A COMPARISON OF TRACE-SAMPLING
TECHNIQUES FOR MULTI-MEGABYTE CACHES

by

R. E. Kessler, Mark D. Hill and David A. Wood

Computer Sciences Technical Report #1048

September 1991

A Comparison of Trace-Sampling Techniques for Multi-Megabyte Caches’

R. E. Kessler, Mark D. Hill, and David A. Wood

University of Wisconsin
Computer Sciences Department
Madison, Wisconsin 53706
{kessler, markhill, david }@cs.wisc.edu

ABSTRACT

This paper compares the trace-sampling techniques of set sampling and time sampling. Using the
multi-billion-reference traces of Borg et al., we apply both techniques to multi-megabyte caches,
where sampling is most valuable. We evaluate whether either technique meets a 10% sampling goal:
using <10% of the references in a trace can it estimate the trace’s true misses per instruction with
<10% relative error and at least 90% confidence. Our results show that set sampling meets the 10%
sampling goal, while time sampling does not. We also find that cold-start bias in time samples is most
effectively reduced by the technique of Wood et al. Nevertheless, overcoming cold-start bias requires
the use of tens of millions consecutive references.

Index Terms - Cache memory, cache performance, cold start, computer architecture, memory Sys-
tems, performance evaluation, sampling techniques, trace-driven simulation.

1. Introduction

Computer designers commonly use trace-driven simulation to evaluate alternative CPU caches [SMIT82].
But as cache sizes reach one megabyte and more, traditional trace-driven simulation requires very long traces
(e.g., billions of references) to determine steady-state performance [BOKW90,STON90]. But long traces are

expensive to obtain, store, and use.

We can avoid simulating long traces by using trace-sampling techniques. Let the cache performance of a

small portion of the trace be an observation and a collection of observations be a sample. Sampling theory tells

1. R. E. Kessler was supported in part by a summer internship at Digital Equipment Corporation and graduate fellow-
ships from the National Science Foundation and the University of Wisconsin Alumni Research Foundation. He is now em-
ployed by Cray Research, Inc. Mark D. Hill is supported in part by the National Science Foundation (MIPS-8957278 and
CCR-8902536), A.T.& T. Bell Laboratories, Cray Research Foundation and Digital Equipment Corporation. David A.
Woed is supported in part by the National Science Foundation (CCR-9157366) and the University of Wisconsin Graduate
School.

Time-Space Diagram of Memory References

—
X
Led e

v

Cache | ... 4. XXX *—’ .-
Sets 3 Xi X X
X XX : i . .
(Space) ') Horizontal Slice
| L x
XX X i
H H X X
| | x
X :
) ' X

Time ——
Figure 1. Sampling as Vertical and Horizontal Time-Space Slices.

This figure shows a time-space diagram of a simulation with a very short trace. The time (position within
the trace) and cache set of each reference is marked with an X. An observation in set sampling is the cache
performance of one set. References that determine a single set’s performance appear in an horizontal slice
of this figure. An observation in time sampling is the cache performance of an interval of consecutive
references. These references appear in a vertical slice of this figure.

how to predict cache performance of the full trace, given a random sample of unbiased observations [MIFJ90].

With additional assumptions, we can also estimate how far the true value is likely to be from the estimate.

Two important trace-sampling techniques are set sampling [HEIS90,PUzA85] and time sampling
[LAPI88,1.AHA88]. An observation in set sampling is the cache performance for the references to a single set
(depicted as a horizontal slice in Figure 1), while an observation in time sampling is the cache performance of the

references in a single time-contiguous trace interval (a vertical slice in Figure 1)2.

This study is the first to compare set sampling and time sampling. Using billion-reference traces of large
workloads that include multiprogramming but not operating system references [BOKW90], we examine how well
these methods predict mean misses per instruction (MPI) for multi-megabyte caches. We say a sampling method

is effective if it meets the following goal:

2. Laha et al. [LAPI88] and Wood et al. [WOHK91] referred to an observation of references in a time-contiguous inter-
val as a “‘sample’’. We use sample to refer to a collection of observations to be consistent with statistics terminology
[MiFI90].

Definition 1: 10% Sampling Goal

A sampling method meets the 10% sampling goal if using <10% of the references in a trace it esti-
mates the trace’s true MPI with < 10% relative error and at least 90% confidence.

For set-sampling we find several results. First, calculating the MPI for a sample using instruction fetches to
all sets is much more accurate than using only instruction fetches to the sampled sets. Second, instead of selecting
the sets in a sample at random, selecting sets that share several index bit values reduces simulation time, facilitates
the simulation of cache hierarchies, and still accurately predicts the trace’s MPIL. Third, and most important, set

sampling is effective. For our traces and caches, it typically meets the 10% sampling goal.

For time-sampling, we first compare techniques for overcoming cold-start bias [EASF78], i.e., determining
the MPI for a particular trace interval without knowing the initial cache state. We consider leaving the cold-start
bias unchanged, recording meirics only during the second half of each interval, recording metrics only for initial-
ized sets [LAPI88, STON9O], stitching intervals together [AGHHS8], and Wood et al.’s model for predicting the
initialization reference miss ratio [WOHK91]. We obtain two results. First, on average, the technique of Wood et
al. minimizes the cold-start bias better than the other techniques. Second, for the multi-megabyte caches we stu-

died, interval lengths of tens of millions of instructions and larger are needed to reduce the effects of cold-start.

Then using Wood et al.’s technique to mitigate cold-start bias, we show that lime sampling fails to meet the
10% sampling goal, because: (1) many intervals are needed to capture workload variation, and (2) long intervals
are necessary to overcome cold-start bias. Thus, for these traces and caches, set sampling is more effective than
time sampling for estimating MPL. Time sampling will still be preferred, however, for caches with time-

dependent behavior (e.g., prefetching) or interactions between sets (e.g., a single write buffer).

We do not consider other (non-sampling) techniques that reduce trace data storage, such as, Mache
[SAMP89], stack deletion and snapshot method [SMIT77], trace (tape) stripping [PUZA85, WANB90], or exploiting
spatial locality [AGAH90]. These techniques can be used in addition to the sampling considered in this study. We
also do not consider Przybylski’s prefix technique [PRzY88], which prepends all previously-referenced unique
addresses to each time-observation. This method seems unattractive for multi-megabyte caches where each time-
observation requires its own prefix and each prefix must be very large for programs that can exercise multi-

megabyte caches.

Section 2 describes our methods. Section 3 and 4 examine set sampling and time sampling, respectively.

Finally, Section 5 summarizes our results.

2. Methodology

This section describes the traces, cache configurations, and performance metric we use in later sections.

2.1. The Traces

The traces used in the study were collected at DEC Western Research Laboratory (WRL)
[BOKL89, BOKW90] on a DEC WRL Titan [NIEL86], a load/store (‘‘RISC’*) architecture. Each trace consists of
the execution of three to six billion instructions of large workloads, including multiprogramming but not operating
system references. The traces reference from eight to over one hundred megabytes of unique memory locations,
These traces are sufficiently long to overcome the cold-start intervals of even the large caches considered in this
study. We chose programs with large memory requirements since we predict large application sizes will be more

common as main memories of hundreds of megabytes become available.

The traces of the multiprogrammed workloads represent the actual execution interleaving of the processes
on the traced system. The Mult2 trace includes a series of compiles, a printed circuit board router, a VLSI design
rule checker, and a series of simple programs commonly found on UNIX® systems, all executing in parallel (about
40 megabytes active at any time) with an average of 134,000 instructions executed between each process switch.
The Mult2.2 trace is the Mult2 workload with a switch interval of 214,000 instructions. The Multl trace includes
the processes in the Mult2 trace plus an execution of the system loader (the last phase of compilation) and a
Scheme (Lisp variant) program (75 megabytes active) and has a switch interval of 138,000 instructions. The
Multl.2 trace is the Multl workload with a switch interval of 195,000 instructions. The Tv trace is of a VLSI
timing verifier (96 megabytes). Sor is a uniprocessor successive-over-relaxation algorithm that uses large, sparse
matrices (62 megabytes). Tree is a Scheme program that searches a large tree data structure (64 megabytes). Lin

is a power supply analyzer that uses sparse matrices (57 megabytes).

2.2. Cache Configuration Assumptions

This study focuses on multi-megabyte unified (mixed) caches, where we expect trace sampling to be most
useful. We vary the size and set-associativity of these caches over a range of 1-megabyte to 16-megabytes and
direct-mapped to four-way. The caches do no prefetching, use write-back and write-allocate policies, and have

128-byte blocks. The non-direct-mapped caches use a random replacement policy. We do not expect the

3. Trademark AT&T Bell Laboratories.

replacement policy to affect sampling accuracy since, for example, least-recently-used replacement eliminates at
most 15% of the cache misses for these caches [KESS91]. The caches use virtual-indexing with PID-hashing, an
approximation to real~indcxing4. ‘We also examined a several real-indexed caches and found that they produced
results similar to those in this paper, which is not surprising since real-indexed cache performance is often close to

virtual-indexed cache performance.

Since multi-megabyte caches are likely to be used in a cache hierarchy, we simulate them as alternative
secondary caches placed behind a fixed primary cache configuration. The primary caches are split (separate)
instruction and data caches that are 32-kilobytes each, direct-mapped, 32-byte blocks, do no prefetching, use vir-
tual indexing, and write-back and write-allocate policies. We do not evaluate primary cache tradeoffs in this
study since secondary cache performance is unaffected by the primary caches when their sizes differ by at least a

factor of eight [PRHH89].

2.3. The Performance Metric: Misses Per Instruction

We measure cache performance with misses per instruction (MPI) rather than miss ratio®. Since we only
use MPI to compare the performance of alternative unified secondary caches, MPI is equivalent to Przybylski’s
global miss ratio [PRHH89]. Specifically, a cache’s MPI is equal to its global miss ratio times the average number

of processor references (instruction fetches and data references) per instruction.

3. Set Sampling

We first examine set sampling, where an observation is the MPI of a single set and a sample is a collection
of single-set observations. Section 3.1 discusses how to compute a set sample’s MPI and why it should not con-

tain random sets, while Section 3.2 examines how well set sampling predicts MPI long» the MPI of a full trace.

4. Caches that use virtual-indexing select the set of reference using the reference’s virtual address, while those that use
real-indexing select with the real address. PID-hashing means that we exclusive-or the upper eight index bits from the vir-
tual address with the process identifier (PID) of the currently executing process.

5. MPLis better than miss ratio for comparing the performance contributions of several caches in a system (e.g., instruc-
tion, data, secondary), because MPI implicitly factors in how often a cache is accessed. Furthermore, MPI times a cache’s
average miss penalty directly gives the cycles per instruction (CPI) lost because of that cache’s misses [HENP9O].

3.1. Constructing Set Samples

3.1.1. Calculating the MPI of a Sample

Consider a cache with s sets, numbered 0 to s—1. For each set i, let miss; and instrn; be the number of the
misses and instruction fetches to set i. Let S be a sample containing # sets. We consider two ways to calculate the
MPI of sample S, MPIg. The sampled-instructions method divides the mean misses to sets in sample S by the

mean instruction fetches to sets in sample s:6

1 . ,
— 3 miss; Y, miss;
MPI = "ies _ S
§ . Y instrn;’
— Y, instrn;
n . €S
ieS

while the all-instructions method divides by the mean instruction fetches to all sets:

1 . ,
Pl Y. miss; Y miss;
5 ieS ieS
MPIS = s=-1 = s~1
. n’s .
— ¥, instrn; — 3 instrn;
S =0 S =0

We compare the two methods by computing their coefficients of variation across all set samples S (j)

obtained with the constant-bits method, described in Section 3.1.2.:

CV = I= ,)

where M is the number of samples.

Experimental results, illustrated in Table 1, show that the all-instructions method performs much better,
never having a coefficient of variation more than one-tenth the sampled-instructions method. The difference is
infinite for the Sor and Lin traces because loops confine many instruction fetches to a few sets. We also investi-

gated normalizing miss; with total references per set and data references per set [KESS91]. These methods

miss;

6. We do not consider calculating M;’Is with 1 > , because Puzak [Puza85] showed estimating miss ratio
n
ieS
with the arithmetic mean of the per-set miss ratios is inferior to dividing the misses to sampled sets by the references to
sampled sets (the miss-ratio equivalent of the sampled-instructions method). For a sample containing all sets, Puzak’s
=1 miss;

work also implies 1 Y - — #MPlypp,.

S [0 instrn;

instrn;

Coefficient of Variation (percent)
Trace MP1y5g % 1000 all-instructions sampled-instructions
Multl 0.70 2.3% 352%
Multl.2 0.69 1.9% 28.9%
Mult2 0.61 1.9% 24.2%
Mult2.2 0.59 1.3% 24.3%
Tv 1.88 0.6% 139.0%
Sor 7.54 0.3% oo
Tree 0.59 6.8% 191.9%
Lin 0.09 7.6% 00

Table 1. Accuracy of MPI Computations.

This table illustrates the accuracy of computing the full trace MPI (column two) for several traces with the
all-instructions and sampled-instructions methods. The accuracy is evaluated with the coefficient of varia-
tion (Equation 1) for the MPI estimates from a 4-megabyte direct-mapped secondary cache with 16 set
samples of 1/16 the full trace each. The set samples are constructed with the constant bits method
described in the next section. Results show that the all-instructions method is far superior to the sampled-
instructions method.

perform similarly to the sampled-instructions method and not as well as the all-instructions method.

A minor disadvantage of the all-instructions method is that when gathering the references in a sample we
must also count instruction fetches to all sets. Since we believe this drawback is out-weighed by the experimental

results, we will use the all-instructions method throughout this paper.

3.1.2. The Constant-Bits Method

We now examine two methods for selecting sets to form a sample. We use an example to show a disadvan-

tage of selecting sets at random and introduce the constant-bits method to overcome the disadvantage.

Assume that we want to evaluate three caches with samples that contain about 1/16-th the references in a
full trace. Let the caches choose a reference’s set with bit selection (i.e., the index bits are the least-significant

address bits above the block offset) and have the following parameters:

Cache A: 32-kilobyte direct-mapped cache with 32-byte blocks (therefore its index bits are bits 14-5, assuming

references are byte addresses with bit 0 being least-significant),
Cache B: 1-megabyte two-way set-associative cache with 128-byte blocks (index bits 18-7), and

Cache C: 16-megabyte direct-mapped cache with 128-byte blocks (index bits 23-7).

One method for selecting the sets in a sample is to choose them at random [PUZA85]. To evaluate cache A

with references to random sets, we randomly select 64 of its 1024 sets (1/16-th), filter the full trace to extract

filter with

random . -
- sets of simulate n simulate
2 each cache each cache | each cache
~ filter with
|)———? ———»@ | four @
u ~ . constant
bits
i i one
B i - filtered
= C B trace C
E three E
filtered
h traces
full trace full trace
(a) selecting sets at random for each cache (b) selecting sets that share constant bits

Figure 2. Two Methods for Selecting the Sets in a Sample.

This figure illustrates selecting sets for samples of three alternative caches (A, B, and C) using (a) random
sets and (b) constant bits. When sets are selected at random, each simulation must be begin by filtering the
full trace. With constant-bits, on the other hand, a filtered trace can drive the simulation of any cache
whose index bits contain the constant bits.

references to those sets, and then simulate cache A. For cache B, we select 128 of its 2048 sets, filter and simu-
late. Similarly for cache C, we use 8192 of its 131072 sets. As illustrated in Figure 2a, selecting sets at random
requires that each simulation begin by extracting references from the full trace. Furthermore, since primary and
secondary caches usually have different sets, it is not clear how to simulate a hierarchy of cache when sels are

selected at random.

We introduce a new method, called constant-bits, that selects references rather than sets. The constant-bits
method forms a filtered trace that includes all references that have the same value in some address bits. This
filtered trace can then be used to simulate any cache whose index bits include the constant bits’ [KESs91]. For

example, we can filter a trace by retaining all references that have the binary value 0000 (or one of the other 15

7. This description assumes bif selection, i.e., the set-indexing bits come directly from the address of the memory access
[Smi182]. The scenario is more complicated with other than simple bit-selection cache indexing. In particular, since we
use PID-hashing in this study, we ensured that the hashed index bits did not overlap with the constant bits. Note that
though we use virtual-indexing, one can apply the constant-bits technique to real-indexed caches, and to hierarchical
configurations with both real and virtual indexed caches if the constant bits are below the page boundary.

simulate
each secondary

[T

cache
filter with .
simulate
four .
] constant primary
cache

bits

T TT T

1

one one
H filtered filtered
trace trace of
cache P

T 1T 11

misses

{

full trace

Figure 3. Using Constant-Bits Samples with a Hierarchy.

This figure illustrates how to use constant-bits samples to simulate a primary cache (P) and three alterna-
tive secondary caches (A, B and C).

values) in address bits 11-8. If the filtered trace is used with cache A, it will select all sets with binary index
xxx0000xxx, where ““x”’ is either 0 or 1. Since this index pattern has six x’s, it identifies 64 (2°) of the 1024
sets in cache A. For caches B and C, the filtered trace selects sets with indices xxxxxxx0000x and
xxxxxxxxxxxx0000x, respectively. More generally, we can then use this filtered trace to select 1/16-th of the
sets in any cache whose block size is 256 bytes or less and whose size divided by associativity exceeds 2 kilo-
bytes. These include both primary caches (32-byte blocks, 32 kilobytes, direct-mapped) and all secondary caches

(128-byte blocks, 1-16 megabytes, 1-4-way set-associative) considered in this paper.

Constant-bits samples have two advantages over random samples. First, as illustrated in Figure 2b, using
constant-bits samples reduces simulation time by allowing a filtered trace to drive the simulations of more than
one alternative cache. Second, constant-bits samples make it straightforward to simulate hierarchies of caches
(when all caches index with the constant bits). As illustrated in Figure 3, we may simulate the primary cache once

and then use a trace of its misses to simulate alternative secondary caches.

A potential disadvantage of constant-bits samples is they may work poorly for workloads that use their
address space systematically (e.g., frequent accesses to a large, fixed stride vector). Experimental evidence, how-

ever, suggests that constant-bits sampling is effective. Figure 4 illustrates the accuracy of constant bits sampling

Set-Sampled Mult1.2 MPI Over Time

1.5 2 25 3

1

Misses Per 1000 Instructions
0.5

| I
2 3 4
Instructions Executed (Billions)

<0

Figure 4. Set Sampling on the Multl.2 Trace.

For every 100 million instructions, this figure shows the actual MPI’s (solid line) with the predicted MPI’s
from each of 16 different set samples (dotted lines) for the Multl.2 trace with a 4-megabyte direct-mapped
cache. Each sample includes only references that have the same value for address bits 11-8 (i.e., bits 11-8
are the constant bits), assuming that references are byte addresses with bit O being least-significant Since
four bits are used to select references, each of the 16 samples contains an average of 1/16-th of the trace.

for the Multl.2 trace. For every 100 million instructions, it plots the true MPI for the interval and the MPI
obtained from 16 set samples (each about 1/16 of the references of the full trace). In this example, the set sam-
ples are almost indistinguishable from the true MPI. More generally, we found constant-bits samples to be
equally or more accurate than random samples with multi-megabyte caches [KESS91]. Thus, we use the

constant-bits method to construct set samples throughout the rest of this paper.

3.2. What Fraction of the Full Trace is Needed?

This section examines how well set samples estimate the MPI of a full trace. For reasons discussed above,
we construct samples with the constant-bits method and calculate MPI estimate for a sample with the all-
instructions method. We first look at the accuracy of set sampling when MPI,,,, is known; then show how to con-

struct confidence intervals for MPIy,,, when it is not known.

In Figure 4 we saw qualitatively that for one trace, cache, and sample size, the MPI variations between set
samples and MPI,,,, were modest compared to temporal variations. Table 2 quantifies the long run error between
samples and MPI,,,, for several traces, direct-mapped cache sizes, and sample sizes. We measure errors with
coefficient of variation calculated using Equation 1. Table 3 gives the corresponding results for two-way set-

associative caches.

-10-

Set-Sampling Coefficients of Variation (percent)

Trace Size | MPlyyx1000 | [uctionof SesinSampe,
M 1.55 1.7% 4.3% N/A
Multl 4M 0.70 1.4% 2.3% 4.8%
16M 0.33 1.0% 1.6% 2.7%
IM 1.45 0.8% 2.9% N/A
Mult1.2 4M 0.69 0.9% 1.9% 4.1%
16M 0.32 04% 1.5% 3.2%
IM 1.24 0.8% 3.4% N/A
Mult2 4M 0.61 1.0% 1.9% 2.9%
16M 0.26 1.1% 2.3% 3.3%
M 1.18 0.4% 2.7% N/A
Mult2.2 4M 0.59 0.6% 1.3% 2.5%
16M 0.27 0.7% 1.8% 3.4%
M 2.63 0.7% 1.9% N/A
Tv 4aM 1.88 0.2% 0.6% 2.1%
16M 1.03 0.5% 0.6% 2.0%
M 14.77 0.1% 0.4% N/A
Sor 4M 7.54 0.1% 0.3% 0.7%
16M 1.97 0.0% 0.0% 0.1%
iM 2.16 4.1% 5.6% N/A

Tree 4M 0.59 53% 6.8% T 13.6%
16M 0.30 1.8% 4.1% 6.5%
M 1.16 0.5% 3.3% N/A

Lin 4iM 0.09 2.0% 7.6% ¥ 15.0%
16M 0.02 0.0% 0.3% 0.5%

Table 2. Set Sampling Coefficients of Variation for Direct Mapped.

This table shows the actual MPI of the full trace, MPI,,,,, for direct-mapped caches, and the coefficient of
variation of the set-sampling MPI estimates, calculated using Equation 1. We construct samples with the
constant-bits method. Samples containing 1/4 the sets in the cache have bits 9-8 constant. Samples for
1/16 and 1/64 use bits 11-8 and 12-7, respectively. Some entries marked ‘“N/A’’ are not available, because
the PID hashing overlapped with the constant bits. Except where marked with a dagger (1), at least 90% of
the samples have relative errors of less than or equal to +10%.

The key result is that, for this data and for four-way set-associative caches not shown here, set sampling
generally meets the 10% sampling goal. Consider the columns labeled ‘“1/16°° in Tables 2 and 3, which
correspond to samples using 1/16-th of the sets and therefore will contain less than 10% of the trace on average.
Only Lin and Tree with 4-megabyte direct-mapped caches, marked with daggers, fail to have at least 90% of the
samples with relative errors of less than or equal to £10%. (And they both have only 2 of 16 samples with more

than +10% relative error.)

We also observe two other interesting trends in the data. First, reducing the fraction of sets in a sample (and
hence the number of sets per sample) from 1/4 to 1/16 and from 1/16 to 1/64 increases the coefficient of variation.

If the per-set MPI's were independent and identically distributed, then reducing the number of sets in a sample by

-11-

Set-Sampling Coefficients of Variation (percent)

Trace Size | MPI,,, X 1000 I;“Zicuon Ofls/%s m Saml%i
M 1.19 1.2% 2.2% N/A

Multl 4M 0.55 1.0% 1.7% 3.0%
16M 0.26 0.8% 1.6% 2.3%

M 1.18 0.7% 1.6% N/A

Multl.2 M 0.56 0.5% 1.2% 2.2%
16M 0.28 0.5% 1.3% 2.1%

M 1.01 0.3% 1.9% N/A

Mult2 4M 0.52 0.6% 1.2% 2.0%
16M 0.24 0.9% 1.9% 33%

M 0.98 0.3% 1.8% N/A

Muli2.2 4M 0.51 0.5% 1.5% 1.9%
16M 0.22 0.9% 2.1% 3.5%
M 231 0.2% 0.6% N/A

Tv 4M 1.76 0.3% 0.3% 1.6%
16M 0.98 0.3% 0.7% 1.9%
M 14.66 0.0% 0.3% N/A

Sor 4M 7.76 0.0% 0.2% 0.5%
16M 1.92 0.0% 0.0% 0.1%

1M 1.81 2.3% 3.7% N/A

Tree 4M 049 0.8% 1.5% 3.8%
16M 0.26 0.3% 04% 1.1%

M 1.10 0.3% 2.6% N/A

Lin 4M 0.06 1.2% 6.0% 9.8% t

16M 0.02 0.0% 0.3% 0.5%

Table 3. Set Sampling Coefficients of Variation for 2-Way.

This table shows the MPI of the full trace for two-way set-associative caches, and the coefficient of varia-
tion of the MPI estimates, similar to Table 2. Except where marked with a dagger (1), at least 90% of the
samples have relative errors of less than or equal to 210%.

four should double the coefficient of variation [MIFJ90, STON90]. Indeed, there is good evidence that this is the
case (see, for example, the row for Multl.2 with a 4-megabyte cache). Second, increasing associativity from
direct-mapped to two-way reduces corresponding coefficients of variation by more than 50%. We conjecture that
set sampling works better for two-way set-associative caches because they have fewer conflict misses than direct-
mapped caches [HILS89]. A high rate of conflict misses to a few sets can make those sets poor predictors of

overall behavior.

Finally, in practical applications of set sampling, we want to estimate the error of an MPI estimate, using
only the information contained within the sample (i.e., not using knowledge of MPI,,,, as did Tables 2 and 3).
We do this using 90% confidence intervals, calculated from the sample mean and sample standard deviation by
the standard technique [MIFJ90]. Our estimate of the sample standard deviation includes a finite population

correction, which is important when the sample size is a substantial fraction of the population (e.g., when each

-12-

90% Confidence Intervals that Contain MPIy,,,
Fraction of Sets in Sample
Trace 1/4 1/16 1/64

fraction percent fraction percent fraction percent

Multl 3/4 75% 16/16 100% 61/64 95%
Multl.2 4/4 100% 16/16 100% 60/64 94%
Mult2 3/4 75% 15/16 94% 61/64 95%
Mult2.2 4/4 100% 16/16 100% 63/64 98%
Tv 4/4 100% 16/16 100% 51/64 78%
Sor 4/4 100% 16/16 100% 64/64 100%
Tree 2/4 50% 12/16 75% 47/64 3%
Lin 4/4 100% 16/16 100% 62/64 97%
All 89% 93% 91%

Table 4. Set-Sampling Error Prediction.

For a 4-megabyte direct-mapped secondary cache and various traces and fraction of sets, this table gives
the fraction and percent of 90% confidence intervals that contained MPI,,,,. Since the percentages are
near 90%, confidence intervals usefully estimate how far MPIj is likely to be from MPI},,,.

sample includes 1/4-th of all sets) [KESS91, MIFJ90].

For large (= 30 observations) random samples, sampling theory predicts 90% of the 90% confidence inter-
vals will contain the true mean. For various constant-bits set samples and a 4-megabyte direct-mapped cache,
Table 4 displays the fraction of 90% confidence intervals that actually contain MPIy,,,. Since the results in Table
4 are usually similar to 90%, the confidence interval calculation is a useful method for estimating the error of a

set-sample, given information from within that sample alone.

3.3. Advantages and Disadvantages of Set Sampling

The most important advantage of set sampling is that, for our simulations, it meets the 10% sampling goal
(Definition 1). A set sample automatically includes references from many execution phases, so an individual sam-
ple can accurately characterize the MPI of a full trace, including its temporal variability. The reduced trace data
requirements of set sampling allow for simulation of longer traces, and therefore more algorithmic phases, in a
smaller amount of time. Besides the data reduction, set sampling also reduces the memory required to simulate a

cache. A set sample containing 1/16 of the full trace needs to simulate only 1/16 of the sets.

Set sampling does have its limitations. Even with the constant bits method, the full trace must be retained if
one wishes to study caches that do not index with the constant bits. Furthermore, set sampling may not accurately

model caches whose performance is affected by interactions between references to different sets. The

-13-

effectiveness of a prefetch into one set, for example, may depend on how many references are made to other sets
before the prefetched data is first used. Similarly, the performance of a cache with a write buffer may be affected

by how often write buffer fills up due to a burst of writes to many sets.

4. Time Sampling

The alternative to set sampling is time sampling. Here an observation is the MPI of a sequence of time-
contiguous references and is called an interval. Section 4.1 discusses determining the MPI for a sample, while

Section 4.2 examines using a sample to estimate MPI for the full trace.

4.1. Reducing Cold-Start Bias in Time Samples

To significantly reduce trace storage and simulation time, we must estimate the true MPI for an interval
without knowledge of initial cache state, i.e., the cache state at the beginning of the interval. This problem is sim-
ply the well-known cold-start problem applied to each interval [EASF78]. Below we examine how well the fol-

lowing five techniques mitigate the effect of the cold-start problem in multi-megabyte caches.

COLD COLD assumes that the initial cache state is empty. While this assumption does not affect misses to
full sets or hits to any set, it causes COLD to overestimate MPI, because references that appear to
miss to non-full sets may or may not be misses when simulated with the (true) initial cache state.

These potential misses are often called cold-start misses [EASF78].

HALF HALF uses the first half of the instructions in an interval to (partially) initialize the cache, and esti-

mates MPI with the remaining instructions.

PRIME PRIME estimates MPI with references to *‘initialized’’ sets. A set in a direct-mapped cache is initial-
ized once it is filled [STON90], while a set in a set-associative cache is initialized after it is filled and a

non-most-recently-used block has been referenced [LAPISS].

STITCH STITCH approximates the cache state at the beginning of an interval with the cache state at the end of
the previous interval [AGHHS88]. Thus one creates a trace for a sample by stitching it’s intervals

together.

INITMR Like COLD, INITMR simulates an interval beginning with an empty initial cache state. Instead of
assuming that all cold-start misses miss, however, INITMR uses Wood et al.’s [igpp; to estimate the
fraction of cold-start misses that would have missed if the initial cache state was known [WOHK91].

The estimate is based on (1) the fraction of time that a cache block frame holds a block that will not

-14 -

be referenced before it is replaced, and (2) the fraction of the cache loaded during the cold-start simu-
lation of an interval. When we could not estimate (1) with the references in an interval, we assume it

to be 0.7.

For a particular trace and cache, we evaluate a cold-start technique as follows. We select the number of
instructions in an interval, called the interval length, and collect a sample S of n=30 intervals spaced equally in
the trace. We use the cold-start technique to estimate the MPI for each interval, mfvii, and calculate an MPI esti-
mate for sample S with®;

A n ~
MPI; = % > mpi;.

i=1
Since we have the full race, we can simulate each interval with its initial cache state to determine the

n
interval’s true MPI, mpi;, and calculate the true MPI for the sample, MPI, with 1 Y. mpi;, We evaluate how
n

i=1

well a technique reduces cold-start bias in a sample S with’:

MPIg — MPI

B[ASS = MP]S

It is important to note that MPIy is not the same as MPI,,,,,. In Section 4.2, we will examine how well a time sam-

ple predicts the full trace MPI; here we seek to mitigate the cold-start bias of M’I\’IS.

We evaluate BIASg for five cold-start techniques, eight traces, four interval lengths (100 thousand, 1 mil-
lion, 10 million, and 100 million instructions), three cache sizes (1, 4, and 16 megabytes) and two associativities
(direct-mapped and four-way). Since space precludes us from displaying 192 cases for each cold-start technique,

we present several subsets of the data.

For a 10-million-instruction interval length, Tables 5 and 6 display BIASy for direct-mapped and four-way
set-associative caches, respectively. The data show several trends. First, COLD, HALF and STITCH tend to

overestimate MPIs. COLD does so because it assumes that all cold-start misses miss. Similarly, HALF tends to

8. Since with time sampling each interval has the same number of instructions, it is meaningful to compute MPIg with
the arithmetic mean of the mpi;’s.

9. We calculate BIASs for PRIME with the secondary cache's local miss ratio rather than MPI, because counting the
number of instructions is not straightforward when some sets are initialized but others are not. Since BJ/ASs is a relative er-
ror, we expect that calculating it with local miss ratio will be comparable to calculating it with MPIL

.15 -

Trace cszﬁe MPIgx1000 | COLD HALF PRIME STITCH INITMR
™ W T18% 5% 8% 323% T0%
Multl 4M 0.62 T1% +27% 50% +52% 1%
16M 0.28 +233% +114% -80% +131% 12%
™ 157 116% 2% -18% 2% 2%
Multl2 4M 0.77 +66% +25% 51% +27% -5%
16M 037 +200% +103% -80% +90% 3%
™ 121 T18% 2% 6% +23% 3%
Mul2 4M 0.60 ¥I0% 431% -62% +53% 249,
16M 025 +264% +168% -85% +147% 9%
™ 113 0% 15% 2% +29% 1%
Muli22 4M 0.62 1% +50% 61% +56% 13%
16M 029 +233% +180% -84% +141% 39
™ 755 4% 0% 3% +32% 5%
Tv M 176 +15% 9% 56% +37% 49,
16M 0.95 +19% +61% 16% +71% +37%
™M 1568 0% 0% 5% 1% 0%
Sor 4M 8.08 +18% 2% -18% 8% +6%
16M 2.00 +190% +60% -76% 8% +114%
™M 500 3% 0% 0% 129% 1%
Tree aM 0.51 +107% +8% 50% +43% +24%
16M 0.30 217% +35% T1% +69% +18%
™M 0.75 T20% % 297 0% +16%
Lin M 0.06 +1113% +535% -62% +217% +903%
16M 0.01 +4648% +2248% % +873% +1037%

Table 5. Bias of Cold-Start Techniques With Direct-Mapped Caches.

This table displays BIASs for five cold-start techniques, eight traces, interval length of 10 million instruc-
tions, three direct-mapped cache sizes (1, 4, and 16 megabytes).

overestimate MPIg when the first half of the trace does not sufficiently fill the cache. HALF can underestimate the
sample’s MPI, however, when the second half of most of a sample’s intervals have a lower MPI than the whole of
each interval. We believe STITCH overestimates MPIg, because (due to temporal locality) references are less
likely to miss when simulated with an interval’s true initial state than with the final state from the previous interval
[WooDp90]. Second, PRIME underestimates MPIg for direct-mapped caches. PRIME calculates MPI by effec-
tively assuming that cold-start misses are as likely to miss as any other reference. Wood et al. [WOHKO91] have
shown, however, that this assumption is false, and that cold-start misses are much more likely to miss than
randomly-chosen references. PRIME is more accurate for four-way set-associative caches, where the heuristic of
ignoring initial references to a most-recently-referenced block mitigates the underestimation. Third, INITMR did
not consistently underestimate or overestimate MPIg. Finally, the large biases for the Lin trace with 4- and 16-

megabyte caches are probably not important, because the true MPI’s are so small.

.16 -

Trace C;‘fz‘ée MPIgx1000 | COLD HALF PRIME STITCH INITMR
™ 004 21% 55 5% +36% 1%
Multl 4M 0.44 +106% +29% -51% +80% 4%
16M 022 +313% +157% -99% +167% 8%
™ 130 +15% 59 9% 6% 7%
Multl2 4M 0.60 +81% +21% -40% +43% +1%
16M 0.32 1232% +118% -57% +104% 3%
™M 0.02 147 5%, 8% +33% 6%
Mul2 4M 0.49 +84% +34% -6A% +68% 2%
16M 0.22 +316% +202% -718% +170% 9%
™M 096 T16% 510% 4% +33% 0%
Muli22 4M 0.52 +84% +54% -52% +73% 1%
16M 0.25 +285% +221% +15% -161% -14%
™M 214 4% 5% % 3% 57
Tv 4M 1.53 +14% +6% +12% +39% -8%
16M 0.82 +99% +75% +195% +87% +32%
M 15.46 +0% 0% 0% 1% 0%
Sor M 8.57 +9% 1% -12% -8% 2%
16M 217 +158% +34% -81% 49, +60%
™ 160 1% 3% 5% +35% %
Tree M 041 +124% 5% 0% +10% +18%
16M 0.25 1263% +38% +83% +77% 17%
™M 0.69 726% 6% +9% 6% T31%
Lin M 0.02 +2763% +1322% +81% +778% +1797%
16M 0.01 +46A8% +2248% % +873% +1037%

Table 6. Bias of Cold-Start Techniques With Four-Way Set-Associativity.

This table displays BIAS; for five cold-start techniques, eight traces, interval length of 10 million instruc-
tions, three four-way set-associative cache sizes (1, 4, and 16 megabytes).

Table 7 addresses which cold-start technique is best. For each the five cold-start techniques, we compute
Biasg for all 192 cases. We award a point in the *“10%’’ category for biases less than £10% and award one in the
““Win’’ category for the cold-start technique closest to being unbiased. Multiple points are awarded in the case of
ties. The final row of Table 7 gives totals. HALF and INITMR have twice the ‘“10%’’ score of the other
approaches, while INITMR has more ‘“Wins’’ than all the other approaches combined. While HALF performs

well in many cases, INITMR performs best overall.

Table 8 illustrates how well INITMR performs with three direct-mapped caches (1, 4, and 16 megabytes)
and all four interval lengths (100,000, 1,000,000, 10,000,000, and 100,000,000 instructions). As expected, it
reduces bias more effectively as the interval lengths get longer or cache size gets smaller, because cold-start
becomes less dominant. The most striking aspect of this data is that INITMR, the best method, still performs terri-
bly for intervals containing 100,000 and 1,000,000 instructions. This should not be not surprising, since the

number of block frames in the caches (e.g., 8192 for 1-megabyte caches) far exceeds the number of true misses in

-17 -

Cache Interval | COLD HALF PRIME STITCH INITMR
Size Length)))
oMill) | 10% Win | 10% Win | 10% Win | 10% Win | 10% Win
o1 | 2 0 | 2 5[0 2] 0 00 5
I 1 21 4 4| 3 5| 1 2] 3 5
10 4 2 15 1B 7 1] 4 3] 12 8
100 6 5 |16 7|16 6| 6 2|16 12
01T | 0 0 [0 o0 0 1] 1 2| 1 1
" 1 o o | o 1|1 2|2 1] 4 13
10 1 o | 6 6] 0 1] 2 1] w0 8
100 7 1 |1 4| 3 2|5 3|12 7
o1 [0 0 [0 0] 0 0] 0 o0 0 16
oM 1 o o | o ol o o] 1 2| 0 14
10 o o | o ol o 1] 2 4| 6 1
100 o o |l 3 2011 ol 5 9|5 5
o1] 2 o0 2 5] o 3] 1 2] 1 3
Al 1 21 4 5| a4 7|5 5| 71 3
10 5 2|21 1| 7 3| 8 8|28 27
100 22 6 |33 132 8|16 14|33 2
All Al | 32 9 | 60 42 | 31 21 | 29 29 | 6 121

Table 7. Scoring of Different Cold-Start Techniques.

This table displays scores of the cold-start techniques for 192 cases: the eight traces, four interval lengths
(100 thousand, 1 million, 10 million, and 100 million instructions), three cache sizes (1, 4, and 16 mega-
bytes) and two associativities (direct-mapped and four-way). We award a point in the ““10%"’ category if
—10% < Biasg < 10% and award one in the ““Win’’ category for the cold-start technique closest to being
unbiased (log | Biass | closest to zero). Multiple points are awarded in the case of ties.

these intervals (e.g., 1550 equals 1,000,000 instructions times a 0.00155 MPI for Multl). Furthermore, it appears
that INITMR does not adequately mitigate cold-start bias unless interval lengths are, at least, 10 million instruc-
tions for 1-megabyte caches, 100 million instructions for 4-megabyte caches, and more than 100 million instruc-
tions for 16-megabyte caches. These results are consistent with the rule-of-thumb that trace length should be

increased by a factor of eight each time the cache size quadruples [STON90].

As Table 8 also illustrates, however, we can determine when INITMR is likely to perform well. We
marked each eniry in the table with an asterisk (***’") if, on average, the interval length was sufficient to (a) fill at
least half the cache and (b) there were at least as many misses to full sets as cold-start misses. All values Biasg
marked with an asterisk are less than £10%. Nevertheless, they imply that for multi-megabyte caches each inter-

val should contain more instructions than have previously been present in many ‘‘full’’ traces.

-18 -

Trace Csaiczlée MPI},p, X 1000 Inéf:{val Lengt;l (Mllhonsloof Instrucul%rz)s)
Multl M 1.55 86% 47% 0%* 0%*
4M 0.70 156% 120% -11% -3%*

16M 0.33 281% 335% -12% -17%
Multl.2 1M 145 103% 21% 2%* 0%*
4M 0.69 123% 63% -5% -2%*

16M 0.32 400% 100% -3% -17%
Mul2 M 124 49% 20% -3%* 0%*
4M 0.61 48% 39% -24% 0%*

16M 0.26 212% 146% -9% -3%
Mult2.2 M 1.18 127% 24% -1%* 0%*
4M 0.59 127% 60% -13% 0%*

16M 0.27 170% 106% -3% 8%
Tv ™M 2.63 36% -10% -2%* 0%*
4M 1.88 34% -9% -4% 0%*

16M 1.03 145% 39% 37% 12%
Sor 1M 14.77 -41% -3%* 0%* 0%*
4M 7.54 -27% 44% 6%* 0%*
16M 1.97 83% 386% 114% -2%*
Tree 1M 2.16 249% 36% -1%* 0%*
4M 0.59 1407% 121% 24% -7%*

16M 0.30 796% 198% 18% -37%
Lin M 1.16 -30% -14% 16% 1%*

4M 0.09 1437% 946% 903% 113%

16M 0.02 2567% 1318% 1037% 176%

Table 8. Accuracy of INITMR Time-Sample MPI Estimates.

This table displays BIASs for INITMR with eight traces, four interval lengths, three direct-mapped cache
sizes (1, 4, and 16 megabytes). We mark entries with an asterisk (‘‘*’’) if, on average, interval lengths are
sufficient to (a) fill at least half the cache and (b) there are at least as many misses to full sets as cold-start
misses.

-19-

INITMR Estimates Unbiased

10

¥ Illlllll) II||I|II 1 llllllll LR ALY I llllHIl i IIIHIII i Illll”l T T TTTH

1 Million Instructions

| N |
T & 7171
I O

~—

Ratio of Sample Estimate to Full Trace MPI
1

o 10 Million\lnstructions -1 r
100 Million Instructions
'—: (] Illl|ll| i Illlllll (] IIIIIHI ot b1l L IIIIHII L |Il||lll 1 Il]l“ll L L itint
© 0.001 0.01 0.1 1 0.001 0.01 0.1 1
Fraction of Full Trace Data Fraction of Full Trace Data
(a) Cones for M’I\’IS (b) Cones for MPIg (no hat)

Figure 5. Cones for Time Sampling with Mult1.2.

This figure displays cones for MPI s (left) and MPIg (right) for the Multl.2 trace and a 4-megabyte direct-
mapped cache. For an interval length and sample size (whose product gives the fraction of the trace used)
the height of a cone displays the range of the middle 90% of estimates from many samples.

4.2. What Fraction of the Full Trace is Needed?

This section examines how accurately time samples estimate MPI},,,, the MPI of the full trace. We esti-
mate the MPI of a sample S, M’}’Is, with the arithmetic mean of MPI estimates for each interval in the sample,

where we use INITMR to reduce cold-start bias of each interval.

Figure 5a illustrates how we summarize the data'®, For the Mult1.2 traces and a 4-megabyte direct-mapped
cache, it plots MPI s/MPI},,, on the logarithmic y-axis and the fraction of the full trace contained in the sample on
the logarithmic x-axis. Consider the cone at the far left. We use 3000 1-million-instruction intervals to calculate
its shape. The left edge, near 0.00025, gives the fraction of the trace used in a sample of one interval. We deter-
mine the end-points of the left edge with the empirical distribution of MPI s for single-interval samples. The upper

end-point gives the 95-th percentile, while the lower gives the 5-th percentile. Thus, the length of the left edge is

10. We use a visual display here instead of coefficient of variation, because we believe it provides more insight. We did
not use a visual display with set sampling, because we did not have enough samples to smooth the data.

-20-

the range of the middle 90% of the M;DIS’S. We compute other vertical slices similarly. A vertical line (not
shown) in the same cone at 0.01 (40 x 0.00025), for example, gives the range of the middle 90% of the MPI;’s for
samples of 40 intervals each. The other two cones are for interval lengths of 10 million instructions (300 inter-
vals) and 100 million instructions (30 intervals). The right graph gives similar data for MPI, where we calculate

the MPI of each interval with its true initial cache state.

A time sample would meet the 10% sampling goal (Definition 1) if the sample’s size times the length of
each interval were less than 10% of the trace (e.g., to the left of x-axis value 0.1 in Figure 5a), the lower point on
the appropriate cone falls between above 0.9 and 1.1 (on the y-axis) Unfortunately, none of the three cones for
Multl.2 qualify. The cone for 1-million-instruction intervals is narrow enough but biased too far above 1.0, while

the cones of 10 million and 100 million instructions are too wide.

We found similar results for the rest of the traces, displayed in Figures 6a and 6b. The cones for the mul-
tiprogrammed traces are similar to those of Mult1.2, although Mult2 and Mult2.2 have more cold-start bias. The
cones for the single applications, Tree, Tv, Sor and Lin, are more idiosyncratic, reflecting application-specific
behavior. The cones of Sor, for example, are skewed by Sor’s behavior of alternating between low and high MPI
(with a period of around 300 million instructions [BOKW90]). For these traces and caches (and for direct-mapped

and four-way, 1- and 16-megabyte caches [KESS91]), time sampling fails to meet the 10% sampling goal.

Nevertheless, this data provides several insights into time sampling. First, the cones for MPI; (Figure 5b)
are vertically centered on 1.0 and have a shape similar to those of MPI s (left). This data and data for other traces
(not shown) suggest that MPI and MPI s have different means but similar distributions. Therefore, it appears that
looking for better ways of mitigating cold-start bias in an interval (or sample) can be decoupled from examining

how well samples tend to predict MPI,,,,.

Second, the height of the cones tends to vary as one over the square root of the sample size (number of

intervals per sample). This suggests that mhpi,-’S are behaving as independent and identically distributed random

variables [MIFJ90].

Third, even if we eliminate cold-start bias, accurate estimates of MPI,,,, must use hundred of millions of
instructions to capture temporal workload variations. With Mult1.2 and a 4-megabyte direct-mapped cache, Fig-
ure 5b shows that MPIs is within 10% of MPI,,,, (for 90% of the samples examined) only with samples of 200
intervals of length 1 million instructions, 65 10-million-instruction intervals, or 20 100-million-instruction inter-

vals'!. This is roughly a factor of three decrease in sample size as interval length is multiplied by ten.

11. For much smaller caches, Laha et al. found a sample size of 35 intervals to be sufficient [LAPI8S].

.21 -

Finally, we investigate whether the error in MPI s can be estimated from information within the sample
itself. We calculate 90% confidence intervals [MIFJ90] and then investigate whether they contain the true mean
approximately 90% of the time. In most cases, however, the 90% confidence intervals do not contain MPIy,,,
90% of the time, because cold-start bias (that was not removed by INITMR) prevents the distribution of MPI s
from being centered on MPI,,,,. Furthermore, the confidence intervals provide no information on the magnitude
of cold-start bias. Confidence intervals did work in a few cases where samples contained 30 or more intervals and
interval lengths were long enough to make cold-start bias negligible [KESS91]. These cases, however, failed to
meet the 10% sampling goal because the samples contained much more than 10% of the trace. Confidence inter-
vals also worked for MPIg (whose expected value is MPI,,,, because it has no cold-start bias), when samples con-

tain at least 30 intervals.

4.3. Advantages and Disadvantages of Time Sampling

The major advantage of time sampling is that it is the only sampling technique available for caches with
timing-dependent behavior (e.g., that prefetch or are lockup-free [KROF81]) or shared structures across sets (e.g.,
write buffers or victim caching [Jour90]). Furthermore, the cold-start techniques for time sampling can be

applied to any full-trace simulation, since a ‘“full’” trace is just a long observation from a system’s workload.

However, in these simulations, time sampling fails to meet the 10% sampling goal for multi-megabyte
caches, because it needed long intervals to mitigate cold-start bias and many intervals to capture temporal work-
load variation. These results suggest that unless researchers develop better cold-start techniques, set sampling is

more effective than time sampling at estimating the MPI of multi-megabyte caches.

.22

INITMR Estimates for Multl INITMR Estimates for Mult2

1 IIIIIIII ¥ l||”l|l ¥ llllllll LR t Illlllll 1 IIIII|Il i Illllll] [B R REE

10

L B LA
T 1 T TTT
| HS T SO

Ratio of Sample Estimate to Full Trace MPI
1

. 10 - -
‘—: 11 IHIIII [| III|II| i Illlllll 1 1131l 1 llllllll - llllH' L. Illllll Lol L1iLhLE
< 0.001 0.01 0.1 1 0.001 0.01 0.1 1
Fraction of Full Trace Data Fraction of Full Trace Data
INITMR Estimates for Mult2.2 INITMR Estimates for Tree
8 T IIIIHII i IIIIIIII 1 Illlllll T T TTI]] H IlIlIIll T llllllll T IIIIIHl T T TTTiE

1 1 11}
T 117117

|

Ratio of Sample Estimate to Full Trace MPI
1

- 1 O . -
100
10 A
'_1 I..4 lllllll (I | IIHII' | - | Illllll L LI L. IIIIH' I | Illotllll i..1]ll“!l S
© 0.001 0.01 0.1 1 0.001 0.01 0.1 1
Fraction of Full Trace Data Fraction of Full Trace Data

Figure 6a. Cones for Time Sampling with Mult1, Mult2, Mult2.2, and Tree.
Similar to Figure Sa, these figures display cones for MPJg with the Multl, Mult2, Mult2.2, and Tree traces.

-23 -

INITMR Estimates for Tv INITMR Estimates for Sor

1 llllllll i llllllll 1 IIIHIII VT THIY

O
—

i Illlllll 1 lllllll‘ H lllll”l SN RE L

T T 1177110

1.1 111

] lllllll
T |ill”l

1 Illllll

T !!lllll
b’

1 lll|||l

\ Soo

10

1 IIIIIII]] |IIIHII I llll]lll § 111l 1 Illlllll i Illllll‘ 1 I!IIIH' Lo b LLLbLL

0.001 0.01 0.1 1 0.001 0.01 0.1 1
Fraction of Full Trace Data Fraction of Full Trace Data

T
i
T
i

Ratio of Sample Estimate to Full Trace MPI

0.01

INITMR Estimates for Lin

T IIIHIII T ‘IDHHI T Illlllll T T TTTH

100

10
1 ||Ii|lll ¥ P TR

1 lllllll
! IIIIIII

Ratio of Sample Estimate to Full Trace MPL

100
- i IIIHII' (] IIIHII' 1 IIIIIII! L.L A1

o 0.001 0.01 0.1 1
Fraction of Full Trace Data

Figure 6b. Cones for Time Sampling with Tv, Sor, and Lin.

Similar to Figure 5a, these figures display cones for MPI s with the Tv, Sor, and Lin traces. Note that Lin
uses a different y-axis scale.

-4 -

5. Conclusions

A straightforward application of trace-driven simulation to multi-megabyte caches requires very long traces
that strain computing resources. Resource demands can be greatly reduced using set sampling or time sampling.
Set sampling estimates cache performance using information from a collection of sets, while time sampling uses
information from a collection of trace intervals. This study is the first to apply both techniques to large caches,
where they are most useful. We use billion-reference traces of large workloads that include multiprogramming

but not operating system references [BOKW90]

For set sampling we obtained several results. First, calculating the MPI (misses per instruction) for a sam-
ple using the number of instruction fetches to all sets is much more accurate than using only the number of
instruction fetches in the sample. Second, constructing samples from sets that share some common index bit
values works well, since such samples can be used to accurately predict the MPI of multiple alternative caches
and caches in hierarchies. Third, sets behave sufficiently close to normal that confidence intervals are meaningful
and accurate. Last and most important, set sampling meets the 10% sampling goal: using <10% of the references

in a trace it estimates the trace’s true MPI with < 10% relative error and at least 90% confidence.

Resulis for time sampling include the following. First, Wood et al.’s [t splic Was the most effective technique
for reducing cold-start bias, although using half the references in a trace interval to (partially) initialize a cache
often performed well. Second, interval lengths must be long to mitigate cold-start bias (10 million instructions for
1-megabyte caches, 100 million instructions for 4-megabyte caches, and more than 100 million instructions for
16-megabyte caches). Third and most important, for these traces and caches, time sampling does not meet the
10% sampling goal: we needed more than 10% of a trace to get (trace) interval lengths that adequately mitigated

cold-start bias and have enough intervals in a sample to make accurate predictions.

Thus, we found that for our traces, set sampling is more effective than time sampling for estimating MPI of
the multi-megabyte caches. Time sampling will be preferred, however, when set sampling is not applicable, such
as for caches that have time-dependent behavior (e.g., prefetching) or structures used by many sets (e.g., write

buffers).

As with any experimental work, our results are sure to hold only for the specific cases examined. Neverthe-
less, we expect our results to extend to other similar cache configurations and to other user-mode traces from simi-
lar workloads. It is an open questions whether our results apply to traces dominated by operating system activity

or radically different user-mode workloads.

-925.

6. Acknowledgments

We would like to thank The Western Research Laboratory of Digital Equipment Corporation, especially

Anita Borg and David Wall, for the traces used in this study. Joel Bartlett, Renato De Leone, Jeremy Dion, Norm

Jouppi, Bob Mayo, and Don Stark all were a tremendous help in providing traceable applications. Paul Vixie and

Colleen Hawk helped to store the traces. Paul Beebe and the Systems Lab were able to satisfy our enormous com-

puting needs. Mike Litzkow and Miron Livny adapted Condor to the requirements of these simulations. Harold

Stone gave comments on an earlier version of this work, while Sarita Adve, Vikram Adve and Garth Gibson scru-

tinized this paper.

7. Bibliography

[AGHHSS]

[AGAH90]

[BOKL.89]

[BOKW90]

[EASF78]

[HEIS90]

[HENP90]

[H1.S89]

[Jour90]

[KESs91]

[KROF81]

[LAPISE]

[L.AHASS]

A. AGARWAL, J. HENNESSY and M. HOROWITZ, ‘‘Cache Performance of Operating System and
Multiprogramming Workloads,”” ACM Transactions on Computer Systems, vol. 6, no. 4, November
1988, pp. 393-431.

A. AGARWAL and M. HUFFMAN, ‘‘Blocking: Exploiting Spatial Locality for Trace Compaction,”
Proceedings of the Conference on Measurement and Modeling of Computer Systems, 1990, pp. 48-57.
A. BORG, R. E. KESSLER, G. LAZANA and D. W. WALL, “Long Address Traces from RISC
Machines: Generation and Analysis,”” Research Report 89/14, Western Research Laboratory, Digital
Equipment Corporation, Palo Alto, CA, September 1989.

A. BORG, R. E. KESSLER and D. W. WALL, ‘“‘Generation and Analysis of Very Long Address
Traces,”” Proceedings of the 17th Annual International Symposium on Computer Architecture, 1990,
pp. 270-279.

M. C. EASTON and R. FAGIN, ‘‘Cold-Start vs. Warm-Start Miss Ratios,”’ Communications of the
ACM, vol. 21, no. 10, October 1978, pp. 866-872.

P. HEIDELBERGER and H. S. STONE, ‘‘Parallel Trace-Driven Cache Simulation by Time Partitioning,”’
IBM Research Report RC 15500 (#68960), February 1990.

J. L. HENNESSY and D. A. PATTERSON, Computer Architecture: A Quantitative Approach, Morgan
Kaufmann Publishers Inc., San Mateo, CA, 1990.

M. D. HILL and A. J. SMITH, ‘‘Evaluating Associativity in CPU Caches,”” IEEE Transactions on
Computers, vol. 38, no. 12, December 1989, pp. 1612-1630.

N. P. Jouppl, “‘Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers,”” Proceedings of the 17th Annual International Symposium
on Computer Architecture, 1990, pp. 364-373.

R. E. KESSLER, ‘“‘Analysis of Multi-Megabyte Secondary CPU Cache Memories,”” Ph.D. Thesis,
Computer Sciences Technical Report #1032, University of Wisconsin, Madison, W1, July 1991.

D. KROFT, ‘‘Lockup-Free Instruction Fetch/Prefetch Cache Organization,’ Proceedings of the 8th
Annual International Symposium on Computer Architecture, 1981, pp. 81-87.

S. LAHA, J. H. PATEL and R. K. IYER, ‘‘Accurate Low-Cost Methods for Performance Evaluation of
Cache Memory Systems,’’ IEEE Transactions on Computers, vol. 37, no. 11, November 1988, pp.
1325-1336.

S. LAHA, “‘Accurate Low-Cost Methods for Performance Evaluation of Cache Memory Systems,”’
Ph. D. Thesis, University of Illinois, Urbana-Champaign, Illinois, 1988.

=26 -

[MIFI90]

[NIELS6]

[PRZY88]

[PRHHSE9]

[PUZA85]

[SAMP89]

[SMIT77]

[SMIT82]
[STON9O]

[WANB90]

[WooD9(]

I. MILLER, J. E. FREUND and R. JOHNSON, Probability and Statistics for Engineers, Prentice Hall,
Inc., Englewood Cliffs, NJ 07632, Fourth Edition 1990.

M. J. K. NIELSEN, ‘‘Titan System Manual,’”” Research Report 86/1, Western Research Laboratory,
Digital Equipment Corporation, Palo Alto, CA, September 1986.

S. A. PRZYBYLSKI, ‘‘Performance-Directed Memory Hierarchy Design,”” Ph.D. Thesis, Technical
Report CSL-TR-88-366, Stanford University, Stanford, CA, September 1988.

S. PRZYBYLSKI, M. HOROWITZ and J. HENNESSY, ‘‘Characteristics of Performance-Optimal Multi-
Level Cache Hierarchies,”” Proceedings of the 16th Annual International Symposium on Computer
Architecture, 1989, pp. 114-121,

T. R. Puzak, “‘Analysis of Cache Replacement Algorithms,”” Ph.D. Thesis, University of
Massachusetts, Amherst, MA, February 1985.

A. D. SAMPLES, ‘“Mache: No-Loss Trace Compaction,”” Proceedings of the International Conference
on Measurement and Modeling of Computer Systems, 1989, pp. 89-97.

A. J. SMITH, “Two Methods for the Efficient Analysis of Memory Address Trace Data,”” IEEE
Transactions on Software Engineering, vol. 3, no. 1, January 1977, pp. 94-101.

A.J. SMITH, ‘‘Cache Memories,”” Computing Surveys, vol. 14, no. 3, September 1982, pp. 473-530.

H. S. STONE, High-Performance Computer Architecture, Addison-Wesley, Reading, MA, Second
Edition 1990.

W. WANG and J. BAER, “‘Efficient Trace-Driven Simulation Methods for Cache Performance

Analysis,”” Proceedings of the Conference on Measurement and Modeling of Computer Systems,
1990, pp. 27-36.

D. A. Woob, “The Design and Evaluation of In-Cache Address Translation,”” Ph.D. Thesis,
Computer Science Division Technical Report UCB/CSD 90/565, University of California, Berkeley,
CA, March 1990.

[WOHK91] D. A. WooD, M. D. HiLL and R. E. KESSLER, ‘‘A Model for Estimating Trace-Sample Miss Ratios,”’

Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, 1991, pp. 79-89.

227 -

