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ABSTRACT

We study equations of the form (a = z) which are single axioms for group theory.
Earlier examples of such were found by Neumann and McCune. We prove some
lower bounds on the complexity of such «, showing that McCune’s examples are the
shortest possible. We also show that no such a can have only two distinct variables.
We do produce an o with only three distinct variables, refuting a conjecture of
Neumann. Automated reasoning techniques are used both positively (searching for
and verifying single axioms) and negatively (proving that various candidate (o = z)
hold in some non-group and are hence not single axioms).

§0. Introduction. A group is a model for the following set of five axioms:

Gl. t(z,i(z)) = e

G2. t(i(z),z) = e

G3. t(z,e) =2z

G4. tle,z) =2

G5. t(z,(y, Z)) = t(t(z,y), z)

Here, t (times) is a 2-place function symbol, ¢ (inverse) is a 1-place function symbol, and
e (identity) is a constant. The variables z,y,z are understood to be universally quantified.
As is well-known, these axioms are redundant, in that either of the subsets, {G1,G3,G5} or
{G2, G4, G5}, suffices to derive all the axioms. It is easy to verify that no 2-element subset
of {G1,G2,G3, G4, G5} suffices, although there are pairs of (universally quantified) equations
in t,7,e which are equivalent to the group axioms; for example, such a pair is given by axiom
G1 together with
S1. #(w, (K (i), Hi(w), @), 2), iy, D)) = &

the reason why is explained below.

It is thus natural to ask whether any single equation in ¢,t,e is equivalent to the group
axioms. The answer, however, is “no”, as was announced without proof by Tarski [5]; a proof
may be found in B. H. Neumann [4]; see also §2. However, if we consider the basic symbols
to be just t,7, then there are single axioms — an example of such, also due to Neumann [4] is
S1 above. This paper studies such axioms further, and gives a fairly precise answer to how
“small” such a single axiom can be. We use automated techniques both to generate small
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single axioms and to prove, via exhaustive searches, that there are no smaller single axioms.
We do not consider further the question of axiom pairs in %,4,€e, except to remark that we
trivially get such a pair if we add any single axiom in t,¢, such as S1, to the axiom GI.

In general, we shall call a single group aziom any equation of the form (a = ), where «
and B are terms in t,¢ and variables, such that (a = ) is valid in all groups, and such that,
from (a = ), one may derive G5 along with

G1'. #(z,i(z)) = Hy,i(y))

G3'. t(z,t(y,i(y))) ==
So, in any model for (o = ), t(z,i(z)) will be a constant, e, for which G1,G3,G5 (and hence
G2,G4) hold. Equivalently, (a = f) is a single axiom for groups iff (o = ) is valid in all
groups, and, from (a = ), one may derive G5 along with

G2'. t(i(z), ) = t(i(y),y)

Ge'. H(t(i(y),y),2) = @

A proof that S1 is a single axiom for groups was given by Neumann [4]. A proof may also
easily generated using the automated reasoning program OTTER, developed by McCune [1,2];
see §4. McCune [3] also found some single group axioms shorter than S1 and used OTTER
to verify them. We discuss this further below, but first make some preliminary remarks on
the form that such an axiom must take.

Neumann [4] said that it was already “well-known” that (o = ) cannot be a single group
axiom unless one of «, 8 is a variable. To see this, let G be any set containing 0 and at least
one other element. On G, define t(z,y) = 0 and ¢(z) = 0. Then, G is not a group, but satisfies
all equations of the form (a = f) such that neither a nor f is a variable.

So, in the following, we shall, without loss of generality, consider only candidate single
axioms of the form (o = ), where « is a term in t,¢,& and other variables. We may then
focus on a.

As a first approximation to its complexity, let us say that « is of type (N, D) iff « has N
variable occurrences and D distinct variables. Thus, in Neumann’s S1 above, the « is of type
(7,4).

Now, suppose « is of type (N, D). It is easy to see that if (a = z) is valid in all groups,
then N must be odd. We shall show below (Theorem 3.1) that if (o = z) is a single group
axiom, then N must be at least 7. Neumann [4] conjectured that D must be at least 4, but
this is false, since, for example,

S2. 4(i(H(y,i(y))), 1E(i(y), 2), i (Hi(2(y,2)), 2)))) = o
is a single group axiom with « of type (7,3). Again, this may be easily verified on OTTER
(see §4).

It is true (see Theorem 1.1) that D must be at least 3. Thus, in terms of the {ype measure,
our « of type (7,3) is best possible. However, McCune [3] found a number of single axioms,
such as

S3. 1(t(w, 1(i(t(i(), w)), 2)), Hi(t(y, 2)), ) = @
The a here has type (7,4), but is shorter, having 3 occurrences of z, whereas the term in 52
has 5 occurrences of 7. We do not know if there is a single axiom (a = z) with « of type (7, 3)
and with only 3 occurrences of 3.



We shall show in §2 that if (@ = z) is a single group axiom, then o must have an odd
number of occurrences of i and at least one ¢ within an 7 — that is, a has a subterm of form
i(B), where 7 occurs in . In particular, i must occur at least 3 times in a.

It now follows that in terms of length, S3 is the shortest single axiom possible. More
precisely, let wt(a) be the number of symbols in «, excluding commas and parentheses (this is
the default weight function on OTTER). So, the « in S3 has weight 16: 7 variable occurrences,
3 occurrences of i, and 6 occurrences of t. Now, let (a = z) be any single axiom; say « is
of type (N, D). Then a must have exactly N — 1 occurrences of t. Since a has at least 3
occurrences of ¢ and N > 7, wt(a) > 7+ (7—1) +3 = 16.

§5 describes the search method by which S2 was found. Roughly, it is the same principle
as the proof that N > 7. Thus, once we have shown (Theorem 1.1) that D > 3, the only
possibility for N < 7 would be of type (5,3), and we refute these by an exhaustive search,
producing a non-group model for each one. We then attempted to refute type (7,3) by the
same techniques; this failed, but led to a list of candidate (o = z) of this type for which we
could not find a counter-model. The list was short enough that we could run OTTER on each
candidate, resulting in a few, such as S2, from which we could derive the group axioms.

Finally, we remark that single axioms for Abelian groups have less complexity than single
axioms for groups. McCune [3] discovered such single axioms of the form (a = =), where
is, for example, t(t(t(y, z), 2),1(t(y, 2))). This a has type (5,3) and wit(a) = 10. It is easily
seen that no smaller weight is possible.

§1. The two-variable model. We show here, as claimed in the Introduction, that there
are no single axioms for groups of type (N, D) with D < 3. That is, if (a = =) is valid in all
groups, where « is built from ¢,7 and variables z,y, then (a = z) is valid in some non-group,
G. Actually, we prove a stronger result. First, we show that the same G works for all such a.
Second, G also satisfies all 2-variable equations true in all Boolean groups. Here, a Boolean
group is an Abelian group satisfying the equation i(z) = z (that is, every element is of order
2). Third, a may involve the identity, e as well.

1.1 Theorem. There is a structure § = (G;tg,iq, eqg) for the language of group theory
such that
1. tg is not associative (so G is not a group).

2. If (@ = B) is any equation valid in all Boolean groups, where «, 8 are built from ¢,1, e, z, v,
then (a = ) is valid in G.

We begin with two lemmas. The first shows that any relevant (a = ) can be derived
from the following five equations:

Bl. t(z,y) = t(y,z)

B2. i(z) ==
B3. t(z,e) =2
B4. t(z,z) =e

B5. t(z,i(z,y)) =y

1.2 Lemma. If (o = j) is any equation valid in all Boolean groups, where o, # are built
from t,1,e,z,y, then (o = ) is derivable from B1,B2,B3,B4,B5.



Proof. Let v be t(a, ). Then (y = e) is valid in all Boolean groups, and (a = f) is
derivable from (y = e) using B3 and B5. It is thus sufficient to prove that whenever (y = e)
is valid in all Boolean groups and 7 is built from ¢,1,e,z,y, then (v = e) is derivable from
B1,B2,B3,B4,B5. In view of B2, we may assume that 7 does not occur in . We may now
simply proceed by induction on the number of occurrences of ¢ in . =

The second lemma, gives a general form for all models of B1,B2,B3,B4,B5. If I is any set,
we use the Erdds notation [I]* for the set of all subsets of I with exactly k elements. Let us
call a premodel on I any family F C [I]® with the property that for each A € [I ]2, there is
precisely one B € F with A C B. For example, if G is a Boolean group and I is the set of all
elements of G other than the identity, a premodel is given by

F = {{CL‘,y,Z} € [I]3 :t(x,y) = Z}

Turning this around, given any premodel F on I, we may define a structure G = Gr 1 by
choosing an element € ¢ I, setting G = I U {e}, defining i to be the identity function, setting
ey = €, and defining t as follows: Let tg(e, z) = tg(z,€) = z, ta(z,z) = €, and, for 2,y any
distinct members of I, let tg(z,y) be the (unique) z € I such that {z,y,z} € F.

1.3. Lemma. Let F on I be any premodel. Let (o = ) be any equation valid in all
Boolean groups, where «, § are built from t,i,e,2,y. Then (o = f) is valid in Gr 1.

Proof. One easily verifies B1,B2,B3,B4,B5. Then apply Lemma 1.2. =
Proof of Theorem. Let I be the set of natural numbers. Let Fy be the set of 4 triples,

{{1,2,3},{0,3,4},{0,1,5},{2,5,6}}

It is easy to construct, by induction, a premodel, F on I with Fo C F. For this Gz 1, t is not
associative, since t(0,%(1,2)) = #(0,3) = 4 and #(#(0,1),2) = #(5,2) = 6. =

§2. More models. Suppose now that (a = ) is an equation valid in all groups, where
« is built from ¢,7,z plus other variables, and we wish to prove that (a = z) is not a single
group axiom. So, we need to produce a non-group in which (a = z) is valid. Of course, if «
uses only one variable besides z, the model of §1 will work. In this section, we describe some
other models which work for some more complex a. These will be sufficient to prove that
(o = z) cannot be a single group axiom if a has fewer than 7 variable occurrences.

We begin with some restrictions on the occurrences of 7 in a, proved by considering a few
special models, and then proceed to describe a general class of models, the ring models.

2.1 Theorem. If (a = z) is a single group axiom, then « has an odd number of
occurrences of 1.

Proof. Consider the model whose domain of discourse is Z; = {0,1}, in which ¢ is
interpreted as addition (mod 2), and i(z) = z + 1 (mod 2). Although ¢ is a group operation,
the correct i(z) to make this a group would be z, not = + 1. Thus, this model is not a group.
If (@ = ) is valid in all groups and a had n occurrences of i, then the value of « in this model
is (n + z) (mod 2). So, if n is even, (a = z) is valid in this non-group. =

4



Another way of viewing this model is to consider {0,1} to be a Boolean algebra, whence
¢ is XOR and i is NOT. Any other Boolean algebra could have been used as well.

We can use a different model to exclude the possibility that a has exactly 1 occurrence
of 2.

2.2 Theorem. If (o = z) is a single group axiom, then o must have at least 3 occurrences
of 7.

Proof. Theorem 2.1 refutes 0 or 2 occurrences. If o has 1 occurrence of 7 and (a = z)
is valid in all groups, then either the left-most or the right-most variable in o must be z. If
z is left-most, then (a = z) is valid in any model for [i(z) = & A t(z,y) = z]. Similarly when
x is right-most. m

In addition, & must have a nested i occurrence — that is,

2.3 Theorem. If (a = ) is a single group axiom, then a has a subterm (possibly «
itself) of the form (), where ¢ occurs in 3.

Proof. Let n be the number of occurrences of ¢ in @. By Theorem 2.2, we may assume
that n > 3. In the ring Z,, interpret ¢ as the usual addition (mod n), and let i(z) = —z +1
(mod n). If (a = z) is valid in all groups and a has no nested occurrence of i, then in this
model, a =z +n==z. =

An o with 3 occurrences of i is possible, such as McCune’s S3 in §0. Such « are restricted
by:

2.4 Theorem. If (o = z) is a single group axiom and « has exactly 3 occurrences of z,
then a cannot have a subterm of the form (i(5)).

Proof. If a has 3 occurrence of i, (a = z) is valid in all groups, and o contains an
i(i()), then, replacing this by 8, we see that either the left-most or the right-most variable
in & must be z. We then refute « as in Theorem 2.2. ®

The models used in these proofs may be generalized by the following class of models. Let
(R,+,-) be a ring. On R, we may interpret ¢ and ¢ as linear functions. That is, we may set
i(z) =m-z+bandt(z,y) =h -z +k y+c, where with h, k,m, b, c are fixed elements of R.
Of course, one must make sure to choose R, h, k,m,b,c so that the resulting model is not a
group. The models used in Theorems 2.1 - 2.4 are clearly of this form; for example in Theorem
2.2, R is any ring with a unit, b = ¢ = k = 0, and m = h = 1. Also, the proof in Neumann
[4] that there is no single axiom in t,i,e was a special case of this, withm =h =k =1 and
R = Z,; given (a = z) in t,4, e which is valid in all groups, one can always choose n, b,c,e to
provide a non-group model of (a = z); the additional freedom of being able to choose e made
this possible.

Aside from the above models, our purposes will be served by a somewhat more restricted
class, using Z, as the ring and taking b = ¢ = 0.

2.5 Definition. If n,h,k,m are integers with n > 2 and 0 < h,k,m < n, then
R(h,k,m,n) is the structure whose domain of discourse is Z,, where 1,? are interpreted
asi(z) =m-zand t(z,y)=h-z+k-y.



This is a group only in the trivial case in which it reduces to the usual additive group on
Zn.

2.6 Lemma. If R(h,k,m,n) is a group thenm =n—-land h =k =1.

Proof. Assume it is a group. Then the value of t(z,i(z)) is independent of z; setting
z = 1,0, we get h -+ k-m = 0; so t(z,i(z)) = 0 for all z. Then, by t(y,t(z,i(z))) =
t(t(z,i(z)),y) =y, weget h-y =k.y =y for all y; setting y =1 yields h = k = 1. Then
1+41-m=0impliessm=n—1.mu

Actually, the same proof would work if we replaced Z, by any ring with a unit, 1; we
would conclude that A = k = 1 and that m was the —1 of the ring. Also, the proof only
needed that R(h, k,m,n) satisfied all the 2-variable consequences of the group axioms, so the
fact, proved in §1, that these axioms do not imply all the group axioms required a different
kind of model.

Now, suppose we wish to prove that (@ = z) is not a single group axiom by using an
R(h,k,m,n). We may at first leave h, k,m as undetermined parameters. Then (a = z) yields
a set of algebraic equations in h,k,m. We may then try to find a solution of these (other
than h = k =1; m =n — 1) in some Z,. If successful, we know we have a counter-model for
(a = z).

In solving the equations, we have found it helpful to just assume that A, k, m are invertible
whenever this seemed convenient. This will always be true if n is prime and h, k, m are non-
Z€ero.

For a specific example, consider

AL #(z,t(i(t(y, 2)), t(i(t(y, i(E(y, 2)))),y))) = @
This seemed hopeful as a single group axiom, since, as one may easily verify on OTTER,
it has groupish consequences, such as (t(i(z),z) = t(i(y),¥)), (i(t(i(z),z)) = t(:(=),z)) and
(t(z,t(i(y),y)) = z). Setting i(z) = mz and t(z,y) = hz + ky, and expanding, we get

(R m?)z + (B2 km + R2k*m + R E*m® + B )y + (b + hk*m)z = =z .

This will be valid if the coefficients of y and z are 0 and the coefficient of « is 1. The coefficient
of z yields h + hk?m = 0, or m = —k~2. Substituting this in the coefficient of z yields h = 1.
Then, expressing the coefficient of y in terms just of k, we get k" =14 k14 E =0, 0r
k3 =1. To solve k® = 1 in Z,, with k # 1, we can use any prime n such that n — 1 is divisible
by 3. Specifically, we may choose n = 7 and k = 2, whence m = —1/4 = 5. So, (@ = z) is
valid in the non-group R(1,2,5,7).

Of course, in general there is no guarantee that a solution other than h = k = 1; m = n—1
will be found. Even in the above example, h was forced to be 1. Obviously, if we start with
a single group axiom (a = z), then our equations will force h =k =1; m =n —-1, but this
could happen even if (@ = z) fails to be a single group axiom. However, the ring models
R(n, h, k,m) will be sufficient to prove the theorems in this paper.

One might automate the entire search for a ring model, although we have not found it
necessary to do so. We did write two simple Prolog programs. One program runs through a
file of candidate « in the 3 variables, z,y, z, and extracts the 3 equations that h,k,m must
satisfy. The output file consists of each candidate followed by its corresponding equations



(represented as a Prolog term). It is then an easy matter to look at a few of these equations
by hand to see which h,k,m,n solve them. The second program takes a list of quadruples,
(h,k,m,n), and runs through the output file of the first program, deleting those (candidate,
equations) pairs which are satisfied by a quadruple on the list. For small n, it is feasible to
run through all possibilities for h,k,m; this lets us delete many candidates without looking
at their equations at all. We used Prolog because its syntax is compatible with OTTERs,
saving us the trouble of writing a parser. Speed was never a problem here.

§3. Five-variable terms. If (o = z) is valid in all groups, then it is easily seen that «
has an odd number of variable occurrences. In this section, we prove that this number must
be at least 7 if (o = z) is a single group axiom.

Roughly, the proof is via an exhaustive search. We generate all o with fewer than 7
variable occurrences such that (o = z) is valid in all groups, and verify that each (a = z) is
also valid in one of the non-groups discussed in §§1,2. By Theorem 1.1, we need only consider
o with at least 3 distinct variables. Any variable other than z in o must occur an even number
of times. Thus, we need only consider « with 5 variable occurrences, in which variables y, z
occur twice and z occurs once. However, there are still infinitely many such a, since there
is no a-priori upper bound to the number of occurrences of ¢ in a. So, we shall reduce the
infinite search to a finite one by proving a stronger theorem.

3.1 Theorem. Suppose (a = z) is valid in all groups, where « has 5 variable occurrences.
Then (a = z) is valid in some non-group which also satisfies (i(:(z)) = z).

Now, of course, we need only consider a with no subterms of the form 4(( 3)), and there
are only finitely many of these (up to variable renaming). We shall eventually refute these
by using the models in §§1,2. In the case of the ring models, R(h, k,m, n), we shall only use
m =1 and m = n — 1, so that they will satisfy (i(i(z)) = z). The results of §§1,2 yield:

3.2 Lemma. Suppose that (o = ) is valid in all groups, and that all group axioms are
derivable from (o = z) plus (:(i(z)) = ). Then:
1. (a = z) is not derivable from the set of all equations (8 = <) such that (p = ) contains
only 2 variables and is valid in all groups.
2. The number of occurrences of 7 in « is odd and at least 3.
3. Neither the left-most nor the right-most variable in « is z.

Proof. We may use the counter-models described in the proofs of Theorems 1.1, 2,1,
and 2.3, all of which satisfy (i(i(z)) = z). =

We remark that the equation Al in §2 is a minimal example of an (a = z) satisfying the
hypothesis of Lemma 3.2; one may easily verify on OTTER that it plus (i(i(z)) = z) yields all
the group axioms. This a has 7 variable occurrences, 3 distinct variables, and 3 occurrences
of 7. None of these three numbers can be reduced, as we see by Theorem 3.1, Lemma 3.2.1,
and Lemma 3.2.2. As we showed in §2, A1 alone is not a single group axiom.

Given the material in §§1,2, it is now a simple matter to do a computer search to prove
Theorem 3.1, using just a few minutes of cpu time, since the number of candidate « is not that
large. In view of Lemma 3.2, we need only consider a with 1 occurrence of z, 2 occurrences
of y and of z, and no subterms of the form i(¢(3)); there are only 8960 of these such that



(a = z) is valid in all groups (see below). This number is small enough, and the number
of counter-models is small enough, that it is quite feasible to run through them all. Our
original proof did exactly that. However, when we tried to apply this method to terms with
7 variable occurrences, we had 9461760 candidates, and some optimizations were required.
These optimizations, applied to Theorem 3.1, resulted in the proof given below, which even a
human can understand.

We begin with a definition regarding the structure of .

3.3 Definition. Let a be any term in ¢, plus variables. Then:

« is #i-free iff o has no subterms of the form 7(i(¢))-

« is in basic form iff a is ii-free and 7 applies only to variables in o — that is, a has no
subterms of the form i(¢(v, 6)).

« is in Tight associated basic form iff o is in basic form and ¢ is right associated — that
is, a has no subterms of the form t(¢(f,7), ).

Given any a, one may convert it to basic form or right associated basic form in a canonical
way. Formally,

3.4 Definition. If « is any term in t,i and variables, define BF(a) recursively by:
BF(a)is a if ais V or i(V) for some variable V.
If o is t(B,7), then BF(a) is t(BF(8), BF(7)).

If a is i(t(8,7)), then BF(a) is t(BF(i(7)), BF(i(8)))
If a is i(i(B)), then BF(«a) is BF(f).

L

Clearly, BF(a) is in basic form and is the same as « iff & is already in basic form.
Furthermore, the equation (o = BF(a)) is valid in all groups.

3.5 Definition. If « is in basic form, define RA(a) recursively by:

1. RA(a)is aif @ is V or i(V') for some variable V.

2. If a is (B,7), let B’ be RA(B). If B is 1(6,(), then RA(a) is (8, RA(t({,7))). Otherwise,
RA(x) is t(8', RA(7)).

If a is in basic form, RA(a) is in right associated basic form and is the same as « iff
is already in right associated basic form. Furthermore, the equation (a = RA(a)) is valid in
all groups.

Finally,

3.6 Definition. If  is any term in ¢, i and variables, define RABF(a) to be RA(BF(a)).

Again, for any o RABF(a) is in right associated basic form and is the same as « iff ais
already in right associated basic form. Furthermore, the equation (o = BF(a)) is valid in all
groups.

As an example, if we take a from Al of §2, then we have:

a: Hzt(i(Hy, 2)), (Y (Y, 7)) ¥))
BF(a): (2 t(t(i(2), i(y)), t(t(t(y, 2),(y)), ¥)))
RABF(a):  #(z1(i(2),1(i(y), t(y, (=, 1(i(y), )



A convenient way to generate all candidate a for the proof of Theorem 1 is to work

backwards from RABF(a) as follows:

Phase 1: Generate all 7 in t,7,z,y, 2z with 1 occurrence of z and 2 occurrences each of y
and of z, such that « is in right associated basic form and (y = z) is valid in all groups.

Phase 2: For each 7 generated in Phase 1, generate all basic form § such that RA(S) is
.

Phase 3: For each B generated in Phase 2, generate all ii-free a such that BF(a) is f.

Phase 4: For each « generated in Phase 3, verify that it is true in some non-group ring
model.

Tt is easy to compute the number of a generated. In Phase 1, there are 8 v of form
T17To2T3Ta, and 16 each of forms z7 737374 and Ty TeT3T4T, making 40 in all. In general, there
are 14 ways to associate a product of 5 factors, so for such v, there are 14 corresponding 3
generated in Phase 2. Each § has 4 occurrences of ¢, and in Phase 3, each of those occurrences
may or may not be preceded by an ¢, making for 2¢ = 16 corresponding «. Thus, we have
40 - 14 - 16 = 8960 candidates for a.

We now describe three optimizations used in these phases, and then return to discuss the
phases in more detail.

Two-variable exclusion: We have already used this implicitly in Phase 1 to tell us that
we need only consider 7 in which y and z both actually occur. Note, however, that this may
exclude further candidates. There are many a, such as t(t(t(y,%(y)), t(z,t(i(2),2)))), which
use 3 variables but such that (a = ) is derivable from the set of all valid 2-variable equations.
Such o may be deleted by Lemma 3.2.1.

y/z symmetry: Note that if o* is obtained from « by interchanging y and z, then [(a =
z) A (i(i(x)) = )] is equivalent to the group axioms iff [(a* = z) A (:(i(z)) = «)] is. We may
arrange our search to consider only one of them.

i(V)/V symmetry: Suppose that a is ii-free and V is any variable. Let flip(a, V') be
obtained by replacing all occurrences of V in a by i(V) and then replacing all i(i(V)) by V.
For example, flip(t(z,t(i(2),2)), 2) is t(z,t(z,1(2))). Let 8 be flip(e, V). If V is y or 2,
then [(a = z) A (i(i(z)) = z)] is equivalent to the group axioms iff [(# = z) A (i(i(2)) = z)]
is. For V being z itself, [(a = z) A (i(i(z)) = =)] is equivalent to the group axioms iff
[(4(8) = z) A (5(i(z)) = z)] is. Since any subset of {z,y,2} can be flipped, this will eventually
reduce the number of candidates by a factor of 8.

We now return to our three phases, describing them in detail, and thereby proving Theo-
rem 3.1. We present this as a standard mathematical proof, without regard to automation; the
reader will find it straightforward, although a bit tedious, to verify all the steps. Automation
will be discussed in §5, where we take up 7-variable terms. The techniques there can also be
used to make the verification of Theorem 3.1 less painful.

Phase 1: Generate all 40 v as described above. But, at this stage, we can already
implement y/z symmetry, i(y)/y symmetry, and 1(z)/z symmetry. That is, looking ahead, we
shall be considering all 7i-free a such that RABF(a) is 7. Note that RABF(a*) is v* and
RABF(flip(a, V) is flip(y, V). So, at Phase 1, we need only keep 7 in which the left-most
occurrence of y is left of the left-most occurrence of z, and for V both y and z, the left-most



occurrence of V is as 7(V). This reduces the number of such 7 by a factor of 8, to the following

5:

t(i(y), t(y, t(=, 1(i(2), 2))))
t(z, (i(y), ¢(y,1((2), 2))))
t(z,1(i(y), 1(i(2), 1(=,9))))
(i), t(y, 1(i(2), (2, 2))))
#(i(y), t(i(2), 12, t(y, 2))))

Phase 2: For each of the v generated in Phase 1, generate all basic form g such that
RA(B) is 7. As explained above, each v yields 14 §. But, we may at this point apply the
two-variable ezclusion to delete all 8 such that (8 = z) is derivable from all valid 2-variable
equations. The reason is that, looking ahead, we shall consider all & such that BF(a) is §.
But for such an a, the equation (a = ) is derivable from the valid 2-variable equations (as
can easily be verified from the definition of BF'), so the same holds for (a = z). Thus, we can
delete B. By applying this deletion to the 5-14 = 90 v obtained in Phase 1, only 8 remain,
namely:

L1 t(i(y), t(t(y, =, i(2))), 2))

12, 4(4(i(y), ey, ),i(2))), 2)

2.1, 4(t((z,i()), £y, i(2))), 2)

3.1. t(t(t(z, i(y)),i(2)), 1(2,9))

3.2. t(t(t(z, t(i(y),1(2))), 2), )

4.1. #(i(y), t(t(y, 1(2)), iz, 2)))

5.1. 4(i(y), 1i(2), Ht(2,v), 2))

5.2 1(t(i(y), i()), Hz, Hy, )
In verifying that these 8 are the only survivors, it is helpful to realize that we may delete
any § which has a subterm ( such that for some 7 with fewer variables than ¢, (¢ =n)is
provable from the 2-variable validities. The reason is that if we form ' from f by replacing
¢ by n, then B’ will only use 2 variables, so, from only 2-variable validities, it follows that
B = ' = z. Thisis illustrated in the first example below, arising from -y number 3 from Stage
1; the second example illustrates a somewhat more tricky deletion. On the basis of 2-variable
validities,

O W

t(t(z, 1(t(i(y),i(2)), 2) ),y) = tt(e,2(y)),y) = @
t(t(z, t( 1(i(y),i(2)) ), tHzy) ) = Ht(z, 1 i((z,p)) ), Hzy) ) =2

so the left-hand sides of these equations may be deleted.

Phase 9: For each of the 8 generated in Phase 1, generate all zz-free a such that BF(a)
is B. As explained above, each f yields 16 a. But, we may at this point apply the i(z)/z
symmetry, and consider only a which begin with ¢ — that is, of the form t(¢,n). The reason
is that any ii-free @ which does not begin with ¢ will be of the form #(f lip(a’, z)), where o
begins with t; if [(a = z) A (i(i(z)) = z)] were equivalent to the group axioms the same would
hold of [(e = z)A(i(i(z)) = ). Now, each f yields only 8 &, so we have 8-8 = 64 candidates
to consider. By Lemma 3.2, we may delete from these 64 any « which has = as its left-most
or right-most variable, or which has an even number of occurrences of . Only 26 remain.
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Phase 4:
Proof of Theorem 3.1. If some a were a counter-example, then there must be a counter-
example among the 26 found at Phase 3. Each of these 26 « is listed below, followed by a
ring model, R(h, k,m,n), in which (a = ) is valid; the reader may easily verify this validity
by verifying that the corresponding algebraic equations in h,k,m hold in Z,, as explained in
§2. Observe that for each of these, m is either 1 or n—1, and h, k are not both 1. Thus, these
models are non-groups and satisfy (i(i(z)) = z). =

L1 #(i(y), i(t((2), ilt(y, ¢z, (=) R(2,21,5)
112, 1(i(y), i(t(i(), tlt(=, i(0)),iv))))  R(2,2,1,5)
1.13. (i(y), (G (HG(t(e, (), i(v), 7)) R(2,2,1,5)
114, Hi(y), t(t{y, i(t(z, (), 2)) R(2,2,1,5)
1.2.1. i (Hi(HH(y, 2),8(2))),4), 2) R(2,2,1,5)
1.2.2. 45((t(z, 1(i(2), i(¥))), 1)), 2) R(2,2,1,5)
1.2.3. #(H(ily), i(t(z, i(t(y,))))), 2) R(2,2,1,5)
124, (1), t(H(), i), i) 2)  R(2,2,1,5)
211 1(i(H(i(t(y, i(2))),i(te, i) 2)  R(2,4,1,5)
2.1.2. #(i(t(t(z, i(y)), t(v,(z)))), 2) R(23,16,28,29)
2.1.3. 4(t(i(t(y, i(2))), 1y, i(2)), 2) R(2,1,1,3)
3.1.1. 1(i(t(z, i(t(z, i(y)))), {z,9)) R(2,1,1,3)
3.1.2. t(i(H(z, 1y, i(2)))), i(Hi(®),1(2))  R(4,2,1,5)
3.1.3. 4(t(i((y,i(2))) i(2)), (2, 9) R(16,23, 28, 29)
3.2.1. (i(i(3(=), i(t(e, 1i(y), i()))),y)  R(16,23,28,29)
3.2.2. 1i(2(i(2), (t(z,9),i(2)))), V) R(1,2,1,3)
3.2.3. 1(t(i((i(2(i(y), (=), i(2), 2), 1) R(2:4,1,5)
411 1(i(y), i(Hi(t(z,2)), i(t(5,i(2))))))  R(4,2,1,5)
412, (i(y),i(H(t(5(2), (), 8z, 8(1))))  R(16,23,28,29)
213, #ily), tt(y, i(2)),6(40(2),i())))  R(1,2,1,3)
5.1.1. #(i(y), i((i(1(t(z,9), 7)), 2)) R(23,16,28,29)
5.1.2. #(i(y), (4 (Hi(2), H(i(y), i(2))),2))  R(2,1,1,8)
5.1.3. ¢(i(y), ti(2), i({(i(2), i1(=,0))))  R(4,2,1,5)
5.2.1. Hi(t(z,y), i(H(1(i(2),i(0)),i(2))))  R(2,4,1,5)
5.2.2. 1(t(i(y), i(2)), i i(H(y,2)),())  R(1,2,1,3)
5.2.3. 1(1(i(y), i(2)), Hz i(t(i(a),i(y)))  R(23,16,28,29)

We remark that our proof could have been made somewhat more efficient, in that at
Phase 2, we could have deleted terms 1.1 and 1.2. The reason is that for these two 3, (8 = z)
is valid in R(2,2,1,5). For any a such that BF(«) is f, the equations needed to prove (a = f)
are valid in R(h, k,m,n) whenever h = k and m? = 1. Thus, we could already have seen at
Phase 2 that for any a arising from these two 8, (a@ = ) would hold in R(2,2,1,5).

§4. Verifying single axioms. This paper makes a number of claims that either (a =)
or [(a = z) A (i(i(z)) = z)] implies all the group axioms, for various terms a. These claims
can all be verified on OTTER. We see no point in presenting OTTER’s proofs here, since
they are usually not very instructive and readers can easily reproduce such proofs themselves
if desired. However, we make a few remarks in this section on how we set OTTER’s switches.
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To verify any specific claim made in this paper, it is easy enough to play around with these
settings until OTTER gets a proof. But, if one wishes to go through a long list of candidate
«, running OTTER on each one, a few remarks on efficiency might be useful.

The most obvious way to verify an axiom would be to simply put it in the sos and let it
run until enough group axioms appear. As explained in §0, it is enough to get G5, together
with either G1/,G3' or G2',G4'. Say we do this with the S2 of §0. We tried running this
on a DECstation5000, putting S2 in the sos, letting the usable list contain just (z = z),
setting para_into, para from, dynamic_demod, and order.eq, and setting max.weight to 50,
and pick_given_ratio to 3. Then G1' appeared in about 15 seconds, as clause number 839,
but the other axioms did not appear within the first 5 minutes. Of course, the success of the
run may depend on how the switches are set, and we didn’t try every possible combination.
Rather than trying to modify the switches to get success in one run, we simply started a
second OTTER run, this time adding in (t(z,i(z)) = €) as a demodulator and in the set
of support; this is justified, since the first run proved that (¢(z,i(z)) is a constant. In this
run, we just tried to prove G3, since we found in practice that associativity, G5, is often the
hardest to derive, so we simply added (t(p,e) # p) into the sos list, and ran OTTER until
a contradiction was found. In this run, we set max.weight to 40 and reduce weight.limit
to 6020, since the additional demodulator should reduce the size of clauses needed. This
produced a proof in about 82 seconds, at clause number 3139. Finally, the third run, we
proved associativity; we added (t(z,e) = z) as a demodulator and in the set of support,
added (¢(p,t(q,7)) # t(t(p,q),7)) into the sos, and found a contradiction in about 7 seconds
at clause number 628.

In summary, we can verify an axiom by three OTTER runs, the first proving that ¢ is a
right inverse, the second proving that e is a right identity, and the third proving associativity.
For the first run, we now simply put (¢(p,i(p)) # t(g,i(¢q))) in the sos, so that OTTER will
stop when it has found a proof.

Now, if we have a file consisting of many equations in the format of S2, it is a simple
matter to write a UNIX ! shell script which invokes OTTER on each one. Qur OTTER input
files have a time cutoff — say 1 or 2 minutes — after which OTTER will stop if a proof is
not found. Success or failure after this time can be determined in the shell script by passing
the output file through fgrep ’UNIT CONFLICT’. For each equation, ¢, our script does the
following: First, try to verify that 7 is a right inverse; if this succeeds, go on to try to prove
that e is a right identity; if this succeeds, go on to try to prove associativity. Then, ¢ is
echoed, along with either success or failure.

Of course, failure of ¢ does not prove that ¢ is not a single group axiom, but this technique
is useful in discovering single axioms.

We also can run our candidates through a shell script which checks for left inverse and
left identity. Mathematically, the two tests are equivalent, but because of the time cutoff,
sometimes one will succeed and the other will fail. Thus, we discover more single axioms by
using a pair of shell scripts.

A similar method is used to prove that an equation, such as Al of §2, generates all the
group axioms if (i(¢(z)) = z) is added. Now, (i(i(z)) = z) is always in the set of support

1 UNIX is a trademark of AT&T



and the demodulator list. Under (i(i(z)) = z), the two equations, (t(z,i(z)) = e) and
(t(i(z), ) = e), are equivalent. Thus, as soon as we verify one we can add the other, and, in
running through a list of candidates, we only need one shell script.

§5. Seven-variable terms. After proving Theorem 3.1, we conjectured that the same
result held for terms with 7 variables — that is, if the type (see §0) of a is (7,3) and (a = z)
is valid in all groups, then it is valid in some non-group which also satisfies (:(i(z)) = z).
We already knew of Neumann’s and McCune’s single axioms of type (7, 4), and we had, by a
different method, found a single axiom of type (9, 3).

We set out to prove this conjecture by applying the proof of Theorem 3.1 to 7-variable
terms. The outcome, however, was a counter-example, rather than a proof. In fact, we didn’t
even need the (i(i(z)) = z). We found single group axioms of type (7, 3), such as equation 52
of §0, and an even longer list of equations, such as Al of §2, which were not single axioms,
but which, when added to (:(i(z)) = ), proved all the group axiom.

Of course, counter-examples may simply be listed, without any comment, and the reader
may simply verify them on OTTER. However, we shall describe in this section some further
details on the organization of the search. This may be useful if the reader wishes to find more
such examples. Also, we were not successful in determining whether there is a single axiom of
type (7,3) with only 3 occurrences of 7. We suspect that this could be settled by the methods
described here, perhaps with more patience or computer time. The methods described here
can also be used (as we did ourselves) to verify the more tedious parts in the proof of Theorem
3.1.

First, some general remarks on automation. The syntax of OTTER output files is com-
patible with Prolog, as well as with the UNIX tools awk and grep. We found it useful to store
and manipulate candidate « in the form of literals, p(a). Thus, the output from an OTTER
run which is generating candidates in right associated basic form may have many lines which
look like:

** KEPT: 221 [para.into,27,8,demod,14,14] p(t(x,t(y,t(i(y) ,(i(x),t(x,t(z,i(z)))))))).
This may be passed through fgrep KEPT and then awk ’{print $5;}’ to just keep the
pt(x,t(y,t(A(y),t(1(x),t(x,t(z,1(2)))))))).
from these lines. These lines are now in a convenient format to be processed by Prolog
programs, such as, for example, the ones described in §2 for deleting candidates true in ring
models. Or, if it is desired to just keep the terms in which the left-most y is left of the left-most
z, we may pass the file through grep ’["z]*y’

We may repeat the four phases described in §3, now working with seven-variable terms.
It is easy to see that proceeding naively here would generate too many terms. In Phase 1,
we generate all v in ¢,i,2,y, z with 7 variable occurrences in which z,y, z all actually appear,
such that « is in right associated basic form and (y = ) is valid in all groups. There are
1120 of these. In Phase 2, we would, for each such v, generate all basic form B such that
RA(B) is 7. Since there are 132 ways to associate a product of 7 factors, we would have
132 - 1120 = 147840 of these 8. Then, in Phase 3, we would, for each such f, generate all
basic o such that BF(«) is 8. Each 8 has 6 occurrences of ¢, and each of those occurrences
may or may not be preceded by an i, making for 2% = 64 corresponding @. Thus, we have
64 - 147840 = 9461760 candidates for «, and the optimizations described in §3 seem to be
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more essential. We now proceed to describe how these optimizations work out and how they
are automated.

In Phase 1, we used paramodulation and demodulation to generate all relevant v on
OTTER, in the form p(v). We set the switch prolog-style.variables, which causes OTTER
to regard ,y, z as constants, and upper case letters as variables. The sos consists of just p(x).
The usable list contains 12 equations such as (V = t(t(i(x),x), V) ); the t(i(x),x) can
also be t(x,i(x)), and can also occur on the right of V, and the x can also be y or z.
The demodulator list contains just (t(t(U,V),W) = t(U,t(V,W))); this causes all generated
equations to be right-associated. We set the maximum weight to 7, and weight terms so that
any term containing an i(i(8)) is weighted high, and for other terms, the weight is just the
number of occurrences of z,y,z. This makes the search finite, terminating with p(7) being
generated whenever v uses z,y,z, v has 7 or fewer variable occurrences, v has no subterms
of form i(:(8)), ~ is in right-associated basic form, and (y = =) is valid in all groups. We
then used awk and grep as described above to build a file with just the 1120 candidates. This
number may be reduced by a factor of 8 to 140, by using y/z symmetry, i(y)/y symmetry, and
i(z)/z symmetry, although we proceed slightly differently than in the 5 variable case. Call
v of form (XY Z) if it has X occurrences of z, ¥ occurrences of y, and Z occurrences of z.
Of the 1120, 560 are of form (322), 280 of form (142), and 280 of form (124). For the form
(322), we implement y/z symmetry exactly as in the 5 variable case, reducing the number to
280. For forms (142) and (124), we implement y/z symmetry by simply deleting all of form
(124), keeping the original 280 of form (142). Now, i(y)/y symmetry, and i(z)/z symmetry
are implemented as before, reducing what is left by a factor of 4 to 70 of form (322) and 70
of form (142).

In Phase 2, we generated all candidate 8 by a similar use of paramodulation, and then
deleted all B such that (8 = z) is a consequence of 2-variable facts. This resulted in 2153 of
form (142) and 1994 of form (322).

Phases 3 and 4 are as in the 5-variable case, except that the ring models described
there do not now eliminate all the candidates. After trying more ring models — in particular
R(h,k,m,n) with m? = 1, n = 4,5,7, and all possibilities for &, k — we were still left with
1692 of form (322) and 5943 of form (142), making 7635 in all. Looking these over by hand, it
appeared that in many (not all) cases, the candidates could not be refuted by any ring model.
However, the number remaining was small enough that it was now feasible to spend a few
minutes on each one, so we went on to:

Phase 5: Run each of the 7635 remaining candidates through a shell script as described
in §4, to see if it, together with (i(i(z)) = z), generated the group axioms. This resulted in
55 which did. Some examples, besides Al above, are

A2, (H(i(2(i(y), 28 2, i(Ey, 2), 4w, i), 2) = 2)
A3, (1(4(t(i(), 9), ), itz 2)), 2 2,y) = 2)
All 55 were of form (142), and we do not know if there are any at all of form (322).

Phase 6: Try to see if any of these 55 generated the group axioms by itself, without the
(i(i(z)) = «). This was done using the “left” and “right” shell scripts, as described in §4. All
55 failed. Howewer, once we drop (i(i(z)) = z), the 8 variants formed using ¢(V')/V symmetry
are no longer equivalent. So, from each of the 55 candidates, we produced all its variants using
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a simple Prolog program, and then we ran the same shell scripts on all 440. This produced
the following single axioms besides 52 from §0:

Sa. 61tz 11z, ), Hz i(3), i (0), 1)) = 2)

S5. ((i(t(y,i())), t(t(i(y), i(2)), i((i(t(y, 2)),i(2))))) = )

S6. (¢(t(i((i(2), i(t(z, y))), t(i(2), (1)), 1(¢(i(y), v))) = @)

ST, (i(t(i(1(z 1 (26 (@), 18, (), ), 2, 9) = )

S8. (i(t(¢(y, 2), s(G((E((i(¢(y, (%)), 1)), 1(2))); 2)))) = 2)

89. (i(t(i(t(i(2), it (i(2), i(¢(y, i(t(i(y), 1)), 1(i(2),9))) = )

810. (i(t(t(y, i(2)), 1(tEECRECE (Y, i), ¥)), i(2))), 1(2)))) = 2)

§6. Conclusion. The following three questions are left open.

1. Is there a single group axiom (a = z) of type (7,3) with only 3 occurrences of 17

2. Is it decidable whether an equation (@ = z) is a single group axiom?

3. Is it true that if (@ = z) is valid in all groups and is not a single group axiom, then
(a = z) fails to be valid in some finite non-group?

We conjecture that the answers to all three are “no”. It is likely that (1) could be settled
by an exhaustive search, using methods described in this paper. Answers to questions (2) and
(3) would involve other concepts.

If the answer to (3) turns out to be “yes”, that would imply a “yes” answer to (2) as well,
although the algorithm this yields (a parallel search for a proof and a counter-model) would
not be feasible to implement.

A “yes” answer to (2) via a very efficient algorithm would make most of the results in
this paper obsolete.
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