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ABSTRACT

Most commercial and experimental Object-Oriented Database Systems (OODBMS) are imple-
mented using a client-server software architecture. An effective technique for improving the
performance of a client-server database system is to allow client workstations to cache data
andjor locks across transaction boundaries. This paper extends an earlier study on the perfor-
mance of caching in client-server database systems [Care91a] in three ways. The first is a re-
examination of heuristics for algorithms that decide dynamically between propagating changes
or invalidating remote copies of data pages in order to maintain cache consistency. The second
extension is a performance study of a class of caching algorithms known as "callback locking”
algorithms. These algorithms are of interest because they provide an alternative to the optimis-
tic techniques used in the earlier study and because they have recently begun to find use in com-
mercial systems. The third way that this paper extends the previous study is to examine the per-
formance of alternative caching algorithms in light of current trends in processor and network
speeds and to more closely examine their robustness in the presence of data contention.

1. INTRODUCTION

Object-Oriented Database Systems (OODBMS) are typically designed for use in networks of high-
performance workstations and servers. As a result, most OODBMS products and research prototypes
have adopted a variant of a client-server software architecture known as data-shipping. In a data-
shipping system, client processes send requests for specific data items to servers, and servers respond with
the requested items (and possibly others). Data-shipping systems are particularly well-suited for use in
workstation-based environments since they allow a DBMS to perform much of its work on client works-
tations, thus exploiting the workstations’ processing and memory resources and reducing dependence on
shared server machines. Data-shipping systems can be categorized as page servers, in which clients and
servers interact using physical units of data such as pages or segments, and object servers, which send
logical units of data such as objects or tuples between clients and servers. Many recent sysiems have
adopted the page server approach due its relative simplicity and potential performance advantages com-
pared to an object server approach. These systems include: ObServer [Hom87], O2 [Deux90], Client-
Server EXODUS [Exod91, Fran92c], and ObjectStore [Lamb91]. For concreteness, this paper concen-
trates on cache management algorithms for page server architectures; however, many of the results of this
study are also applicable to object server systems.
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1.1. Client-Server Caching

Caching data and locks at client workstations is an important technique for improving the perfor-
mance of page server database systems. Data and locks can be cached both within a single transaction
(intra-transaction caching) and across transaction boundaries (inter-transaction caching). Intra-
transaction caching is easily implemented; it requires only that a client can manage its own buffer pool
and can keep track of which locks it has obtained. All of the algorithms investigated in this study per-
form intra-transaction caching of both data and locks. On the other hand, inter-transaction caching of data
requires additional mechanisms to ensure the consistency of cached data pages, while inter-transaction
caching of locks requires full-function lock management on clients and protocols for distributed lock
management. This work concentrates on examining the performance tradeoffs that arise when using
inter-transaction caching of both data and locks. For the remainder of the paper, we use the term "cach-
ing" to refer to inter-transaction caching.

Despite the additional complexity, caching of data and locks has been shown to have the potential to
provide substantial performance benefits [Wilk90, Care91a, Wang91]. These benefits include: 1) reduc-
ing reliance on the server, thus offloading a potential bottleneck and reducing communication, 2) allow-
ing better utilization of the substantial CPU and memory resources that are available on clients, and 3)
increasing the scalability of the system in terms of the impact of adding additional client workstations.
However, while the potential benefits of client caching are large, the question of the overhead that is
incurred in order to guarantee consistency must be addressed carefully. This overhead can manifest itself
in several forms: 1) increased communication, 2) increased load on the server CPU, 3) additional latency
(especially at the end of transactions), and 4) extra load placed on clients that have data cached. Also,
some algorithms have the property of postponing the discovery of data conflicts, which can result in
increased transaction abort rates.

1.2. The Previous Study

In an earlier paper we investigated the performance implications of caching data pages and/or locks at
the client workstations of a page server database system [Care91a). In that paper, five locking-based
algorithms were compared: an algorithm that performed no caching, an algorithm that cached data (but
not locks) at clients, and three variants of an Optimistic Two-Phase Locking (O2PL) algorithm that
allowed caching of data pages and an optimistic form of lock caching. In the O2PL schemes, locks are
obtained only locally at clients during transaction execution and then, prior to commit, locks on copies of
updated pages are obtained at remote sites in order to ensure consistency. This form of lock caching is
optimistic in the sense that a local lock at one site does not guarantee the absence of conflicting local
locks at other sites. The three O2PL-based cache consistency algorithms examined in [Care91a] differed
in the actions that they performed at the remote sites once locks were obtained. One variant, called
O2PL-Invalidate (O2PL-I), always removed the copies from the remote site. The second variant, O2PL-
Propagate (O2PL-P), always sent new copies of the updated pages to the remote sites, thereby preserving
replication. The third variant, O2PL-Dynamic (O2PL-D), was an adaptive algorithm that used a simple
heuristic to choose between invalidation and propagation on a copy by copy basis.



In the previous study, a number of conclusions were reached about the relative merits of these alterna-
tive caching algorithms. These include the following:

(1)  All of the caching algorithms were shown to have much higher performance than the non-caching
algorithm in most of the workloads examined.

(2)  The optimistic caching of locks in addition to the caching of data was found to provide additional
performance benefits except in a workload with extremely high data contention and in some cases
where the O2PL-P algorithm performed excessive update propagation.

(3) The invalidation-based version of O2PL. (O2PL-I) typically had the highest throughput over the
range of client populations and resource parameters studied.

(4)  The propagate version of O2PL (O2PL-P) was found to have significant performance advantages
for certain types of data sharing, but also displayed a high degree of volatility, especially with
regard to client buffer pool sizes. In many workloads, O2PL-P was seen to suffer from wasted
work due to propagation of changes to remote copies that were never actually reused.

(5)  The dynamic O2PL algorithm (O2PL-D) was seen to approach, but not quite equal, the perfor-
mance of the better of the static O2PL. algorithms over a wide range of workloads.

1.3. Extensions to the Previous Study
In this paper we extend the work of [Care91a] in three ways:

1. A Better Adaptive Heuristic: The first extension relates to the heuristics used to choose between
invalidation and propagation in the O2PL-Dynamic algorithm. As stated above, the heuristic used in
[Care91a] usually approached the performance level of the better of the two static O2PL algorithms for a
given workload, but it never exceeded or matched that level. Thus, the first issue addressed here is to find
a better heuristic for the adaptive algorithm.

2. Other Lock Caching Algorithms: The second extension is an analysis of an alternative approach to
maintaining cache consistency known as as callback locking [Howa88, Lamb91, Wang91]. As with
O2PL.-based techniques, callback locking allows clients to cache both data pages and locks, but unlike
O2PL, lock caching is not optimistic — that is, sites are not allowed to simultaneously cache conflicting
locks. Two algorithms that use callback locking are studied: one that allows caching of both read and
write locks, and one that only allows caching of read locks. These algorithms are of interest because they
provide an alternative (non-optimistic) implementation of lock caching and because at least one commer-
cial OODBMS has adopted a callback algorithm [Lamb91].

3. System Parameter and Workload Changes: This study uses updated system resource parameter
values and a new workload. The system parameters have been updated to reflect the changes in hardware
technology that have occurred in the two years since the earlier work was initiated. These changes have
the potential to shift the performance bottlenecks in the system and thus, may alter the comparative
advantages of the caching algorithms. For example, the speed of the processors in workstations and
servers has increased dramatically while disk speeds have not; network technology has been improving,
but most installed networks have yet to catch up. In this study, we examine the effects of these changes
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by increasing the speeds of the client and server CPUs compared to the earlier study, and also by examin-
ing the effect of two different network bandwidths. These network speeds roughly correspond to current
Ethernet and near-term FDDI networks. Where appropriate, we discuss the differences between the
results that were obtained with the previous parameter settings and those obtained in this study with the
new settings.

We also use an additional workload to help examine the performance of the caching algorithms in the
presence of high data contention. The previous study showed that the lock caching performed by the
O2PL algorithms was actually detrimental to performance under a very high data contention workload,
but the sensitivity of the algorithms to data contention was not fully explored. In this study, we examine
the effects of data contention in more detail and also investigate the effects of data contention on the call-
back locking algorithms.

1.4. Overview of the Paper

The remainder of the paper is structured as follows: Section 2 describes the three types of cache con-
sistency algorithms that are investigated in this study. Section 3 briefly describes the simulation model
and workloads used to perform the study. Section 4 presents the experiments and results. Section 5
discusses related work. Finally, Section 6 presents our conclusions.

2. OVERVIEW OF CACHING ALGORITHMS

The algorithms addressed by the study fall into three basic families: Server-based 2PL, Optimistic
2PL (O2PL), and Callback Locking. These algorithms are described in the following sections.

2.1. Server-based Two Phase Locking

Server-based 2PL. schemes are derived from primary-copy concurrency control algorithms, with the
server’s copy of each page being treated as the primary copy of that page. Client transactions must obtain
the proper lock from the server before they are allowed to access a data item. Clients are not allowed to
cache locks across transaction boundaries, but do cache locks during a transaction so they do not have to
check with the server for subsequent accesses within a transaction. In this study we use a variant called
Caching 2PL (C2PL) which allows data pages to be cached at clients across transaction boundaries.
Consistency is maintained using a "check-on-access" policy. When a transaction requests a read lock for
a page that is cached at its client, it sends the Log Sequence Number (LSN) found on its copy of the page
along with the lock request. When the server responds to the lock request, it includes an up-to-date copy
of the page along with the response if it determines that the site’s copy is no longer current. In C2PL,
deadlock detection is performed exclusively at the server. Deadlocks are resolved by aborting the young-
est transaction involved in the deadlock. An algorithm similar to C2PL is currently used in the client-
server EXODUS storage manager.



2.2. Optimistic Two-Phase locking (O2PL)

The O2PL schemes allow inter-transaction caching of data pages and and an optimistic form of lock
caching. They are based on a read-one, write-all concurrency control protocol that was developed for
replicated data in distributed databases and was studied in [Care91b]. The O2PL algorithms are "optimis-
tic" in the sense that they defer the detection of conflicts among locks cached at multiple sites until tran-
saction commit time. In these algorithms, each client has its own local lock manager from which the
proper lock must be obtained before a transaction can access a data item at that client. A non-two-phase
read lock (i.e., latch) is obtained briefly at the server when a data item is in the process of being prepared
for shipment to a client, thus ensuring that the client is given a transaction-consistent copy of the page.
When a transaction wishes to commit, it must obtain exclusive access at the server to all of the data items
that it updated. The server then coordinates activities at other clients to ensure that cache consistency is
maintained. In order to determine what consistency actions are required, the server keeps track of where
pages are cached in the system. Clients inform the server when they drop a page from their buffer by pig-
gybacking that information on the next message that they send to the server. Because of this piggyback-
ing, the server’s information is conservative, as there may be some delay before the server learns that a
page is no longer cached at a client,

When a transaction is ready to enter its commit phase, it sends a message to the server containing a
copy of each page that has been updated by the transaction; the server then acquires update-copy locks
(similar to write locks) on these pages on behalf of the update transaction. Once these locks have been
acquired, the server sends a message to all other clients that have cached copies of any of the updated
pages. These remote clients obtain update-copy locks on their local copies of the updated pages on behalf
of the committing transaction. Once all the required update-copy locks have been obtained, variant-
specific O2PL. actions are taken. O2PL-Invalidate (O2PL-]) invalidates the remote cached copies of data
pages after obtaining the update-copy locks, while O2PL-Propagate (O2PL-P) propagates the new values
of data items to remote caching sites; O2PL-Dynamic (O2PL-D) is an adaptive algorithm that chooses
dynamically between invalidation and propagation on a per copy basis. If a new page value is propagated
to any sites, then a two-phase commit protocol between those sites and the server is used to ensure atomi-
city. Invalidation does not require a two-phase commit, as it does not result in the updating of any data
that remains valid at the site.

Since lock management is distributed in the O2PL algorithms, the clients are necessarily involved in
deadlock detection. Locally, clients maintain a waits-for graph which is checked for cycles to detect
deadlocks that are local to the client. Global deadlocks are detected using a centralized algorithm a la
[Ston79]. The server periodically requests local waits-for graphs from the clients and combines them to
build a global waits-for graph. As in the server-based case, deadlocks are resolved by aborting the young-
est transaction. The use of update-copy locks allows for quicker detection of certain deadlocks: When a
conflict is detected between two update-copy locks or between an update-copy lock and a write lock, it is
known that a deadlock has occurred or will shortly occur, and therefore, the deadlock can be resolved
immediately [Care91b].



2.3. Callback Locking

The third family of caching algorithms studied is callback locking. Callback locking allows caching
of data pages and non-optimistic caching of locks. In contrast to the O2PL algorithms, with callback
locking, clients must obtain a lock from the server immediately (rather than at commit time) prior to
accessing a data page, if they don’t have the proper lock cached locally. When a client requests a lock that
conflicts with one or more locks that are currently cached at other clients, the server "calls back" the
conflicting locks by sending requests to the sites which have those locks cached. The lock request is
granted only when the server has determined that all conflicting locks have been released, so the callback
scheme ensures that sites can never concurrently hold conflicting locks. As a result, transactions do not
need to perform consistency maintenance actions during the commit phase. In this study, we analyze two
callback locking variants: Callback-Read (CB-Read), which allows inter-transaction caching of read locks
only, and Callback-All (CB-All), which allows inter-transaction caching of read locks and write locks.

As in the O2PL, algorithms, the server keeps track of which sites have copies of pages in their cache.
In CB-Read, which caches only read locks, the record that a client has a copy of a page is treated as an
implicit read lock on the page. When a request for a write lock on a page arrives at the server, the server
issues callback requests to all sites that have a cached copy of the page. At a client, such a callback
request is treated as a request for an update-copy lock on the specified page. If the request can not be
granted immediately, the client responds to the server saying that the page is currently in use. When the
callback request is granted at the client, the page is removed from the client’s buffer and an acknowledge-
ment message is sent (o the server. When all callbacks have been acknowledged to the server, the server
grants a write lock on the page to the requesting client. Any subsequent read or write lock requests for
the page will be blocked at the server until the write lock is released by the holding transaction. When a
client transaction is done with a write lock (i.e., at the end of a transaction), it sends the new copy of the
page to the server and releases the write lock, retaining a copy of the page in its cache.

The CB-All algorithm works similarly to CB-Read, except that write locks are kept at the clients
rather than at the server and are not returned to the server at the end of a transaction. In this algorithm,
the server’s copy information is thus augmented to allow a copy at a site (o be designated as an exclusive
copy, and clients also keep track of which pages they have exclusive copies of. If a read request for a
page arrives at the server and an exclusive copy of the page is currently held at some site, a downgrade
request is sent to that site. A downgrade request is similar to a callback request, but rather than removing
the page from its buffer, the client simply notes that it no longer has an exclusive copy of the page; in
effect it downgrades its cached write lock to a read lock. Non-exclusive copies are treated as in the CB-
Read algorithm. As in CB-Read, clients send copies of pages dirtied by a transaction to the server when
the transaction commits. However, in CB-All this is done only to to simplify recovery, as no other sites
can access a page while it is exclusively cached at another site.

Callback algorithms were originally introduced to maintain cache consistency in distributed file sys-
tems such as the Andrew File System [Howa88] and the file system of the Sprite operating system
[Nels88]. However, these systems provide a weaker form of consistency than that required by database
systems. More recently, a callback locking algorithm that provides serializability has been employed in
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the ObjectStore OODBMS. A callback locking algorithm which allows the caching of read locks but not
write locks was studied in [Wang91]. An important area in which the callback algorithms of this study
differ from the algorithm studied in [Wang91] is deadlock detection . In the latter algorithm, all cached
locks are considered to be in-use for the purpose of computing the waits-for graph at the server. This may
result in an unnecessarily high abort rate due to phantom deadlocks, especially with large client caches.
To avoid this problem, the CB-Read and CB-All algorithms adopt a solution that is used in the Object-
Store system. In this solution, copy sites must always respond to a callback request immediately, either
with an acknowledgment that they have released the lock or with an indication that the lock is currently in
use at the site. This allows deadlock detection to be performed at the server with accurate information.

2.4. Summary of the Algorithms

We now briefly summarize the three types of algorithms that are investigated in this study. All of the
algorithms allow inter-transaction caching of data pages. The C2PL algorithm does not allow inter-
transaction caching of locks — it uses a check-on-access technique for maintaining the consistency of
cached data. The O2PL algorithms allow an optimistic form of lock caching: locks are obtained locally at
clients during transaction execution, deferring global acquisition of locks until the commit phase. The
three O2PL variants use invalidation and/or propagation to maintain consistency. The callback locking
algorithms allow true inter-transaction caching of locks, but they require non-cached locks to be obtained
at the server immediately during transaction execution. The callback locking algorithms covered in this
study both use invalidation to maintain consistency.

3. A CLIENT-SERVER CACHING MODEL

This section presents an overview of the simulation model and workloads used in this study. A more
detailed description of both can be found in [Care91al.

3.1. The System Model

Figure 1 shows the structure of the simulation model, which was constructed using the DeNet discrete
event simulation language [Livn88]. It consists of components that model diskless client workstations and
a server machine (with disks) that are connected over a simple network. Each client site consisis of a
Buffer Manager that uses an LRU page replacement policy, a Concurrency Control Manager that is used
as either as a simple lock cache or as a full-function lock manager (depending on the cache consistency
algorithm in use), a Resource Manager that provides CPU service and access to the network, and a Client
Manager that coordinates the execution of transactions at the client. Each client also has a module called
the Transaction Source which submits transactions to the client according to the workload model
described in the following section. Transactions are represented as page reference strings and are submit-
ted to the client one at a time; upon completion of a transaction, the source waits for a specified think
time and then submits a new transaction. When a transaction aborts, it is resubmitted with the same page
reference string. The number of client machines is a parameter to the model. The server is modeled simi-
larly to the clients, but with the following differences: the Resource Manager manages disks as well as a
CPU, the Concurrency Control Manager has the ability to store information about the location of page
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Figure 1: Model of a Client-Server DBMS

copies in the system and also manages locks, there is a Server Manager component that coordinates the
operation of the server (analogous to the client’s Client Manager), and there is no Transaction Source
module (since all transactions originate at client workstations).

Table 1 describes the parameters that are used to specify the resources and overheads of the system
and shows the settings used in this study. The simulated CPUs of the system are managed using a two-
level priority scheme. System CPU requests, such as those for message and disk handling, are given
priority over user (transaction) requests. System requests are handled using a FIFO queueing discipline,

Parameter Meaning Setting

ClientCPU Instruction rate of client CPU 15 MIPS

ServerCPU Instruction rate of server CPU 30 MIPS

ClientBufSize Per-client buffer size 5% or 25% of database size
ServerBufSize Server buffer size 50% of database size
ServerDisks Number of disks at server 2 disks

MinDiskTime Minimum disk access time 10 millisecond
MaxDiskTime Maximum disk access time 30 milliseconds
NetworkBandwidth | Network bandwidth 8 or 80 megabits per second
PageSize Size of a page 4,096 bytes

DatabaseSize Size of database in pages 1250 (5 MBytes)
NumClients Number of client workstations 1to 25

FixedMsglnst Fixed no. of instructions per message 20,000 instructions
PerByteMsglnst No. of addl. instructions per msg. byte 10,000 inst. per 4 Kbyte page
ControlMsgSize Size in bytes of a control message 256 bytes

Lockdnst No. of instructions per lock/unlock pair | 300 instructions
RegisterCopylnst No. of inst. to register/unregister a copy | 300 instructions
DiskOverheadinst CPU Overhead for performing disk I/O | 5000 instructions
Deadlocklnterval Global deadlock detection frequency 1 second (if needed)

Table 1: System and Overhead Parameters



while a processor-sharing discipline is employed for user requests. Each disk has a FIFO queue of
requests; the disk used to service a particular request is chosen uniformly from among all the disks at the
server. The disk access time is drawn from a uniform distribution between a specified minimum and
maximum. A very simple network model is used in the simulator’s Network Manager component; the
network is modeled as a FIFO server with a specified bandwidth. We did not model the details of the
operation of a specific type of network (e.g., Ethernet, token ring, etc.). Rather, the approach we took was
to separate the CPU costs of messages from the on-the-wire costs of messages, and to allow the on-the-
wire message costs 10 be adjusted using the bandwidth parameter. The CPU cost for managing the proto-
col for a send or a receive of a message is modeled as a fixed number of instructions per message plus a
charge per message byte.

3.2. Workloads

Our simulation model provides a simple but flexible mechanism for describing workloads. The access
pattern for each client can be specified separately using the parameters shown in Table 2. Transactions
are represented as a string of page access requests in which some accesses are for reads and others are for
writes. Two ranges of database pages can be specified: a hot range and a cold range. The probability of a
page access being to a page in the hot range is specified; the remainder of the accesses are directed to cold
range pages. For both ranges, the probability that an access to a page in the range will be a write access
(in addition to a read access) is specified. The parameters also allow the specification of an average
number of instructions to be performed at the client for each page access, once the proper lock has been
obtained. This number is doubled for write accesses. By overlapping the ranges across clients and
adjusting the write probabilities for each range, it is possible to create workloads with many different
locality, data sharing, and data contention properties.

Table 3 summarizes the five workloads that are used in this study. Briefly, the HOTCOLD workload
has a high degree of locality per client as well as a moderate amount of sharing and data contention
among clients. The PRIVATE workload has high locality per client and only read sharing among clients.
There are no read-write or write-write conflicts in this workload — it is intended to model a CAD-type
application in which users have a private area of the database that they read and write while also reading

Parameter Meaning

TransactionSize | Mean number of pages accessed per transaction
HotBounds Page bounds of hot range

ColdBounds Page bounds of cold range

HotAccessProb | Prob. of accessing a page in the hot range

HotWriteProb Prob. of writing to a page in the hot range

ColdWriteProb | Prob. of wriling to a page in the cold range

PerPagelnst Mean no. of CPU instructions per page on read (doubled on write)
ThinkTime Mean think time between client transactions

Table 2: Workload Parameter Meanings



Parameter HOTCOLD PRIVATE FEED UNIFORM HICON
TransactionSize 20) pages 16 pages 5 pages 20 pages 20 pages
HotBounds p 1o p+49, p 1o p+24, 1to 50 — 110 250
p=30(n-1)+1 | p=25(n-1)+1
ColdBounds rest of DB 62610 1,250 | restof DB whole DB 25110 1250
HotAccessProb 0.8 0.5 0.8 — 0.8
ColdAccessProb 0.2 0.5 0.2 1.0 0.2
HotWriteProb 0.2 02 1.0/0.0 — 0.0, 0.05, 0.10,
0.25,0r 0.5
ColdWriteProb 0.2 0.0 0.0/0.0 0.2 0.2
PerPagelnst 30,000 30,000 30,000 30,000 30,000
ThinkTime 0 0 0 0 0

Table 3: Workload Parameter Settings for Client n

information from a shared library or a prior version of a design. The FEED workload represents a situa-
tion such as a stock quotation system in which one site produces data while the other sites consume it.
UNIFORM is a low-locality, moderate write probability workload which is used to examine the proper-
ties of the consistency algorithms in a case where caching is not likely to pay off significantly. Finally,
HICON is a workload with varying degrees of data contention. It is similar to skewed workloads that are
often used to study shared-disk transaction processing systems, and it is introduced here to investigate the
effects of data contention on the various algorithms. It should be emphasized that these are all synthetic
workloads that are intended to capture important aspects of several classes of real workloads. None was
derived from a real application since, at present, well-specified OODBMS workload descriptions are
difficult to come by.

4. EXPERIMENTS AND RESULTS

In this section we present the results of the performance studies of the new heuristic for the adaptive
O2PL. algorithm and of the callback locking algorithms. For most experiments the main metric presented
is throughput, measured in transactions per second. Where necessary, auxiliary performance measures
are also shown. An additional metric that is used in several of the experiments is the number of messages
sent per committed transactions. This metric is computed by taking the total number of messages sent
during the simulation runs (by clients and the server) and dividing by the number transaction commits
that occur during the simulation run. Results are presented for two different network bandwidths called
"slow" (8 Mbits/sec) and "fast" (80 Mbits/sec); these correspond to slightly discounted bandwidths of
Ethernet and FDDI technology, respectively.

4.1. A New Adaptive Heuristic

As described earlier, the heuristic for the dynamic O2PL algorithm used in [Care91a] generally per-
formed well, but it was never able to match the performance of the better of the other two O2PL algo-
rithms for a given workload (except for with the PRIVATE workload, where all O2PL algorithms per-
formed identically). During the analysis of the results of the earlier study, it became apparent that there
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was no intrinsic reason that a dynamic algorithm should not be able to match, or even exceed, the perfor-
mance of the static O2PL algorithms. For this reason, we re-visited the issue of heuristics for the
dynamic algorithm.

The original O2PL-D algorithm uses a simple heuristic to determine whether to use invalidation or
propagation in order to ensure that a site does not retain an out-of-date copy of a page. It initially pro-
pagates updates, invalidating copies on a subsequent consistency operation if it detects that the preceding
page propagation was wasted. Specifically, O2PL-D will propagate a new copy of a page if both: ) the
page is resident at the site when the consistency operation is attempted, and 2) if the page was previously
propagated to the site, then the page has been re-accessed since that propagation. In the initial study, it
was found that the algorithm’s willingness to err on the side of propagation resulted in its performance
being somewhat lower than that of O2PL-I for the HOTCOLD and UNIFORM workloads. As a result,
the approach taken towards developing an improved heuristic was to look at ways of instead erring on the
side of invalidation if a mistake was to be made. To achieve this, we propose a new dynamic algorithm,
O2PL-ND (for "New Dynamic"), which adds a third condition for propagation. A new copy of a page
will be propagated to a site by O2PL-ND only if conditions 1 and 2 of O2PL-D hold plus 3) the page was
previously invalidated at that site and that invalidation was a mistake. The new condition ensures that
O2PL-ND will invalidate a page at a site at least once before propagating it. The retention of the previ-
ous two conditions ensures that O2PL-ND will cease propagating a page to a site once the page no longer
appears to be useful at that site.

In order to implement the new condition, it is necessary to have a mechanism for determining that an
invalidation was a mistake. This is not straightforward since invalidating a page removes the page and its
buffer control information from the site, leaving no place to store information about the invalidation. To
solve this problem we use a structure called the invalidate window. The invalidate window is a list of the
last n distinct pages that have been invalidated at the site. The window size, n, is a parameter of the
O2PL-ND algorithm that is set when the database system is initialized at each client. When a page is
invalidated at a site, it is placed at the front of the invalidate window on that site. If the window is full
and the page does not already appear in the window, then the entry at the end is pushed out of the window
to make room for the new entry. If the page already appears in the window, however, it is simply moved
from its present location to the front. When a transaction page access request results in a page being
brought into the site’s buffer pool, the invalidate window is checked and if the page appears in the win-
dow, the page is marked as having had a mistaken invalidation applied to it.! The page remains marked as
such as long as it resides in the client’s buffer.

Except for the different heuristic, the O2PL-ND algorithm works much like O2PL-D. When a con-
sistency action request arrives at a client, the client checks to see if the page is resident at the site. If not,
then the client ignores the page and responds that an updated copy of the page is not needed. If the page

! The marking decision is made at this time rather than at the ime a consistency action is required in order to limit the algorithm’s sensi-
tivity 10 the window size. If the window was checked at consistency maintenance time, then a small window size could result in useful pages be-
ing invalidated because they have been "pushed out of the window" even while they were being used at the client.
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is resident at the site, then an exclusive lock is obtained on the site’s copy for the consistency action. The
client then checks the remaining two conditions for propagation and if both conditions are met the client
will decide to receive a new copy of the page. When the site has made a decision for all of the pages
affected in the consistency maintenance phase of the transaction, it tells the server which pages it wishes
to receive copies of. If the site decided not to propagate any of the changes, then the affected pages are
purged from the buffer, the locks are released, and the client informs the server that it does not require
any pages. However, if the site decided to propagate some or all of the changed pages, then it retains the
locks on those pages (invalidating the other pages, if any) and sends a message to the server that acts as
the acknowledgement in the first phase of a two-phase commit protocol and that also informs the server
which pages it requires copies of. When the server has heard from all involved clients, it sends copies of
the necessary pages to those sites that requested them. This message serves as the second phase of the
commit protocol. Upon receipt of the new page copies, the clients install them in their buffer pools and
release the exclusive locks on those pages.

To determine the performance of the new heuristic, the algorithm was run for the HOTCOLD, FEED,
and UNIFORM workloads described in Section 3.2. The PRIVATE workload was not used since its lack
of data contention causes all O2PL algorithms to perform identically. In the following, results are shown
for five algorithms: C2PL,, O2PL.-I, O2PL-P, O2PL-D and O2PL-ND. In all of the experiments described
here, the O2PL-ND algorithm was run with a window size of 20 pages. An early concermn with the new
heuristic was whether it would be too sensitive to the window size. A series of studies using the parame-
ters from [Care91a] found that in most cases, the algorithm was insensitive to the window size within a
range of 10 to 100 pages (0.8% to 8% of the database size) [Fran92a]. The only exception was the FEED
workload when run with 5% client buffers, in which a slight sensitivity was noticeable for window sizes
up to 50 pages. This case and the reasons for the insensitivity of the algorithm in the other cases are dis-
cussed in the following sections.

4.1.1. Experiment 1 : The HOTCOLD Workload - Slow Network

Figure 2 shows the throughput for the HOTCOLD workload using the slow network and a client
buffer size of 5% of the database size (62 pages). This case is a clear example of how the new heuristic
of the O2PL-ND algorithm can improve performance over the heuristic used by the original O2PL-D
algorithm. O2PL-ND performs as well as O2PL-I, the better of the static O2PL, algorithms in this case,
while O2PL.-D tracks the lower performance of O2PL-P. All of the algorithms eventually become disk-
bound in this case: C2PL hits the disk bottleneck at 25 clients, while the O2PL. algorithms become disk-
bound at 20 clients. In this experiment, all of the O2PL, algorithms outperform the C2PL algorithm prior
to reaching the disk bottleneck. This is due to the additional latency incurred by C2PL’s heavy reliance
on messages, as shown in Figure 3. Once the algorithms become disk-bound, their performance is deter-
mined by their disk requirements per commit as shown in Figure 4. The similarity of O2PL-D’s perfor-
mance to that of O2PL-P in this case is due to the fact that O2PL-D will propagate a page once to a site
before it detects that it should have invalidated the page. Since the client buffer pool is relatively small in
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this experiment, O2PL-P performs only slightly more propagations than O2PL-D, as an unused page is
likely to be pushed out of the buffer pool by the LRU page replacement algorithm. About §0% of the
propagations go unused for both O2PL-P and O2PL-D (that is, these propagated pages are not accessed
before they are forced out of the buffer pool or another consistency action arrives for the page).

The lower performance of O2PL-P and O2PL.-D, as compared to O2PL-I and O2PL-ND, is due to

both messages and disk I/O. The additional messages are due to the propagations just described. As was
seen in [Care91a], the additional disk I/O is caused by slightly lower server and client buffer hit rates.
These lower hit rates are the result of the fact that, with propagation of updates, pages are removed from



the client buffers only when they age out of the buffer pool. Aged-out pages are less likely to be found in
the server buffer than recently invalidated pages if they are needed (thus lowering the server buffer hit
rate), and they take up valuable space for too long in the small client buffer pool if they are not needed
(thus lowering the hit rate on the client).

The O2PL-ND algorithm performs similarly to O2PL-I mainly because the majority of the con-
sistency operations performed by O2PL-ND are invalidates; at 5 clients and beyond, fewer then 10% of
its consistency operations are propagations. Furthermore, of the propagations performed, between 39%
and 62% performed prove useful, so their net affect on system performance is minimal. These effects
occur because the invalidation window is small relative to the database size. As the invalidate window
size approaches the database size, the O2PL-ND algorithm becomes more like the original O2PL-D algo-
rithm. In [Fran92a] it was seen that the number of propagations per committed transaction increases with
the window size, but that it remains quite small in the range of window sizes tested (10 to 100). The
number of useless propagations grows slowly and smoothly enough with the invalidate window size that
there is reasonable room for error in choosing the window size (as long as it is kept well below the size of
the database).

Figure 5 shows the throughput results for the HOTCOLD workload and slow network when the client
buffer size is increased to 25% of the database size (312 pages). This case shows a clear example of the
effect of the new system parameter settings used in this study. In [Care91a], which used slower CPUs
and a faster network, the O2PL-D algorithm achieved performance much closer to that of O2PL-I for this
case. The parameter settings used in [Care91a] were based on the intuition that the network itself would
not ever be a bottleneck. However, the continuing disparity in the performance increases of CPUs and
networks has increased the likelihood of a network bottleneck arising. The effect of these technology
trends is an increase in the penalty paid for useless propagations and as a result, the relative performance
of the O2PL-D algorithm suffers compared to what was observed in [Care91a]. These trends also exacer-
bate the performance problems incurred by the O2PL-P algorithm due to excessive propagation. In this
case, the O2PL-P and O2PL-D algorithms become network-bound, while the O2PL-I and O2PL-ND algo-
rithms approach a disk bottleneck at 25 clients.

In terms of the new heuristic, the results in this case are similar to those for the 5% client buffer case;
the O2PL-ND algorithm very closely matches the performance of the O2PL-I algorithm. Once again,
O2PL-ND closely matches O2PL-I because the vast majority of the consistency operations that it per-
forms are invalidations. Furthermore, approximately 99% of the invalidations are the result of pages not
being in the invalidate window (condition 3). This shows that O2PL-ND’s invalidate window is effective
in avoiding even the single mistake that is made by O2PL-D, which explains its superior performance.

4.1.2. Experiment 2 : The HOTCOLD Workload - Fast Network

Figure 6 shows the throughput results for the HOTCOLD workload using the fast network and the
smaller client buffer pool size. These throughput results are similar to those of the slow network case in
that O2PL-I and O2PL-ND have similar performance, while O2PL-P and O2PL-D have similar but lower
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performance. However, in this case, the performance differences among the O2PL algorithms are pri-
marily driven by disk I/O (all algorithms are eventually disk-bound), and are caused by the algorithms’
buffering characteristics described previously. Figure 7 shows the throughput when the larger client
buffer size is used. In this case, it can be seen that the original dynamic algorithm performs significantly
better than O2PL-P, as it performs many fewer propagations than O2PL-P. In fact, O2PL-P becomes
CPU-bound at the server due to message processing overhead, while all other algorithms eventually
become disk-bound. It is interesting to note that with these parameter settings, at 15 clients and beyond,
O2PL-D matches and even slightly exceeds the performance of the O2PL-I and O2PL-ND algorithms.
This is due to the fact that O2PL-D has a better client hit rate than these other algorithms, and thus
requires fewer disk I/Os per transaction. Its improved hit rate is due to the fact that O2PL-D performs
more than twice as many useful propagations as O2PL-ND. Of course, O2PL-D also performs many
more wasted propagations than O2PL-ND, but the overhead of these propagations is not high enough here
to cause O2PL-D to become network or server CPU-bound, so it eventually hits the disk bottleneck. In

addition, the large buffer-pool size ensures that hot range pages will remain in the client buffer pool
despite the wasted propagations.

4.1.3. Summary of the HOTCOLD Experiments

The results of the HOTCOLD experiments show that O2PL-ND performs at about the same level as
O2PL-1. This is an improvement over the heuristic used by O2PL-D. However, O2PL-ND does not
significantly outperform O2PL-Iin any of the HOTCOLD cases tested. This is because the nature of the
HOTCOLD workload makes propagation a bad idea in general; from the view of a particular client, most
updates that are performed at other clients will be on pages that are in the cold region of the database.
Therefore, propagation of updates from other clients will typically not be helpful.
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4.1.4. Experiment 3: The FEED Workload

In contrast to the HOTCOLD workload, where propagation is generally a bad idea, the FEED work-
load was shown in [Care91a] to benefit from propagation. This result also holds in general in this study,
however, an exception arises in the case with small client buffer sizes and the slow network. The
throughput results for this case are shown in Figure 8. In this case, the O2PL. algorithms all perform
better than C2PL, with O2PL-I having the highest throughput at 15 clients and beyond, while O2PL-P has
the lowest of the O2PL algorithms. The dynamic algorithms fall roughly between the two static ones,
with O2PL-ND having a slight advantage. This ordering is due to the combination of the slow network,
which makes propagations expensive, and the small buffer pool, which causes propagations to be wasted.
For the O2PL algorithms that do propagation, only 53% to 60% of the propagations actually prove to be
useful. Moreover, due to the small client buffer pools, many of these propagations are used only once
before the page is thrown out. A useless propagation costs a page-sized message. On the other hand, a
propagation that is used exactly once saves only a smaller control message (the page request message that
would be required to obtain the page from the server on the subsequent use had the page not been pro-
pagated to the site). Thus, if many "useful" propagations are used only once before being thrown out of
the buffer pool or re-propagated to, the net effect of a small majority of useful propagations can be a
reduction in the number of messages but an actual increase in the demand for network bandwidth. This is
the effect seen in Figure 8.

As mentioned previously, the FEED workload with small client buffer pools was the only situation
examined where the invalidate window size of O2PL-ND made a noticeable difference within the range
of 10 to 100 pages. In fact, differences are only noticed at window sizes of 50 and smaller, as a window
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size of 50 pages allows all pages that are updated by the FEED workload to fit in the window. Therefore,
at 50 pages and beyond, O2PL-ND acts exactly like the O2PL-D algorithm since there are no invalida-
tions due to the absence of a page in the invalidation window. The performance of the O2PL-ND algo-
rithm in this case is bracketed by the O2PL-I algorithm (i.e., a window size of 0) and the O2PL-D algo-
rithm. In this test, at 10 clients and beyond, the O2PL-ND algorithm (window size = 20) chooses to
invalidate remote copies about 40% of the time, while O2PL-D chooses to invalidate only about 15% of
the time.

Figure 9 shows the throughput of the FEED workload with the slow network when the client buffer
pool size is increased to 25% of the database size. As in the previous case, all of the algorithms approach
a network bottleneck; in this case however, the O2PL.-P algorithm significantly outperforms O2PL-1. The
larger buffer pools allow all of the clients to keep their 50 hot range pages in memory, so many fewer of
O2PL.-P’s propagations are wasted due to pages being forced out of the buffer pool. As a result, O2PL-1
sends more page requests to the server than O2PL-P, which results in increased path length for transac-
tions under O2PL-I. This additional path length includes additional messages (O2PL-I sends about 6
messages per transaction versus about 3 per transaction for O2PL-P), and additional lock requests at the
server. The two dynamic algorithms have nearly identical performance in this case; they perform slightly
worse than O2PL-P but much better than O2PL-1. The reason that they perform similarly is that the
invalidate window has virtually no effect in this case (both algorithms invalidate between 15% and 22%
of the time). In this experiment, the percentage of O2PL-ND’s invalidations that were due solely 10 a
page not being marked as recently invalidated ranged from 2% at two clients to 8% at 25 clients.

The reason that O2PL-ND’s invalidate window has such a small impact in this case is due to the fact
that, as stated previously, the window is checked when a page is read into memory rather than when a
consistency action is required. With the large client buffer size, hot range pages are aged out of the buffer
pool very infrequently, and thus hot range pages are removed mainly as the result of invalidations.
Invalidated hot pages are likely to be re-referenced quickly, and are likely to still be in the invalidate win-
dow when the re-reference occurs. Such pages will then be marked as "recently invalidated" for their
entire residency in the buffer pool. This effect was not seen in the smaller buffer case because hot pages
were often aged out of the small buffer pool by the LRU mechanism; when an aged out page is reread, it
may no longer be in the invalidate window, and thus will not be marked as recently invalidated.

Due to space limitations, the results for the fast network case are not shown here. For the small client
buffer case, the O2PL algorithms again all had similar throughput; O2PL-P and O2PL-D performed
slightly better than O2PL-ND, which was slightly better than O2PL-I. The increase in network
bandwidth removed the advantage of smaller message sizes that was seen earlier for O2PL-1. For the
larger client buffer case, the relative performance of the algorithms was similar to that just described for
the slow network. In both fast network cases, C2PL becomes server CPU-bound due to its high message
volume, so it performs well below the level of the other algorithms.
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4.1.5. Experiment 4: The UNIFORM Workload

So far we have investigated one workload where invalidation is advantageous and one in which pro-
pagation performs well. We now briefly examine the UNIFORM workload, in which caching is not
expected to provide much of a performance benefit. In the case of clients with the 5% buffer pool size,
there was very little performance difference among any of the algorithms in the initial study. In this
study, the lack of difference among the algorithms holds only for the fast network case. In the slow net-
work case (not shown), even with the small client buffer pools, the O2PL-P and O2PL-D algorithms per-
form noticeably below the level of the other O2PL algorithms due to the message costs associated with
wasted propagations. Once again, O2PL-D performs similarly to O2PL-P because the small buffer pool
makes it likely that wasted propagations will be quickly replaced from the client buffer pool (thus limit-
ing O2PL-P’s opportunity to make mistakes).

More significant differences become noticeable when the client buffer size is increased to 25%. The
throughput results for this case with the slow network are shown in Figure 10. As in the HOTCOLD
case, O2PL.-ND performs similarly to O2PL-I (and is essentially insensitive to the invalidate window size
in the range of 10 to 100 pages). In this workload, propagations do not generally turn out to be useful
(e.g., fewer than 15% of O2PL-P’s propagations are useful in this case) and this causes algorithms that
perform more propagations to suffer. This is because the workload’s lack of locality means that pages are
likely to be aged out of the buffer pool or updated elsewhere before they are accessed again at a site.
Doing fewer propagations thus results in sending fewer messages, and hence, the O2PL-I and O2PL-ND
algorithms perform better than the O2PL-P and O2PL-D algorithms. The O2PL-P and O2PL-D algo-
rithms approach a network bottleneck at 25 clients, while the other three algorithms become disk-bound.
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Figure 11 shows the throughput results when the fast network is used, resulting in the disk becoming the
main bottleneck. In this case, the results are similar to what was seen in [Care91a] -— invalidation has a
slight advantage in this case. As a result, the O2PL-ND algorithm is able to fairly closely match the per-
formance of the O2PL-I algorithm.

4.1.6. Summary

The experiments presented in Sections 4.1.1 thru 4.1.4 show that the new heuristic for the dynamic
algorithm performs as well as the static O2PL-I algorithm in cases where invalidation is the correct
approach, which O2PL-D was unable to do. In addition, it retains the performance advantages of the
O2PL-D heuristic in cases where propagation is advantageous. Though the new heuristic never
significantly outperformed the better of the static algorithms in any of the cases tested, it was shown to be
a reasonable choice even in situations with static locality; as a result, it will certainly have advantages
where locality patterns are mixed or dynamic. The effect of the combination of the faster CPUs along
with the slow network setting used in this study caused the advantages of O2PL-ND over OZPL-D to be
greater than those seen when the parameters of [Care91a] were used. Thus, in situations where the net-
work has a significant impact on performance, the O2PL-ND algorithm is a much better choice than
O2PL-D.

4.2. Callback Locking

In this section, we study the performance of the two callback locking algorithms that were described
in Section 2: Callback-Read (CB-Read) and Callback-All (CB-All). For comparison purposes, we also
show the performance of the O2PL-ND and C2PL. algorithms. Again, experiments were run with client
buffer pool sizes of 5% and 25% of the database size. Results are shown only for the 25% case since the
important aspects of the performance of the CB algorithms are slightly more pronounced (but not qualita-
tively different) in the large client buffer pool case versus the small buffer case.

4.2.1. Experiment 1: The HOTCOLD Workload

Figure 12 shows the results of the HOTCOLD workload using the slow network and a client buffer
pool size of 25%. The C2PL algorithm has the lowest throughput due to the combination of high mes-
sage requirements (shown in Figure 13) and higher disk requirements (compared the others) due to its
lower buffer hit rates. In general, the CB algorithms both perform at a somewhat lower level than O2PL-
ND, which has the highest throughput overall. These results are driven primarily by the message require-
ments of the algorithms as shown in Figure 13 — the disk requirements of the two callback algorithms
and the O2PL-ND algorithm are nearly identical, since O2PL-ND chooses to use invalidation for over
90% of its consistency operations. The CB algorithms send significantly more messages per commit than
O2PL-ND. The difference between CB-Read and O2PL-ND is due to the fact that CB-Read performs
consistency operations on a per page basis, while O2PL-ND performs consistency operations only at the
end of the execution phase. By waiting until the end of the execution phase to perform consistency
operations, O2PL-ND saves messages by sending fewer requests to the server for consistency actions (one
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per transaction versus as many as one per write for CB-Read) and, to a lesser extent, by grouping multiple
consistency requests for the same client in a single message. (In this experiment, O2PL-ND sent an aver-
age of between 1.1 and 1.2 consistency operations per consistency message.) In contrast to CB-Read,
CB-All is allowed to cache write locks; this is the reason for its sending fewer messages than CB-Read
when small numbers of clients are present. However, beyond 10 clients the caching of write locks results
in a net increase in messages. For the callback algorithm, the advantage of caching a write lock is that a
request for a lock on a site where it is already cached saves one round trip message with the server. How-
ever, the penalty for caching a write lock that conflicts with a read request at a different site is also a
round trip message with the server. Since the write probability is only 20% in the HOTCOLD workload,
caching write locks becomes a losing proposition when the number of clients is sufficient to make it more
likely that a page will be read at some remote site before it is re-written at a site with a cached write lock.
This result supports the intuition behind the decision in [Wang91] to cache only read locks.

Figure 14 shows the throughput for the HOTCOLD workload with the fast network and large client
buffer pools. As shown in Figure 15, all of the algorithms eventually become disk-bound in this case, so
the messaging effects discussed in the previous case eventually have no impact on the throughput. As a
result, the performance differences between the CB algorithms disappear. Again, O2PL-ND has similar
performance to the CB algorithms because it chooses to invalidate pages most of the time, and thus, its
buffering behavior is similar to that of the invalidation-based CB algorithms.

4.2.2. Experiment 2: The PRIVATE Workload

The PRIVATE workload has high locality but no data contention. As a result, algorithms which
cache data and locks perform very well on this workload. The throughput results for the PRIVATE
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workload using the slow network are shown in Figure 16. The results seen here are again due to the mes-
sage requirements of the algorithms. C2PL requires an average of 39 messages per commit throughout
the range of client populations, while CB-Read requires 15 messages and CB-All requires 12 messages.
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O2PL-ND’s message requirements range from 12 messages per commit at 1 client to 13.4 at 25 clients.?
All of the algorithms except C2PL become network-bound at 10 clients and beyond. C2PL eventually
reaches a network bottleneck at 25 clients. C2PL does not reach the network bottleneck earlier because
most of the messages it sends are small control messages (e.g., lock requests and replies). These small
messages increase the transaction path length due to CPU processing at the server and the clients. The
other algorithms send fewer messages per transaction, but many of these messages contain data pages,
which consume more of the network bandwidth. This results in making network bandwidth a larger fac-
tor in their path length. C2PL’s additional messages in this case are the result of not caching read locks
or write locks. The performance of CB-Read also suffers because it does not cache write locks, which
leads CB-Read to send a message to the server for every page written by a transaction. When the
PRIVATE workload is run with the fast network (Figure 17), the C2PL algorithm becomes CPU-bound at
the server due to message overhead, while the other algorithms become disk-bound at 15 clients and
beyond. Prior to hitting the disk bottleneck, the CB-Read algorithm pays a slight cost due to added path
length for obtaining write locks. Note that in this workload, there is no cost for caching write locks
because of the absence of read-write and write-write data sharing among clients. This provides an advan-
tage for CB-All over CB-Read in regions where messages have a significant impact on performance.
Once the disk bottleneck is reached, CB-Read, CB-All, and O2PL-ND all perform similarly.

4.2.3. Experiment 3: The FEED Workload

The reader and writer throughput results for the FEED workload with the slow network are shown in
Figure 18. O2PL-ND has the best reader throughput prior to 10 clients, while CB-Read and CB-All have
the best reader throughput beyond 10 clients. The writer throughput is similar for all of the algorithms at
5 clients and beyond. O2PL-ND and CB-All have better writer throughput when there are O or 1 reader
sites. Once again, the throughput results are driven by the message requirements of the algorithms. Fig-
ure 19 shows the messages sent per commit averaged over the writer and all of the readers for each of the
algorithms.? O2PL-ND’s higher initial reader throughput is due to its lower message requirements, which
result from its reduced consistency message requirements (as described previously) and a better client
buffer hit rate due to propagations. All of the algorithms except for C2PL, approach a network bottleneck
at 15 clients and beyond. As the network becomes saturated, the propagations performed by O2PL-ND
cause its reader performance to suffer compared to the callback algorithms. In terms of the callback algo-
rithms, the writer site in CB-Read has to request every write lock from the server, while in the CB-All
algorithm, the writer has to request write locks that have been called back (virtually all write locks at five
clients and beyond). CB-All also requires extra messages for readers to callback the write locks that are
cached at the writer site. As a result, CB-All’s writer site receives and sends many more messages per
commit than CB-Read’s writer site. For example, with 15 clients CB-All’s writer sends nearly 26

2 The slight increase in message requirements for O2PL-ND is due to messages for global deadlock detection: during each deadlock detec-
tion interval, a round-trip message is sent between the server and each client. In this case, the throughput remains roughly constant as clients are
added to the system (beyond 10 clients) so the additional deadlock detection messages increase the per commit total,

3 Note that since client number 1 is the writer site, the data points for one client in Figure 19 show the messages per writer transaction com-
mit in the absence of conflicting readers.
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messages per writer commit and at 25 clients it sends nearly 43 messages per writer commit. On the
other hand, CB-Read’s writer site sends about 7 messages per writer commit from 1 to 25 clients. The
callback requests for write locks are the cause of the difference in the message requirements for the CB
algorithms seen in Figure 19. Furthermore, there is little or no benefit 1o caching write locks here, as the
updated pages are in the hot region of all of the readers and are thus likely to be read at reader clients.
The C2PL algorithm has the highest message requirements for reader sites, as such sites must send a mes-
sage 1o the server for each page accessed. Once again, many of these messages are small, so C2PL is
affected by increased server and client CPU requirements and does not become network-bound.

The throughput results for the FEED workload with the fast network are shown in Figure 20. Again,
in this case, all of the algorithms except for C2PL. approach (but do not quite reach) a disk bottleneck at
25 clients. C2PL eventually becomes server CPU-bound due to lock requests that are sent to the server.
In this case, the propagations performed by O2PL-ND give it a better buffer hit rate at the reader clients.
However, this translates to only a slight reduction in disk reads compared to the callback algorithms, as
hot pages missed at clients due to invalidations are very likely to be in the server’s buffer pool. Thus, in
the range of clients studied, the relative performance of the algorithms is still largely dictated by the mes-
sage characteristics described for the slow network case. With the fast network, the size of the messages
has a smaller impact on performance, therefore, the relative performance of the algorithms in this case is
more in line with the message requirements shown in Figure 19.

4.2.4. Experiment 4: The UNIFORM Workload

The throughput results for the UNIFORM workload using the slow network are shown in Figure 21.
None of the algorithms hits a resource bottleneck in the range of clients, shown, so the throughput results
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are all latency driven. O2PL-ND achieves the highest throughput across the range of client populations,
with the callback algorithms performing below O2PL-ND but better than C2PL through most of the
range. CB-Read performs slightly better than CB-All because caching write locks is costly due to the
lack of locality and the low write probability. The decline in throughput for the three lock caching algo-
rithms is due to their increased message requirements for consistency operations in this low-locality
workload. At 15 clients and beyond, all three of the lock caching algorithms send more messages than
C2PL, which does not cache locks. While C2PL’s message requirements per commit remain constant as
clients are added, the lock caching algorithms are forced to send consistency operations (e.g., invalida-
tions or callback requests) to more sites. C2PL’s lower performance through most of the range is due to
its higher disk requirements resulting from low client and server buffer hit rates. The reason that the
algorithms do not quite reach a bottleneck in this case is the higher level of data contention than was seen
in the other workloads. When the fast network is used (not shown), the network effects are removed and
all algorithms eventually approach a disk bottleneck. In this case, the lock caching algorithms perform
similarly, and slightly better than C2PL, due to the buffer pool effects seen in the preceding experiments.

4.2.5. Experiment 5: The HICON workload

The final workload examined in this paper is the HICON workload. While we do not expect high data
contention 1o be typical for client-server DBMS applications, we use this workload to examine the robust-
ness of the algorithms in the presence of data contention and to gain a better understanding of their dif-
ferent approaches to detecting conflicts. As described in Section 3.2, this workload has a 250 page hot
range that is shared by all clients. The write probability for hot range pages is varied from 0% to 50% in
order to study different levels of data contention. In this section we briefly describe the HICON results,
using the fast network and large client buffer pools. Figure 22 shows the throughput for HICON with a
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hot write probability of 5%. In the range of 1 to S clients, the lock caching algorithms perform similarly
and C2PL. has lower performance than the others. C2PL’s lower performance in this range is due to its
significantly higher message requirements here. These results are latency-based, as no bottlenecks
develop in this range — in fact, no resource bottlenecks are reached by any of the algorithms in this
experiment. At 10 clients and beyond, the effects of increased data contention become apparent; O2PL-
ND’s performance suffers and it has the lowest utilization of all three major system resources (disk,
server CPU, and network). O2PL.-ND has a somewhat higher level of blocking for concurrency control
than the other algorithms (e.g., at 15 clients, approximately 42% of its transactions are blocked at any
given time versus approximately 37% for the callback algorithms and 35% for C2PL). O2PL-ND’s
higher blocking level is due to the fact that some (global) deadlocks are detected in O2PL-ND using
periodic deadlock detection, while in the other algorithms, all deadlocks can be detected immediately at
the server. All of the algorithms suffer from increased blocking as clients are added. In addition, the lock
caching algorithms suffer from increasing message costs due to consistency messages as clients are
added. These two factors account for the thrashing behavior seen in Figure 22. Again, in this workload,
the caching of write locks causes CB-All send more messages than CB-Read. C2PL performs best at 25
clients because at that point it sends fewer messages than the other algorithms. The slight downturn in
performance seen for the C2PL algorithm at 20 clients and beyond is due to data contention.

Figure 23 shows the throughput of the algorithms when the hot write probability is increased to 10%.
Here, the trends seen in the 5% write probability case are even more pronounced. C2PL becomes the
highest performing algorithm at 15 clients and beyond, and O2PL-ND performs at a much lower level
than the other algorithms. C2PL sends fewer messages per transaction than the other algorithms at fifteen
clients and beyond in this case because its message requirements remain constant as clients are added to
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the system. This advantage helps even more in high contention cases since it makes aborts less costly.
An increase in data contention causes all of the algorithms to exhibit thrashing behavior beyond 10
clients. In this case, the thrashing is due not only to additional blocking, but also to a significant number
of aborts. For example, at 20 clients, O2PL-ND performs nearly 0.6 aborts per committed transaction,
while the other algorithms perform about 0.3 aborts per commit. In all of the HICON experiments,
O2PL-ND was found to have a significantly higher abort rate than the other three algorithms. This is due
to the fact that it resolves write-write conflicts using aborts, whereas the other three algorithms resolve
them using blocking. The trends seen in these two cases become more pronounced as the hot write proba-
bility is increased beyond the two cases shown here. An interesting effect that appears with higher write
probabilities (e.g., HICON with write probabilities of 25% and 50%) is that in some cases, O2PL-ND
actually has fewer blocked transactions than the other algorithms. This effect arises because of its higher
abort rate, which at high contention levels acts as a throttle on the blocking level. However, the net result
is that O2PL-ND performs worse relative to the other algorithms as the hot write probability is increased.

4.2.6. Summary

The results described in the previous sections show that the CB algorithms have slightly lower perfor-
mance than the O2PL-ND algorithm in situations where network usage plays a large factor in determining
performance. This is due to the additional message requirements that the CB algorithms incur because
they perform consistency maintenance on a per-page basis. In situations where disk I/O was the dominant
factor, they performed at a level similar to that of O2PL-ND since they are invalidation-based. The cach-
ing of write locks usually caused a net increase in message traffic, though exceptions arose in cases with
few clients or no data contention. The CB algorithms performed better than the non-lock caching C2PL
under most workloads, while retaining the lower (compared to O2PL-ND) abort rate of that algorithm,
This is due to the fact that the CB algorithms are able to cache locks across transactions but do not have
an optimistic component. In the high contention cases, fewer aborts and the ability to perform deadlock
detection locally at the server allowed the CB algorithms to be much more robust in the presence of data
contention than the O2PL-ND algorithm. C2PL was found to be the best algorithm for high data conten-
tion because it has a low abort rate and fast deadlock detection (similar to CB) together with message
requirements that remain constant as client sites are added to the system.

5. RELATED WORK
In this section we briefly discuss work related to the specific issues that were addressed in this study.
Work related to client-server caching in general is covered in [Care91a].

5.1. Callback Locking

As mentioned earlier, a callback locking algorithm is used to provide cache consistency in the Object-
Store OODBMS and is described briefly in [Lamb91]. A callback locking algorithm for client-server
database systems was studied in [Wang91]. That study compared the callback algorithm with a caching
2PL algorithm (similar to C2PL) and two variants of a "no-wait" locking algorithm that allowed clients to
access cached objects before they received a lock response from the server. The results of that study
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showed that if network delay was taken into account, callback locking was the best among the algorithms
studied when locality was hi gh or data contention was low, with caching 2PL, being better in high conflict
situations. These results mostly agree with those presented in Section 4.2. However, [Wang91] did not
investigate an algorithm that was comparable to O2PL-ND and did not study the implications of caching
write locks. Also, as mentioned earlier, the [Wang91] callback algorithm did not use accurate informa-
tion for deadlock detection, and would be susceptible to phantom deadlocks in situations with large client
buffer pools. The workload model used in [Wang91] provided an interesting notion of locality, one that
was more dynamic than that of this study; however, it did not provide a way of controlling the nature of
data sharing among clients.

A study that is closely related to client-server caching is the work at Harvard on using Distributed
Shared Virtual Memory (DSM) [Bell90] to support database Systems. DSM is a technique that imple-
ments the abstraction of a system-wide single-level store in a distributed system [Li89]. Three algorithms
for maintaining cache consistency were studied in [Bell90], one of which was a 2PL variant that used
callbacks. In a DSM system, there is no central server to manage copy information, so each page is stati-
cally assigned a "primary” site whose job it is to track the most recent "owner" of the page. The owner
site changes dynamically; a site becomes the owner of a page when it obtains a write lock on the page.
The owner’s write lock may be later downgraded to a read lock as the result of a callback. The callback
algorithm was compared 10 several broadcast-based algorithms using a simulation model that had an
inexpensive broadcast facility. Given this facility, the callback-style algorithm typically had lower per-
formance than one of the broadcast algorithms.

More recently, a group at IBM Yorktown has investigated several related algorithms for the shared-
disk environment [Dan92]. These algorithms included shared-disk equivalents of the C2PL, CB-Read
and CB-Write algorithms. In that study, the performance differences seen among the algorithms were
largely due to disk I/Os needed to force pages to stable storage for recovery purposes prior to transferring
a page from one node to the next. This is a different problem than what is encountered in a page-server
System, since such systems have a central server that is responsible for managing a log, and in the algo-
rithms covered here, all page transfers go through that server.

As mentioned earlier, callback algorithms were initially developed for use in distributed file systems,
However, these systems have different correctness criteria and workload characteristics than database sys-
tems. The Andrew File System [Howa88] uses a callback scheme to inform sites of pending
modifications to files that they have cached. This scheme does not guarantee consistent updates, how-
ever. Files that must be kept consistent, such as directories, are handled by simply not allowing them to
be updated at cached sites. The Sprite operating system [Nels88] provides consistent updates, but it does
so by disallowing caching for files that are open for write access. This is done using a callback mechan-
ism that informs sites that a file is no longer cachable.

5.2. Dynamic Algorithms

We are unaware of any other work investigating dynamic algorithms for choosing among propagation
and invalidation to maintain cache consistency in a client-server DBMS environment. Similar problems
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have been addressed in work on NUMA (Non-Uniform Memory Access) architectures, however. In such
Systems, an access to a data object that is located in a remote memory can result in migrating the data
object to the requesting site (invalidation), replicating the object (propagation), or simply accessing the
object remotely using the hardware support of a shared-memory multiprocessor. These issues are
addressed in MUNIN [Cart91] by defining various types of sharing properties and allowing the program-
mer to annotate data declarations with a des; gnation of the type of sharing used for each variable, These
annotations serve as hints to MUNIN in deciding among propagation and invalidation, making replication
decisions, etc. The DUnX system [LaRo91] uses a parameterized policy which chooses dynamically
among page replacement options based on reference histories. The parameters allow a user to adjust the
level of dynamism of the algorithms. A performance study in [L.aR091] demonstrated that it was possible
to find a set of default parameter settings that provided good performance over a range of NUMA work-
loads.

6. CONCLUSIONS

In this paper, we have presented several extensions to the earlier client-server caching study of
[Care9la]. These are: a better heuristic for the dynamic O2PL algorithm, an investigation of callback
locking algorithms, a re-examination of system resource parameters, and a workload with high data con-
tention,

The new heuristic was shown to perform as well as the static invalidation-based O2PL algorithm in
cases where invalidation is the correct approach, which is something that the previous heuristic was
unable to do. In addition, it retains the performance advantages of the previous heuristic in cases where
propagation is advantageous. The heuristic uses a fixed window size parameter, but it was found to be
fairly insensitive to the exact size of the window as long as the window size was kept small in proportion
to the database size. The advantages of the new heuristic were more significant than were seen when the
parameters of [Care91a] were used, as the combination of faster CPUs and a slower network increased the
negative effects of bad propagations.

Two variants of callback locking were studied. CB-Read, the variant that caches only read locks, was
found to perform as well as or better than CB-All, which caches both read and write locks, in most situa-
tions. This was because the caching of write locks was found to cause a net increase in messages except
with small client populations or minimal data contention. Both CB algorithms were seen to have slightly
lower performance than the O2PL-ND algorithm in situations where network usage plays a large factor in
determining performance but their performance was similar to that of the O2PL-ND algorithm in cases
where disk I/0 was the dominant factor. The CB algorithms were seen to have a lower abort rate than the
OZ2PL-ND algorithm, and were much more robust than O2PL-ND in the presence of data contention.
C2PL was found to be the best algorithm for high data contention workloads.

A number of issues remain to be addressed in the area of cache consistency algorithms. In particular,
mixed workloads and workloads with dynamic properties should be studied to better demonstrate the
effectiveness of the adaptive algorithms. In addition, it should be possible to devise adaptive versions of
the callback algorithms that perform better in situations where propagation is appropriate. It should also
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well as data caching, Finally, we are currently investigating ways of more fully exploiting the memory
and processing power of the workstations in a client-server database System. A first step in this direction
is described in [Fran92b].
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