directional networks, they can be used in
bi-directional networks as well. One way to do this is to replicate all links and run one set in the
opposite direction, but this requires halving the link widths. Another is to use packet-level
handshaking on individual links, allowing the direction to be switched between packets. It may
also be feasible to have two opposite-traveling optical signals sharing the same physical channel.

If pipelined channels are used with bi-directional networks, then it is important to recon-
sider the relationship between dimensionality and mean total distance traversed by a packet.
Recall that for uni-directional tori, the mean total distance decreases slightly as dimensionality is
increased (Equation (4.9)). In a bi-directional torus, the mean total distance traversed by a
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packet, derived by multiplying As; sorus (assuming even k) by /,, is given by

3, 13_
2 13N 1D

dbi_torus =

which is independent of dimensionality.

I 1/3_
In a mesh, because there is no folding, the mean wire length is given by —23-[ P 1] [é-] .

The mean total distance traversed by a packet is thus given by

l
s = [%f—‘-] [—}(N"s—-l)] @.14)

which increases as dimensionality is increased. Low dimensional meshes have no backtracking
(packets can always traverse the shortest Manhattan distance between nodes) because they do not
require folding. The backtracking that is introduced by increasing the dimensionality causes total

distance to increase.

2.7. Optimal dimensionality as network size grows

Using Equations (4.4) and (4.5), we can now calculate the dimensionality that gives the
lowest unloaded latency for a given system size and constraint. I will consider three network
variants. The first, NonPipelined, assumes a non-pipelined-channel network, and is characterized
by Equation (4.5). The second, Pipelined, assumes a pipelined-channel network, and is charac-
terized by Equation (4.4). The third, UnitDelay, ignores wire length completely and assumes a
unit delay for each network cycle. This has been a common assumption in previous studies, and
while not realistic, is useful for purposes of comparison.

Figure 4.4 plots the optimal dimensionality and radix of a network (based on minimizing
unloaded latency) as system size grows. Note that the optimal dimensionality and optimal radix
are related by the equation N=k". Parts (a), (b) and (c) assume the constant link width, node size,
and bisection constraints, respectively. Each graph presents results for each of the three network
variants. The ratio of switch cycle time to base wire delay, S, is 1. The latency used to determine
the optimal network configuration is the sum of two packet transmission latencies: one with a 16
byte packet and one with an 80 byte packet. These correspond to the address and data packet
sizes in SCI [IEEE92].

To compute the optimal dimensionality, all discrete quantities are treated as as continuous.

Thus, wire and decode delay cycles as well as the dimensionality and radix of the networks can
be fractional. When all discrete effects are included, the qualitative results are the same, but the
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(c) Constant bisection width (W =2 for hypercube )
Figure 4.4: Optimal dimensionality and radix versus network size (uni-directional torus)

results are very sensitive to arbitrary values such as the normalized link width, and the graphs
jump erratically, obscuring the general trends. The simulations presented in Section 3 use only

discrete values.
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Figure 4.4(a) assumes a constant link width of 32 bits. Thus the dimensionality does not
affect the decode delay or the number of flits. As the dimensionality of a given sized network is
increased, the mean number of hops that a packet traverses decreases, but wire lengths increase.

The constant link width assumption may be valid for small networks, but clearly becomes unreal-
‘ istic for large networks. UnitDelay is not affected by wire length increases, so it always performs
best with the highest dimensionality (a hypercube) due to the reduction in packet hops. Pipelined
is affected by the mean total distance traversed by a packet, which decreases as dimensionality
increases, so it also performs best with the highest dimensionality. NonPipelined is strongly
affected by the maximum wire length, and thus has a much lower optimal dimensionality.

Figure 4.4(b) assumes a constant node size of 192 wires (W=32 for n=3). The optimal
dimensionality for all three networks is lower under this constraint than under the constant link
width constraint. This is due to the effect of decreasing the link width as dimensionality is
increased. The radix for UnitDelay still remains constant as N increases, but the optimal radix is
now 8 instead of 2, and the optimal dimensionality is correspondingly lower. There is now a
difference between UnitDelay and Pipelined, because Pipelined does not ignore wire lengths,
whereas UnitDelay does. For large networks, wire delay becomes more significant, and the
optimal dimensionality for Pipelined becomes greater than that for UnitDelay in order to take
advantage of the decrease in mean total distance. This has the corresponding effect of decreasing
the optimal radix for Pipelined as network size increases. As before, the impact of the maximum
wire length on the cycle time of the NonPipelined network keeps the optimal dimensionality for
NonPipelined quite low. This has the effect of making the optimal radix grow substantially for
large network sizes.

Figure 4.4(c) assumes a constant bisection, normalized to a hypercube with W=2. The
tighter wiring constraint keeps the optimal dimensionality for all networks lower than in parts (a)
and (b). For small system sizes, the link width is the dominant factor. As system size increases,
the number of hops becomes more important, and the optimal radix decreases. For larger system
sizes, wire length begins to dominate, and the optimal dimensionality for NonPipelined flattens
off, causing the optimal radix to increase. UnitDelay and Pipelined are not affected by the longer
wire lengths, and hence have a higher optimal dimensionality than does NonPipelined. The wir-
ing constraint, however, keeps the optimal dimensionality low, and there is thus very little differ-
ence between UnitDelay and Pipelined. Note that while the optimal dimensionalities of UnitDe-
lay and Pipelined are very close, UnitDelay does not accurately characterize the latency provided
by Pipelined.
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The striking conclusion to be drawn from Figure 4.4 is that pipelining a network
significantly impacts the choice of dimensionality. Pipelining argues for higher dimensionality.
The radix of the pipelined-channel network should be kept roughly constant as system size is
increased. When link width is unconstrained, the hypercube provides superior performance for
all system sizes. When link width is constrained by either the constant node size or bisection
assumptions, the optimal radix increases. The impact of pipelined channels on the network
dimensionality is diminished as the wiring constraint is tightened. For bisection-constrained net-
works the optimal dimensionality differs by an entire dimension only for very large network
sizes. The effect will increase, however, as switching times decrease in relation to wire transmis-
sion delays.

Since, for a uni-directional torus, the mean total distance traversed by a packet decreases as
dimensionality increases, the optimal radix of a pipelined-channel network decreases somewhat
for larger systems. As was discussed in Section 2.6, however, this is not the case for bi-
directional networks. In a bi-directional torus, the mean total distance traversed by a packet is
independent of dimensionality. In a bi-directional mesh, the mean total distance traversed by a
packet increases with dimensionality. This changes the relationship between UnitDelay, which
ignores wire delay, and Pipelined, which does not.

Figure 4.5 plots the optimal dimensionality and radix of a bi-directional mesh as network
size grows. As in Figure 4.4, resulis are given under the constant link width, node size, and
bisection constraints. Results are quite similar to those in Figure 4.4, save for the behavior of
Pipelined. Since the mean total distance traversed by a packet increases with dimensionality for
a mesh, the optimal dimensionality for Pipelined is lower than that for UnitDelay.

Under the constant link width constraint (Figure 4.5(a)), wire delay strongly limits the
optimal dimensionality for Pipelined, raising the optimal radix to about 4 rather than 2. Under
the constant node size and bisection constraints (Figures 4.5(b) and (c)), the wiring constraints
limit the dimensionality of both UnitDelay and Pipelined, which lessens the difference between
them.

The effect of pipelined channels is qualitatively the same for uni-directional tori and bi-
. directional meshes: by decoupling throughput from latency, pipelined channels argue for higher
dimensionality and for growing networks by keeping the radix roughly constant. The mean total
distance traversed by a packet is the primary distinction between the two network types. In uni-
directional tori, the mean total distance is smaller for higher dimensionality, so the optimal radix
decreases as network size increases. In meshes, backtracking causes the mean total distance to
increase with dimensionality, so the optimal radix may increase as network size increases (this
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Figure 4.5: Optimal dimensionality and radix versus network size (bi-directional mesh)

effect is muted in Figure 4.5(c) by the short wire lengths caused by the strong wiring constraint).

The analysis thus far has considered only unloaded latency. When bandwidth is considered,
the argument for keeping the radix small becomes more compelling. Under uniform traffic, the
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rate of traffic across a link is proportional to the radix of the network [Scot91]. Thus, if the net-
work is grown by increasing the radix, the rate of traffic per link will also increase. Although this
will be offset by larger link widths when wiring is constrained, the total throughput per processor
still argues for lower radix. Section 3 explores bandwidth considerations in more detail.

3. Throughput and Contention

Real networks carry traffic, and traffic causes contention resulting in additional delays.
Thus, to obtain a clear picture of a network’s performance, latency must be viewed in conjunction
with throughput. Latency rises significantly as the rate of traffic approaches the network’s max-
imum capacity. The maximum capacity is affected by the link width and dimensionality of the
network. In this section, the maximum throughput of a network is derived, and a simulation
" study of pipelined-channel and non-pipelined-channel networks is presented. All results are for
uni-directional torus networks.

The maximum throughput is determined by the packet length in bits, L, the number of wires
traversed by the packet, W, and the total number of wires in the network, W,,,,;. The max-
imum throughput, in bits per cycle per processor, is L times the maximum message issue rate:

Wtotal
Xpipe,. =L | =0 4.15
PiPCnax [ N ng ] ( )
The number of wires in the network is given by
Wit =NnW 4.16)

To derive L and W,,,, I assume the use of two packet packet formats: address only (L4 bits)
and address plus data (L4, bits). A fraction fj,, of the packets generated are data packets, with
the remainder being address only. The ring acknowledgement packets described in Section 2.1
are L, bits. The mean packet length in bits is

L = faata Laata + Jaddr Lodar 4.17)

When a packet traverses a ring, it travels part way as a data or address packet, and the remainder
of the way as an acknowledgement packet. Taking this into account, and the fact that the packet
length must be rounded up to the nearest multiple of W, the total number of wires traversed by a
packet is given by
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Ldata ] -Laddr Lack
fdam{ W + faddar "—ﬁ,—] + [—ﬁ;—]
n(k—-1)

Winsg =W > (4.18)
" Substituting Equations (4.16), (4.17) and (4.18) into Equation (4.15) yields
2(faata Laata + Jaddr Ladar)
Xpipere = | . Lagar | | Lack (4.19)
'aci .

If we assume that packet lengths are an integral number of flits, and ignore differences in packet
lengths, then this equation simplifies to

X W

Pipens = (k_l) (420)

Assuming that packet lengths are an integral number of flits, Equation (4.19) shows that the max-
imum throughput is proportional and approximately equal to 'Z/E‘L’fi

For non-pipelined-channel networks, the maximum throughput must be scaled down to
reflect the longer cycle time needed to include wire transmission. With the time unit set equal to
that in Equation (4.20) (one cycle, not including wire transmission time) to allow direct com-
parison, the maximum throughput in a non-pipelined-channel network is

Xpipem

-_— 4.21
1'*'l'wire,,,,,x ( )

Xnan—pipem =
For non-pipelined-channel networks, not only does the latency increase as wire lengths grow, but
the traffic capacity of the network decreases.

Figure 4.6 shows the effect of the “optimal” configurations shown in Figure 4.4 on network
throughput. The curves represent the ratio of maximum throughput in a pipelined-channel net-
work to maximum throughput in a non-pipelined-channel network. Equations (4.20) and (4.21)
are used, with k and n chosen according to Figure 4.4 and W determined by the corresponding
wiring constraint. The pipelined-channel network provides higher throughput under all cir-
cumstances, and the relative advantage becomes greater as system size is increased. This is due
both to the smaller cycle time resulting from pipelining and to lower contention resulting from
smaller network radices (see Figure 4.4).

The difference in throughput is greatest for unconstrained networks (constant link width),
" for which the difference in optimal dimensionality is greatest. For bisection constrained
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Figure 4.6: Relative maximum throughput (pipelined over non-pipelined)
for “optimal” configurations versus network size

networks, the difference in optimal dimensionality is smaller, resulting in a much smaller
throughput advantage for pipelined-channel networks. Since integer considerations are being
ignored, the wire lengths for networks with n <3 are shorter than those for n=3, resulting in very
little increase in cycle time for the non-pipelined-channel network. If realistic wire lengths were
used, the throughput advantage of pipelined-channel networks would be greater. Also, as the
ratio of switching to transmission time (S) decreases — as it will do in the future — the
throughput advantage will further increase.

3.1. Simulation model

Equations (4.20) and (4.21) give throughput maximums, but do not explain the relationship
between throughput and latency. For this, either a queueing model or simulation is necessary.
The following section describes a simulator that models the network node shown in Figure 4.2
. with great detail and uses an iterative solution technique to efficiently provide performance
results for arbitrary network sizes.

The simulation model used in this study is based upon the network described in Section 2.1
and illustrated in Figure 4.2. Parameters to the model include the radix and dimensionality of the
network, the link width, the size of the input queues, output queues and ring buffers, the size of
the address and data packets, the ratio of address to data packets and the ratio of switch cycle
time to base wire delay. Only a single node is simulated. The arrival of packets from the proces-
sor and each ring is a Poisson process with rates determined by the system size. Let the packet
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arrival rate from the CPU be r, of which a fraction fy, are data packets and the remainder

address packets. Each packet traverses a mean of 5—'2:1- links in each dimension, and causes an

acknowledgment packet to traverse a mean of —l-c—:,zll—- links in each dimension. The base packet

arrival rates at each of the n switch input links is thus (k—D)r, with —%— the packets being ack-
—-f data

nowledgements, -j—r%ﬁ of the packets being data packets, and of the packets being

address packets. A fraction 72; of all acknowledgement packets received at the switch are des-
tined for this node and can thus be discarded. The remaining acknowledgement packets must be
passed along the same dimension. A fraction -i— of all data and address packets are also destined

for this node, with the remainder to be passed along the same dimension. The address and data
packets destined for this node are either switched to another dimension or routed to the CPU. A

packet arriving from dimension i is switched to dimension i+j with probability [kkjl] The

B n—-t
packet is switched to the CPU with probability [—}c—] .

If all packets were accepted by the switch, then the simulator could use the above arrival
rates and routing probabilities to simulate the entire network. The time to pass through the
switch in each dimension, and the time to switch into each dimension would be calculated, and
these could be used to construct the total latency through the network for the given CPU request
rate. However, some packets may not be accepted, causing negative acknowledgements to be
returned, which in turn cause the packets to be retransmitted. This not only increases the latency
through the network (because a packet may have to be sent around a ring more than once), but
increases the traffic as well.

The relationship between the fraction of packets that are dropped (f), the base traffic (B),
and the extra traffic generated as a result of dropped packets (E) is as follows:

(B+E)f=E = (B+E)= [ lB f] (22)

The simulator uses an iterative technique to arrive at a solution for the above equations. The ini-
tial arrival rates are set according to the system size and the processor request rate as described
above. The system is simulated and the fraction of dropped packets is calculated for each dimen-
sion for both packet types (address and data). These are used to calculate new arrival rates for
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" each dimension and packet type, using the rightmost formula in Equation (4.22). The base rates
are calculated used the realized throughput of CPU requests from the previous iteration. The
arrival rates of acknowledgment packets are simply the base rates, but the arrival rates of data and
address packets increase (provided the fraction of dropped packets is nonzero). The arrival rates
of negative acknowledgments are equal to the sums of the increased arrival rates for address and
data packets.

In order to calculate latency, the following quantities are measured for both address and
data packets.

A; = fraction of packets dropped in dimension i

T s for dimension i (includes delays in ring buffers)
Bi = Tgwirc for packets leaving dimension i (includes delays in switch queues)
v; = mean time between accepting a packet and transmitting the corresponding
acknowledgement packet
8; = mean time between accepting a negative acknowledgement packet and
retransmitting the corresponding packet
The corresponding latency is

"lk-11| k k-2
L=P —-1+B0+Z [T] [E(Twirem"'Tdecode)“'[—"z“] o4+
i=1

¥
[——-—1_%] (kT Tatcosc 8 -—2>a,-+y,-+8.-]] @23)

The throughput, address packet latency and data packet latency are calculated after each iteration,
and the iterations continue until the relative change in the results is below 2%. Smaller thres-
holds are impractical due to the inherent randomness in the simulation output (simulation error
becomes dominant within a few iterations). The 90% confidence intervals for the results, derived
using the method of batch means, are mostly under 1%, and occasionally as high as 5%.

3.2. Simulation results

Tables 4.1 through 4.3 and Figures 4.7 through 4.9 present system configurations and simu-
" lation results for various system sizes, constraints and network types. Parameter values are
L4a=128 bits, L,,=640 bits, L,4=64 bits, S=1, f:,,=0.4 and all queue and buffer sizes are 100
bytes.



Ch.4 65

Table 4.1 (a-c) lists configurations for a 4096-node, pipelined-channel network. The
dimensionality of the network is varied under the constant link width, node size and bisection
constraints. Each table includes the link width, node size, and bisection for each configuration,
and holds one of the three quantities constant according to the appropriate constraint. Decode
delay cycles per hop (determined by the link width), delay across the longest wire and the mean
wire delay are also shown. Finally, total unloaded network latency and maximum throughput (in
bits per cycle per processor) are shown. The values given represent actual system configurations;
all discrete quantities are indeed discrete. The mean wire delay is calculated by rounding up wire
_ delays for each link before averaging (note S=1). The unloaded latency is for a round trip mes-
sage consisting of an address packet followed by a data packet.

Wires Wires Decode Max Mean || Roundtrip

Dim | Radix ;;“:; per | acoss | Delay | Wire | Wire || Unloaded | Sroomum
1 Node | Bisection | Cycles | Delay | Delay Latency Throughput
316 || 32 | 1% 4096 1 T | 1.00 || 4079 0852
3 16 32 192 16384 1 1 1.00 166.6 3.578
4 8 32 256 32768 1 2 1.56 132.7 7.668
6 4 32 384 65536 1 4 2.00 107.0 17.892
12 2 32 768 131072 1 4 2.00 86.0 53.677
(a) Constant link width
. Wires Wires Decode Max Mean || Roundtrip .
Dim | Radix | =™ | per | across || Delay | Wire | Wire || Unloaded | Mroomum
Width | Noge | Bisection || Cycles | Delay | Delay || Latency | Lhroughput
T 6 || 48 [ 192 | 6144 1 T | 1.00 || 4009 1124
3 16 32 192 16384 1 1 1.00 166.6 3.578
4 8 24 192 24576 1 2 1.56 141.7 5.465
6 4 16 192 32768 1 4 2.00 131.0 8.946
12 2 8 192 32768 2 4 2.00 170.0 13.419
(b) Constant node size
. Wires Wires Decode Max Mesan || Roundtrip .
Dim | Radix | “°° | per | across | Delay | Wire | Wire || Unloaded Maximum
Width | Node | Bisection | Cycles | Delay | Delay || Latency | 1rroughput
2 64 128 512 16384 1 1 1.00 389.9 2.935
3 16 32 192 16384 1 1 1.00 166.6 3.578
4 8 16 128 16384 1 2 1.56 156.7 3.834
6 4 8 96 16384 2 4 2.00 197.0 4473
12 2 4 96 16384 3 4 2.00 278.0 6.710
(c) Constant bisection

Table 4.1: Actual system configurations (pipelined, N=4096)
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Under all constraints, the wire delay increases as the dimensionality is increased. The max-
imum wire delay increases significantly faster than the mean wire delay. Under the constant node
size and bisection constraints the decode delay increases as well. The maximum throughput
increases with dimensionality, but at a different rate, depending upon the constraint.

Figure 4.7 presents the simulation results for the networks listed in Table 4.1. The differing
throughput capabilities of the networks can be clearly seen. Figure 4.7(a) shows latency versus
throughput for networks under the constant link width constraint. The higher-dimensional

:

14001
120017

:

8001

400
200

<YoZDomp Y] ASsOoX

0 -
0246 810121416182022242628
Throughput (bits/cycle/node)

(a) Constant link width

COHOm™ W] aSsS0o R

O 1 ¥ L) 11 1 ¥ ¥ L}
0 1.0 20 30 40 50 60 7.0 00 05 10 15 20 25 30 35 4.0
Throughput (bits/cycle/node) Throughput (bits/cycle/node)

(b) Constant node size (c) Constant bisection width
Figure 4.7: Latency versus throughput (pipelined, N =4096)



Ch. 4 67

networks are clearly superior, providing lower latency for a given throughput and a substantially
greater maximum throughput.

In Figure 4.7(b), the constant node size constraint is enforced. The 6-dimensional network
is superior in this case. Although there is very little difference between the unloaded latency of
the 4- and 6-dimensional networks, the 6-dimensional network performs significantly better under
heavy traffic. Similarly, the 3- and 12-dimensional networks have nearly equal unloaded laten-
cies, but the 12-dimensional network performs better as traffic increases. This illustrates why
unloaded latency alone is inadequate to characterize the performance of a network. It is interest-
ing to note that the 6-dimensional network achieves higher throughput than the 12-dimensional
network even though it has a lower maximum throughput. This is because of its larger link
width, which allows a more uniform utilization of its links.

Figure 4.7(c) uses the constant bisection constraint. It is less clear here which network pro-
vides the best performance. While the 4-dimensional network has the lowest unloaded latency,
the 3-dimensional network has slightly lower latency under heavier loads. The higher-
dimensional networks are severely penalized by smaller link widths and greater decode delays.

Table 4.2 presents network configurations for pipelined-channel, 1M-node networks.
Several observations can be made in comparing the values to those for 4096-node networks. One
is that the difference between maximum and mean wire delay is now quite significant. The max-
imum wire delay is a full 26 cycles for the hypercube, but the mean wire delay is only 8.05
- cycles. Because pipelined-channel networks do not have to increase their cycle time to accom-
modate these long transmission times, and because the maximum wire transmission time does not
affect the shorter wires, pipelined-channel networks appear especially promising for very large
systems. Another interesting observation is that the difference in maximum throughput between
the 2- and 20-dimensional networks is very large. It is a factor of 1000 under the constant link
width constraint. It is clear, however, that the constant link width constraint is not appropriate for
very large network sizes; wires per node and bisection simply vary too greatly. For the constant
node size constraint, where the total number of wires in the system is independent of dimen-
sionality, the difference in the maximum throughputs is still a factor of 100. And for bisection
constrained network, the difference is over a factor of 6.

Figure 4.8 presents simulation results for the networks listed in Table 4.2. The differences
in traffic capacity can be clearly seen. Under the constant link width constraint (Figure 4.8(a)),
the hypercube is superior. The low-dimensional networks provide much higher latencies and
only a small fraction of the capacity. As stated above, however, extremely large networks will
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. Wires Wires Decode | Max | Mean || Roundtrip .
Dim | Radix | ™ | per across Delay | Wire | Wire || Unloaded | imomum
Width | Noge Bisection Cycles | Delay | Delay Latency Throughput
2 1024 32 128 65536 1 1 1.00 6168.0 0.052
3 102 32 192 665856 1 1 1.00 940.9 0.531
4 32 32 256 2097152 1 4 3.16 673.1 1.732
5 16 32 320 4194304 1 7 4.38 513.5 3.578
10 4 32 640 | 16777216 1 26 8.05 342.5 17.892
20 2 32 1280 | 33554432 1 26 8.05 247.0 53.677
(a) Constant link width
; Wires Wires Decode | Max Mean || Roundtrip :
Dim | Radix Ll_nk per across Delay Wire | Wire || Unloaded Maximum
Width | Noge | Bisection Cycles | Delay | Delay Latency Throughput

2 | 1024 40 160 81920 1 1 1.00 6164.0 0.060
3 102 26 156 541008 1 1 1.00 946.9 0412
4 32 20 160 | 1310720 1 4 3.16 688.1 1.022
5 16 16 160 | 2097152 2 7 438 612.5 1.789
10 4 8 160 | 4194304 3 26 8.05 4745 4473
20 2 4 160 | 4194304 5 26 8.05 495.0 6.710

(b) Constant node size

Wires Wires Decode | Max | Mean || Roundtrip

Dim | Radix | =™ | per across || Delay | Wire | Wire || Unloaded | o odmum

Width Node | Bisection || Cycles | Delay | Delay Latency Throughput
2 1024 512 2048 | 1048576 1 1 1.00 6147.0 0.271
3 102 51 306 | 1061208 1 1 1.00 932.9 0.732
4 32 16 128 | 1048576 2 4 3.16 821.1 0.866
5 16 8 80 | 1048576 3 7 4.38 735.5 0.895
10 4 2 40 | 1048576 10 26 8.05 972.5 1.118
20 2 1 40 | 1048576 20 26 8.05 1371.0 1.677

(¢) Constant bisection

Table 4.2: Actual system configurations (pipelined, N =1048576)
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Figure 4.8: Latency versus throughput (pipelined, N=1048576)

not be link width constrained; they will either be node size or bisection constrained. When the
node size is constrained (Figure 4.8(b)), the 10-dimensional network provides superior perfor-
mance, followed by the 20-dimensional network. The 10-dimensional network provides slightly
higher throughput even though the 20-dimensional network has a higher maximum throughput.
As before, this is due to the larger link width allowing for better link utilization. Under the con-
stant bisection constraint (Figure 4.8(c)), the 4-dimensional network provides superior perfor-

mance (providing slightly lower latency than the 3-dimensional network under light loads). The
. 10- and 20-dimensional networks suffer too greatly from the decreased link width and increased
decode delays.
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In Table 4.3, configurations for a non-pipelined-channel 4096-node network are shown.
Wire delay is now given as "Cycle Time Increase”, the factor by which it increases the cycle
time. The unloaded latency and maximum throughput are in terms of the base cycle time
(without wire delay), to allow direct comparison with Tables 4.1 and 4.2. The maximum
throughput does not increase as fast with dimensionality as it did for the 4096-node pipelined-
channel network (see Table 4.1). The unloaded latency also becomes much larger for high
dimensions than it did for the pipelined-channel network.

Figure 4.9 presents simulation results for the networks listed in Table 4.3.‘ The results are
noticeably different than those in Figure 4.7. Under the constant link width constraint (Figure
4.9(a)), the 12-dimensional network still provides superior performance, but by a smaller margin

: Wires Wires Cycle | Decode | Roundtrip .
Dim | Radix VI&;iglt(h per across Time Delay || Unloaded ThIﬂMa;?lm r'ln?l ¢
Node | Bisection || Increase | Cycles Latency ehp

2 64 32 128 4096 2.00 1 556.0 0.426
3 16 32 192 16384 2.00 1 232.0 1.789
4 8 32 256 32768 3.00 1 246.0 2.556
6 4 32 384 65536 5.00 1 310.0 3.578
12 2 32 768 131072 5.00 1 250.0 10.735

(a) Constant link width

Link Wires Wires Cycle Decode || Roundtrip Maximum

Dim | Radix . per across Time Delay || Unloaded
Width Node | Bisection || Increase | Cycles Latency Throughput
2 64 48 192 6144 2.00 1 542.0 0.562
3 16 32 192 16384 2.00 1 232.0 1.789
4 8 24 192 24576 3.00 1 273.0 1.822
6 4 16 192 32768 5.00 1 430.0 1.789
12 2 8 192 32768 5.00 2 670.0 2.684
(b) Constant node size
. Wires Wires Cycle Decode || Roundtrip .
Dim | Radix VI\;;glt(h per across Time Delay || Unloaded m&t
Node | Bisection || Increase | Cycles Latency
2 64 128 512 16384 2.00 1 520.0 1.467
3 16 32 192 16384 2.00 1 2320 1.789
4 8 16 128 16384 3.00 1 318.0 1.278
6 4 8 96 16384 5.00 2 760.0 0.895
12 2 4 96 16384 5.00 3 1210.0 1.342
(c) Constant bisection

Table 4.3: Actual system configurations (non-pipelined, N=4096)



Ch.4 71

S8

28007
24001
20007
1600
12001

8001

4007

COSBODO™ Y] ADNEOR

0 > r T
00051.01520253.03.54.0455.05.5
Throughput (bits/cycle/node)

(a) Constant link width

0 0
0.00 0.25 0.50 0.75 1.00 125 150 1.75 00 02 04 06 08 10 1.2 14 16 18
Throughput (bits/cycle/node) Throughput (bits/cycle/node)
(b) Constant node size (c) Constant bisection width

Figure 4.9: Latency versus throughput (non-pipelined, N=4096)

(note that this would not be the case for a mesh, for which the maximum wire length with 12
dimensions would be twice as long as the maximum wire length with 6 dimensions). The 3- and
4-dimensional networks also provide slightly lower unloaded latency than does the 6-dimensional
network. Under the constant node size constraint (Figure 4.9(b)), the 3-dimensional network is
now best, with the 4-dimensional network a close second. The 6- and 12-dimensional networks
are now very poor choices. Finally, under the constant bisection constraint (Figure 4.9(c)), the
3-dimensional network is clearly superior. The 6- and 12-dimensional networks provide very
poor performance due to the greater wire delay apd smaller link widths.
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Several conclusions can be drawn from the data presented in Section 3. First, it is important
to consider bandwidth as well as latency. The unloaded latency does not characterize the perfor-
mance of a network as traffic increases. Second, pipelined-channel networks favor higher dimen-
sionality than non-pipelined-channel networks do. Pipelining allows the maximum wire length to
grow without increasing the cycle time or causing the transmission delay across all links to grow.
Finally, pipelining allows for much higher throughput than with non-pipelined-channel networks.
" This is illustrated by comparing Figures 4.7 and 4.9. The throughputs attainable in the
pipelined-channel networks are considerably higher than those in the non-pipelined-channel net-
works.

4. Other Factors in Network Performance

This section explores two other factors in the performance of pipelined-channel networks.
Section 4.1 investigates the effect of varying the ratio of switching to transmission time, S. Sec-
tion 4.2 investigates the effect of varying the packet length. The results differ somewhat from
results obtained previously for non-pipelined-channel networks [Agar91].

4.1. Effect of switching overhead

Figure 4.10 shows the unloaded latency versus dimensionality for a uni-directional,
pipelined-channel, 4096-node network as the ratio of switch cycle time to base wire delay, S, is
varied from O to 8. Latencies are normalized to the cycle time with S=1. As in Figures 4.4 and
4.5, discrete quantities are treated as continuous to better illustrate relationships. Parts (a), (b)
and (c) assume the constant link width, constant node size and constant bisection constraints,
respectively.

The optimal dimensionality is determined by balancing various components of latency that
are affected by the dimensionality. Varying S changes the relative importance of those com-
ponents that depend upon switching overhead and those that depend upon wire delay.

When switching overhead is ignored (S=0), latency depends only upon mean total distance
traversed. For uni-directional tori, this assumption favors high dimensional networks and for bi-
directional meshes, it favors low dimensional networks. In either case, however, the latency is
not very sensitive to dimensionality.

When wire delay is ignored (S31), latency depends only upon the number of switching
cycles. For unconstrained networks (Figure 4.10(a)), this assumption favors high dimensional
networks. For node-size constrained networks (Figure 4.10(b)), it favors networks with a
moderate number of dimensions The optimal dimensionality is derived by balancing narrower



Ch.4 73

O. v
2 3 45 6 7 8 9 1011 12

Dimension
(a) Constant link width
4007 5001
350 4507
3001 4001
L L 3501
, fti 2501 "tl 300 S=4
€ 200 e 2501
n n
¢ 1507 c 2007 S=
y Y 1501
100- 100- \M
i S=0.5 -
0 T * v r T v . ' Y J 0 g r r v v r = T v v ]
2 3 4 5 6 7 8 9 1011 12 2 3 4 5 6 7 8 9 10 11 12
Dimension Dimension
(b) Constant node size (c) Constant bisection

Figure 4.10: Effect of switch to wire time ratio (pipelined, N =4096)

link widths against decreased hops as the dimensionality is increased. For bisection constrained
networks (Figure 4.10(c)), this favors networks with a small number of dimensions, because link
widths are very narrow for higher dimensions.

As S is varied, the optimal dimensionality simply shifts between the values for the two
extremes. The network latency is more sensitive to dimensionality for larger S.




Ch.4 74

Figure 4.11 shows the same graphs for non-pipelined-channel networks. In non-pipelined-
channel networks, when switching overhead is ignored (S=0), low dimensional networks are
always superior because of the effect of maximum wire length on the network cycle time. When
§ is large, higher (how much higher depends upon the wiring constraint) dimensional networks
are preferred, due to their smaller number of hops. Therefore, decreasing § will always decrease
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Figure 4.11: Effect of switch to wire time ratio (non-pipelined, N=4096)



Ch.4 75

the optimal dimensionality by increasing the impact of longer wire lengths [Agar91].

As switching speeds continue to increase, the value of S in real systems will become
smaller. This will cause wire transmission delay to become dominant, and the unloaded latency
in pipelined-channel networks will become less sensitive to dimensionality. However, bandwidth
considerations (given uniform traffic) will still favor the use of higher-dimensional networks (see
Tables 4.1 and 4.2). At the same time, the optimal dimensionality of non-pipelined-channel net-
works becomes smaller. Thus, the impact of pipelined channels on dimensionality will become
greater. Moreover, decreasing S will enhance the bandwidth advantages of pipelined-channel
. networks.

4.2. Effect of packet lengths

Figure 4.12 shows the unloaded latency versus dimensionality for a pipelined-channel,
4096-node network as the packet length, L, is varied from 64 to 1024 bits. Parts (a), (b) and (c)
assume the constant link width, constant node size and constant bisection constraints, respec-
tively.

In non-pipelined-channel networks, longer packet lengths always decrease the optimal
dimensionality [Agar91]. This is because the number of flits, P, becomes dominant over the
number of network hops (see Equation (4.5)), making the reduction in number of hops in high-
dimensional networks less important relative to the increased wire delay.

A similar phenomenon can be seen in pipelined-channel networks under the constant node
size or bisection constraints. Longer packet lengths make the number of flits, P, a greater com-
ponent of the latency (see Equation (4.4)), and the constraints favor low-dimensional networks,
for which the link width is larger. This can be observed in Figures 4.12(b) and (c). Under the
constant node size constraint, the optimal dimensionality changes from 3 or 4, when L=1024,10 6
to 12, when L=64. Under the constant bisection constraint, the optimal dimensionality changes
from 2, when L=1024, to 4, when L=64.

Under the constant link width constraint, however, the packet length does not affect the
optimal dimensionality. In this case, P still becomes a greater fraction of the latency for long
packets (see Equation (4.4)), but since P is independent of dimensionality and simply added to
overall latency, it doesn’t change the optimal dimensionality.
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Figure 4.12: Effect of message length (pipelined, N=4096)

5. Conclusions

This chapter has examined the performance impact of pipelined channels on k-ary n-cube
networks, and shown that they significantly affect the network design tradeoffs. The key attribute
of pipelined-channel networks is that, by allowing multiple bits to be in flight on the same wire,
the network cycle time is decoupled from network wire lengths. This removes one of the primary
disadvantages of high dimensionality for large networks: increased latency and decreased
throughput due to long wires. The result is that higher dimensionality is favored, and that the
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networks are more scalable.

The extent to which pipelined channels change the optimal dimensionality of a network
depends upon the other disadvantage of high dimensionality: decreased link widths due to wiring
constraints. If the wiring is not constrained (the constant link width assumption), then pipelined
channels increase the optimal dimensionality dramatically. If the number of wires per node is
constrained, then the impact of pipelined channels on optimal dimensionality is smaller, but still
very significant. If the network is bisection constrained, then the impact of pipelined channels on
optimal dimensionality is relatively small, because the effect of dimensionality on link width
keeps the optimal dimensionality low. Even in this case, however, the use of pipelined channels
can increase network throughput. As switching speeds continue to increase relative to transmis-
sion times, the impact of pipelined channels on network dimensionality will become greater.

The optimal radix of a pipelined-channel network remains roughly constant as system size
is increased, regardless of the wiring constraint. When the link width is unconstrained, a hyper-
cube (radix of 2) provides the best performance. Under the constant node size constraint, the
optimal radix is between 4 and 10. Under the constant bisection constraint, the optimal radix is
in the 16 to 32 range. In uni-directional tori, the mean total distance traversed by a packet
decreases slightly with dimension, whereas in bi-directional meshes it increases. These effects
cause the optimal radix to decrease or increase, respectively, for large networks. The qualitative
* impact of pipelined channels, however, holds for both network types.

It is important to consider network throughput as well as latency. Pipelined channels
increase the throughput of a network by allowing smaller network cycle times. They further
increase effective throughput per processor by allowing higher network dimensionality. Since
the traffic per link is proportional to the network radix, high-radix networks have a correspond-
ingly lower traffic capacity. Under the constant node size or bisection constraint this is offset by
their larger link widths, but the capacity still decreases as radix increases.

By allowing the network cycle time to be independent of network size, pipelined channels
provide a partial solution to the scalability problems of k-ary n-cube networks. When switching
delay is dominant, latency grows as the log of the system size (since we grow the network by
increasing the dimensionality, not the radix). When wire transmission delay is dominant, latency
grows as the cube root of the system size (since the network is embedded in three-dimensional
space).

Bandwidth does not scale as easily as latency. Because the radix stays small as system size
is increased, the rate or packets traversing each network link is independent of system size (even
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though assuming uniform communication). Moreover, the network cycle time remains constant
as size is increased. Therefore, if the wiring were not constrained, then the bandwidth of the net-
work would scale perfectly. However, if the network is node size constrained, then the per-
processor throughput drops off as the log of the system size. And if the network is bisection con-
strained, then the per-processor throughput drops off as the cube root of the system size.

There are a few ways in which we can deal with the problem of diminishing throughput.
One is to rely on communication locality (a conspirator workload). Another is to simply tolerate
the reduced bandwidth for limited scalability. A node size constrained network, for instance, can
grow to the square of a given number of processors before the link widths are halved.

Finally, we can throw more hardware at the problem. The constant node size constraint can
be ameliorated by using larger packages or by using a cube connected cycle or similar structure to
buy us more pins per node. Asymptotically, however, it is clear that networks will be bisection
constrained (see the argument in Chapter 2, Section 2); hypercubes, even with bit-serial links,
will be impossible to build for sufficiently large systems. To support uniform communication in
this case, the network will have to be sparsely populated. If a bisection-constrained network of
size O (r?) is populated with O (r2) processors, then the communication traffic across the bisec-
tion will be proportional to the physical bisection of the network. In this case the cost of the net-
work is proportional to the square root of the number of processors, as is the communication

latency.

The theoretical results of this chapter may be difficult to implement in actual systems. It is
easier to upgrade a system by increasing the radix than by increasing the dimensionality, as the
latter requires changing the structure of a single node. The practical result regarding pipelined
channels and dimensionality, then, may be to simply choose a higher dimensionality for the
desired range of system sizes than would have been chosen using non-pipelined-channel net-
works.
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Chapter 5

Cache Coherence for Large-Scale Multiprocessors

The most common form of shared-memory multiprocessor today is the multi [Bell85],
characterized by a shared bus and per-processor snooping caches. A shared bus has the natural
property that all communications are broadcast, which explains the attractiveness of snooping
cache protocols [Good83, Papa84, McCr84, Fran84, Katz85, Enco86, Thac87, Love88]. In these
' protocols, caches maintain coherence by monitoring all bus traffic and detecting when shared data
is modified. As was discussed in Chapter 2, however, a shared bus does not provide scalable
bandwidth, and so is unsuitable for multiprocessors with more than a handful of high perfor-
mance processors. Topologies that provide scalable bandwidth necessarily lack the property that
all communications are broadcast, and thus traditional snooping protocols are not feasible.

Directory-based protocols rely instead on coherence information stored in special-purpose
directories associated with main memory. While broadcast invalidations can still be used
[Arch84], most proposed designs maintain records of cached data, and selectively invalidate
cached lines when they are modified. The former approach doesn’t scale because of bandwidth
constraints, and the latter poses difficulties because of the possibly very large amount of storage
necessary to keep track of heavily shared cache lines.

Another opportunity provided by the broadcast nature of a bus occurs when reading shared
data. Multiple reads of the same memory line can be combined while waiting to access the bus,
allowing for the data to be transmitted over the bus only once. While this ability has found little
applicability in single-bus systems, it is inherently appealing in larger systems, where the conten-
tion for shared data may be higher. Contention for a particular memory location or module in a
large system is known as a hot spot, and has been the focus of much research. Hardware mechan-
isms for combining requests in the network have been proposed [Gott83,Pfis85], as well as
mechanisms to improve network performance in the face of contention
[Tami88, Scot90, Lang88]. These mechanisms are not necessary under the uniform workload
assumption, as the average rate of read requests to a line is independent of system size. However,
certain workloads (those using barrier synchronization, for instance) may exhibit significant read
contention, in which case it is important that reads not be serialized.
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Hardware cache coherence protocols are related to read combining mechanisms for the fol-
lowing reason. If multiple reads for a line are serviced concurrently, then the directory must be
updated concurrently. Thus directories that must be serially updated defeat the purpose of read
combining, limiting scalability for workloads with significant read contention. Coherence proto-
cols that serialize invalidation messages to owners of widely shared lines may also limit scalabil-
ity

Section 1 of this chapter surveys several proposed coherence mechanisms, with an emphasis
on their scalability. Section 2 presents a coherence mechanism, pruning-cache directories, that
blends the two approaches of broadcasting and directories. Rather than broadcasting invalida-
tions to all processors in a system, invalidations are multicast to appropriate subsets of the system
using distributed directory information. Section 3 presents a mechanism for hierarchical read
combining in a k-ary n-cube, based upon the read combining in multis. The hierarchical nature of
pruning-cache directories makes them compatible with this read combining mechanism.

1. Survey of Cache Coherence Mechanisms

Recall that a full-width global directory [Cens78] includes an N-bit vector along with each
line of main memory. As discussed in Chapter 2, the full-width directory does not scale in cost,
as it requires O (N 2y directory space (assuming a total memory size that grows linearly with the
number of processors). There have been many proposals for reduced overhead directories.

1.1. Limited pointer directories

A straight-forward way to maintain a global directory of limited size is to have a fixed
number, i, of processor pointers in each directory entry. Either the number of shared copies of a
_ line must be limited to i, or when the number exceeds i, this fact must be recorded and a broad-
cast invalidate must be issued when the line is modified. Agarwal, Simoni, Hennessy and
Horowitz [Agar88] suggested a label of Dir;B or Dir;NB to represent the versions of this protocol
which do, and do not, use broadcast, respectively. I restrict my attention to Dir;B, as Dir;NB does
not allow data to be globally shared.

4 Using relaxed memory semantics [Dubo86, Adve90, Ghar90] the latency of most writes (including
invalidation of shared copies and collection of the corresponding acknowledgements) can be tolerated.
Writes that have not completed at synchronization points, however, can potentially delay program execu-
tion.
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To keep the hardware costs reasonable, the number of processor pointers that are stored in
each directory entry must be small, even for very large systems. Thus, the bandwidth of the sys-
tem will scale well only if the programs are “well behaved” with respect to sharing. This means
that upon invalidation, the number of shared copies of a line must almost always be less than or
equal to #, or on the order of N. If some fraction of the invalidations require broadcasts when the
number of shared lines is only slightly larger than i, then the bandwidth of the system will not
scale, as discussed in Chapter 2. Certain workloads may display the correct behavior for large
systems, but it is not clear whether programs will behave correctly in general.

Weber and Gupta [Webe89] analyzed five parallel traces and recorded the distribution of
the number of shared copies that needed to be invalidated on a write, for 4, 8 and 16 processor
systems. They found that the number of shared lines that needed invalidation on a write was typi-
cally low, but that the distribution did spread out as the system size increased. It is difficult to
say what the distribution would look like with 100, 1000, or 64K processors.

Agarwal, et al [Agar88], evaluated Dir NB and DiroB as well as two snooping protocols
(Write-Through-With-Invalidate and Dragon) for three 4-way-parallel traces and found DiroB to
. be competitive with the Dragon protocol. Unfortunately, their traces were of limited parallelism
and the topology simulated was a single shared bus (where there is little difference between a
point-to-point message and a broadcast), so it is difficult to draw conclusions from this work
regarding the scalability of the directory protocols.

In more recent work, Chaiken, Fields, Kurihara and Agarwal [Chai90] compared limited
directories (without broadcast) to full map directories for several 16- and 64-way parallel codes
running on a theoretical multiprocessor with a multi-stage interconnection network. They found
that half of their codes performed significantly worse with limited pointer directories than with
the full map directory. However, they were able to hand tune two of the codes to eliminate
widely read data, bringing the performance close to that of full directories.

One disadvantage of the limited pointer directory scheme is the amount of storage space
needed to implement the directory. If the number of pointers per entry can remain fixed or grow
very slowly with system size, then the storage overhead will scale well. However, the mean

number of shared copies of each line is much less than 1 (it is at most —5—, where C and M are the

sizes of the cache and main memory, respectively). Therefore, even with only a few pointers per
entry, most of the directory space will be unused. Storage overhead is considered in more detail
in Chapter 6, Section 6.
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1.2. LimitLESS directories

Another way to deal with overflow in a limited pointer directory is to handle it in software.
This is done in the LimitLESS (Limited directories, Locally Extended through Software Support)
cache coherence protocol for the MIT Alewife machine [Chai91]. The LimitLESS protocol
maintains a distributed hardware directory with a small number of pointers per cache line. When
a read request causes the number of shared copies of a line to exceed the number of hardware
" pointers provided in the directory entry for that line, an interrupt is issued to the processor local
to that directory. The processor then extends the directory entry using local main memory. In
this way an arbitrary number of shared copies can be supported.

The most obvious overhead for this scheme is the extra work created for the processor, and
the extra time taken to handle directory overflows in software. However, if the probability of
overflow can be kept small — and there is reason to think that it could, because most memory
lines are not widely shared — then this overhead may be acceptable.

The total directory storage overhead, like that for Dir;B, will still be much larger than
needed to store the necessary sharing information. This is due to the static allocation of hardware
pointers to main memory lines. This protocol also does not allow parallel processing of con-
current read requests; all read requests must be processed at the directory entry. This will prevent
workloads with any significant read contention from performing well on large systems.

1.3. Coarse vectors

Another way to limit the size of directories is to use coarse vectors for the entries [Gupt90].
A coarse vector is similar to a full width directory entry, except that each bit represents a region
of two or more processors. When a processor reads a line, the bit for that processor’s region is set
in the line’s directory entry. When a line is invalidated, messages are sent to all processors in the
regions whose bits are set. Gupta, et al [Gupt90], suggest that the directories be structured such
that an entry can hold one or more processor pointers and then switch over to a coarse vector
representation when the pointers overflow. They analyzed the performance of a coarse vector
scheme for four programs running on a simulated 32 processor DASH system, and concluded that
the coarse vector scheme worked well. However, the directory that they used had regions of only
2 processors each.

The coarse vector scheme is attractive for reducing the directory overhead as system size
increases. In addition, since a coarse directory needs only to keep track of regions, it allows some
amount of read combining to take place in the interconnect. However, it is clear that the coarse
vector scheme just staves off the problem of directory size. As system size increases, either the
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size of the directories will increase linearly (as with a full width directory), or the region size will
increase, causing performance degradation due to extra invalidation traffic.

1.4. Directory caches

Several researchers have proposed caching directory information to exploit the fact that
most lines of memory are not cached by any processor. Weber, Gupta and Mowry [Gupt90]
referred to these directory caches as sparse directories, and suggested that entries could be either
full width, limited pointer or coarse vector, depending on the size of the system and the amount
of memory allotted for directory storage. O’Krafka and Newton [0’Kr90] independently pro-
posed the use of directory caches, and suggested that two separate caches be maintained at each
node: a small cache of full width entries and a larger cache of limited pointer entries.

Using directory caches provides a large constant-factor reduction in storage overhead. The
number of directory entries that are needed is approximately equal to the number of cache lines in
the system rather than the number of main memory lines. However, using directory caches does
not solve the problem of choosing a size for the directory entries. Any static allocation of
pointers to directory entries will cause wasted space by assigning too many pointers per entry
and/or performance degradation by assigning too few pointers per entry. The use of multiple
caches with different types of entries in each cache can provide a partial solution to this problem.
Directory caches do not address the problem of serialization at the directories.

1.5. Sectored directories

O’Krafka and Newton investigated another coherence mechanism called the sectored direc-
tory [0’Kr90]. This scheme keeps track of the individual state of all blocks (called “sub blocks”
in the paper), but keeps track of the sharing information over sets of n blocks. Each set of n
blocks has an associated full width vector that represents the union of the full width sharing vec-
tors for each of the blocks in the set. In this way, the total amount of directory storage is reduced
by a factor of n over the Censier and Feautrier scheme.

When a shared block is written, invalidation messages are sent to all processors that have
copies of any of the blocks in the set to which to shared block belongs. O’Krafka and Newton
found that this scheme led to heavy invalidation traffic and performed worse than a directory
cache scheme using a similar amount of storage.
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1.6. Dynamic pointer allocation

Simoni and Horowitz [Simo091] proposed a dynamic pointer allocation protocol that avoids

the problem of statically assigning processor pointers to directory entries. Their scheme main-
" tains a cache of single processor pointers at each node. Each entry in the pointer cache consists
of one processor pointer and a link to another entry in the pointer cache. Pointers are allocated
out of this pool as necessary to keep track of all shared lines. All unused entries in the pointer
cache are chained together in a free list.

Directory entries associated with main memory consist solely of a pointer into the pointer
cache. When a memory line is first read, a pointer is taken off the free list in the pointer cache
and set to point to the-cache that read the line. The main memory directory entry is set to point to
the newly allocated pointer cache entry. As additional caches read the line, additional pointer
entries are allocated, and a linked list of pointers is built up in the pointer cache. When the line is
written, the linked list is traversed, and invalidations are sent to all processors pointed to by the
entries. The pointer cache entries are then returned to the free list.

The dynamic pointer allocation protocol adapts to arbitrary distributions of the number of
shared copies per line. Each main memory directory entry uses only the necessary number of
pointers. Most lines of memory will not be cached anywhere, and thus will not require any pro-
cessor pointers to be allocated. Each pointer cache needs to have enough entries to keep track of
all cached memory lines from the main memory at its node. If the number of cached lines from
each main memory module were equally distributed, then the pointer caches would need to have
exactly as many entries as there are lines in a cache. However, since memory may be non-
uniformly cached, the number of entries per pointer cache should be some constant factor larger
than the number of lines per cache. Simoni and Horowitz [Simo091] suggest that directory storage
requirements can be further reduced by using a cache for the head links (the pointers into the
pointer cache that are associated with each line of main memory).

The dynamic pointer allocation protocol provides the completeness of a full width direc-
tory, while requiring only O (N) storage (asymptotically, the storage overhead is O (N logN),
because each pointer cache entry includes a binary number representing a processor). It does not
address the problem of serialization at the directories, however. Thus, it is not compatible with
read combining mechanisms and would not perform well on large systems for workloads with
significant read contention.
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1.7. Distributed linked list directories

The cache coherence protocol used in the Scalable Coherent Interface [IEEE92], also uses
linked lists to keep track of shared copies of each line, but the lists are physically distributed
among the caches of the system. Associated with each cache line in the system are two hardware
pointers capable of pointing to other caches. These can be used to build up a distributed,
doubly-linked list of caches sharing a particular line of memory. The directory entry associated
with a line of main memory points to the head of the associated sharing list if the line is cached.
Since the pointers are distributed with their corresponding cache lines, there is never a shortage of
pointers, and the storage overhead for pointers scales linearly with the number of cache lines in
the system.

The time overhead for building up and breaking down the linked lists in SCI is higher than
that in Simoni and Horowitz’s scheme, because the lists are physically distributed, requiring mul-
tiple messages to be sent over the interconnect when performing list operations. However, the
SCI standard is being extended to address the serialization problem, which will allow read
requests to be handled concurrently in large systems [Gust92]. Optimizations have been designed
that use combining in the network and a third hardware pointer per cache line to construct tree
structures rather than flat linked lists. These trees can be used to distribute shared data or invali-
. dations to x processors in O (log x) sequential messages.

Distributed linked lists are also used in the Stanford Distributed-Directory protocol
[Thap90]. This protocol uses singly linked lists rather than doubly linked lists. Although requir-
ing less storage, the Stanford protocol does not provide the same level of robustness as SCI, nor
does it allow extensions for concurrent read combining.

1.8. Hierarchical directories

In systems with a hierarchical topology and a multicast capability, a more natural form of
concurrent read combining and parallel invalidation can be implemented by partitioning the
directory hierarchically. Recall that in a k-ary n-cube, each node defines an embedded tree, with
itself at the root (see Figure 2.3(b)). Therefore, while the k-ary n-cube avoids the root bottleneck
of a single tree, the coherence protocol with respect to any line of memory can use the tree
defined by the home location for the line. For this reason, cube topologies appear to be excellent
platforms for hierarchical protocols.

For simplicity however, we can consider a single tree multiprocessor, and the directory
entry for a single line. Figure 5.1 depicts such a tree with the processor caches at the bottom.
The marked caches represent those that have a copy of the line in question. The interconnect is




Ch.5 86

Directory
Sub-Dicc;ories 011
000 110 ] 101
. T T I j 1.
000] {000} [00o] [100] {110} [000] [oo01] {000} [100
000 D00 000 X000 M0 050 00K D00 800

Figure 5.1: Hierarchical directory example

A single tree with a bus interconnect is shown for simplicity. The actual interconnect is assumed to be a
cube, implemented with rings for high performance. In a cube-embedded tree (see Figure 2.3(b)), parent
nodes are also their own children. Thus the nodes drawn with dotted lines are actually the same nodes as
the nodes above them; they are drawn separately simply to aid the conceptual model of a tree. The boxes
at the bottom represent data caches, with the cross marks denoting copies of a particular line. Intermediate
nodes represent sub-directories with their entries for the given line.

depicted as buses, but would likely be implemented with rings for high performance. The direc-
tory entry for the line is decomposed hierarchically to fit the tree. The root directory for the line
contains a k-bit pruning vector. A bit in this vector is set if the corresponding subtree beneath the
home location may contain one or more copies of the line. Each of the k£ nodes along the root
ring also contains a k-bit pruning vector for the line, stored in a sub-directory at each node. A bit
in one of these pruning vectors is set if the corresponding subtree beneath the sub-directory may
contain one or more copies of the line. The k2 nodes at the next level down in the tree also con-
tain k-bit pruning vectors for the line, and so on. Thus, the directory entry for a line consists of a

’l_ —
total of 1+k+k%>+ - +k"1 = [—%—_—-1-1—] = [%:11_] pruning vectors, stored in as many

separate subdirectories.
When a line is invalidated, the invalidate is sent onto the root ring along with the top-level
pruning vector, and it is propagated only to those subtrees that may contain a copy of the line.

This process is repeated at lower levels by looking up pruning vectors in sub-directories. A total
of n—1 levels of sub-directory accesses are needed (the lowest level is arguably not needed, as it
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only reduces traffic when a copy resides in the parent of a leaf node, but not in any of its chil-
dren). Hierarchical directories reduce invalidation latency by avoiding serialization of invalida-
tion message issue. They also reduce traffic, as compared to the global (non-hierarchical) direc-
tory, because multiple invalidates share part or all of their path through the network.

In addition, read requests can be combined on their way to memory due to the hierarchical
structure of the directory. A bit in a directory entry is set when any of the processors in the
corresponding sub-directory read the line; it is not necessary to know which ones or how many.
The read combining works as follows. Assume that the tree is populated with caches at the inter-
mediate nodes, as it would be in a k-ary n-cube-based multiprocessor. As a read request pro-
pagates up the tree towards memory, it checks the state of the parent cache at each successive
level. If the data is found, it can be returned immediately. If not, a line is allocated for the data
in the parent cache and the request continues up toward memory. If it reaches a cache where
. there is already an outstanding request for the same line, the request may be dropped, and the
result decombined when the first request completes (a bit vector denoting the subtrees waiting for
the result can be kept in the cache line where combining took place while waiting for the data).

The hierarchical directory, however, increases the complexity of the memory controllers

bits, distributed over several directory structures,

and does not scale in cost. It uses (N—1) [;—I-CT

for each directory entry. Thus, just as the global bit vector scheme, the hierarchical scheme
requires O (N 2) storage for the directories.

1.9. Multi-level inclusion

A coherence mechanism that is similar to hierarchical directories in some ways is the
multi-level inclusion (MLI) property [Lam79, Wils87, Baer88]. The MLI property requires that a
cache in a hierarchy contain a superset of all lines residing beneath it in the hierarchy. When the
line is invalidated, a parent only propagates the invalidate to its children if it has a copy of the
line. This prunes a broadcast invalidate in much the same way as a hierarchical directory. In
order to save space, the parent may be required only to have directory information about all lines
beneath it in the subtree. This can be kept in inclusion caches. An inclusion cache simply con-
tains tags for each cache line residing within the subtree rooted at the corresponding node. The
logical inclusion bit for a line is considered to be set if an entry for that line exists in the inclusion
cache, and cleared if there is no entry.

The VMP-MC system[Cher89] enforces multi-level inclusion within a VMP node, but uses
directory entries similar to pruning vectors rather than inclusion bits. A pruning vector at a given
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node is simply the collection of its childrens’ inclusion bits for the same line. The directory
entries in VMP-MC are associated directly with memory and cache lines, so MLI is required for
the actual data, as opposed to just the tags.

The directory overhead required to enforce MLI does not grow as O (N 2), because inclusion
information for a line is not maintained in subtrees that do not contain the line (in Figure 5.1, this
would mean that the all-zero entries could be missing). Each of the O (V) lines in the leaf caches
requires inclusion information in at most O(logN) parent caches. This overhead is further
reduced if data in the leaf caches is shared. Therefore, the total directory space required by MLI
grows only as O (N logN). Although the directory overhead for MLI scales, it can still be quite
large. This is addressed further in the next chapter.

2. Pruning-Cache Directories

A novel way of scaling hierarchical directories is to limit their size and manage them as
caches (pruning caches) [Good89,Scot91]. We no longer require a sub-directory to contain the
pruning vector for a given line when it is accessed. If it contains the entry, then we proceed as
with the hierarchical directory. If it does not, then we must make the conservative assumption
that any subtree may contain a copy of the line (a pruning vector of all ones) and propagate the
invalidate to all subtrees. The performance of this mechanism depends upon the hit ratio, A, of
the pruning caches. When k=1, the pruning caches act identically to a full hierarchical directory.
When k=0, the top level pruning vector (stored with memory) acts as a coarse vector [Gupt90].
The invalidation traffic in this case is less than with a broadcast scheme, but still does not scale;
invalidation traffic becomes an increasing fraction of total traffic as system size increases.

Figure 5.2 illustrates a pruning-cache-based system. As with Figure 5.1, only a single tree
is shown, but the assumption is that this is an embedded tree in a cube network (as in Figure
2.3(b)). The leaf nodes represent processor caches and the internal nodes represent pruning
caches. Pruning cache entries for a particular line are shown, and the caches with copies of that
line are denoted by cross marks. If the line in question were invalidated, then the invalidate
would never reach the pruning caches labeled with an “X”, and therefore they do not need an
entry for that line. The “Miss” label denotes pruning caches where the invalidation-triggered
lookup fails due to a pruning cache miss, causing the invalidation to be broadcast in the subtree
beneath the pruning cache. As a result of these pruning cache misses, the underlined processor
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Figure 5.2: A pruning-cache directory example

A single tree with a bus interconnect is shown for simplicity. The actual interconnect is assumed to be a
cube (a 3-ary 3-cube in this case), implemented with rings for high performance. In a cube-embedded tree
(see Figure 2.3(b)), parent nodes are also their own children. Thus the nodes drawn with dotted lines are
actually the same nodes as the nodes above them; they are drawn separately to aid the conceptual model of
atree. The boxes at the bottom represent data caches, with the cross marks denoting copies of a particular
line, and the underlines denoting caches that would receive an extraneous invalidation message if the line
were invalidated. Intermediate nodes represent pruning caches with their entries for the given line. The
X’s represent “don’t cares” — pruning caches that do not need an entry for the given line.

caches receive spurious invalidations.’

The key difference between inclusion caches and pruning caches, is that MLI requires an
inclusion cache to contain entries for all lines beneath it. This means that either an inclusion
cache must be built such that all lines that can possibly reside simultaneously in the subtree
beneath it can also reside simultaneously in the inclusion cache [Baer88], or when an inclusion
cache has to eject an entry, it must invalidate the corresponding line in the subtree beneath it
[Wils87]. The first solution is only practical in a single tree system, where the number of caches
" decreases at each higher level. The second solution, however, is feasible in a cube-based system.
Pruning caches are compared to MLI systems via simulation in Chapter 6.

5 The pruning cache hit rate for this example is a very poor 50%. Actual hit rates are expected to be
very close to 1.
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2.1. Analysis of pruning caches

This section derives expressions for invalidation traffic with and without pruning caches.
Pruning caches (partial directories) are compared against two extremes: no directories (requiring
broadcasts when a shared line is invalidated) and full hierarchical directories (pruning caches
with a hit rate of 1). A similar analysis for bus-based systems can be found elsewhere [Scot91].

In order to analyze the performance of pruning caches, we must first make some assump-
tions regarding the operation of the system. I will assume two lengths of messages: one for mes-
sages containing a line of data, and one for address-only messages. Let these messages require
Tiua and T4 cycles to traverse a link (where Ty, and T,u, are the respective message sizes
divided by the link width). Further assume that when a message traverses a ring, the message
travels from the source to the target on the ring and an echo packet is returned around the ring
from the target to the source. The echo packet is used for fault tolerance and is similar to that
used in SCI [IEEE92]. For simplicity, I assume that an echo packet is the same size as an address
packet (although in SCI, echo packets are smaller). While the latency to traverse a ring depends
upon the distance between the source and target on the ring, the bandwidth used by an address-
only message on a ring is always kT4 A message containing data will use less bandwidth on a
ring if the source and target are close, because the message is larger than the echo packet.

Recall that to provide some form of memory consistency, we must know when an invalida-
tion has completed. In a network that can deliver messages out of order, this requires returning
acknowledgements from all processors that received the invalidate. In a hierarchical system, ack-
nowledgements from a broadcast or multicast invalidation can be combined at each level: a
parent propagates a single acknowledgement up after receiving the acknowledgements from all
- jts children. When a parent places an invalidate onto a leaf ring, it may send up the correspond-
ing acknowledgement as soon as the invalidate has completed its circuit.

With these assumptions in mind, we can now calculate the expected traffic resulting from a

broadcast invalidation. The number of rings in a broadcast tree (see Figure 2.3(b)) is [—]Z :: J , SO

k-1
acknowledgement packet must be passed up to the next highest ring when the invalidations below

the traffic from the invalidate packets is [ }kTadd,. For all but the root ring in this tree, an

the ring have completed. However, for one ring out of k, the acknowledgement packet will have
to travel no distance on the next highest ring. Thus the traffic from acknowledgements is

’Z ’11 1H k ;’ ] T, 1, and the total traffic caused by the invalidation is
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Given the hit rate, h, we can calculate the the expected traffic resulting from an invalidation
using pruning caches. Assume m shared copies of a line distributed randomly throughout the sys-
tem, and label the rings as in Figure 2.3(b). A subtree at level i contains the Kt processors that are
located at or below the level i ring. The probability that one of the m shared copies resides in a

K"k
m

Pc(i,m)=1~- ]

given level i subtree is

- 5.2)
k
m
If we exclude the k'~ processors in the level i subtree whose path to the root of the tree does not
traverse the level i ring, then the probability that one of the m shared copies resides in the level i
subtree is equivalent to the probability that an invalidate packet must traverse the level i ring on

k" —kiki
m

kn
m

an invalidation, and is given by

Pc(im)=1- (5.3)

The expected traffic from an invalidation (including acknowledgements) using pruning caches
with a hit rate of & is now

n-1

Tpc = [ikn—ipinml(irm)k + Zk"'iP:nmz(i,m)(k-l)] Toaar 54

i=1 i=1
where P;,,q(i,m) is the probability that an invalidate packet traverses a ring at level i.

Calculating P;p,4(i,m) depends upon our interpretation of k. If we assume that 4 applies to
all pruning-cache references, including those performed by runaway invalidations (invalidation
that have propagated beyond the necessary subset of processors because of a pruning-cache miss),
then we arrive at the following formula:
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n-2
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+ [Pc(i,m)—P’c(i,m)](l—h)"“'“]

+ [Pc(n-—l,m)—P'c(n—l.m>]<l—h>""' (5.5)

The first term of P;,,,;(i,m) is the probability that an invalidate was supposed to traverse the ring
at level i, and is the only term that would be nonzero if the hit rate were 1. The remaining terms
account for the probability that an invalidate reaches the ring due to pruning-cache misses. The
first term inside the summation is due to invalidates that were supposed to traverse the level j+1
ring, but were not supposed to reach the level j subtree. The second term inside the summation is
due to invalidates that were supposed to reach the level j subtree, but not traverse the level j ring.
The last term of P, (i,m) is equivalent to the second term inside the summation for a value of
j=n-1. For this value of j, the first term inside the summation does not exist because the top-
level directory never misses.

If, on the other hand, we assume that pruning-cache accesses for runaway invalidations
always miss, then Equation (5.5) is significantly simplified, and P;y,;(i.m) is given by

P'c@i,m) ifi=n

P’c(i,m) + (1-h) [Pc(n—-l,m)— P'c(i,m)] ifi<n (5.6)

Pinyar(i,m) =

The implication of this assumption is that runaway invalidations are fully broadcast throughout
any subtrees into which they are errantly propagated. The choice of formula depends somewhat
on the pruning-cache management policy (see Chapter 6, Section 3). Previous published analysis
[Scot91] assumed a uniform hit rate for all pruning cache accesses. However, recent simulation
results reveal that pruning-cache hit rates are very low for runaway invalidations, so I conserva-
tively assume the use of Equation (5.6) throughout this study.

If h=1, then all traffic due to pruning-cache misses goes away, and Equation (5.4) gives us
the expected traffic used by a full hierarchical directory. If h=0, then the pruning caches are inef-
fective and traffic is reduced from a full broadcast only by the effect of the pruning vectors in the
top level directory. Figure 5.3 plots the expected traffic of an invalidation versus m, for four pos-
sible systems (T4 is assumed to be 1). The traffic is shown for a full broadcast (Equation (5.1))
and for pruning-cache systems with various values of & (Equation (5.4)). As indicated in the
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Figure 5.3: Pruning-cache performance

figure, pruning caches with a modest hit rate significantly reduce the invalidation traffic.

Statistics gathered from simulations match the curves for h=0% and h=100% very closely.
Curves for 0%<h<100% are difficult to confirm because it cannot always be determined whether
a particular pruning-cache reference is inside or outside the proper subset of the tree, and thus A
cannot be accurately measured. However, simulation results do match approximately. When the
pruning-cache hit rate is artificially constrained to a specific value, simulation results match
closely. See Chapter 6, Section 4 for these results.
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The assumption of a random distribution gives somewhat conservative results, as shown in
Figure 5.4. This figure plots the best-case, random, and worst-case traffic caused by a completely
pruned invalidation versus the number of shared copies, m, in the system, for a 4096 processor
system (k=8, n=4). In the best-case distribution, shared copies are clustered along leaf rings such
that higher-dimension rings are traversed as little as possible. This results in traffic of

n pi-t n~1
Tbestwe=[§[m]§ ]"'E[[—E—-l_l'kﬁl]]:\kj'addr 6.7

In the worst-case distribution, shared copies are spread out among different leaf rings such that

higher-dimension rings are traversed as much as possible. This results in traffic of

n-1

Tyorst case = [1+ Y [min Kk )+ min (k=1 ,m)} k T 5.8
i=]

The random distribution assumed in Figure 5.3 gives traffic estimates very close to the worse
case, indicating that there is possibly much to gain by organizing sharing along leaf rings when
possible. As an added incentive, sharing along leaf rings would increase the efficiency of pruning
caches and read combining in the network. This is validated by simulation results in Chapter 6.

— e O m]
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Figure 5.4: Distribution’s effect on the traffic of pruned broadcasts

(N=4056,k=8,n=4,h=1)
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In order for the system to scale in size without invalidation traffic becoming an increasing
fraction of network traffic, the mean invalidation traffic over a link that is caused by each proces-
sor making one request (a total of N requests), must be O (1) in system size. Assertion: Let Inom
be the mean traffic caused by an invalidation, divided by the dimensionality of the system and the
mean number of shared copies being invalidated. If I,,,, is O (1) in the system size, then the
mean invalidation traffic over a link that is caused by each processor making one request is also
O (1) in the system size. Proof: Let T be the mean traffic caused by an ihvalidation, f be the frac-
tion of processor requests that cause an invalidation and m be the mean number of shared copies
of a line when it is invalidated. An average of at least m reads must occur for every write. Thus,

f must be less than or equal to —'1; The mean invalidation traffic generated by N processor

requests is thus less than or equal to T[—Z—} The invalidation traffic is distributed over Nn links.

Thus, the mean invalidation traffic per link generated by N processor requests is less than or equal
to ——:—';l- = Iom. Therefore, if I, is O (1), then the mean invalidation traffic per link generated

by each processor making one request is O (1). [0 I will use this normalized invalidation traffic
metric, I,,m» to illustrate scalability of invalidation operations in Figure 5.5.

For a system that uses a single invalidation message for each shared copy, invalidation of a
line requires m messages, each of which requires O (nk) link operations. I, is O (k) for such a
system, and the invalidation traffic scales, provided that the network radix is kept constant. For a
system that always performs full broadcast invalidations, however, an invalidation requires O (N)
link operations. Invalidation traffic will scale in such a system only if the fraction of processor
requests that cause invalidations is O (n/N) or less (e.g.: if a large fraction of the processors read
each shared line between writes).

Figure 5.5 shows the normalized invalidation traffic (mean traffic of an invalidation divided
by the dimensionality of the system and the number of shared copies) for broadcast and pruning-
cache-based systems, as system size increases. Part (a) shows the scaling behavior with a fixed,
small number of shared copies. Part (b) shows the scaling behavior when the number of shared
copies grows as the root of the system size. We see that with a pruning-cache hit rate of 100%,
the normalized traffic appears almost constant as system size increases. In fact, this traffic is con-
stant asymptotically. When # is less than 100%, however, invalidation traffic is asymptotically
unscalable. Thus for sufficiently large systems, broadcasts become too expensive, and MLI will
deliver higher performance.
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Figure 5.5: Scalability of pruning-cache systems (k=8, n=2....7)

However, for high values of h, invalidation traffic is kept low for system sizes into the
thousands. For extremely large systems (hundreds of thousands of processors), even a small
pruning-cache miss rate causes a large increase in invalidation traffic. Therefore, pruning caches
for very big systems must be large enough to assure very high hit rates. For this reason, the
storage overhead of pruning caches is important.

The only entries that need be present in the pruning caches are those for actively shared
lines. Entries for private, read-only and passively shared lines may drop out of the pruning
caches without affecting performance (in fact, entries for private and read-only lines, if they can
be identified, do not have to be placed in pruning caches at all). The following argument shows
that the size of a pruning cache needs to grow only as O (n). This results in a total storage
requirement of O (Nn) = O (N logN ).

Assume that each processor cache contains a size S set of actively shared data. Because
memory is interleaved amongst the memory modules, we can assume that the home memory
modules of the shared data are roughly spread out throughout the system. A given pruning cache,

therefore, must contain approximately % entries for each of the k caches along its level 1 ring

entries for each of the k! caches along its level n—1 ring and below. The total

and -1
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number of entries needed in a pruning cache is thus (n—1)S and pruning caches should retain the
same level of performance if they scale in size as O (n—1).

An alternative argument goes as follows. Each cached line requires at most (n—1) pruning
cache entries (for its parent’s pruning cache, grandparent’s pruning cache, etc.). The total number
of required pruning cache entries is thus <NC (n—1), spread out over N pruning caches, which
hold equal shares due to symmetry.

2.2. Pruning cache operation

Pruning caches are maintained as read results and invalidates propagate down through their
respective trees. When a parent supplies a line to a child in response to a read request (the parent
could have either had a copy of the line being requested, or have propagated the request up the
tree and just received the result now) it must do two things. First, it looks up the corresponding
pruning vector in its own pruning cache and includes it with the line (recall that if the cache
misses, an all-one vector is assumed). Second, if the pruning vector was in the cache, the bit
corresponding to the child is set.

When the child receives the line, if its bit in the supplied pruning vector is one, then it can-
not assume anything about the pruning vector for its subtree. If it doesn’t already have a copy of
the pruning vector in its own pruning cache, then it simply does not create a pruning vector (if it
created one, it would have to be all ones, which would be a waste of pruning-cache space). If,
" when the child receives the line, its bit in the supplied pruning vector is zero, then it knows that
no cache in its subtree previously had a copy of the line, and it can create an all-zero pruning vec-

tor for the line in its pruning cache.® If it in tumn passes the line down to one of its children, then
the appropriate bit in this newly created, all-zero vector would be set.

The top-level pruning vector for a line is kept in the directory with main memory, and thus
is always present. On an invalidation, memory clears its pruning vector, as do all pruning caches
that the invalidate passes through. A reasonable way to implement acknowledgement combining
is to use the pruning vectors used for the invalidation. The pruning vector used to distribute an
invalidate (whether retrieved on a pruning cache hit, or assumed all-ones on a pruning cache
miss) indicates which children will be returning an acknowledgement. It would be saved when
the invalidate is passed down, and as acknowledgements propagated up from the node’s children,

6 In fact, it always creates this type of all-zero vector (provided it’s not a leaf pruning cache), regard-
less of the policy towards all-zero vectors that will be discussed later.
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the corresponding bits would be cleared. When the vector became zero, an acknowledgement
would be propagated up to the next level.

The pruning vectors that are saved for acknowledgement combining during an invalidation
must be kept somewhere. Either they can be kept in an auxiliary buffer, or they could be pegged
down in the pruning caches during the invalidation. The latter choice has the disadvantage that a
pruning cache miss for a non-leaf node results in forcing an entry for the line being invalidated
into the pruning cache. In either case, the vectors must be retained until the invalidation has com-
pleted. Whenever multiple resources must be locked in a distributed environment, deadlock is a
concern. This issue is briefly discussed in Chapter 6, Section 5.

There are several important issues related to pruning-cache management that are explored
in Chapter 6, Section 3. These include the placement policy, replacement policy and the way in
which all-zero vectors are handled. Unless otherwise specified, simulations presented in this
thesis use the LRU policy for pruning cache replacements and do not place all-zero pruning vec-
tors into the pruning caches if they require displacing a non-zero entry. The placement policy is
discussed in Chapter 6.

3. Read Combining in Cube Networks

Contention for data and synchronization objects is a potential problem that must be
addressed when designing very large systems. Synchronization can be handled in a variety of
manners, both in hardware and in software. Examples include software combining [Yew87],
software queueing [Mell91] and hardware queueing [Good89a]. Although synchronization issues
are important, I do not address them in this thesis. I do address the problem of read contention,
however, as it is closely related to the cache coherence mechanism. There are several situations
in which concurrent read requests to the same line are likely — after a widely shared data object
is invalidated, for example, or after a barrier synchronization, as processors read data or code for
a new iteration. If these read requests are serialized at the memory, then latencies may become
extremely long in large systems. The hierarchical structure of the cube topology and pruning
caches, however, allows concurrent read requests to be combined in the network.

In a system with read combining, reads to private data proceed as normal. Reads to shared
data access the data caches along their route to memory. Only the parent caches are checked
(those at nodes where the path changes dimensions). If the data is found in a parent cache, the

data can be returned immediately, otherwise a shadow line is allocated in the parent cache, and
. the request continues towards memory. If another read request for the same line arrives at the
same parent cache before the data arrives, this request can "combine" and be dropped. A bit
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vector indicating which subtrees are awaiting the data (called a pending vector) is kept in the sha-
dow line and used to distribute the data when it arrives. If more than one subtree is waiting for
the data when it arrives, the data is multicast on the ring to each of the waiting subtrees. This
simply means that the data is sent around the ring along with its pending vector, and each pr'(’)'éés‘f'“ i
sor whose bit is set retains a copy. When the last processor has taken its copy, the ring echo is
sent around the remainder of the ring.

A possible disadvantage of such a combining mechanism is cache pollution caused by
parents allocating lines in their cache for their children’s reads. Thus, it might be beneficial to
keep an auxiliary structure (called a pending cache) to store pending vectors. This cache could be
quite small, as it would only contain entries for currently outstanding read requests to shared
lines. If a pending vector were lost (from either a pending cache or a data cache) before the
corresponding data arrived, then the worst-case assumption that all children had requested a copy
would have to be made. Thus the data would be broadcast below the processor where the pend-
ing vector was lost.

This section derives traffic and latency expressions for concurrent read requests. The
. latency expressions are optimistic in that they assume no other traffic in the network, but the pur-
pose of the expressions is to evaluate the relative performance with and without combining, so
the absolute latencies are less important. Without read combining, the expected traffic resulting
from m concurrent read requests is simply m times the expected traffic resulting from one read
request, and is given by

Ty =m [n (;=1) T +n[1‘—gi] <Tm+Tdm)] (5.9)

The expected latency, assuming no other traffic in the network, is dominated by the contention
for the memory module or link entering the memory module, whichever is slower. This latency
is

k-1

Lreg = min__links(m) + Taddr + (m "'1)max (Taddr,Lmem) +Lmem + n[T} + Tdata (5 .10)

where L, is the memory access time and Epn finks(m) is the expected minimum number of
links between the memory module and the nearest participating reader (see Appendix B). The
traffic caused by the concurrent reads does not present a scalability problem, but the latency may.

With hierarchical read combining, the traffic and latency of m concurrent reads are both
significantly reduced when m is large. To calculate the traffic, we must first make some assump-
tions regarding combining on the root ring. On all lower levels, I assume that the read requests




Ch.5 100

arrive from below before the data from the first read request arrives from above (ie: full combin-
ing). Combining can take place on the root, as well, if multiple requests arrive at the memory
module before it has retrieved the data for the first request. I will make the conservative assump-
. tion, however, that no combining takes place on the root ring. That is, that up to k requests (from
the k subtrees at level n—1) arrive at the memory and are serviced sequentially. The traffic from
the requests is now
n .
Toomt = 3 (£ Tats (b=DPCG=Lm)E] +

i=1

n-1 .
5 [k TPl m), (-DPeG=1m)] +

.

i=1
k—=1)Tyc(Pc(i—1,m),Pc(i—1,m)) (5.1D

The first term corresponds to the requests propagating up in the tree. The second term
corresponds to the data packets being transmitted on the root ring. The last term corresponds to
data packets transmitted on lower levels. Tyc(p,c) is the expected traffic from a multicast ofa
data packet on a single ring, where p is the probability that the multicast will have to be transmit-
ted on the ring at all, and c is the expected number of recipients of the multicast that reside in the
(k-1) non-local (different than the processor initiating the multicast) processors on the ring.
Trc(p,c) includes the traffic from the data packet as well as the ring echo, and is given by

1
Tuc(,c)=pk |:Taddr[1+c/p} +Tdata[1"‘ 1+::/p” (5.12)

The latency of m concurrent read requests using read combining is given by

Leombp = Enmin_links(M)+ Epin_dims )L cache + Tadar
+max (Lmem» TaddrY(kPc(n—1,m)-1)

+Linem +Emax _tinks(M) +Epax_dims(M)Lcache + T data (5.13)
where Epin 1inis(M), Em_l,-,,k,(m), Epin_dims(m) and Epax_dims(m) are the expected minimum and
maximum l_mks and dimensions between the memory module and the participating readers (see
Appendix B).

Figure 5.6 illustrates the potential benefit of hierarchical read combining. I have assumed
ﬂ values of Tozr=1, Tuata=9> Lcache=3 and L,,.,=10. Note that the traffic with combining is always
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Figure 5.6: Performance of read combining (N =4096, k=8, n=4)

less than or equal to the traffic without combining, but that the latency with combining is greater
than the latency without combining when m is small. This is due to the extra time needed to
access caches on the way to and from memory. Thus, robustness in the presence of read conten-
tion comes at the price of performance in the presence of no contention. Moreover, most reads
will be single reads, and thus will only be delayed by the combining mechanism. Reads to
private data, however, can bypass the combining and pruning cache mechanisms altogether.

In an actual system, the relative difference between the two schemes for m=1 would be
lessened, because both would suffer queueing delays for the links, which are not represented in
Figure 5.6(b). It may also be possible to overlap queueing delays with cache access, or even
bypass the cache access entirely when there is no network contention. On the other hand, the
addition of read combining does add complexity to the coherence protocol (requiring two addi-
tional cache states) that might affect the performance of a specific implementation.

Due to the added complexity of read combining and the increased latency for single reads,
" the value of the proposed read combining mechanism is unclear. Simulation results presented in
the next chapter will attempt to shed light on this issue, but the tradeoffs-depend heavily upon
workload behavior — a difficult subject to pin down.
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Chapter 6

Performance and Management of Pruning-Cache Directories

The previous chapter introduced pruning-cache directories as a cache coherence mechanism
for large scale multiprocessors. The performance of a cache line invalidation in a pruning-
cache-based system was characterized, and a read combining mechanism compatible with
pruning-cache systems was described. This chapter further investigates the performance of prun-
ing caches, and explores several issues relating to their operation.

It was argued in Chapter 5 that total storage for both pruning caches and inclusion caches
(for multi-level inclusion (MLI)) scaled with system size as O (N logN). Furthermore, both
mechanisms are hierarchical in nature and thus compatible with concurrent read combining.
Therefore, they are both attractive candidates for large-scale systems, and it is important to under-
stand the differences between them. Section 1 of this chapter presents a simulation study that
compares pruning-cache directories to MLI. The intent of the study is both to compare the two
approaches to cache coherence, and to examine the actual performance of a pruning-cache-based

system as the system size is increased.

Section 2 considers different types of sharing behavior, and explores extensions to the basic
pruning cache protocol to more efficiently handle certain sharing patterns. The motivation is both
to increase the speed and decrease the cost of common operations, and to reduce the pruning
cache storage overhead.

In Section 3, several pruning cache management issues are explored, including the replace-
ment policy and treatment of all-zero pruning vectors. Section 4 presents simulation results to
validate the analysis presented in Chapter 5. Section 5 discusses the implementation of broadcast
operations. Section 6 compares the total storage overhead needed by pruning caches and several
other proposed cache coherence mechanisms reviewed in Chapter 5. Finally, a discussion and
. summary of the results is presented in Section 7.

1. Simulation Study of Pruning-Cache Directories

While the analysis in Chapter 5 provides detailed performance metrics for isolated invalida-
tion and read operations, it cannot provide overall system performance measures without a host
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of additional assumptions. Many of these assumptions, such as the pruning-cache hit rate, would
be quite difficult to substantiate. In addition, the analysis does not address multi-level inclusion,
and the effect of subtree invalidations on the hit rate of subsequent read requests. In order to
address these and other issues, a detailed simulation study was performed. The goals were
specifically to assess the effectiveness of pruning caches, to compare pruning caches against
multi-level inclusion, and to validate the intuitive notion that pruning-cache based systems should
scale well.

In all of the simulation results presented in this section, system size is varied from 16 to 256
processors, and the resulting performance is plotted for each of a set of protocols running a given
workload. This gives an indication of how the protocols compare to each other, and how they
behave as the system size is increased.

1.1. The simulator

The simulator is driven by synthetic traces of second level cache accesses. Inter-reference
times are exponentially distributed, and represent the time spent processing and making first level
cache hits. First level caches are assumed to contain subsets of the second level caches and to be
write back. First level cache accesses and the interaction between the processor, first, and second
level cache are not modeled, but contention for the second level caches between the processor
and network sides is modeled. Second level caches are 2-way set associative and consist of
SRAM tag memory (3 cycle access) and DRAM data memory (10 cycle access), which can be
accessed independently. A read hit requires 13 cycles while a write hit requires 3. Memory
accesses are 10 cycles. Protocols for the second level cache are briefly described in Section 3.3.

The decision to use synthetic rather than recorded traces was a compromise. Recorded
traces have the advantage that they represent at least one possible actual execution of a program.
However, unless the traces are from the actual workloads expected to run on the finished
machine, there is no reason to give them more credibility than any other traces, synthetic or oth-
erwise. Moreover, the behavior of a program being traced depends heavily upon how it was writ-
ten, which in tumn may depend heavily upon the machine that it was written for. The advantage
of synthetic traces is that they are easy to produce, and can be manipulated to mimic many dif-
ferent types of behavior. The resulting traces, however, do not necessarily represent the behavior
of any program. Thus, the simulation results presented in this chapter are best used to qualita-
tively compare the performance of various coherence mechanism, rather than predict the quanti-

tative performance of any one mechanism.
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The interconnection network is a k-ary n-cube, with unidirectional, point-to-point links.
Link transmission times are assumed to be one cycle. The cache line size is 64 bytes. Address
packets are 8 bytes, and data packets 72 bytes. The link widths are 32 bits. The state of all cache
lines in all data caches and the contents of all pruning caches and inclusion caches are explicitly
maintained. The resulting memory demands of the simulation running on departmental DECsta-
tion 3100 workstations dictated a second level cache size of only 128K. This is smaller than it
would be in practice, but the workloads are similarly small.

1.2. Workload characterization

The workload is characterized by some number of segments, each of which can have
independent characteristics. For each segment, the reference probability, size, maximum number
of processors sharing data from the segment, dimension along which these sharers are arranged,
read/write probabilities, and the spatial standard deviation of the second level cache references
are specified. Each processor has a virtual space consisting of its local segments, and the virtual
spaces are woven together to form a single global physical address space. This system allows a
large degree of flexibility in constructing traces with desired properties.

1.3. Protocols simulated

Four different protocols are simulated. In all of the protocols, each line has a global state
(maintained in the directory associated with memory) and each line residing in a cache has a local
state. The global state is either shared or modified. If modified, then memory has a pointer to the
cache containing the line and memory’s copy is invalid. If shared, then memory’s copy is valid,
and the directory associated with memory contains, in the case of pruning caches, the top level
pruning vector, and in the case of MLI, the top level inclusion bit.

All four protocols treat write misses and accesses to private data in the same manner.
. Misses are routed directly to the home memory module, and the data is returned in modified state.
If another cache has a modified (and thus exclusive) copy of the line, memory reroutes the request
to that cache, which returns the data, forming a three leg transaction. Memory changes its pointer
at the time the request is rerouted. If several write requests occur in succession, then a hardware
queue of waiting writers is built up across the caches. Each rerouted write request will be waiting
at the appropriate cache for the line to arrive, and will pass the data along after it arrives and is
modified. Although concurrent wiite requests to the same line are generally frowned upon, they
can occur both in asynchronous algorithms or in workloads where false sharing (accesses to dif-
ferent words allocated to the same line by multiple processors) is present.
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The protocol is significantly complicated by certain race conditions involving write backs,
and is not given here in detail. However, it has been extensively tested using random synthetic
workloads, a technique that proved extremely useful for detecting bugs in both the simulator and
earlier versions of the protocol. Testing via stochastic simulation has proven an effective means
of verification [Wo00d90]. However, before implementing such a complex protocol in hardware,
more rigorous verification techniques are recommended [Burc90].

The four protocols differ in how they handle shared read misses, and write misses that find
the data globally shared (requiring invalidations). The base protocol (labeled Direct in Figures
6.1 through 6.6) routes all read requests directly to memory, performing no read combining.
Invalidations are broadcast to all processors, with acknowledgements hierarchically combined as
- described in Chapter 5, Section 2. The protocol labeled Comb uses read combining implemented
with pending caches. Parent caches do not allocate space in their caches for children’s read
requests, but do maintain pending caches so that concurrent read requests can be combined. The
MLI protocol enforces multi-level inclusion via inclusion caches. Parent caches allocate space in
their cache for childrens’ shared data read requests, and concurrent read requests are combined
using the cache state. MLI is enforced using inclusion caches, however, so shared data may fall
out of parents’ caches without requiring the data to be invalidated in their children’s caches.
Invalidations are pruned using the inclusion information, and when entries are lost in the inclu-
sion caches, then the corresponding lines are invalidated in the subtrees beneath the caches.
Lastly, the PC protocol uses pruning caches to prune invalidations, and performs read combining
through the data caches as does MLI.

Inclusion and pruning caches are 2-way set associative, using LRU replacement, and are
simulated with sizes of 256 and 2048 entries. Given sufficiently large pruning/inclusion caches,
both PC and MLI will perform perfectly (and identically), delivering the performance of a full
directory. The cache sizes used in the study were chosen to investigate the performance of PC
and MLI when smaller (and thus less expensive) caches are used.

1.4. Workloads simulated

6 different workloads are simulated in these experiments. All but the first workload include
a 64K read-only code segment, an 8K private data segment (P,rite=30%), and an additional data
segment that determines the characteristic behavior of the workload.

e The first workload consists of independent processes, each with its own 64K code segment
and 128K data segment (P,,,=30%). It is simulated both with accesses marked as private, to
determine the scalability of the system for uniform traffic, and with accesses non-marked



Ch.6 107

(defaulting to shared), to compare how MLI and PC handle large data spaces with no active
sharing and to observe the performance degradation due to broadcast invalidations.

o The second workload uses a fixed 512K segment shared among all processors. P, is fixed
at 30%, so contention for the data increased as system size increased.

o The third workload uses a fixed 512K shared segment also, but scales the write probability
down with increased system size (P,y.=4/N). A workload where most processors read a line
between successive writes to the line would exhibit the same sort of behavior.

o The fourth workload uses 4-way sharing with a local segment size of 32K. Py is fixed at
15%. Each line is contained in the virtual space of four different processors, for a total global
physical segment size of N (8K). Sharing is arranged along the root dimension, which spreads
out sharers among different leaf rings.

e The fifth workload is identical to the fourth, but with sharers arranged along the leaf dimen-
sion, which concentrates sharers on the same leaf rings as much as possible. This data parti-
tioning in this workload is designed to exploit locality.

® The sixth workload is identical to the fifth, but with P, set to 5% and a periodic concurrent
read request added. The read request occurs approximately once every 1000 data accesses and
(somewhat artificially) simulates read contention caused by synchronization.

1.5. Results

Figures 6.1 through 6.6 give results for the 5 workloads. Each figure contains two graphs:
one showing invalidation traffic and the other showing response time at the second level cache.
The invalidation traffic is the percentage of available link bandwidth used by invalidations
(including their acknowledgements). It is obviously desirable to keep this small and as close to
constant as possible as system size is increased. The cache response time is affected by both the
hit rate and miss penalty (which in tumn depends on system size and network traffic). This is
expected to rise as system size is increased, but, again obviously, the less rise the better.

Figure 6.1 shows results for independent workloads. For the curve marked Tagged, all
requests are tagged as private. In this case, no coherence actions are necessary, and all protocols
give the same performance. There are no invalidations, and we see in Figure 6.1(b) that the cache
response time increases only mildly as system size is increases from 16 processors (two dimen-
sional) to 256 processors (four dimensional). This supports the claim that uniform traffic scales
well in a cube network (although the affect of wire length and wiring constraints are not being
considered here). When private accesses are not marked as such, however, performance degrades

for all protocols.
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Independent processes

The invalidation traffic soars for Direct, supporting the assertion that traffic from broadcast
invalidations does not scale. For N=256, the invalidation traffic takes up over 20% of the link
utilization. More importantly, the broadcast invalidations have completely saturated the proces-
sors’ cache tags, which gives rise to the sharp increase in response time.

Since the workloads are completely independent (and fairly large compared to the cache
size), the inclusion and the pruning caches are much too small to maintain high hit rates. We see
that this affects them in different ways, however. Invalidation traffic is fairly high for PC256.
This is most likely due to misses for high-level pruning vectors, causing subsequent invalidations
1o be broadcast to many processors. MLI256 keeps the invalidation traffic lower than PC 256,

_ because it never has to broadcast invalidations, but it results in much higher cache response time
due to misses caused by subtree invalidations. With sizes of 2048 entries, the pruning and inclu-
sion caches perform much better, but not perfectly. We still see that the response time for
PC 2048 is significantly lower than the response time for MLI 2048. This illustrates an important
advantage of pruning caches over inclusion caches. When we can no longer keep track of a line,
it is better to suffer increased invalidation traffic when the line is written than to prematurely

invalidate the line.



Ch.6 109

If the data caches were big enough to hold all the passively shared data (data marked as
shared, but in fact not actively shared) then pruning caches would have an additional advantage
over inclusion caches. Entries for these lines would drop out of the pruning caches, and the lines
could remain in the data caches below. MLI, however, would require entries for these lines to
reside in the inclusion caches, and thus would repeatedly invalidate lines as it replaced inclusion
cache entries.

Figure 6.2 shows results for a fixed problem size with constant write probability. As system
size increases, contention for data increases, but the sharing is very active and the mean number
of shared copies on an invalidation remains small. The invalidation traffic for Direct and Comb,
which use broadcast invalidations, increases dramatically with system size. By N=256, this
traffic has caused the response time to be twice that of the other schemes (this is due primarily to
saturating the processors’ cache tags with invalidation messages). Read combining does not take
place much in this workload, and we see that Comb has a higher cache response time than Direct,
due to the extra delay in accessing memory.

PC and MLI both reduce the invalidation traffic significantly over Direct and Comb. Unlike
the previous workload, however, MLI does not have a significantly higher cache response time
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than PC. This is due to the active sharing, which reduces the demands on the inclusion caches
and lessens the effect of subtree invalidations.

Figure 6.3 shows results for a fixed problem size with a write probability that decreases
with system size. This behavior corresponds to inactive write sharing, and might arise in a work-
load where processors repeatedly read an entire data set to write a small subset. Direct and Comb
are not significantly penalized for their use of broadcast invalidation, because the frequency at
which processors modify shared data decreases with system size. This same characteristic would
allow such a workload to run efficiently on a single-tree-based multiprocessor.

The inactive nature of the sharing penalizes MLI, however. Pruning-cache entries for inac-
tive lines can be replaced without harm, but inclusion cache entries that are replaced cause invali-
dations that increase the data cache miss rate and drive up cache response time.

The workload presented in Figure 6.4 scales in size with the number of processors. All
sharing is 4-way and distributed along the root dimension (the worst-case distribution for inclu-
sion and pruning caches). Since the local segment sizes and degree of sharing are independent of
system size, changes in performance as system size increases should be due solely to scaling
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effects. The large address space and bad distribution result in a poor hit rate for PC 256, resulting
in heavy invalidation traffic for N=256. PC 2048 maintains a good hit rate for all system sizes,
and so invalidation traffic remains low. Although the 256-entry inclusion caches are also too
small, it is difficult to tell from the invalidation traffic. It is readily apparent, however, by look-
ing at the cache response times, which are significantly higher for MLI256 than for MLI2048,
PC 256 and PC2048.

Contention caused by broadcast invalidations causes Direct and Comb to perform very
poorly for N=256. Again we see that the combining mechanism did not improve performance,
but rather worsened it by increasing the latency to memory for shared read requests.

The workload in Figure 6.5 is identical to that in Figure 6.4, save that the 4-way sharing is
now arranged along the leaf dimension (the best-case distribution for inclusion and pruning
caches). The performance of Direct is unchanged, but the performance of all other schemes
improves. The response time of Comb lowers slightly, indicating that additional read combining
is taking place. Comb still performs worse than Direct, however; there is not enough read com-
bining in this workload to make up for the increased read latency.

The better distribution has a positive effect on the performance of pruning and inclusion
caches as well. Invalidation traffic is lower than with the bad distribution, as is cache response
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time. The response times of PC are still slightly lower than those of MLI, even though both the
pruning and inclusion caches have very low replacement rates.

The workload in Figure 6.6 is similar to that in Figure 6.5, save that a periodic “barrier-
like” operation has been inserted. Approximately once every 1000 data accesses per processor,
all processors attempt to read the same line (which is not valid in any of the caches) at approxi-
mately the same time. The time between the first read and each other read is exponentially distri-
buted with a mean of 20 cycles. This read operation could represent either a synchronization
operation itself, or a concurrent read that was caused by a synchronization event. In addition to
this periodic concurrent read, the workload of Figure 6.6 differs from that of Figure 6.5, in that
Pyyrire 18 set to 5%, rather than 15%, for the shared data segment. This reduces the degradation
from broadcast invalidations so that the effect of read combining can be more easily seen when
comparing Comb and Direct.

For a workload displaying this sort of contention, read combining is clearly beneficial, and
the benefits become greater as system size increases. The cache response time for Direct, the
only protocol that does not use read combining, increases dramatically as system size increases.
This is due to contention for the “synchronization” line, not increased link or cache tag conten-
tion caused by heavy invalidation traffic. Invalidation traffic is responsible for the difference in
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response time between Comb and PC 256/PC 2048.

How much read contention occurs in actual workloads is an open question. There are
several possible causes of read contention. A program using barrier synchronization, may experi-
ence contention directly after leaving a barrier. Results produced during iteration i may be
widely read at the beginning of iteration i+1. Similarly, certain code fragments may be widely
read at the same time, because processors leaving the barrier are well synchronized. In a data
parallel programming environment, the states of the various caches may be very similar
throughout the program execution, leading to frequent concurrent reads on instruction cache
misses. Another cause for read contention is the modification of a widely (and frequently) read
variable.

While not answering the question of how much read contention occurs, the results shown in

" Figure 6.6 demonstrate that, with the combining mechanism described here, read contention will

not be a problem if it does occur. Read combining mechanisms do add complexity to the coher-

ence protocol, of course, 50 a detailed workload study would have to be performed to justify their
inclusion in an actual system.
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2. Enhancements to the Basic Protocol

The basic pruning cache protocol appears to work well when compared to a similar MLI
protocol or to a broadcast-based protocol. It is likely, however, that the protocol can be further
refined. This section attempts to do so, both by reasoning about the coherence requirements of
different types of data and by considering the simulation results presented in the previous section.
Section 2.1 briefly discusses several types of cached information, distinguished by their access
characteristics, Section 2.2 proposes two modifications to the basic protocol, and Section 2.3
presents simulation results for the modified protocols.

2.1. Types of sharing

Here I identify 9 potential classes of cached information: private instructions and data,
shared instructions, migratory data, passively shared data, globally shared data, data shared by
many processors, data shared by few processors, contended instructions and data and synchroni-
zation objects. Each class of information has different needs or costs for maintenance of coher-
ence. Below, I discuss the various classes and how the pruning cache protocol does or could sup-
port them. These classes are quite similar to those defined by Weber and Gupta [Webe89].

Private instructions and data can be placed exclusively into one cache and kept track of
with a single directory pointer. The coherence protocol must be able to retrieve the data and
change ownership should the task owning the data migrate to another processor or another task
reclaim the space after the first task completes. If references to private instructions and data can
be recognized (and a compiler should certainly be able to do so), then they can be treated just like
writes to shared data, causing the pruning cache protocol to keep them exclusively in one cache.

Shared instructions may exist in many caches, but are presumably rarely written (only when
the physical address space is reclaimed). Thus, although the address space must be invalidated
when reclaimed, it probably does not matter how efficiently this is done. There are two choices
for managing shared instructions using pruning caches. First, the information regarding their
locations could be entered into pruning caches just like any other shared data. If the space was
not reclaimed for a long time, then the pruning vectors would likely drop out of the caches and
the eventual invalidation of the addresses would consume higher than normal bandwidth (of
course if the instructions were globally shared, then a broadcast invalidation would be needed
anyway). If the space were reclaimed quickly, then saving the pruning vectors was the right
choice. The disadvantage of this choice is that placing the information into the pruning caches
pollutes the caches and probably won’t be needed.
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The other choice is to not place pruning vectors for shared instructions into the pruning
caches and then just suffer increased invalidation traffic when the space is reclaimed. The top
level vectors could always be placed in their respective directory entries, as this would not cause
any pruning cache pollution. This would limit somewhat the amount of invalidation traffic
caused later by reclaiming the space. Either of these two choices seems reasonable.

Migratory data has essentially the same needs as private data, but may be harder to identify.
If the compiler can identify references to migratory data as such, then they can be fetched for
" exclusive use, and the pruning cache protocol works well. If they cannot, and the first reference
to the data is a read (as it is likely to be), then this read will create a trail of pruning cache entries
that a subsequent write will have to use to invalidate the line. This causes extra traffic and delay,
even if the invalidation hits in all the pruning caches it accesses, and it also causes extra pruning
cache contention. A modification to the basic pruning cache protocol that addresses this problem,
PC,,n, is described and studied in the next section.

Passively shared data is data that is nominally shared, but in fact read/written by only one
processor. A good example of this phenomenon can be found in programs that split up a large
array into regions for each processor. The data along the border of a processor’s region is shared
with neighboring processors, but the interior of a processor’s region is read and written only by

that processor.

If accesses to passively shared data can be recognized by the compiler, then exclusive reads
can be performed, as with private data. This is most likely an unrealistic expectation in general,
however. Thus, the first read to such a cache line will cause entries to be placed into pruning
caches, which will be used to invalidate the line if and when it is later written. After the write,
the line can remain in exclusive state in the appropriate data cache. Although this overhead may
be acceptable if the line is used many times after the first write, it can be avoided by the PC,pn
protocol described in the next section.

Globally shared data does not present a problem in a pruning-cache-based system, as a
write to the data requires a broadcast invalidate, so pruning cache performance is irrelevant. If the
data is rarely written, then pruning vectors may drop out of the pruning caches without harm,
making way for other entries. If the data is written often, then the latency of the reads and invali-
dates will be important and the ability to combine reads will be beneficial (this case is discussed
below).

Data shared by many processors poses a problem to limited pointer directories, but is easily
handled by pruning caches. If the data is actively shared, then the pruning caches should work
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well. If not, then pruning vectors can eventually fall out of the pruning caches leaving room for
other entries.

Data shared by few processors poses an even larger problem to limited pointer directories if
the number of sharers of a line exceeds the number of available pointers. If the number of sharers
is less than or equal to the number of available pointers, then the limited pointers will work very
well. Pruning caches should work well for this type of data, just as for data shared by many pro-
cessors. Howeyver, this is the case for which the pruning cache hit rate is most important. A low
hit rate for frequently modified data that is shared by only a small number of processors will lead
to excessive invalidation traffic relative to read traffic.

Contended instructions and data are lines that are that are concurrently read by many pro-
cessors. Most coherence protocols cause these reads to be serialized. If concurrent reads happen
very infrequently, then the latency of the reads and subsequent invalidations is not important. If,
however, the data is frequently written and re-read, then the latency of the reads is very impor-
tant, and the latency of the invalidations is likely important (depending upon the memory con-
sistency model being used and the program characteristics). The combining mechanism possible
with pruning caches is very desirable for this class of information.

Synchronization objects present a problem to cache coherence protocols primarily in the
form of contention. A barrier notification mechanism, for example, may write a flag on which
waiting processors are spinning. The resulting invalidation will cause all waiting processors to
re-read the flag from global memory, causing significant read contention. Heavily contended
lock variables can cause contention in the same manner. Since pruning-cache directories are
hierarchical in nature, they are compatible with read combining and thus well suited for systems
with synchronization contention.

Although a pruning-cache-based system may be able to tolerate contention caused by syn-
chronization objects, it would be better to avoid the contention altogether. Mechanisms that sup-
port locks using software or hardware queueing can prevent lock contention, and can be used as
primitives to support contention free barriers and other synchronization operations as well
[Mell91, Good89a]. In addition, the QOLB hardware synchronization primitive [Good89a] can
' improve the performance of pruning-cache directories by removing interference from migratory
data. QOLB automatically migrates lock-protected data from one cache to another, allowing the
data to remain in globally modified state. Producer-consumer and pairwise-shared data can like-
wise be managed directly using QOLB, thus circumventing the cache coherence mechanism.
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2.2. Modifications to basic protocol

A primary shortcoming of the pruning cache protocol, identified in the previous section, is
that unmarked reads to migratory and passively shared data load the data in shared mode, creating
pruning cache entries, when in fact the data is used by only one processor. Another problem with
the pruning cache protocol, observable in the simulation results of Section 1, is that read requests
are slowed down by intermediate cache lookups on their way to memory. Both of these problems
can be addressed by modifications to the basic protocol.

The direct modification causes shared read requests to be routed directly to memory,
bypassing intermediate caches (or pending caches). Reads routed in this manner will be faster,
but are not able to combine. When the read result is returned, it can still cause pruning cache
entries to be placed in intermediate pruning caches, allowing for later invalidation of shared lines
using the basic pruning cache protocol. I refer to a pruning cache protocol with direct routing as
PCy,.

The ownership modification causes the first read of a line to be returned in read-only
_ exclusive state, with a single directory pointer keeping track of the “owner”. If and when the line
is written, a single invalidation can be sent to the owner. If and when a second read request for
that line reaches memory, the directory entry converts to a pruning vector, the line is returned to
the second processor in shared mode (creating pruning cache entries in intermediate nodes), and a
special packet is routed to the first processor that creates the necessary pruning cache entries for
its copy of the line. I refer to a pruning cache protocol with the ownership modification as PCpyn

The advantage of the PC,,, protocol is that now information is entered into the pruning
caches only for truly shared data (shared data which is cached by more than one processor). This
significantly cuts down on the amount of information that competes for space in the pruning
caches. Invalidation traffic is also reduced, because invalidations to lines in the owned state are
sent directly, eliminating the possibility that pruning cache misses will lead to partial broadcast of
the invalidations.

The PC,,, protocol uses direct routing, because the memory must be able to return the read
result in the shared exclusive state. Like PCy;,, this has the advantage that read requests are fas-
ter, but it has the disadvantage that PC,,, is not compatible with read combining, so concurrent
read requests can no longer be satisfied in parallel. The PC,,, protocol solves two problems
(slowdown to read requests from having to access caches on the way to memory, and pruning
cache pollution and attendant increased invalidation traffic from reading migratory and passively
shared data in shared mode) while creating a third (the inability to perform read combining). The
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solution may be to provide correctness in hardware, but depend on software to some extent for
performance. The default read request could be either a direct read or a combining read. Software
(meaning the compiler or programmer) would have to indicate when it wanted the other case, and
would tag the read requests correspondingly.

A likely policy would be the following. By default, read requests would be shared reads
using the PC,,, protocol. Thus singly-cached lines would be kept track of by pointers in the
directory and the pruning caches would contain information only for truly shared lines. Any
" reads that the compiler knew where private or were to data that was going to be modified would
be tagged as private and loaded in the exclusive, read/write state. Any reads that the compiler or
programmer had reason to suspect would cause read contention would be marked as combinable,
and would use the standard combining pruning cache protocol discussed in Section 1. This is
quite similar to the idea of having two networks in the NYU Ultracomputer [Gott83], one for reg-
ular traffic and one for combinable traffic, except that here it would be done by specifying the
type of read requests traversing a single network in order to change the way in which the com-
munication protocol handled the messages.

Another possibility would be to have all shared read requests default to direct routing, but
check in parent caches for combining if and only if they were queued due to network congestion.
In this way, the delay to implement combining would occur only when combining was poten-
tially needed, and would be overlapped with queueing delay that would be suffered anyway.

2.3. Simulation results for modified protocols

This section presents simulation results for the protocol variants discussed in the Section
22. As in Section 1, six workloads are simulated (descriptions appear in Section 1.4), and sys-
tem size is increased from 16 to 256 processors.

Five different protocols are simulated. All protocols maintain the locations of modified
data via a single directory pointer, as described in Section 1. PC is the basic pruning cache proto-
col presented and simulated in Section 1, here with a pruning cache size of 256 entries. Shared
read requests are combined using entries in their parents’ data caches and invalidations are per-
formed using pruning caches. Direct is identical to the Direct protocol in Section 1. All read
requests are routed directly to memory and invalidations are performed via broadcasts. PCg,, as
described in Section 2.2, routes all shared read requests directly to memory, performing no com-
bining, but uses pruning caches (here with 256 entries) to perform invalidations. Owner uses a
single pointer to keep track of the first reader or a line, but then converts to broadcast invalidation
if two or more processors read the line. All read requests are routed directly to memory with no
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. combining. This is equivalent to the Dir;BC protocol discussed in Chapter 5, Section 1.1
[Agar88]. PC,yn, as described in Section 2.2, is equivalent to PCy, save that the location of the
first reader of a shared line is maintained using a single directory pointer. All read requests are
routed directly to memory with no combining.

Figures 6.7 through 6.12 give results for the 6 workloads. As in Section 1.5, each figure
contains two graphs: one showing invalidation traffic and the other showing response time at the
second level cache. The invalidation traffic is the percentage of available link bandwidth used by
invalidations (including their acknowledgements).

Figure 6.7 shows results for independent workloads (without tagging references as private).
Since nothing is shared, the two ownership protocols keep track of all data using single pointers,
have almost no invalidation traffic, and have the lowest response time. The pruning caches are
too small to hold information on all the lines in the caches, so PC and PC;, have a fair amount of
invalidation traffic. PC4 has a lower response time than PC because it routes read requests
directly to memory and there is no need for read combining for this workload. Direct, just as in
Section 1.5, has very high invalidation traffic, and, as a result, very high response time for large

system sizes.
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Figure 6.8 shows results for a fixed problem size with constant write probability. As system
size increases, contention for data increases, but the sharing is very active and the mean number
of shared copies on an invalidation remains small. PC,,, has lower invalidation traffic than PC
or PCy,, showing that the ownership modification is helping. Owner has lower invalidation
traffic than Direct, but the invalidation traffic is still unacceptably high. PC,,, and PCy, both
have slightly lower response time than PC due to faster read requests, with PC,,, marginally
lowest because of its lower invalidation traffic.

Figure 6.9 shows results for a fixed problem size with a write probability that decreases
with system size. This behavior corresponds to inactive write sharing, and might arise in a work-
load where processors repeatedly read an entire data set to write a small subset. Since writes
become very infrequent as system size increases, invalidation traffic remains relatively low for all
protocols, and the response times are all quite close. PC has the highest response time, because
of the extra overhead for read requests.

The workload presented in Figure 6.10 scales in size with the number of processors. All
sharing is 4-way and distributed along the root dimension (the worst-case distribution for inclu-
sion and pruning caches). Since the local segment sizes and degree of sharing are independent of
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system size, changes in performance as system size increases should be due solely to scaling
effects. PC,,, has the lowest invalidation traffic and response time. PC,,, and PCg4;, both have
lower response time than PC, due to lower overhead for reads. The response time for Owner
becomes greater than that of PC for N=256, due to its higher invalidation traffic. Direct has high
enough invalidation traffic for N=256 to saturate the processor cache tags and lead to very high
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response time.

The workload in Figure 6.11 is identical to that in Figure 6.10, save that the 4-way sharing
is now arranged along the leaf dimension (the best-case distribution for inclusion and pruning
caches). The invalidation traffic for the three pruning cache protocols is lower than in Figure
~ 6.11, indicating that the better partitioning improves pruning cache performance. Since the
invalidation traffic was already fairly low, this has very little effect on the response times. The
response time of PC is lower than in Figure 6.10, however, due to more frequent read combining.

The workload in Figure 6.12 is similar to that in Figure 6.11, save that a periodic “barrier-
like” operation has been inserted. Approximately once every 1000 data accesses per processor,
all processors attempt to read the same line (which is not valid in any of the caches) at approxi-
mately the same time. The workload of Figure 6.12 also differs from that of Figure 6.11, in that
P,rize i set to 5%, rather than 15%, for the shared data segment.

This workload illustrates the disadvantage of the modified pruning cache protocols, PCg
and PC,,,. By not performing read combining, they are prone to very significant degradation
when heavy read contention takes place (it is left to the reader to decide how “heavy” one con-
current read per 1000 data accesses is).
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As mentioned in Section 2.2, the best solution is probably to provide both types of read
requests: direct and combinable. The compiler could mark requests according to whether or not
they would likely need combining. In this way, most read requests could be routed directly to
memory, and contention prone requests could be routed using the read combining protocol.

. 3. Pruning Cache Management Issues

Pruning caches are fairly complex, and as such give rise to some interesting management
issues. Like any cache, placement and replacement policies are important considerations. Prun-
ing caches also present the issue of how to populate and maintain the pruning cache entries (it is
not as simple as reads and writes to a data cache). For example, should pruning caches entries be
created as read requests traverse up the tree towards memory, or as read results traverse down the
tree toward the data caches?’ A particularly interesting issue is how to handle all-zero pruning
vectors, which are qualitatively different than other pruning vectors. Section 3.1 discusses the
pruning cache placement policy used in all simulations. Section 3.2 discusses replacement

7 The answer, in this case, is “on the way down”, so that race conditions with invalidations work
properly. Otherwise, if an invalidation came through between the time the read request propagated up and
the time the read result propagated down, then the pruning vector for the line would be erased, and the read
result would be cached with no record in the pruning cache.
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policies. Section 3.3 discusses policies for handling all-zero vectors. Section 3.4 presents simu-
lation results for the policies discussed in Sections 3.2 and 3.3.

Design decisions, such as size and associativity, are also important. While size has been
studied to some degree in Section 1, quantitatively accurate performance results for various prun-
ing cache sizes can only be obtained by simulating actual workloads of interest. Associativity
has largely been ignored; the pruning caches in the simulations have all been 2-way set associa-
tive. Associativity is briefly discussed below as it relates to the pruning cache placement policy.

3.1. Placement policy

The pruning cache placement policy determines where in a pruning cache a new pruning
vector is placed. Let S be the number of sets in a pruning cache (the number of entries divided by
the associativity), B be the cache block size in bytes, and a be the block address of a line for
which a pruning vector is being stored in the pruning cache. The block address of a line is simply
the byte address with the lower log, B bits truncated.

In a single tree system, the placement function is simple and straight-forward. We would
simply use the block address, modulo the number of sets in the pruning cache. In a cube-based
system, however, a given pruning cache holds pruning vectors for multiple dimensions. Thus the
placement mapping is from a two-dimensional space: (address X dimension). If we ignore the
dimension, then a line’s pruning cache entries for multiple dimensions will map to the same set,
which is obviously not desirable.

The placement policy used in all simulations presented in this thesis is
set(a,d) = (a >> (dloga2k)) mod S 6.1)

where k is the radix of the k-ary n-cube, d € {1...n} is the dimension for which the pruning vector
applies, and “x >>y” means x with the low order y bits truncated. The reasoning behind this
choice is as follows. Lines of memory are interleaved among nodes in the system such that the
low-order bits of a block address identify the home node of the line. A node address consists of n
log, k-bit digits. Consider the pruning cache at node i. All level-1 entries in pruning cache i are
for lines cached in nodes for which node i is the first-level parent node (see Figure 2.3(b)).
Therefore, all the level-1 entries are for lines with the same low-order logyk bits (the low-order
bits of i’s address). All level-2 entries in pruning cache i are for lines cached in nodes for which
node i is the second-level parent node. Therefore, all the level-2 entries are for lines with the
same low-order 2log, k bits (again the low-order bits of i’s address). The same reasoning applies

to level-3 entries, etc.
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The placement function in Equation (6.19) simply shifts the line address sufficiently to
ignore the low-order bits that are all the same for the given dimension. Thus, physical block
addresses in the range 0 to X map into set numbers 0 to (X >>log,k) for level-1 PC entries, 0 to
(X >>(2log;k)) for level-2 PC entries, etc. These set numbers are then folded onto the number of
actual sets in the pruning cache, as in a conventional cache. A given line’s entries for multiple
dimensions will not conflict with each other, as the line address is shifted over one digit for each
dimension.

The multi-dimensional nature of the mapping creates an interesting problem. If the number
of dimensions minus one is greater than the associativity of the pruning caches, then no matter
how large the pruning caches are, they can still have conflict misses. This is because the level-1
pruning cache entries will compete with the level-2 pruning cache entries, and so on, up to the
level n—1 pruning cache entries. If the associativity of the pruning caches is greater then or equal
to n—1, then a sufficiently large pruning cache is guaranteed to have a hit rate of 1.

3.2. Replacement policy

Given that conflicts will occur within a pruning cache, there must be some replacement pol-
icy that determines which entries have priority. All simulations so far have used LRU replace-
ment, which is easy to implement with a set size of 2. Another reasonable choice would be to
give priority to pruning vectors closer to the root (i.e. entries for higher dimensions). This is
because the penalty for a pruning cache miss (broadcasting the invalidation to the subtree beneath
the pruning cache) is greater, the nearer the miss is to the root. LRU may approximate this, as
vectors for higher dimensions would tend to be accessed more frequently, and we want rarely
" used vectors to drop out of the cache. A final choice would be to simply replace the entries ran-
domly.

3.3. Policy for handling all-zero vectors

Another important issue is the policy regarding all-zero pruning vectors. When a line is
invalidated, all pruning vectors for the line are set to zero. In the ideal case of perfect hit rates, an
all-zero vector is almost never needed, as any invalidation for the corresponding line would be

pruned by a pruning cache at a higher level or the top level directory.® This might suggest that

8 The exception is when a shared line is cached at the root of some subtree, but nowhere else in the
subtree. In this case, the node at the root of the subtree needs an all-zero pruning vector because its parent
would correctly propagate an invalidate for the line to it, but it should not propagate the invalidate to any of
its children.
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all-zero vectors should have the lowest priority in pruning caches, never replacing a nonzero
entry. However, in the realistic case where pruning caches do miss, all-zero vectors may provide
a firewall to prevent errant propagation of an invalidation that missed in a higher level pruning
cache. The issue at hand is whether the positive benefit of the "firewall" outweighs the negative
effect on hit rates caused by placing all-zero vectors in the pruning caches.

All-one pruning vectors also may warrant special attention. An all-one pruning vector can
always be thrown out of a pruning cache with no performance penalty, since pruning cache
misses result in the assumption of an all-one vector. The only disadvantage of this policy might
be increased complexity to detect and invalidate all-one vectors. I do not expect that the addi-
tional pruning cache space provided by invalidating all-one vectors would have a significant
effect on performance, but an implementation could choose to do so if convenient.

3.4. Simulation of replacement and all-zero-vector policies

This section presents a simulation study aimed at determining the best replacement and all-
zero-vector policy. Three different replacement policies are simulated: LRU, DIM and Random.
In addition, three different all-zero-vector policies are simulated: AlwaysPlace, SometimesPlace
and NeverPlace. The policies differ regarding what they do when an invalidation passes through
a node (which provides the knowledge that an all-zero pruning vector now exists for each
appropriate dimension for the corresponding line at this node). The AlwaysPlace policy places
the all-zero vector(s) into the pruning cache, possibly displacing other pruning vectors. The
SometimesPlace policy places the all-zero vector(s) into the pruning cache only if they do not
" cause a non-zero pruning vector to be replaced. Thereafter, the all-zero vectors compete for
space in the pruning cache just like any other vectors. The NeverPlace policy does not put the
all-zero vectors into the cache at all, assuring that they will not compete for space with non-zero
vectors. The replacement and all-zero-vector policies are orthogonal, so the three choices for
each policy lead to nine combinations, which are each simulated.

Simulations are run for a 256-node system (k=4, n=4). Pruning caches are all 256 entries.
Four different workloads are simulated. As in Section 1, each workload includes a 64K read-only
code segment, an 8K private data segment (P,rite=30%), and an additional data segment that
determines the characteristic behavior of the workload.

e The first workload uses a fixed 1MB segment shared among all processors. P e is 30%,
causing the data to be written fairly often.

e The second workload also uses a fixed 1MB shared segment, but uses a Py, of only 2%,
corresponding to data that is mostly read.
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e The third workload uses 4-way sharing with a local segment size of 32K. Each line is con-
tained in the virtual space of four different processors, for a total global physical segment size
of N(8K) =2MB. P,,;. is 15%. Sharing is arranged along the root dimension, which spreads
out sharers among different leaf rings.

e The fourth workload is identical to the third, but with sharers arranged along the leaf dimen-
sion, which concentrates sharers on the same leaf rings as much as possible. This data parti-
tioning in this workload is designed to exploit locality.

Figure 6.13 presents the results for the first workload (large shared data segment with lots of
active sharing). Part (a) shows the invalidation traffic for each policy and part (b) shows the
response time at the second level caches. The differences in invalidation traffic among the vari-
ous policies result in noticeable, but small differences in response time. Nevertheless, reducing
invalidation traffic is always a worthwhile goal, provided that it does not unduly increase cost or
complexity.

For each replacement policy, invalidation traffic is lowest when all-zero vectors are never
placed into the pruning caches, and highest when all-zero vectors are always placed into the prun-
ing caches. This indicates that the negative effect of pollution caused by all-zero vectors
outweighs their positive effect as a firewall against runaway invalidations. Invalidation traffic is
also lowest for the DIM replacement policy and highest for the Random replacement policy. This
confirms the intuition that pruning cache misses for high dimensions should be avoided, due to
_ their large potential cost in invalidation traffic.

The overall pruning cache hit rate for primary references (those for invalidations that are
still within the proper subset of processors, as opposed to runaway invalidations) is shown in part
(c). Surprisingly, this is lower for DIM than for LRU or Random. The reason for this can be
seen by examining parts (d), (¢) and (f), which show the pruning cache hit rates broken down by
dimension. For DIM, the hit rate is higher for the highest dimension and decreases as the dimen-
sion decreases, as we would expect. For LRU and Random, this is not the case.

Figure 6.14 presents the results for the second workload (large shared data segment that is
mostly read). Figure 6.15 presents the results for the third workload (four-way sharing, with shar-
ers arranged along the root dimension). The results for both of these workloads are quite similar
to those for the first workload. The DIM replacement policy and the NeverPlace policy for all-
zero vectors result in the lowest invalidation traffic. Differences in invalidation traffic lead to a
small, but noticeable, difference in response time. The overall pruning cache hit rate is lowest for
DIM, but the skewing of pruning cache hits towards the high-dimensional accesses results in
better performance.



Ch.6 128

Always place zero vectors @ Sometimes place zero vectors . Never place zero vectors
. 8- 60

3 g' @ 50-

e 5] F 40
o o1 o

£ 4- 2 30

8 3- o

Eoo a 20

g 5 | ¢ 10

[ ) 4
= 0L R 0B

(c) Overall Pruning Cache Hit Rate

984 076 990

LRU
(e) PC Hit Rate - Dimension 2 (f) PC Hit Rate - Dimension 1
Figure 6.13: Effect of pruning cache policy — workload 1



Ch.6 129

Always place zero vectors @ Sometimes place zero vectors . Never place zero vectors

Response Time

Inval Traffic (% util)

(e) PC Hit Rate - Dimension 2 (f) PC Hit Rate - Dimension 1
Figure 6.14: Effect of pruning cache policy — workload 2




Ch.6 130

Always place zero vectors @ Somatimes place zero vectors - Never place zero vectors

8 -
7 ez
6~
5]
4

Response Time

Inval Traffic (% util)

oLk
Rando

(a) Invalidation Traffic

1.0~ o0 358

56 063

N B
Random

(e) PC Hit Rate - Dimension 2 (f) PC Hit Rate - Dimension 1
Figure 6.15: Effect of pruning cache policy — workload 3

Figure 6.16 presents the results for the fourth workload (four-way sharing, with sharers
arranged along the leaf dimension). The data partitioning in this workload makes the pruning
caches perform well enough that changing the policy results in almost no change in performance.

The differences in pruning cache policy resulted in significant differences in invalidation
traffic for these workloads, but only small differences in overall system performance (as meas-
ured by cache response time). However, the DIM/NeverPlace policy is no more difficult to
implement than any of the others, and hence should be used. For larger system sizes, the
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Figure 6.16: Effect of pruning cache policy — workload 4

reduction in invalidation traffic would likely have a larger impact on cache response time (or put
another way: in larger systems, invalidation traffic is heavier, so increased invalidation traffic is
more likely to cause serious performance degradation).

4. Validation of Analysis

The traffic caused by an invalidation in a pruning-cache-based system was derived in
Chapter 5, Section 2.1. This section presents simulation results validating that analysis.
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Equation (4.4) computes the traffic for an invalidation, given the hit rate of the pruning caches
and the number of shared copies of the line being invalidated. To validate this equation, the
simulator was modified to keep statistics on all invalidation operations, determining the pruning
cache hit rate, the invalidation traffic and the number of lines being invalidated for each invalida-
tion operation.

There are several difficulties with this procedure. First, it is very difficult to know the exact
* value of m for a given invalidation operation. Not only is this information not available during
normal simulation (requiring, in essence, the simulator to implement a full-width directory on the
side), but events involving shared lines do not occur atomically, so at any given time there may
be processors in the process of acquiring a shared line. The result is that the value of m that is
recorded for a given invalidation operation is only approximate.

The second major difficulty is that it is not possible to determine if a given pruning cache
reference is for a runaway invalidation (in which case it should not be counted in calculating the
realized hit rate). It is conservatively assumed that an invalidation message that missed at the
pruning cache above is now a runaway invalidation (and this information can be maintained as
the invalidation propagates down through the system). Pruning cache references due to runaway
invalidations are not counted when computing k. In actuality, the invalidation message might
have reached its current position in the tree even if it had hit at the pruning cache above, in which
case it is not a runaway. This problem causes the measured 4 to be an approximation, as well as

the measured m.

Finally, the assumption of a constant pruning cache hit rate for all references is unrealistic.
As we saw in Section 3, the hit rate can vary between dimensions, in which case Equation (4.4)
will not predict the correct invalidation traffic. In addition, we expect pruning cache hit rates to
vary according to the reference behavior of the data. Pruning cache references for actively shared
lines should have higher hit rates than references for inactive lines. This means that during a sin-
gle simulation, the realized pruning cache hit rate will vary according to what data is being
invalidated and will likely vary with m. Despite these difficulties, simulation results are able to
confirm the general validity of the invalidation traffic equation. The general conclusion is that
the equation is accurate, given the assumptions, but that actual pruning cache hit rates are not
constant across an application, varying by dimension and by line.

Figure 6.17 presents some of the validation results. The solid lines represent the invalida-
tion traffic predicted by the equations, and the dashed lines represent simulation results. A 256
processor system (k=4, n=4) was simulated, and single shared 64K data segment was used,
resulting in a complete range of m (the number of shared copies of a line upon invalidation)
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during the simulation.

In part (a), the simulator is artificially constrained to give an approximately uniform hit rate,
h, for all pruning cache references. A very large pruning cache is used in order to provide a
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natural hit rate of close to 1. On a pruning cache reference, the pruning cache is made to
artificially miss with probability 1-#, and allowed to work normally with probability . Since the
natural hit rate is just under one, this results in an overall hit rate of just under k. The overall
observed pruning cache hit rate is shown for each of the four simulation curves. The hit rate was
higher for small values of m, and lower for large values of m, matching the intuition that the hit
rate should be lower for less frequently accessed data. The invalidation traffic measured in the
simulator closely matches the traffic predicted by Equation (4.4).

In part (b), a small pruning cache is used (only 28 entries), and the hit rate is not artificially
constrained. Results for a single simulation are presented and the hit rates are shown separately
for each value of m. The small pruning cache size leads to an overall hit rate of 0.457. It can be
clearly seen, however, that the hit rate varies significantly with m. In this case, because larger m
implies a longer time time between writes (leading to lower temporal locality), the hit rate is
lower for larger m. Results from simulations with more realistic workloads, consisting of multi-
ple data segments with different access characteristics, display similar results. Pruning cache hit
rates vary with m according to the various data access patiems, resulting in h versus m curves
with local maximums and minimums.

Results in part (b) appear discouraging, because the measured invalidation traffic for
medium and large values of m is somewhat higher than predicted by Equation (4.4) for the meas-
ured values of h. This is because k varies by dimension as well as by m. With LRU replacement
and the small pruning cache size, hit rates are higher for lower dimension and lower for higher
dimensions. Thus a disproportionate number of misses happen at the highest dimension, leading
* to greater invalidation traffic. When the same experiment is run with the DIM replacement, the
opposite occurs: invalidation traffic is somewhat lower than predicted by Equation (4.4). Even
with this source of error, however, the difference between predicted and measured invalidation
traffic is at most about 10%. In practice, pruning caches should be large enough that hit rates are
high for all dimensions, leading to performance much like the bottom curve in Figure 6.17(a).

5. Implementing Broadcast

There are two instances in which the pruning cache protocol employs broadcast:’ when a
shared read request is decombined on a ring, and when an invalidation is sent to more than a

9 To be precise, multicasts are used, of which full broadcasts are a sub-case in which all nodes receive
the multicast. I use “broadcast” here in this looser sense.
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single processor. The primary difficulty with broadcasts is that, like other operations, we must
know when they have completed, and this becomes harder when more than two nodes are
. involved. This section briefly discusses some of the difficulties presented by broadcast operations
and suggests possible solutions.

The broadcasts used in read decombining are easier to deal with because the recipients can
respond as soon as the broadcast message is received. In addition, the acknowledgements are
local to a single ring (they simply serve the purpose of letting the sender on the ring discard the
packet); nothing must be retumned up to a higher level. The acknowledgements are required for
fault tolerance and for queue overflow handling.

In the absence of hardware errors, ring broadcast could be implemented using a simple bit
mask. The mask would be set by the source to indicate the set of nodes on the ring for which the
packet is intended. With conventional blocking networks, the packet would simply make its way
around the ring, blocking when necessary to allow queues to drain, and allowing each marked
node to retain a copy. Normal deadlock prevention techniques, such as virtual channels [Dall87],
must be used in this case.

Pipelined-channel rings as discussed in this thesis could also implement broadcast. Nodes
would clear their respective bits in the bit mask as the packet traversed the ring. Any node that
could not accept the packet due to queue overflow would not clear its bit. When the packet
arrived back at the source, if at least one node did not retain a copy, then the packet would be
retransmitted with the modified bit mask. The SCI protocol implements broadcast as one of its
non-coherent transactions [IEEE92]. Rather than use a full bitmask, a packet that cannot be
accepted at a node is immediately converted to a negative echo, disallowing further downstream
nodes from receiving the packet on the first pass. Upon retransmission, the packet is sent to the
node that could not accept the packet for resumed broadcasting.

A potential problem arises when broadcasting on a pipelined-channel ring if a hardware
error occurs (detected by the use of a CRC and hardware timers). Since the modified bit-mask is
now lost, there is no record of which nodes successfully received the packet, and thus which
nodes must receive the retransmission. This problem exists for point-to-point transmission as
well, however; it is not unique to broadcasts. SCI simply traps to software to handle this presum-
ably rare event [IEEE92]. The same can be done when a broadcast transmission fails, although it
may increase the complexity of the software recovery.

Broadcasts that are used for invalidations pose a more difficult problem, because the reci-
pients on a ring cannot, in general, respond directly after receiving the invalidation. If they are
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not leaves in the broadcast tree, then they must, in turn, broadcast the invalidation beneath them,
wait for acknowledgements, and then acknowledge their parents. This requires that state be
saved over an extended period, during which time other operations must be processed. Care must
be taken not to allow deadlock to arise.

As mentioned in Chapter 5, Section 2.2, the pruning vector used when transmitting an
invalidation onto a ring is also the information needed to combine the acknowledgements, and
can be saved either in an auxiliary buffer or in the pruning cache itself. The latter choice requires
that all-zero vectors always be placed in the pruning caches, which we saw in Section 3 was a bad
idea. Therefore, I suggest the use of a separate outstanding invalidation buffer (OIB) at each
node. In either case, however, it is important that deadlock be avoided.

One possible way to prevent deadlock would be to structure the OIB according to dimen-
sion, providing separate space for level 2 entries, level 2-3 entries, level 2-4 entries, erc. This
removes cyclic dependencies that might otherwise arise for OIB space. Invalidations on level 1
rings do not require OIB entries (the invalidation is implicitly acknowledged when it successfully
completes its circuit around the ring). OIB entries for level 2 rings must wait for receipt of all
_level 1 acknowledgements, and therefore do not depend upon allocation of OIB space at any
node. OIB entries for level 3 rings must wait for receipt of all level 2 acknowledgements, and
therefore depend only upon allocating level 2 OIB space, etc. Note that this is only an issue in in
systems with 4 or more dimensions, as acknowledgement collection is not needed on the level 1
rings, and the top level pruning vectors are kept in the main memory directories and thus are
always available for collecting invalidations.

The size of an OIB can be quite small, as evidenced by the following back-of-the-envelope
analysis. Assuming a pruning cache hit rate of close to 1, we need only about (n—2) OIB entries
for every copy of a line being invalidated. If we assume a fraction f of references are shared

writes, then when all processors perform one reference, there will be approximately N, 'fw shared

1—
fw] copies on average. This results in a total of

Jfw

writes, each invalidating a maximum of [

1~
approximately (Nfiy) [ f:: L4

] (n-2) total OIB entries or (1-fy)(n—2) OIB entries per node.

Several times this number could easily be implemented, causing OIB overflow to be rare. OIB
overflow could thus be handled by a software trap.

OIB overflow could alternately be handled in hardware, by simply refusing invalidation
requests when the OIB was full. This would essentially block the parent of the refusing node
from transmitting anything else in the corresponding dimension. However, due to the structuring
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of OIB space, the events that must occur to free up the needed OIB space for the parent’s invali-
dation request involve receiving acknowledgement packets from children in lower dimensions, so
the temporary blockage should not lead to deadlock.

6. Comparison of Coherence Mechanisms’ Storage Overhead

It has already been argued (in Chapter 5, Section 2.1) that pruning caches scale in size as
O (n). However, the absolute amount of storage required to implement pruning caches is also
important. This section explores the required storage for both pruning caches and several other
directory schemes. Section 7.1 derives formulas for the required storage of each scheme, given
the distribution of the cached data. Section 7.2 presents results for each scheme for several dif-
ferent sharing distributions as the system size is varied. Section 7.3 briefly discusses storage
overhead in light of the results.

6.1. Analysis

The formulas derived in this section compute the total storage, in bits, necessary to keep
track of all cached data in the system. The following values are used in the analysis: N is the

" number of processors, P is the size of a processor pointer ([logzN] ), T is the size of a tag in a

pruning or directory cache, M is the memory per processor (in lines), C is the cache space per
processor (in lines), n and k are the network dimensionality and radix (relevant only to pruning
cache systems), and f (m) is the fraction of lines in a cache that are shared by m processors.

Note that the storage overheads computed here represent the total directory storage required
to keep track of all cached lines, given a particular sharing distribution (f Q). The total amount of
storage actually built into the system must be sufﬁcieritly large to keep track of the cached data
under all expected distributions, and also allow for an uneven usage of memory lines from dif-
ferent memory modules.

For each coherence scheme, both the memory storage and the cache storage are computed.
The memory storage corresponds to the directory information associated directly with each main
memory line, and is assumed to be built with the same technology as main memory. The cache
storage corresponds to cached directory information, and is assumed to built with faster/more
expensive memory, which is why it is broken out separately.

The storage overhead for a full width directory consists simply of the pointers associated
with each line of main memory:
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memory (full width) = N2M 6.2)
cache (full width) =0 6.3)
Similarly, the storage overhead for limited pointer directories [Agar88] consists of the pointers

associated with each line of main memory:

memory (Dir;B) = NMiP 6.4)

cache(Dir;B)=0 6.5)

Dir;B reduces the amount of information maintained by the coherence protocol by not fully keep-
ing track of shared data. A more fair comparison would be to consider Dir;vector, which uses i
directory pointers, but falls back on a cache of full-width vectors to keep track of lines with more
than i sharers. The memory overhead is the same as for Dir;B, and the cache overhead is now

N
cache (Diryvector)= Y, Cf (m)(N+T) (6.6)
m=i+1
The directory cache scheme [0’Kr90,Gupt90] associates no directory information with
main memory, but use two kinds of caches, one with i processor pointers per entry and one with
full width vectors. The storage overhead is thus

memory (directory cache;) =0 6.7)
i N
cache (directory cache;) = ¥, Cf (m) GP+T) + Y, Cf (m)(N+T) (6.8)
m=1 m=i+1

The dynamic pointer allocation scheme [Simo91] uses a single pointer for every cached
line, independent of the sharing distribution. Associated with each line of main memory is a
pointer into the local pointer cache (assumed to have C entries). Each entry in the pointer cache
contains a processor pointer and a pointer back into the local memory. The total storage over-

head is thus given by
memory (dynamic) = NM (log2C) 6.9

cache (dynamic) = NC (P +loga M) (6.10)

The pruning cache scheme requires a single processor pointer/pruning vector with each line
of memory, and pruning caches at each node. The memory overhead is given by
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memory (PC) = NMP 6.11)

Assuming random distribution of shared copies, as in the analysis of Chapter 5, Section 2.1, the
number of pruning cache entries needed to keep track of m cached copies of a line is

k—k?
n—1 m
1- v

PC_entries(m)= Y k™™ (6.12)
i=1 k"
m
The required cache overhead for a pruning cache system is thus
N
cache(PC)= ¥, C f (m) PC_entries(m) (T +k) (6.13)

m=]1

If the ownership protocol is used, then only truly shared lines require pruning cache entries, and
the required cache overhead is

N
cache(PC,yn)= Y, C f (m) PC_entries(m) (T+k) (6.14)

m=,

6.2. Resuits

Several assumptions must be made in order to present actual storage overheads. I assume
the use of 64 byte lines, 256 kilobyte caches, and 32 megabytes of memory per processor. All
cache lines are assumed to be occupied. The tag size used for pruning caches and directory
caches is 23 bits. This assumes a 40 bit physical address and 2-way set associative
pruning/directory caches with the same number of entries as the data caches (4096). Storage

overhead is given as the percentage increase in memory, for both main memory and cache.

I assume that some fraction of lines in a processor’s cache are private, some fraction of lines
are globally shared, and the rest are shared to some intermediate extent. The number of proces-
sors that share each of these lines is specified by a geometric distribution (truncated at a max-
imum of N processors). The parameter of the geometric distribution, o, is approximately
(because the distribution is truncated) the mean number of processors sharing each line. An o of
1 implies that all the shared lines are in fact private. An o of o implies that a shared line is
equally likely to be shared by any number of processors. Note that the more widely lines are
shared, the fewer unique lines of memory are cached; if all data was globally shared, a total of C
lines would be cached; if all data was private, a total of NC lines would be cached.
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Results are given for three different sharing distributions. In the “light” sharing distribu-
tion, 80% of the lines are private, 18% are shared with ao=1.5, and 2% are global. In the
“medium” sharing distribution, 50% of the lines are private, 48% are shared with o.=2, and 2%
are global. In the “heavy” sharing distribution, 50% of the lines are private, 40% are shared with
o=NV2 and 10% are global.

Figure 6.18 shows the storage overhead for full width directories. Although acceptably low
for a system size of 64, the overhead grows unacceptably as system size increases, reaching 100%
of memory at only 512 processors.

Figure 6.19 shows the storage overhead for Dir;vector (limited pointer directories with vec-
tor cache backup). In part (a), one pointer is allocated per directory entry. Memory overhead is
quite low, and cache overhead is acceptably low for system sizes up to 1024. For a 4096-node
system, cache overhead becomes excessive (75% for the medium sharing case). Overhead for the
32K-node system is extremely high. In part (b), three pointers are allocated per directory entry.
This makes the main memory overhead much larger, but perhaps still acceptable. The cache
overhead does not become excessive until 32K nodes. In part (c), eight pointers are allocated per
directory entry. The main memory overhead is now quite large, and is almost entirely unused
. (most memory lines are not cached at all, much less by eight processors), which is not acceptable.
The overhead for the vector cache still becomes quite large under the heavy sharing distribution
for 32K processors. While, the storage overhead for limited pointer directories with a few
pointers may be acceptable for system sizes up to a few thousand, it is clear that beyond that size
the storage requirements become too great.
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Figure 6.18: Storage overhead of full width directories
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Figure 6.20 shows the results for directory caches. No main memory overhead exists for
this scheme because all directory information is cached. Parts (a), (b) and (c) assume that the
small directory entries contain 1, 3 and 8 pointers, respectively. With 1 or 3 pointers in the small
directory entries, the cache of full vectors becomes excessively large for system sizes in the 4096
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Figure 6.20: Storage overhead of directory caches

to 32K processors range. Unlike with limited pointer directories, however, it may be reasonable
to use a larger number of pointers for the small directory entries when using directory caches,
because the entries are not duplicated for every line of main memory. The growth in cache
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overhead is much more gradual in part (c) where 8 pointers per entry are assumed. The overhead
is still fairly significant, however, exceeding 20% for a 4096-node system.

' Figure 6.21 shows the results for dynamic allocation. The memory and cache overheads for
this scheme are smaller than those of the previous two schemes, and the scaling behavior is also
much better. The overhead remains quite small for extremely large systems.

The required storage does not depend upon the extent of sharing, but it does increase if lines
from various main memory modules are cached non-uniformly. This potential non-uniform
usage of memory is not captured in the analysis of this section, and is the reason that actual
implementations must include more storage than is shown as necessary here. If non-uniform
usage results in a shortage of processors pointers at a given node, then the protocol invalidates
existing cached lines in order to free up pointers. Available processor pointers in the pointer
cache are maintained using a free list, however, so the cache can be completely utilized before
having to invalidate cached lines.

Figure 6.22 shows the results for pruning-cache directories. Part (a) assumes the basic
pruning cache protocol, and part (b) assumes the PC,,, protocol, which only creates pruning
cache entries for lines shared by two or more processors. The storage overhead for pruning
caches is similar to that for dynamic pointer allocation, a bit higher for the basic protocol and
slightly lower for the ownership protocol. The overhead for pruning caches grows slightly more
quickly with system size than that for dynamic pointer allocation, but slowly enough that the
overhead is still fairly low for extremely large systems.
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Figure 6.21: Storage overhead of dynamic pointer allocation




Ch.6 144

. Main Memory Overhead

Cache Overhead - Light Sharing Cache Overhead - Heavy Sharing

s
(]
£
)
>
)
S
o
o3
n
S
System Size
(a) Basic protocol
© 10=
©
]
£
)
>
o
8
o
=3
7))
R
4096 32768
System Size
(b) PCoun

Figure 6.22: Storage overhead of pruning-cache directories

One advantage of pruning caches with regard to storage overhead is graceful degradation in
the face of a storage shortfall. Especially if the replacement is prioritized by dimension, running
out of pruning cache entries causes only a mild increase in invalidation traffic (because entries for
" the leaf rings can be thrown out first). This means that pruning caches can be built relatively near
the average capacity rather than having to build them much larger to make sure they rarely run
out of space.

7. Summary

This chapter has presented a thorough exploration of pruning cache performance and
management. Simulation was first used to analyze the performance of pruning caches in the con-
text of an operational system and to compare pruning caches to the similar multi-level inclusion
(ML) scheme. Several modifications to the basic pruning cache protocol were then simulated, as
well as various management policies relating to pruning cache replacement and handling of all-



Ch.6 145

zero pruning vectors. Several other topics were also covered in this Chapter. Simulation results
confirming the analysis presented in Chapter 5 were presented. Difficulties in the implementation
of broadcast were discussed, and solutions were presented. Finally, the scalability of pruning
caches with regard to storage overhead was quantified and compared to several other coherence
mechanisms.

Simulation results indicate that pruning-cache-based systems scale well and perform better
than MLI-based systems using comparably sized inclusion caches. Pruning caches store informa-
tion about where data does not reside, so the loss of a pruning-cache entry simply results in extra
broadcast traffic when (and if) the corresponding data is invalidated. In contrast, inclusion caches
guaranteeing MLI store information about where data does reside. When an inclusion cache
entry is lost, the corresponding data must be invalidated in the subtree beneath the cache. I have
compared pruning caches against inclusion caches and found that pruning caches are more cost
effective: they can provide higher performance while storing less information.

Pruning caches perform more effectively than inclusion caches because the penalty for
increased invalidation traffic is less than the penalty for prematurely invalidating data. However,
as was indicated by Figure 5.5, the penalty for pruning cache misses increases with system size.
Although it should be relatively easy to keep pruning cache hits very high (>98%) as system size
increases, it is likely that when system size reaches the order of one million processors, the
penalty for pruning cache misses will exceed the penalty for subtree invalidations. Therefore, the
_effective scalability of pruning-cache-based systems may be limited to tens or hundreds of
thousands of processors. It is likely that many other factors being completely ignored here
(power, cooling, fault tolerance, etc.) will prove limiting before this size restriction is put to the
test, however.

Pruning caches allow data that is passively shared (declared shared, but actually used by
only one processor) to remain in data caches even though the directory information may be
purged. Simulation results show, however, that performance is improved when the protocol is
extended to provide the notion of ownership (PC,,;,). This prevents information regarding pas-
sively shared data from entering pruning caches in the first place. It provides the same function
for migratory data.

Read-combining can be incorporated into a pruning-cache-based system by extending the
coherence protocols. The read combining mechanism successfully eliminates degradation caused
by concurrent read contention, but may increase read latency in the absence of contention. In
addition, it is incompatible with the PC,,, protocol, which routes read requests directly to
memory. While contention is likely to be introduced by certain types of synchronization, detailed
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studies of large parallel applications are needed to determine the extent of actual read contention.

I suggest that read requests in a pruning-cache-based system default to direct routing and
the PC,,, protocol, resulting in no combining opportunities but providing lower latency.
Accesses to synchronization variables or shared data/instructions that the programmer/compiler
thought might suffer from contention could be marked as combinable. These requests would use
the combining mechanism, resulting in higher latency, but avoiding possible serialization from
read contention. This solution does not require a separate combining network, as was proposed
for the RP3 [Pfis85]; it is simply built into the coherence protocol.

With the use of pruning caches, performance is somewhat improved by partitioning work
such that sharing takes place along lower dimensions. This is due primarily to better pruning
cache performance, but also to increased read combining for workloads which exhibit this
- behavior. A related topic is that of distributing data such that processors use data whose home
memory location is local or nearby. If sufficiently large caches are used, then data automatically
migrates to the correct locations, and only shared data results in network traffic. However, since
some conflict and capacity misses are likely to occur, it may make sense to allocate some pages
of memory locally to a node rather than spread across nodes, as has been suggested in this thesis
(a similar capability was included in the RP3[Pfis85] ). This could be used to store local/private
data. Since data sharing involves accesses to the directory information for the data, is may also
make sense to allocate shared data in contiguous memory at a node and partition problems to
increase locality. However, this approach may increase the probability of hot spots at a particular
node’s memory. This is an interesting topic of consideration, but is not treated in this thesis.

Simulation results indicate that the DIM replacement policy provides superior pruning
cache performance over random and LRU replacement. Results also show that all-zero vectors
should not be placed into pruning caches when a line is invalidated. Their pollutive effect
outweighs any “firewall” effect that they provide.

The final topic discussed in this chapter was the storage overhead of pruning caches and
several other coherence mechanisms. Both the pruning cache and dynamic pointer allocation
protocols have a low storage overhead and scale very well with system size. Although not
analyzed, the overhead for SCI is also expected to scale well (up to their maximum size of 64K
processors), as the storage requirement is directly proportional to the cache and main memory.
Limited pointer directories (either cached or attached to main memory) with caches of full width
vectors do not scale as well. They may be acceptable for implementations with up to a thousand

Or SO processors.
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Chapter 7

Conclusion

I firmly believe that the day will come when (1) multiprocessing is truly mainstream (easy
to use, accessible, accounting for a large fraction of total computing) and (2) the most powerful
supercomputers (by far) will be comprised of thousands of high performance microprocessors.
We are a long way from that day. I also believe that, despite the current dominance of message
passing machines, the most common multiprocessor of the future will support the shared memory
paradigm. This thesis attempts to take us one step closer to the realization of these beliefs.

Envision connecting ten thousand state-of-the-art microprocessors together. Give each pro-
cessor its own local memory, and provide a uniform physical address space. Call this the world’s
most powerful computer. Certainly we can do this foday. Why would this not work, or would it?

One of the primary challenges would be programming the machine. Writing parallel appli-
cations or parallelizing existing applications is hard to do in general. Finding the parallelism in a
problem, partitioning the data, scheduling the work and managing synchronization well are
beyond the ability of current compilers. These problems, although extremely important, are also
beyond the scope of this thesis.

Let us assume that the language, compiler and operating system designers solve the above
problems (or that some dedicated applications programmers manage the details themselves).
Further assume that a program running on the machine actually uses the shared address space to
effect a non-trivial amount of communication. How does our hypothetical system perform now?

The primary problems that we now have to contend with are throughput in the interconnect
and latency of inter-processor communication. Processor caches are almost certainly needed to
alleviate the above problems, and thus cache coherence is an issue as well. Current cache coher-
ence mechanisms are simply not feasible (due to storage requirements or performance) for sys-
tems of this size.

The throughput problem is exacerbated not only by the large number of processors com-

- municating, but by the greater distance the communication must travel, assuming that the com-
munication is not entirely local. There is really no way around this problem; the interconnection
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network must provide the needed throughput.

Communication latency is inherently larger in this system than in current multiprocessors,
again assuming that the communication is not entirely local. We should strive both to tolerate
latency and to reduce it as much as possible. Reducing communication latency, like providing
sufficient interprocessor throughout, depends upon the interconnection network.

Tolerating latency is achieved by overlapping communication with computation. It takes
the form of either fetching data before it is needed or switching contexts when needed data is not
yet present (or both). It is my belief that the best approach is to allow processors and caches to
have many outstanding requests and to provide a rich set of synchronization primitives to coordi-
nate sharing. This is a complex and interesting topic in its own right, but is beyond the scope of
this thesis.

The goal of this thesis is to shed light on the issue of multiprocessor scalability, and
specifically to address the problems associated with interconnection network performance and
cache coherence for very-large-scale multiprocessors. This thesis makes four primary contribu-
tions.

e A working definition of scalability is provided. The definition is purposefully non-
rigorous, but provides useful insight into the behavior of large-scale systems. Using scala-
bility arguments, the case is made for pipelined-channel k-ary n-cube interconnection net-
works.

e The first performance study of the Scalable Coherent Interface ring is presented. This
study is valuable in its own right by helping us better understand a new high-performance
interconnect standard, and also serves as a proof of concept for pipelined-channel net-
works.

e Pipelined-channels are shown to have a large impact on the design of large-scale intercon-
nection networks. They provide higher and more scalable performance than do non-
pipelined-channel networks, and significantly change the network design constraints.

e A new cache coherence mechanism, pruning cache directories, is investigated for use in
large-scale systems. Through analysis and simulation, the mechanism is shown to be both
effective and efficient, providing scalable performance for a broad range of workloads.
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The definition of scalability revolves around three metrics: cost, latency and bandwidth.
The basic idea is to keep the cost, average communication latency, and traffic through any point
from growing too quickly as system size is increased (“system balance” is another way of view-
ing this task). Using these metrics, it is easy to reason about the behavior of systems as size is
increased.

K-ary n-cube networks have excellent scaling properties when (1) the radix is held constant,
increasing the dimensionality only, and (2) physical constraints such as wire delay, pin limita-
tions and wiring density are ignored. When physical constraints are not ignored, however, scala-
bility is significantly limited, and the optimal radix of the network increases with network size.
Pipelined channels allow wire delay to be essentially ignored, thus increasing scalability, but do
not remove constraints due to wiring density or pin limitations. Ultimately, all networks are
wiring-density constrained for sufficiently large sizes, which, assuming some amount of global
communication, will cause communication latency to increase as O (N1/2),

Scalability should not be emphasized over performance. Pipelined-channel networks must
be feasible to implement and provide good performance in order to recommend them for actual
systems. The physical and logical layers of the Scalable Coherent Interface serve as a proof-of-
concept for pipelined-channel networks. The design includes all the details needed in a real sys-
tem and is being implemented today. By demonstrating that the SCI ring provides very high per-
formance, the validity of pipelined channels is established. Not only does a single SCI provide
throughput on the order of a gigabyte per second, but the message transmission latency on a ring
is shown to be lower than that on a typical high-performance shared bus.

The use of pipelined channels significantly affects the design tradeoffs for k-ary n-cube net-
works. By decoupling the throughput of a link from the transmission latency across the link,
pipelined channels remove one of the two primary disadvantages of high dimensional networks.
Cycle time is no longer affected by the transmission time across the long wires inherent to high-
dimensional networks. When wiring is not constrained, binary hypercubes now provide the best
performance. When wiring is constrained, as is realistic for actual systems, the optimal network
* dimensionality is somewhere between the high dimensionality of a hypercube and the low dimen-
sionality that is optimal for non-pipelined-channel networks.

Hardware-maintained cache coherence is challenging for large multiprocessors. The
difficulty lies in maintaining enough information to prevent frequent broadcasts, which do not
scale due to traffic, without requiring excessive storage for coherence information. I have investi-
gated pruning-cache directories as a method to exploit the benefits of broadcasting while attempt-
ing to limit communication to the subset necessary to notify all interested parties of an
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invalidation.

Pruning caches, particularly with the ownership modification (PC,,,), provide robust per-
formance over a broad spectrum of workloads. While utilizing a simple directory scheme, they
can nevertheless exploit the limited broadcast inherent in bus- or ring-based topologies, much as
snooping cache protocols do. Not only does this provide efficient coherence maintenance, but it
allows read combining to be performed by the protocol, allowing workloads with concurrent read
contention to scale to large system sizes. The storage requirements of pruning-cache directories
are modest when compared to other coherence mechanisms, and scale well with system size. 1
conclude that pruning-cache directories are an excellent altemnative for providing cache coherence

in systems with many thousands of processors.

The work presented in this thesis suggests several interesting topics for future research.
One particularly utilitarian topic would be to extend the analytical model of the SCI ring to han-
dle the flow control protocol. This would be of tremendous use to future SCI designers, by allow-
ing quick analysis of SCI designs that involve asymmetric configurations or traffic patterns. In
addition to the utility of the result, this exercise could lead to some interesting modeling tech-
niques, much as the current model did regarding packet train formation. Extending the model to
multi-ring topologies is another possibility.

The analysis of pipelined channels could also be extended in some interesting ways. Two
examples would be to consider their effect on topologies other than k-ary n-cubes, and to consider
the effect of auto-correlated (bursty) or localized traffic. Case studies using specific technologies
" would also be useful.

The investigation of pruning-cache directories has raised some interesting questions.
Perhaps the most interesting is the whether it is worth the trouble to provide read combining
capabilities. The ability to combine concurrent read requests is the primary advantage of pruning
cache directories over the dynamic pointer allocation scheme or the basic SCI protocol. It would
be nice to have a better understanding of how useful that ability is. Another interesting question
regarding read combining is whether the compiler can reasonably distinguish between normal
references and references that might profit from combining.

Finally, it may prove valuable to question the basic premisés upon which this thesis was
built. Much of the thesis has focused on mechanisms for providing cache coherence in hardware.
Many software coherence schemes have been proposed, as well. There is, perhaps, a fertile mid-
dle ground that involves cooperation between the compiler, operating system and hardware. And
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there is always the question of whether we should employ the shared memory paradigm at all.
How best to support parallel programming in the future remains very much an open question.
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Appendix A
SCI Performance Model Equations

All lengths are in symbols. All times are in éycles.

MODEL INPUTS:
N Number of nodes on the ring
z; Fraction of node i’s packets routed to node j

i Packet arrival rate at node i’s transmit queue
Faata Fraction of transmitted packets that are data packets
Joddr Fraction of transmitted packets that are addr packets
ldata Length of a data packet (including postpended idle)
Ladar Length of an address packet (including postpended idle)
Lecho Length of an echo packet (including postpended idle)
Tyire Number of cycles to traverse a wire
Tparse Number of cycles to parse an incoming packet

PRELIMINARY CALCULATIONS:
These values are calculated directly from the model inputs. They do not change as the model

iterates.

, Loend Mean length of a send packet
lsena = faata Vdata + Saddr laddr (A1)
X; Mean throughput at node i (this includes packet header information)
X; =i (Usena—1) A2)
Aring Total packet arrival rate
N-1
Mig= %, M (A3)
i=0
Techo,i Rate of echo packets passing through node i (this includes echo packets that are

created by node i, but not echo packets that are consumed by node )

i
recho,i=27~j Y Zjk (A4)
jei  k=jal :
(modN)

Tdata,i Rate of data packets passing through node i (this does not include data packets 4
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Taddr,i

Tpass,i

Prev,i

Rpass,i

U pass,i

lpld.i

Lpia,i

153
transmitted by node i or stripped by node i)
v S
T data,i = Jaat i Zjy
ta,i ,§‘. j k.__‘Z}d j (A5)
(mod N)

Rate of address packets passing through node i (this does not include address packets -
transmitted by node i or stripped by node )

-1
Taddr,i =Jfaaar N X, Zjk (A.6)
i ke .
(modN)

Total rate of packets passing through node i

Tpass,i = Techo,i + Tdata,i + Taddr,i = 3, Nj (A7)
J#i

Rate of packets routed to node i

Trevi = X, Ajzji (A.8)
o

Mean number of packets passing through node i per packet transmitted by node i

r .
Rpass,i = -—-—”f = (A.9)

Utilization of node i’s output link by packets passing through node i

Upass,i =V data,ildata + Taddr,iladdr + Techo,ilecho (A.10)

Mean length of a packet passing through node i

U pass,i

lka,i = (A.11)

Y pass,i

Mean residual life of packet passing through node i (for the purposes of this model, a
packet is defined to be passing through a node if a symbol from the packet was output
on the previous cycle; thus, the residual life of a packet of length I can take on only
the discrete vatues {0,1,2,...(I-1)} )
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2 2
7 data, iVata * T addr,iloddr * Techoilecho | 1
ki = -
P 2Upass,i 2

(A.12)

CALCULATIONS INSIDE ITERATION:
These values are directly or indirectly dependent upon the coupling probabilities. They are
recomputed on every iteration until the coupling probabilities converge.

Perain,i Mean number of packets in a packet train passing through node i (this uses the
assumption that the number of packets in a train is given by a geometric distribution,
parameterized by the coupling probability)

1
ntrain,i - 1 "‘Cpass'i (A.IS)

Lrain,i Mean length of packet train passing through node i

brain,i = Lok, iMurain,i (A.14)
 bidte,i Mean space between packet trains passing through node i
1-Upass.i
bite,i = |~ | hrain, (A.15)
pass,i

Ppia,i Probability that an idle symbol passing through node i is directly followed by a packet
(this uses the assumption that the spacing between packet trains is geometrically dis-

tributed)

Ppui= A.16

s lidle,i ( ) )

Calculating the transmit queue service time: The service time for a packet of length [ is simply
the time taken to observe [ idle symbols passing through the node. During a cycle in which an
idle symbol arrives from the stripper, we reduce by one the number of symbols yet to transmit.
During a cycle in which a packet symbol arrives from the stripper, we transmit one symbol, but
also place one symbol into the ring buffer, prolonging the recovery period by one cycle and
resulting in no reduction of the number of symbols yet to transmit. In the absence of any passing
traffic, we see I passing idles in a row, and the service time is just . Otherwise, we use the
assumption that spacing between passing packet trains is geometrically distributed with parame-
ter Ppy,;. Every passing idle symbol is followed either by a packet train (which prolongs the
recovery period by an average of lq, ; Cycles, and is followed by an idle symbol) with probabil-
ity Ppu,i, Or by another idle symbol with probability 1-Pp, ;.
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Pinterrups,;  Probability that a packet arriving to the transmit queue at node i finds the queue idle
(no other packets are in the transmit queue and the ring buffer is empty), but a packet
train passing through the node (a packet symbol was output on the previous cycle)

Pinterrupt,i = (1-Pi)Upass, i (A.17)

Sreg.i Mean transmit queue service time at node i when not interrupting a passing packet
train (in this case, we require l,,4 passing idles to transmit the packet and complete
the recovery period, and each of these idles is preceded by a passing packet train with
probability P, ;, prolonging the recovery period by an average of Ly, ; Cycles)

Sreg,i = tsend (1+Ppkr,iltrain,i) (A.18)

Sinterrupt,i Mean transmit queue service time at node i when interrupting a passing packet train
(similar to S, but in this case, we must first wait for the residual life of the passing
packet, then on the first cycle of transmission either the passing train continues [with
probability Cpas,i] or it does not [in which case we see one passing idle], then we
need another (I;,q—1) passing idles, each of which is preceded by a passing packet

train with probability Pp,;
Sinterrupt,i = Lokti + Cpass,ilirain,i + lsend + (send=1Ppia,ilirain,i (A.19)
S; Mean transmit queue service time at node i
Si = Pinterrupt,iSinterrupt,i + (1=Pinterrupt,i)Sreg,i (A.20)
pi Utilization of transmit queue at node i

Calculating new coupling probabilities: Coupling probabilities are affected by transmitting pack-
ets and stripping packets. Equation (A.22) calculates the new coupling probability on output link
i by using the coupling probability of the pass-through traffic at node i and considering the effect
of transmitting a single packet from the transmit queue. Equations (A.23) through (A.26) calcu-
late the new coupling probability for the pass-through traffic at node i by using the coupling pro-
bability of the incoming link (i—1) and considering the effect of stripping a single packet. Note
that the rate of traffic across any link is A, the rate of echo packets consumed at node i is the
same as the rate of send packets transmitted by node i (A;), and the rate of send packets that are
stripped and converted to echo packets by node i is ryey,;.

Clink,i Probability that packet on node i’s output link is coupled to the packet in front of it
(the three terms in the numerator denote the number of packets that were already cou-
pled, the probability that the packet being transmitted is itself coupled to the packet in
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F in,i

P uncouple

Cpass,i
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front of it, and the number of passing packet trains that are caused to couple because
they arrived during the transmission/recovery period and were routed into the ring
buffer)

[nm,,-cm,.- + (1P pass] + P,,,a,,-zmd]

(Mpass + 1)

(A22)

Clink,i =

Mean number of coupled packets entering stripper i per stripped packet (where a
stripped packet is either an echo that is consumed or a send packet that is removed
and replaced with an echo)

A
Fini = Clink,i-1 [ﬁ (A.23)

Probability that stripping a packet at node i causes the following packet to become
uncoupled, given there is a following packet (the first factor accounts for the fact that
only consumed echo packets can decouple a following packet because stripped send
packets are replaced with echo packets in their end positions; the second factor
prevents “double counting” packets — we do not want 1o consider what happens to
the packet following a stripped packet if it itself is stripped)

p = 7L,- A'ring —'}'i_rrcv,i (A 24)
uncoupient R'i +7, rev,i xring ’

Mean number of coupled packets leaving stripper i per packet stripped at node i (the
four terms in this equation correspond to the events of stripping a single-packet train,
stripping the tail of a train, stripping a packet from the middle of a train, and stripping
the head of a train; each term consists of the probability of that event, multiplied by
the resulting number of coupled packets after the occurrence of that event)

F i = (1=Clink,i-1)*Fin,i + Clink,ivt (1=Clink,i-1)Fin,i = 1)
+ Chni-1 Fini = 1= Puncouple,i)
+ (1=Clink,i=1)Clink,i-1 Fin,i = Puncouple, i) (A.25)
Probability that a packet passing through node i (having just left the stripper) is cou-

pled to the packet in front of it (the numerator is the rate of coupled packets leaving
the stripper and the denominator is the total rate of packets leaving the stripper
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Fouw ii+Trey i)
Crassi = out, i\ T Trey,i (A.26)
Tpass,i

CALCULATING FINAL MODEL OUTPUTS:

Vou,i Variance of packet length for packets passing through node i (this is derived directly
from the definition of variance: V' (X) = E[ (X ~E[X])*1)

Y aataiUdata=lpia, ) + T adidr,iCadar—lpia, i) +7, ccho,ilCecho—lpkt,i)
Vpha,i = —_— (A.27)
pass,i

Virain,i Variance of length of packet trains passing through node i (this derivation uses the
fact that a packet train is comprised of a geometrically distributed number of packets,
for which we know the mean length and variance of length)

Vtrain.i =K [ltrain,izl -E [ltrain,i]2
= ¥, (1-Cpass, i)C'pass,i"‘l (iVpa,i+ [ilpkz‘,ilz) ~ E rain,i?
i=1

- -

= (1—Cpass,i)Vph,i 2. icpa.t:s,ii_-1 + (1"'Cpa.vs,i)lpkr,i2 Zizc"mz.s's,ii”1
i=1

i=1
[ )
(I—Cpass.i)
2

(1~Cpass,i)Vph, i (1+Cpass,i) bpta,i
= P p2 - +(1—Cpass.i)lpkt.i2 pass13 - l-—é’ : 3

(I—Cpass,i) (l_cpass,i) ( PaSS,l)

Vpkt.i lpkt.iz Cpass.i

B (l“cpass,i) (I“Cpass, i)2 (A.28)

Calculating service time variance: The service time variance calculation is approximate and
rather awkward. The variable part of the service time can be broken into two components, with
means:

t1.; = (1~P)U pass,ilLpis,i +(Cpass,i = Ppit,dhirain, i} (A.29)

M2, = bsenaPpia,iltrain,i (A.30)

The second component corresponds to the sum of a binomially distributed (I,,,4 trials with proba-
bility Ppi,;) number of packet train lengths, each with mean Uy, and variance Viygin,i- We can
compute the variance of this “binomial” component exactly, as follows. Let type € {addr, data}
and Qryp,; be the random variable representing the binomial component of service time for
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transmission of a type type packet.

Viype,i Variance of “binomial” component of service time for transmission of a type type
packet

Viype,i = E [q)type,iz] ~E [¢Upe,i ]2

‘=1

- I
= I;Z [l):lpe} pha,i (1 Ppld 1) (JVtram n+Ultram¢] )

~ (lirain,iPpha,ibiype )* (A.31)

To calculate the total service time variance, it is assumed that the service time components
corresponding to p; ; and iy ; have a correlation of 1 (this is certamly not true, but the correlation
is expected to be high). We can then use the fact that V[cX]=V[X Jc? when c is constant.

Viype,i Variance of service time for a packet of type type transmitted at node i
2
Ki,i+Ha,i
nype,i = Viype,i [ l ‘ } (A.32)
H2,i
Vi Overall variance of service time for an packet transmitted at node i
V; =E[S?1-EISi
= Fiata Votatai +Satatai®) + Fadar Vaddr,i + Sadar,®) — S (A.33)
c; Coefficient of variation of S;
V:
ci = ——\,:- (A.34)
S
0; Mean transmit queue length at node i (from the solution of the M/G/1 queue)
2 2
pi” (1+¢°)
. = () jpee———— .
Qi =pi 2(1-p)) (A.35)
L; Mean residual life of transmit queue service time at node i (from the solution of the

M/G/1 queue)
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Wi
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_ Vi + S,'2 (A.36)
T

Mean wait time in transmit queue at node i (from the solution of the M/G/1 queue)

Wi =(Qi—pi)Si +piLi (A.37)

Mean buffer backlog seen by a packet passing through node i (buffer backlog occurs
only as a result of packet transmissions; the three terms inside the square brackets
compute the total mean packet-cycles of delay caused by a single packet transmission,
and this is divided by the mean number of packets that pass through the node per
transmitted packet in order to obtain the mean delay that a passing packet sees)

ldara +1
B; = | (1-P1)Upass,i(Crass,i = PpktiMsendMirain,i +FutataPpie,ildata — | Parainii

laddr +1 1
+ faddrPpha,iladdr [—‘“—2 ] Parainyi | ———— (A.38)
pass,i

Mean transit time for a packet transmitted from node i (latency once transmission
actually begins)

j-1
Ti=1+Tyye +tparse + Lsena + Zzi j Z (1+Tyire +1parse +By) (A.39)
jA kA '
(modN)

Mean response time for a packet transmitted from node i

R; =W; + Pinterrupt,iLpia,i + Ti (A40)
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Appendix B
Miscellaneous Read Combining Equations

These equations compute quantities relating to read combining in a k-ary n-cube. A total of m
processors, randomly distributed throughout the system, are assumed to be reading a shared line
of memory. The equations included in this appendix are simply support equations for the
analysis of Chapter 4, Section 3.

Pay_in(m,x)

P none_in (m,x)

Na(x)

Ni(x)

Epin_dims(m)

Probability that all m readers of a line reside within a subset of x processors

m-1 x—m
Poy_inmx)=1 TI|=; ifm<x (B.1)
- i=0 -m
0 otherwise

Probability that none of m readers of a line reside within a subset of x proces-
sors

Prone in(Mx) = P gy in(m, k" —x)

(B.2)

Number of nodes within x dimensions of a node

Na(x) = g,o b (n,i)k-1) ®3)

Number of nodes within x links of a node

k-1 k-1

k-1 n
Nx)=3 5 - ¥ (3di<x)

dy=0 d,=0 d=0 j=1

B.4)

Expected minimum number of dimensions traversed by one of the m readers of
a line on its way to memory
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Epmax_dims (m)

Epin links(m)

E piax_tinks (M)
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Evin aims(m) = 31 [Pm_m(m,Nda—1»—an_i,,(m,Ndci»] ®5

- i=1

Expected maximum number of dimensions traversed by one of the m readers of
a line on its way to memory

Enas aims(m) = 3,1 [Pat_nm.NaO)-Pat (mNati=D)] ®.6)

- i=1

Expected minimum number of links traversed by one of the m readers of a line
on its way to memory

n(k-1)
Epin s = 3. i[Pm_,-,,<m,1v,<i—1>>~Pm_-m(m,zvz(i>)] B.7)

- i=1

Expected maximum number of links traversed by one of the m readers of a line
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