Performance of On-Line
Index Construction Algorithms

by

V. Srinivasan
Michael J. Carey

Computer Sciences Technical Report #1047
September 1991

PERFORMANCE OF ON-LINE INDEX CONSTRUCTION ALGORITHMS

V. Srinivasan

Michael J. Carey

Computer Sciences Department
University of Wisconsin
Madison, Wisconsin 53706
USA

To appear in the
Proceedings of the International Conference on Eztending Database Technology
Vienna, Austria, March 1992

This research was partially supported by the National Science Foundation under grant IRI-8657323
and by a University of Wisconsin Vilas Fellowship.

Performance of On-Line Index Construction Algorithms

V. Srinivasan Michael J. Carey
Department of Computer Sciences
University of Wisconsin

Madison, WI 53706

{srinivas, carey}@cs.wisc.edu

Abstract

In this paper, we study the performance of several on-line index construction algorithms
that have recently been proposed. These algorithms each permit an index to be built while
the corresponding data is concurrently accessed and updated. We use a detailed simulation
model of a centralized DBMS to quantify the performance impact of various factors, including
the amount of update activity, resource contention, background load, and the size of a record
compared to the size of an index entry. The performance comparison makes use of two new
metrics, one of which is a “loss” metric that reflects the amount of on-line work lost due to
interference with the index construction activity. In our analysis, we find that there is an
important trade-off between the time required to build the index and the throughput achieved
by update transactions during the index construction period. An important conclusion of our
study is that certain on-line algorithms perform very well in all but extremely resource-bound

situations.

1 Introduction

Future databases are expected to be several orders of magnitude larger than the largest databases
in operation today. In particular, databases on the order of terabytes (1012 bytes) are soon ex-
pected to be in active use [Silb90]. In such databases, the utilities for index construction, database
reorganization, and checkpointing will take enormous amounts of time to run due to the time it
takes to scan the data itself (since scanning a 1-terabyte table may take days). Thus, there is a need
for these utilities to operate in an on-line fashion [Dewi90]. In terms of related work, algorithms for
on-line checkpointing of a global database state have been discussed [Pu85] and their performance
has been studied [Pu88]. Also, the problem of on-line index reorganization has been discussed

briefly in [Ston88]. Only recently, however, have algorithms been proposed to tackle the problem

This research was partially supported by the National Science Foundation under grant IRI-8657323 and by a
University of Wisconsin Vilas Fellowship.

of on-line index construction [Srin91b, Moha91]. Since B-trees! are the most common dynamic
index structure in database systems, the existing work has concentrated on algorithms for on-line

construction of B-tree indices.

On-line index construction algorithms typically work as follows: A build process scans the data,
copying out information for index entries while updaters concurrently modify the same data. The
system keeps track of the updates that take place during the scan; the builder then combines these
updates with the index entries created during the scan before registering the index in the system
catalogs. The proposed on-line index construction algorithms differ in the data structures used
for recording the concurrent updates, their strategies for combining these updates with the newly

created entries, and finally, in the degree of concurrency supported following the scan phase.

A comprehensive set of on-line index construction algorithms were described in an earlier paper
[Srin91b]. In this paper, we evaluate the relative performance of these on-line index construction
algorithms. Using a detailed simulation model of a centralized DBMS, we compare the performance
of these on-line index construction algorithms with that of a good off-line algorithm as well as
amongst themselves. By running experiments over a wide range of system, workload, and storage
conditions, we investigate the performance trade-offs for the proposed algorithms. In particular, to
assist in our analysis, we define a new performance metric, “loss,” that captures the lost work in
terms of update transactions that are unable to execute due to contention caused by conflicts with
the index construction process. We also compare algorithms using other relevant metrics, including
the “off-line fraction,” which characterizes the fraction of time (relative to the response time of an

off-line algorithm) during which updaters are unable to proceed.

The rest of the paper is organized as follows. In Section 2, we summarize the proposed on-
line index construction algorithms. Section 3 discusses the performance trade-offs involved in
choosing one on-line algorithm over another. The simulation model used in our study is described
in Section 4. Section 5 describes the performance experiments that we conducted and presents
their results. In Section 6 we predict the performance of other proposed algorithms based on our

performance results. Finally, in Section 7, we present our conclusions and plans for future work.

2 Index Construction Algorithms

Constructing a B-tree index from a relation usually involves three basic steps. The first step involves
scanning the relation and collecting the (key, rid) entries that are needed to build the index. In the
second step, the entries collected in the first step are sorted to produce a linked-list of leaf pages for
the index. The third and final step involves creating the non-leaf pages of the index in a bottom-up

fashion from the leaf page list created in the previous step.

1By B-tree we mean the variant in which all keys are stored at the leaves, often called B*-trees [Come79].

2.1 Off-Line Algorithm

The simplest way to construct a new index on a relation would be to lock the relation in Share mode,
build the index using the three basic steps outlined above, and then release the lock. Updaters
are assumed to hold an Intention-exclusive lock on the relation while modifying a page of the
relation (& la the hierarchical locking scheme of [Gray79]) and would therefore be unable to execute
concurrently with the index building process. On the other hand, readers only acquire an Intention-
share lock on the relation, and can access the relation’s pages concurrently with the building process.
Due to the absence of concurrent updaters, this off-line strategy is the fastest way to build the index.
While the unavailability of the relation for updaters makes the off-line algorithm unacceptable for
building indices on large relations, we will use its performance as a baseline for understanding
the behavior of alternative on-line algorithms. One way to improve on the off-line approach is to
allow updaters to proceed during index construction, somehow communicating their updates to the
building process. It is possible that the duration of index construction will be increased due to the
presence of concurrent updates, but permitting updates during the index construction phase makes
such on-line strategies attractive. Before we describe the on-line algorithms, however, we must first

describe the behavior of update transactions.

2.2 Concurrent Updates

Any update to a record in arelation that changes the value of an indexed attribute results in updates
to the corresponding index. Update transactions are assumed to obey the following two rules: (i)
they hold a short-term Exclusive lock on a relation page while they are making changes to it, and (ii)
they do not try to insert the same index entry (key/rid pair) twice successively without deleting it
in-between (and vice versa). To ensure correct behavior of our on-line algorithms in a serializability
sense, we also require that update transactions hold long-term Exclusive locks on updated record
ids until they terminate (commit or abort). Update transactions that encounter an active index
construction process will record the necessary index updates in a manner that depends on the type
of on-line algorithm being used. We assume for simplicity that this will occur immediately after
the corresponding relation update, i.e., the new index entry will be recorded while the updater still
holds its Exclusive lock on the modified relation page?. It should be mentioned that this approach

to transaction execution handles situations like transaction aborts in a straightforward manner (see
[Stin91b] for details).

Given that concurrent update transactions behave as described above, we now describe the on-
line index construction algorithms of interest here. We will subdivide the on-line algorithms into
two classes, list-based algorithms and index-based algorithms, depending on whether they use a list
or an index for storing concurrent updates. More details about the on-line algorithms discussed

here can be found in an earlier paper [Srin91b].

2A way to relax this restriction is described in [Srin91b].

2.3 List-Based Algorithms
The list-based algorithms for on-line index construction use a list, called the update-list, to record

concurrent updates. The individual list-based algorithms differ from each other in their method
of combining the update-list with the list of index entries obtained by scanning the relation; they
also differ in the amount of concurrency provided after the initial scan phase. The various possible

list-based algorithms are given in Table 1.

A simple way of combining the scanned entries with the update-list is to first build an interme-
diate index using the scanned entries alone, and then sequentially apply the update-list entries to
this index like ordinary index inserts and deletes. We will call this the basic strategy for building
the index. Note that the basic strategy may result in several I/Os for any given leaf node of the
intermediate index, especially if the number of entries in the update-list is large. A second method
of combining the scanned entries with the update-list is to build an intermediate index using the
scanned entries, as above, but to sort the update-list before applying its entries to the intermediate
index. This method, called the sort strategy, ensures that a maximum of one disk I/O is incurred
for each leaf page of the intermediate index (since leaf nodes are accessed in sorted order of the
keys that they contain). A third method of combining the concurrent updates with the scanned
entries is to first sort both the scanned entries and the update-list entries, producing two sorted
lists; the index is then built in a bottom-up manner by merging these two sorted lists together,
thus producing the leaf pages of the final index in one pass (see [Srin91b] for details). In situations
where the update-list is large, this merge strategy has some advantages over the sort strategy, as

we shall see later.

As mentioned earlier and indicated in Table 1, the list-based algorithms also vary in the amount
of concurrency allowed after the scan phase. The simplest strategy involves locking out updaters
after the scan phase and applying the concurrent updates using one of the three methods described
above. List-based algorithms that use this strategy are called the List-X-* algorithms because they
use a list for storing concurrent updates and the build process acquires an X lock on the update-list
at the end of the scan phase to lock-out updaters.

2.3.1 The List-X-* Algorithms

Based on the three possible methods for combining concurrent updates with the scanned index
entries, there are three possible List-X algorithms, List-X-Basic, List-X-Sort, and List-X-Merge.
The execution of the build process and update transactions in the various List-X-* algorithms is
illustrated in Figure 1. The exclusive phase in which the update-list entries and the scanned entries

are combined is called the build phase.

In the List-X-* algorithms, an updater that finds an index building process in the scan phase

will append an index update corresponding to its relation update to the update-list (Figure 1).

Updater appends are synchronized via short-term exclusive locking of the update-list. During the
build phase, however, updaters cannot execute concurrently with the build process. If the duration
of the build phase is significant compared to the duration of the scan phase, there could be a
noticeable loss of updater concurrency. To avoid such a loss, we can design list-based algorithms
in which updaters can execute concurrently throughout the index construction period; these are

called the List-C-* algorithms.

Name How Updates Are Applied Concurrency After Scan Phase

List-X-Basic | Sequentially apply from unsorted list | X lock list, no concurrent updaters
List-X-Sort Sequentially apply from sorted list X lock list, no concurrent updaters
List-X-Merge | Merge sorted list and scanned entries | X lock list, no concurrent updaters
List-C-Basic | Sequentially apply from unsorted list | Concurrent updaters allowed

List-C-Sort Sequentially apply from sorted list Concurrent updaters allowed

List-C-Merge | Merge sorted list and scanned entries | Concurrent updaters allowed

Table 1: List-Based Algorithms.

Time Start Of Index Construction
T
Build Process
Scan Relation Creating
Heap File
= Build Process
€1 Scanned
E Entr?:: [— - - ————- | Sort Scanned Entries
<
o i Leaf Page 6
@ List .
: L
§ Build Process - -
= Basic and Sort |
® Build Higher Levels Update Transaction
@ Of Index
s Append Into
o l Update-List
=
g Update-List l
Intermediate
Index

N
N

& .
- Build Process
BUI.Id Process Sort and Merge
Basic and Sort Sort Update-List
Initialize Build Phase Index Sorted onpree e
From Scan Phase Index Update-List {

Build Process Basic
Sequentially Insert
Upg

ate-List Entries
Into Index Build Process Sort

Sequentially Insert Sorted Build Process Merge
Update-List Entries Lo g

Merge Scanned Entries
Into Index ; i
Final index ‘// With Sorted Update-List.

43 Bottom-~Up Build

(

Build Phase (Updaters Locked Out)

End Of Index Construction

4

Figure 1: The List-X-* Algorithms

2.3.2 The List-C-* Algorithms

As for the List-X-* algorithms, there are three possible List-C-* algorithms: List-C-Basic, List-
C-Sort, and List-C-Merge. The List-C-* algorithms are illustrated in Figure 2. Notice that the
behavior of the build process in the scan and build phases of a particular List-C-* algorithm is the
same as that of the corresponding List-X-* algorithm. Since the List-C-* algorithms have a build
phase in which updaters can execute concurrently, however, they need an appropriate strategy for
merging in a second set of concurrent updates at the end. This is done in a third phase called the
catchup phase. Each of the three List-C-* algorithms uses the same strategy in the catchup phase
to combine the build phase updates with the intermediate index that exists at the end of the build
phase. In particular, the intermediate index is made public to updaters (even though it is not yet
available for normal use) at the start of the catchup phase. The build process then sorts the list of
build phase updates and applies them to the intermediate index concurrently with other updaters.
A normal B-tree concurrency control algorithm is used to resolve conflicting accesses to the index
by the build process and update transactions during the catchup phase [Srin91b]. After the build
process completes processing all of the build phase updates, it makes the index available for normal

use.

Updaters in the List-C-* algorithms behave like updaters in the List-X-* algorithms in the scan
and build phases; i.e., they append their updates to the update-list. (The update-list is initialized to
empty at the start of both the scan and the build phases.) During the catchup phase, however, the
concurrent updaters directly update the intermediate index to which the build process is applying
build phase updates. To ensure that the final index does not contain any inconsistencies, specially
marked entries may need to be entered into this index by updaters; such marked entries are later

removed by the build process (see [Srin91b] for details).
2.4 Index-Based Algorithms

The second class of on-line index construction algorithms is the class of index-based algorithms.
In these algorithms, updaters use an index to store concurrent updates instead of the update-list
used by the list-based algorithms. There are four possible index-based algorithms, as indicated in
Table 2; since the leaf pages of this index (which are created by concurrent updates) contain the
keys in sorted order, the sort method of building the index is inapplicable here and thus there are
no index-based counterparts to the List-*-Sort algorithms.

2.4.1 The Index-X-* Algorithms

The Index-X-Basic and Index-X-Merge algorithms are illustrated in Figure 3. In the scan phase,
updaters in both of the Index-X-* algorithms register their updates in a temporary public B-tree
index. Concurrent updater access to this index is regulated using a B-tree concurrency control al-
gorithm. A difference that arises from using an index, as opposed to an update-list, is that updaters

need to leave behind special index entries in certain situations; this avoids any inconsistencies that

might otherwise be caused due to repeated inserts and deletes of the same index entry (see [Srin91b]
for details). The build process in each Index-X-* algorithm is similar to that of the corresponding
List-X-* algorithm; the key difference is that the (sorted) list of concurrent updates is obtained at

the end of the scan phase from the leaf pages of the temporary public index rather than from an

update-list.
Time Start Of Index Construction
7
Build Process
Scan Relation Creating
Heap File
) Build Process
@
E E?,?,?:f d .. — et | Sort Scanned Entries
< |
0 tgaf Page v
% st N
8 Build Process -—-J-—_.__;..
= Basic and Sort
2 Build Higher Levels Update Transaction
g Of Index Append Into
o l Update-List
f =
3 Update-List l
]

Intermediate
Index

i Y
Build Process Build Process
. Sort and Merge
Basic and Sort d
Initialize Build Phase Index Sorted Sort Update-List
From Scan Phase Index Update—List

Build Process Basic

Seguentially Insert
Update-List Entries -
Into index Build Process Sort

Sequentially Insert Sorted i
Upgate—Lis{ Entries Build Process ~_ Merge

Merge Scanned Entries
Into Index ; h
Intermediate 4// With Sorted Update-List.

Index Bottomn-Up Build

i

{Updaters Allowed)

Update Transaction Update-List

Append Into New
Update-List

Build Phase

-l

" Update Transaction .
Build Process || Make Updates to Index Build Process

Make Index Public || Thatis Still Not Available Sorted Sort Update-List
For Normal Use Update-~-List /

Build Process
Seauentially Insert Sorted
Update-List Entries Into Index

End Of Index Construction

Figure 2: The List-C-* Algorithms

2.4.2 The Index-C-* Algorithms
The Index-C-Basic and Index-C-Merge algorithms are illustrated in Figure 4. In the scan and build
phases, updaters in the Index-C-* algorithms register their updates to a temporary public index.

This index, just like the update-list in the earlier List-C-* algorithms, is initialized to empty at the

start of the scan and build phases. Updaters in the Index-C-* algorithms behave slightly differently
(in terms of leaving marked entries in the public index) during the build phase than they do in the
scan phase [Srin91b]. In the catchup phase, where updaters share an index with the build process,

updaters in the Index-C-* algorithms behave just like updaters in the catchup phase of the List-C-*

algorithms.
Name How Updates Are Applied Concurrency After Scan Phase
Indez-X-Basic | Sequentially apply from leaf-page list X lock index, no concurrent updaters

Indez-X-Merge | Merge leaf-page list with scanned entries | X lock index, no concurrent updaters

Indez-C-Basic | Sequentially apply from leaf-page list Concurrent updaters allowed

Indez-C-Merge | Merge leaf-page list with scanned entries | Concurrent updaters allowed

Table 2: Index-Based Algorithms.

Time Start Of Index Construction
bz 77
Build Process
Scan Relation Creating
Heap File
Build Process
Scanned
Entries E e L] — % | Sort Scanned Entries
I Leaf Page 6

List

Build Process / -L—__.
Basic Update Transaction

Build Higher Levels Insert into Tem
porary
Of Index Public Index

Temporary Public

Scan Phase (Updaters Allowed)

Intermediate Index
Index

Build Process Basic /]
Initialize Build Phase Index Build Process Merge
From Scan Phase Index. Then, Merge Scanned Entries
Sequentially Insert Entries From With Leaf Pages Of Public
Leaf Pages Of Public Index Index. Bottom-Up Build
Into Build Phase Index /

4!!

Final Index

End Of Index Construction

% Build Phase (Updaters Locked Out) §

Figure 3: The Index-X-* Algorithms

During the scan and build phases, the build process in the Index-C-* algorithms behaves iden-

tically to the build process in the corresponding Index-X-* algorithms. In the catchup phase,

incorporating build phase updates into the intermediate index is done essentially like it is in the
List-C-* algorithms. The main difference here is the absence of the sort step that was needed earlier

for sorting update-list entries.

Time Start Of Index Construction
ooz 778
Build Process
Scan Relation Creating
Heap File
o Build Process
[0 S d N
E Ef\?rri\;: I T - et~ | Sort Scanned Entries
<
0 Leaf Page 6
] -
[0}
g- Build Process / ‘—l‘r:-—
= _ Baslc . Update Transaction
o Build Higher Levels Insert Into Temporary
8 Of Index Public Index
F l !
o
g Temporary Public
@ Intermediate Index
Index

Y
Build Process Basic / S/

Initialize Build Phase Index Build Process Merge

From Scan Phase Index. Then, Merge Scanned Entries
Sequentially Insert Entries From With Leaf Pages Of Public
Leaf Pages Of Public index Index. Bottom-Up Build

Into Build Phase Index
\ / Update Transaction
Insert Into New

o
5
o
=
2
<
¢
2
w
o
o
=2
4
o
£
o.
=
s
m

Intermediate Temporary Public Index
Index
A Temporary Public
/ Index
< - 7
2 Build Process Update Transaction Build Process
2 Make Index Public Make Updates to Index Sequentially Insert
That is Still Not Available Leaf Page Entries from
) \ For Normal Use FunldFPh??edPubhc Index
= nto Final Index
g —
29 Final
£ Index
]
(&)

N End Of Index Construction

Figure 4: The Index-C-* Algorithms

Apart from the above algorithms, two other on-line algorithms have also recently been proposed
in the literature [Moha91]. We will describe these algorithms later, in Section 6.1, and explain how

their performance can be predicted from the performance of the algorithms already discussed above.

3 Performance Trade-Offs

As we mentioned earlier, the off-line algorithm provides the fastest way of building an index at
the cost of providing no updater throughput. On the other hand, the on-line algorithms allow
concurrent updaters during index construction, with the price being an increase in the time required
to build the index. For the on-line algorithms then, the following question arises: How much of an
increase in updater throughput is needed to compensate for a corresponding increase in the build
response time? We shall try to answer this question by quantifying the loss to the database system

caused by the index construction activity.

Suppose that the best updater throughput possible in the system without the new index is Thes:-
Suppose also that a particular index construction algorithm A has a build response time of B4
seconds and that during its building time it provides an updater throughput of T4 transactions per
second. In an on-line algorithm, update transactions face interference from the index construction
process in terms of data and resource contention, so T4 will be less than Tyest. Using Ra, T4, and
Thest, We can estimate the loss to the system in terms of the number of potential update transactions

that could not execute due to contention caused by index construction activity:
loss = (Tbest —Ta)*x Ra (1)

Interestingly, the formula for loss can also be applied to the off-line algorithm directly. The loss
for the off-line algorithm (with response time R gine = Rpest) is simply Thest X Riest since the
updater throughput (Topinc) for the off-line algorithm is zero. The loss metric thus gives us a way
of comparing the performance of an on-line algorithm both with that of other on-line algorithms
and with that of the off-line algorithm. From the loss formula, it can be seen that the loss will be
high if index construction takes a long time (if R4 is large) or if the updater throughput is very
low (if T4 is small). The loss metric thus offers a simple way to answer the question posed in the
previous paragraph regarding the amount of additional updater throughput needed to offset an
increase in the build response time. In terms of this metric, an algorithm with a lower loss is better
than one with a higher loss. Between two algorithms with the same loss, the one with the smaller
response time is better since the index is available earlier in that case. Finally, the normalized loss
for an algorithm can be defined as the loss for that algorithm divided by the loss for the off-line

algorithm.

Though the loss metric provides a clean way to combine the build response time and the updater
throughput into one measure, it alone is not sufficient to characterize the performance of an on-
line algorithm completely. In particular, recall that some on-line algorithms (e.g., the List-X-*
and Index-X-* algorithms) have exclusive phases during their execution. Since high performance
transaction processing systems may have severe maximum updater response time requirements,

the durations of such exclusive phases may be critical to the performance of such systems. Thus,

10

when evaluating an index construction algorithm, we will also consider the off-line fraction of the
algorithm, which is defined as the ratio of the duration of its exclusive phase (if any) to that of the

off-line algorithm (which has a single exclusive phase equal to its entire build response time).

In our discussion of performance trade-offs thus far, we have ignored certain hidden “lost-
opportunity” costs involved in building a new index. These costs arise because the performance of
the database system with the new index may be much different from its performance without the
index. Not surprisingly, these hidden costs are closely related to the reason for building the new
index. The decision to build a new index may be made for either of the following reasons, each of

which relates to a performance-improving opportunity:

1. The new index would significantly speed up a class of queries that are currently running

inefficiently (i.e., using sub-optimal access plans) in the system.

2. The new index would enable a new class of queries to be executed that cannot be executed at
all (reasonably) given the current system configuration. For example, a credit card company
might want to provide a new service that involves accessing its customer records using a
currently unindexed attribute. A naive way of executing such queries without building a new
index on the relevant attribute might involve a relation scan, which could be prohibitively

expensive for large relations (e.g., it could take days for a terabyte relation).

Accounting for either of these considerations above is difficult, as the interests of queries that will
not be speeded up by the new index conflict with those of the queries that will indeed benefit from
the new index (cases 1 and 2 above). In particular, for the queries that will benefit from the new
index, the best way to build the index is to build it as soon as possible. On the other hand, for
existing queries that will not benefit from the new index, the best way to build the new index is the
one that creates the least interference for them during index construction. The question of which
class of queries is more important and thus needs to be given priority in the system is application-
specific and depends on factors like the economic benefit of preferring one class of queries over
another. Such factors are hard to quantify and will vary from system to system. In our discussion
of the performance of on-line index construction algorithms, therefore, we assume that the decision
to build the index is made off-line, we ignore the hidden performance tradeoffs involved in index
construction, and we only consider the impact of index construction on concurrent transactions
that use other access paths to efficiently access and/or update the relation on which the index is

being built.
4 Simulation Model

In this section, we describe the simulation model used to study the performance of the on-line

algorithms described in Section 2. This model, which is a closed queueing model with a fixed

11

multi-programming level (MPL), was implemented using the DeNet simulation language [Livn90].

The central focus of the model is the relation on which a new index is being built.

The model of the system hardware assumes a computer system with one or more CPUs and
disks. Requests for the CPUs are scheduled using an FCFS (first-come, first-served) discipline with
no preemption. Fach of the disks has its own disk queue, and each queue is managed using an
elevator disk scheduling algorithm. Apart from the CPUs and disks, the physical resource model
also includes a buffer pool for holding disk pages in main memory. The buffer pool is managed in
a global LRU fashion for all pages except relation pages. Since relation page accesses are either
sequential (due to the build process) or random (due to concurrent update or search activity),
relation pages are added to the tail end of the LRU list upon being released, effectively giving them
lesser priority than index pages. The buffer manager performs demand-driven writes when dirty
pages are chosen for replacement. The system model also includes a lock manager for setting and

releasing locks on pages and records.

The components of the database storage model include the relation on which an index is being
built, an already existing B-trée index on this relation, and auxiliary data structures like the
temporary lists and indices needed by the various on-line index construction algorithms. Important
parameters of the database storage model include the size of the initial relation in tuples, the
maximum number of tuples per relation page, and the maximum fanout of a B-tree index page. In
our experiments, the physical size of a page is always the same (4K bytes), so a variation in the
maximum capacity of a relation page should be viewed as being due to different tuple sizes. For
modeling simplicity, all tuples are assumed to be of the same size, all index entries are assumed to
be of the same size, and no duplicate keys are allowed in the index. (These simplifications should
not impact our qualitative performance results.) The distribution of values for an indexed attribute

of the relation are drawn from a random permutation over an integer key space of 1..400,000.

The workload model consists of the index build process and a fixed set of user terminals, each of
which submits one of three types of relation operations (search, insert, or delete). Insert operations
find a non-full page in the relation using a bit map and then insert a tuple into that page. After their
relation insert, they immediately perform an insert into the relation’s existing index. Following this,
they take the appropriate action, if any, required by the on-line index building algorithm. Deletes,
on the other hand, access a single relation page at random, delete a randomly chosen tuple from
that page, and then immediately perform the corresponding delete to the already available index.
Like inserts, they then take the action called for by the relevant on-line index building algorithm.
Finally, searches randomly access a relation tuple using the available index. Each terminal submits
its operations one at a time. As soon as a terminal submits an operation, it becomes active and

executes in the system; when the operation completes, it returns to the terminal. In the current

12

num-cpus Number of CPUs (1)

num-disks Number of disks (1, 8)

seek-time Min: 0 msec; Max: 27 msec

cpu-speed 20 MIPS

ce-cpu Cost for lock/unlock (100 inst.)

buf-cpu Cost for buffer call (1000 inst.)

search-cpu Cost for page search (50 inst.)

modify-cpu Cost for key insert/delete (500 inst.)

copy-cpu Cost for page copy (1000 inst.)

compare-cpu Cost for comparing keys (2 inst.)

init-rel-keys Tuples in initial relation (100,000)

maz-fanout Index-entries/page (200/page)

rel-page-capacity | Tuples/page (2, 20, or 200 /page)

page-size Size of a disk page (4KB)

alg On-line algorithm (List-X-Basic, Index-C-basic, etc.)
num-bufs Size of the buffer pool (250)

search-term Terminals submitting searches (0 or 50)

MPL Terminals submitting inserts and deletes (0,2,10,20,40)

insert-proportion | Proportion of inserts among updates (50%)

Table 3: Simulation parameters.

study, we use a terminal think time of zero, so the terminal immediately generates another operation

of the same type when its current operation completes.

The simulation parameters for our experiments are listed in Table 3. In all of the experiments
discussed in this paper, there is exactly one CPU in the system. Apart from the single CPU, a
system configuration consists of a fixed number of disks and a fixed capacity for relation pages. In
each system configuration, we varied the MPL for updaters from 0 (where only the build process
executes) to a maximum of 40, conducting one experiment for each on-line index construction
algorithm as well as for the off-line algorithm. At the start of each experiment, the buffer pool is
initialized with randomly chosen pages from the initial relation; the build process is then started
along with a number of updaters equal to the MPL. The terminal types (search, insert, and delete)
are initialized according to the workload parameters. The experiment is stopped when the build
process terminates. A special additional experiment is run to calculate the best updater throughput
in the system without the new index (for calculating the loss using equation 1). Batch probes
in the DeNet simulation language are used with the operation response time metric to generate

confidence intervals. For all of the data presented here, the 90% confidence interval for relation

13

operation response times was within 2.5% (i.e., £2.5%) of the mean.

5 Performance Results

An important factor likely to affect the performance of an on-line index construction algorithm is
the relative proportions of time spent in the various phases of index construction. These relative
proportions depend on the size of the index relative to the size of the relation itself. We modeled
different relative sizes by keeping the size of an index entry constant (20 bytes) and considering three
different tuple sizes, small (20 bytes), medium (200 bytes), and large (2000 bytes). We subdivide
the performance experiments into three categories based on the tuple size and present the results

for each of these categories.

5.1 Experiment Set 1: Small Tuple Size (20 Bytes)
In this set of experiments, the size of the index is comparable to the size of the relation since an

index entry and a tuple are of the same size. The system workload consists of the build process
and a set of concurrent updaters. The multiprogramming level (MPL) gives the total number of
updaters in the system; half are inserts while the other half are deletes. We will subdivide the small
tuple experiments into those involving a system with a single disk and those involving a system
with eight disks.

5.1.1 Single Disk Results

The build response times for the various algorithms in the single disk case are given in Figure 5, and
the updater throughput curves are given in Figure 6. As expected, the build response time for all of
the on-line algorithms increases with the MPL due to an increase in resource contention at higher
MPLs. We also see from Figure 5 that the List-C-Basic algorithm’s build response time increases
much faster than those of all the other algorithms. The reason for this is that the build process in
List-C-Basic sequentially inserts unsorted entries from the update-list into the intermediate index
during the build phase (Figure 2). These sequential inserts can cause multiple accesses to a given
leaf page which, since the buffer pool can hold only a subset of the leaf pages in memory, results in
multiple I/Os for the same page. These extra I/Os cause the build phase to become very long in
this extremely disk bound situation, which in turn increases the size of the build phase update-list,
thus increasing the duration of the catchup phase as well. Sorting the list before insertion into the
intermediate index (as in List-C-Sort) alleviates this problem, so the response time is much lower
for List-C-Sort than for List-C-Basic. In contrast to List-C-Basic, List-X-Basic does not suffer as
much because its build phase length increases much more slowly due to the absence of buffer and

resource contention during this phase.

In Figure 5, the build response time ordering of the on-line algorithms other than List-X-Basic
and List-C-Basic reflects the increasing amount of work that they have to do for index construction.

Among these eight algorithms, each of the concurrent (*-C-*) algorithms has a higher response

14

1 : I]] I] I I
2500~ ; IndexCBasic & ListCSort I
13 .
ListCBasic ‘
J ListXBasic . 16,00 -
2000 { ListCMerge & v -
! IndexCMerge “ 5
' 8 All On-Line Alg.
;‘9‘ ! 8 Except ListXBasic
5 / 3 12001 -
] ! - 5
& 1500~ s \
g g
; 5 ListXBasic
[}
g ListXSon & S 8.00T -
g 1000 — indexXBasic. 3
e
=2 PER -
o L o
e \ L
500 \— ListXMasrge & IndexXMerge 40
/ Ofi-Line Off-Line Aigorithm
0= - PP A U S -
1 1 1 | ! 1 ' : ‘ '
0 10 20 30 40 o 10 20 kY 40
Muttiprogrammimg Level (MPL) -~ Muitiprogrammimg Level (MPL) —*"
1 Disk, 250 Buffers, 200 tuples/page, 200 index entries/page 1 Disk, 250 Buffers, 200 tuples/page, 200 index entries/page
Figure 5: Build Response Time: 1 Disk. Figure 6: Updater Throughput: 1 Disk.

time than all of the exclusive (*-X-*) algorithms. This is expected since the *-C-* algorithms allow
concurrency throughout the index construction period, resulting in increased contention as well
as extra work for catching up. Among the four algorithms within each class, the algorithms that
use merging are better than those that perform sequential inserts. This is because the sequential
insert strategies perform slightly more work in the scan phase than the merge-based algorithms,
while the build phases and catchup phases (if any) are comparable in length. The extra work

results in expensive I/Os that increase the build response times of the sequential-insert algorithms

(List-*-Sort and Index-*-Basic).

While the various on-line algorithms differ widely in their build response times, all except List-
X-Basic attain the same updater throughput® (Figure 6). In particular, this means that all of the
_X- algorithms except List-X-Basic attain the same throughput as the *-C-* algorithms. This
is surprising since we would expect the *-X-* algorithms to attain less throughput than the *-C-*
algorithms due to their exclusive build phase. The reason this is not so is due to the extremely high
level of resource contention in this experiment. In all of the *-X-* algorithms except List-X-Basic,
a bottleneck at the lone disk increases the scan phase duration tremendously at high MPLs, while
the (exclusive) build phase duration remains about the same due to lack of contention; the build

phase therefore forms a negligible part of the build response time, causing a negligible effect on the

3There were slight (but insignificant) differences between the various algorithms. We only present significant

differences in our graphs.

15

- . T I f I I
300 T T T f {
! ." ! ListXBasic
ListXBasic & 110 i /
ListCBaslc ’ i
/ ListCSort & 100 i Off-Line
250~ \; IndexCBaslc .~
/ - i
- i
] - 0.50 !
N ListCMerge & -7 Plad {
N IndexCMerge P P i
2001~ ! 7) 0.80 /
/ - .-
/ - e - ,
= / - - B ndexXBasic
! Ve . LIstXSort &
FREL . IndexXBasic 2 060 \
N i e]
K Lol £ P
g K // L . Of]—-Line ! %' 0.50 /
=z Vet
S ¥ L i — \ --------------
\ 030 ListXMerge &
indexXMerge
0.50r~ ListXMerge & 0.20
IndexXMerge
0.10 ListC* & IndexC*
0,00
0.00
. : : : | ! | |
0 10 20 30 40 10 20 30 0

Multiprogrammimg Level (MPL) =
1 Disk, 250 Buffers, 200 tuples/page, 200 index entries/page

Multiprogrammimg Level (MPL) —
1 Digk, 250 Buffers, 200 tuples/page, 200 index entries/page

Figure 7: Loss: 1 Disk. Figure 8: Off-Line Fraction: 1 Disk.

throughput. In List-X-Basic, however, the extra I/Os during the build phase cause this phase to
become a significant fraction of the build response time at higher MPLs, resulting in a significant

drop in maximum throughput.

Having looked at the updater throughput and response times separately, we now look at the
normalized loss in Figure 7 in order to combine both measures. Recall that the normalized loss
for a given algorithm is the ratio of the loss for the algorithm (calculated using Equation 1) to the
loss for the off-line algorithm. Note from Figure 7 that the loss for the List-X-Basic and the List-
C-Basic algorithms is very high compared to that for the other algorithms (so much so that their
values for high MPLs are omitted from the figure). The large loss in List-C-Basic is due to its very
high response time (Figure 5), while the loss in List-X-Basic is due to its low updater throughput
(Figure 6). The normalized loss metric also gives an idea of the improvement achieved by using an
on-line algorithm instead of the off-line algorithm. The loss curves in Figure 7 show that, at high
MPLs, only two merge-based algorithms (List-X-Merge and Index-X-Merge) manage to achieve
better loss than the off-line algorithm. As shown, the loss for the *-C-* algorithms increases with
MPL and reaches a maximum value of between 225% to 250% of the loss for the off-line algorithm.
In contrast, the losses for the *-X-* algorithms (except List-X-Basic again) track the loss for the

off-line algorithm more closely.

Despite the loss results, it is not necessarily the case that the *-X-* algorithms are preferable

to the *-C-* algorithms here, as they might have an unacceptably large exclusive build phase. In

16

90.00 -

500.00 — _
- Best Throughput
450.00 |- ListCSqrt & IndexCBasic .~ | 80.00 ghp -
List-C—* & Index-C-*
400.00 8 - 70.00
" ListCMerge &

35000 |

60,001

Inderﬁh:erga —
:’Vm -

./_,. . / indexXBasic

ListXSorn &

- \ IndexXBasic

ListXMerge & IndexXMerge

8
;

50.00 —

2
8
T

N

Build Response Tims {Seconds}
P
3
[
Updater Throughput (operations/second)

15000 [~ T 30001~ n
T - ListXMerge & IndexXMerge
10000~ .- _ 2000 |
30.00 = -~] 10,00~ -
Offi-Line Off-Line
0.00 p= —
0.00 = b
i] | ! } 1 | | | |
0 10 20 30 40 Y 10 20 30 40
Muttiprogrammimg Level (MPL) ~—* Multiprogrammimg Level {(MPL) —
8 Disks, 250 Buffers, 200 tuples/page, 200 index entries/page 8 Disks, 250 Buffers, 200 tuples/page, 200 index entries/page
Figure 9: Build Response Times, 8 Disks. Figure 10: Updater Throughput, 8 Disks.

order to investigate this, we plot the off-line fraction of these algorithms in Figure 8. We see that
the duration of the exclusive build phase for the List-X-* and the Index-X-* algorithms is a sizable
fraction (25% to 50% for all algorithms except List-X-Basic) of the total response time of the off-line
algorithm. Thus, if it is unacceptable for updaters to wait in the case of the off-line algorithm, it is
likely to be unacceptable for them to wait in the *-X-* algorithms as well (since the waiting times
are of the same order of magnitude). Using the best among the *-C-* algorithms (List-C-Merge
or Index-C-Merge) thus seems to be a better choice here even though they have a higher loss than

most of the *-X-* algorithms.

In the single disk experiments, the builder in the on-line algorithms faces very high resource
contention. In such a situation, a bottleneck forms at the disk in the on-line index construction
algorithms at even small MPLs; this increases the build response time enormously, and concurrent
execution of updaters does not provide enough throughput to offset the increase in response time.
This situation therefore represents the worst case for the on-line algorithms. In order to study
their performance in a less resource-bound situation, the next set of experiments assumes a system
with eight disks. Due to the extremely poor performance of the List-X-Basic and the List-C-Basic

algorithms, we will omit these two algorithms from all future graphs.

5.1.2 Eight Disk Results
The build response time and updater throughput curves for the eight disks case are given in

Figures 9 and 10 respectively. It can be seen from the build response time curves that the ordering

17

of response times among the various on-line algorithms is the same as in the one disk case. The
key difference here is that the best on-line algorithm now has a maximum response time of only
a few times the response time of the off-line algorithm, while in the one disk case the best on-line
algorithm was more than ten times slower than the off-line algorithm at an MPL of 40 (Figure 5).
Adding disks has reduced the level of resource contention considerably for the builder, resulting in

a faster index building time for all of the on-line algorithms.

From the updater throughput curves (Figure 10), we see that the List-X-* algorithms and the
Index-X-* algorithms have a slightly lower throughput than the corresponding *-C-* algorithms.
In the *-X-* algorithms, the (exclusive) build phase now forms a significant proportion of the index
construction time, thus leading to a noticeable loss in throughput. Another point to be noted
from Figure 10 is that the List-X-Sort and the Index-X-Basic algorithms attain a slightly higher
updater throughput than the List-X-Merge and the Index-X-Merge algorithms. Again, the reason
is that the build phase proportion is greater in the two merge-based algorithms than in List-X-Sort
and Index-X-Basic at high MPLs. This is because the (non-exclusive) scan phase in List-X-Sort
and Index-X-Basic is slightly longer than for the merge-based algorithms, while the build phases
are comparable in length. As seen in the single disk case earlier, extra work in the scan phase is
expensive at high MPLs due to resource contention; this fact is shown by the higher build response

times of List-X-Sort and Index-X-Basic in Figure 9.

In Figure 11, we present the normalized loss for the various algorithms in the eight disks case.
In contrast to the results of the one disk experiments, where the loss for the *-C-* algorithms was
larger than that for the other algorithms, the *-C-* algorithms (which have no exclusive phases)
perform better than the other algorithms in terms of the loss metric here. The off-line fractions
of the various algorithms for this experiment were the same as in the earlier high contention case
(Figure 8), so we omit those curves here; this is to be expected since the duration of the periods
during which updaters are locked out should be the same as in the one disk case (since the build
process is the only active process in the system during that time). Since the off-line fraction for
the *.C-* algorithms is almost zero, and they also have the least loss, they are unequivocally better
than the *-X-* algorithms in this situation. Among the *-C-* algorithms, List-C-Merge and Index-
C-Merge are the best since they involve the least overhead (as demonstrated by their superior build

response times).

This set of experiments (both the single and eight disk results) examined the case where an
index entry is the same size as a tuple. We also ran experiments in cases where the tuple size is
ten and then a hundred times the size of an index entry, respectively. Due to space limitations, we
will present only the results for the large tuple experiments. Since we found above (and in all our

other experiments as well) that the merge method of building the index was better overall than

18

I I f] T i | I i
1.00 - - ,
? ListCMerge s
0.90 Off~Line — 000 //
080 _ B ListXNerge 4 ",~ B
ListXSort & 5000 A
IndexXBasic — .
0.70 —] AN
ListXMerge & 8 B Byels N
2 0.60— IndexXMerge — @4000 A IndexCMerge
ke - g
3 E
B0s50~ T N e] E
ki e ~ 1
E PR S 5 3000 indexXMerge
2 040+ - - 8
[:4
ListCSon & e -]
0.30 — IndexCBasic 3 2000 ';ﬁ—Lins
Pt
patid ListCMerge & |
020~ pAd IndexCMg!ge
e 1000 [— 1
B4
010~ 7 —
0.00 == - 0= |
1 |]] | | | |] |
0 10 20 30 40 0 10 20 30 40
Multiprogrammimg Leve! (MPL) Muttiprogrammimg Level (MPL) -~
8 Disks, 250 Bulfers, 200 tuples/page, 200 Index entries/page 8 Disks, 250 Buffers, 2 tuples/page, 200 index-entries/page
Figure 11: Normalized Loss, 8 Disks. Figure 12: Response Times, Large Tuples.

the basic and sort strategies, we will show only the four merge-based algorithms and the off-line
algorithm in the remaining graphs.

5.2 Experiment Set 2: Large Tuple Size (2000 Bytes)

In this set of experiments, a tuple is a hundred times larger than an index entry, unlike in the
earlier set of experiments where they were the same size. This causes an increase in the relation
size (200MB here as compared to 2MB in Experiment Set 1) while the size of the index remains the
same as before (~ 2MB). This increase, in turn, causes the scan phase to dominate the process of
index construction (accounting for more than 95% of the build response time). Since a bottleneck
at the disk can be expected to swamp the performance differences between the various on-line
algorithms in the one disk case, as we saw earlier in the small tuple experiments, we only conducted
experiments on a system with eight disks here.

5.2.1 Eight Disk Results

The build response time curves for the large tuple experiments on a system with eight disks are
given in Figure 12. Compared to the response time differences seen in the corresponding small
tuple experiments (Figure 9), the relative response time differences between the various on-line
algorithms are smaller here. This is because the scan phase (during which all on-line algorithms
perform similarly) is dominant, and the other phases (which are primarily responsible for build
response time differences) form only a small portion of the overall index construction time. Another
thing to note is that all of the list-based algorithms perform slightly worse at high MPLs here than

all of the index-based algorithms. The reason is that the update-list becomes large, due to the large

19

6000/ 1] ! I 1] 1201 I { | [
Best Throughput
80.00 ListCMarge Oft-Line
1.00|— ST
7000 IndexXMgrge ,’ ‘
i
2 60.00 0.80 — ".‘,’." , -
B
g 8 P
g 5000 8 P
g B 0.60—
£] v IndexCMerge
24000 E
(= Q
] z
% 30,00 0.401— o ListXMerge -
>
] -
5 2000 v
0.20}— —
10.00
0.00 ListCMerge
0.00 e ™
I | | |] 1 |] I]
0 10 20 30 40 0 10 20 30 40
Multiprogrammimg Level (MPL) " Multiprogrammimg Leve! (MPL) —
8 Disks, 250 Buffers, 2 tuples/page, 200 index-entries/page 8 Disks, 250 Buffers, 2 tuples/page, 200 index—entries/page
Figure 13: Throughput, Large Tuples. Figure 14: Normalized Loss, Large Tuples.

scan phase, and the sorting that takes place during the build phase of the list-based algorithms thus
contributes a significant overhead which is absent in the index-based algorithms. Also, between the
two list-based algorithms, List-X-Merge is better than List-C-Merge; this is due to the additional

catchup phase in List-C-Merge. Similar behavior is seen between the index-based algorithms.

‘The updater throughput curves for this experiment are given in Figure 13. As indicated, the
throughput for the index-based algorithms is significantly less (by about 25%) than that of the list-
based algorithms at high MPLs. This is because the public index (into which concurrent updaters
insert their updates) in the index-based algorithms becomes large enough at high MPLs in this
experiment for every index access to have a high probability of performing a disk I/O for a leaf
page. This extra disk access causes a significant increase in the overhead of concurrent updaters
in the index-based algorithms, while there is no such overhead in the list-based algorithms (since
the append to the list almost certainly does not involve a disk access). The reason why this effect
was not significant in the small tuple experiments is that the scan phase was much smaller there
and, even at high MPLs, the number of updates recorded in the public index did not cause it to
become large enough for its leaf pages to be paged out often. Apart from the above differences
in throughput between the list-based and the index-based algorithms, we find that between the
list-based algorithms, the List-C-Merge algorithm attains a slightly higher throughput than the
List-X-Merge algorithm. This is because there is no exclusive phase in List-C-Merge; similar

behavior is exhibited by the index-based algorithms.

20

f

090 7
Off-Line 0.90— Off-Line 7
0.80 N 0.80}— -~
o.701- B 070\]
e L i
§ 050 & ool .
E = indexXMerge
2 050~ N & 050 -1
= E IndexC
5 040~ T 2wl - Mxrga\ ﬂﬂﬂﬂﬂ .

030 —
- o

Us!XPtrge R s T T e e SV
0204 na""'ﬂ‘ o U R L paTaT o ,',«"
\ LT 020~ //T/ ListXMerge ™|

ListCMerge & IndexCMerge -

| e IndexXMerge _| B
0.10 et * “ 0.101— / ListCMerge o]

0.00™= [

| |] | | 0.00 - | | | |~
0 10 20 30 40 0 10 20 30 40
Multiprogrammimg Level (MPL) ———*= Muttiprogrammimg Level (MPL) —
8 Disks, 250 Buffers, 2 tuples/page, 200 index-entries/page 8 Disks, 260 Buffers, 20 tuples/page, 200 index—entries/page

Figure 15: Off-Line Fraction, Large Tuples. Figure 16: Normalized Loss, Medium Tuples.

In order to understand whether or not the increase in throughput achieved here by the list-
based algorithms compensates for their increase in response time, we plot the normalized loss for
each of these algorithms in Figure 14. The loss curves indicate that the index-based algorithms
suffer quite a bit due to their reduction in throughput. In fact, at an MPL of 40, Index-X-Merge
and Index-C-Merge are even a bit worse than the off-line algorithm. In contrast, List-X-Merge and
List-C-Merge perform much better than the off-line algorithm throughout the entire MPL range,
with a maximum normalized loss of 35% for List-X-Merge and only 20% for List-C-Merge. Finally,
the off-line fractions for the various on-line algorithms are given in Figure 15. As expected, the
off-line fractions for the *-X-Merge algorithms are smaller here than in the small tuple experiments
(Figure 8), but they are still not negligible. In fact, the off-line fraction for the List-X-Merge
algorithm increases with MPL from less than 5% to a maximum value of greater than 20% due to

the overhead of the sort performed during its exclusive build phase.

5.3 Other Experiments

Apart from the large (2000 bytes) and small (20 bytes) tuple experiments, we also performed
experiments in which the tuple size was intermediate (200 bytes) as mentioned earlier. In these
medium tuple experiments, an index was approximately one-tenth the size of the relation. The
results of the medium tuple experiments were essentially a hybrid of the results of the small and
large tuple experiments. To illustrate the performance of the algorithms there, we reproduce their
loss curves for a system with eight disks in Figure 16. From these curves, it is clear that at

lower MPLs the trends are like those of the small tuple experiments (Figure 11), where the *-C-*

21

algorithms had smaller losses than the *-X-* algorithms, while at higher MPLs the trends are like
those observed in the large tuple experiments (Figure 14), where the list-based algorithms had
smaller losses than the index-based algorithms. This behavior is expected since the scan phase
proportion (which affected the relative performance of on-line algorithms in the small and large
tuple experiments) here lies between those of the small and large tuple experiments. A final point
to note from Figure 16 is that List-C-Merge again has the least loss throughout the range of updater
MPLs considered.

The experiments that we have discussed up to now have only had updaters in the workload. We
also conducted a series of experiments where there was a constant background search query load
on the relation along with the concurrent updaters. In these experiments, the relative performance
of the various algorithms was essentially the same as in the case with no searches, except that due
to the resource contention generated by the concurrent searches, all algorithms took much longer

to build the index and the on-line algorithms each attained a lower maximum updater throughput.

6 Discussion

The performance results of the previous section can be summarized as follows:

e Except in extremely resource bound situations, most of the on-line index construction algo-
rithms clearly outperformed the off-line algorithm. In other words, the throughput that the
on-line algorithms achieved for updaters during index construction more than compensated
for their increase in build response time.

¢ Among the on-line algorithms, the best among the algorithms with no exclusive phase (List-C-
Merge) outperformed the best among the algorithms with an exclusive phase (List-X-Merge)

except in heavily resource bound situations.

o Even in heavily resource bound situations, the best fully concurrent algorithm (List-C-Merge)
had a loss of only a few times that of the best partially exclusive algorithm (List-X-Merge).
Furthermore, List-X-Merge was found to have an exclusive phase whose length was a non-
negligible fraction of the response time of the off-line algorithm, likely making it unacceptable
for use in high performance transaction processing systems.

o As should be expected, the relative performance of the various algorithms depended on the
proportion of time spent in the initial relation scan phase of index construction. The list-
based algorithms performed better than the index-based algorithms when the scan phase was
a large proportion (> 95%) of the index building time. When the scan phase was around 50%
of the index building time, the fully concurrent (*-C-*) algorithms were found to be superior
to the partially exclusive (*-X-*) algorithms.

e The merge strategy for building the index was clearly superior in performance to the basic

and sort strategies.

22

¢ As a result of the points above, the List-C-Merge algorithm achieved the lowest loss among
all of the on-line algorithms over a wide range of tuple sizes, except in heavily resource bound
situations.
Even though our simulation results were obtained for relatively small relation sizes (2MB to
200MB), the basic relative performance results should hold for very large database sizes as well.
This is because the relative performance of the various algorithms is affected by the ratio of the
size of the index to the size of the relation, which in turn determines the time spent by the on-line
algorithms in their different phases of index construction. This ratio depends only on the size of
an index entry relative to the size of a tuple, and not on the absolute size of the relation itself.
Finally, using the above results, we can now make informed projections about the performance of
other on-line algorithms that have been proposed in the literature.
6.1 Other Candidate Algorithms
Mohan and Narang have proposed two algorithms for on-line index construction [Moha91]. Their
first algorithm is index-based and allows updaters and the build process to share the same index
throughout. In this algorithm, the build process first initializes a public index into which updaters
concurrently insert their index updates. It then scans the relation, sorts the scanned entries, and
inserts them (not necessarily one at a time) into the public index concurrently with updaters.
Updaters sometimes have to leave special pseudo-deleted entries in the index that later may or may
not be removed by the build process. A disadvantage of this algorithm is that the index building
process cannot build the index bottom-up from the sorted entries, and hence it may take a long
time to complete. Also, at the end of the index construction process, the new index may still

contain superfluous pseudo-deleted entries.

The second algorithm described in [Moha91] is list-based and does not have the above disadvan-
tages. It uses an update-list, like the List-C-Basic strategy, but the index building process performs
catch-up differently. In their algorithm, the build process catches up by copying list entries (except
those at the very end of the file, where update transactions may be actively appending entries)
into an intermediate index that has been built in a bottom-up fashion using the sorted scanned
entries. Finally, when only a small number of entries are left at the end of the update-list, the build
process exclusively locks the list, applies the last few entries to the index, and then makes the index
available for normal use and releases the exclusive lock. Also, their algorithm further optimizes the
amount of catch-up work required by only having updaters record their updates in the update-list

if the building process has already finished processing the relation page involved in the update.

While we have not explicitly simulated the two [Moha91] algorithms in our experiments, we
believe that their performance can be inferred from that of the Index-C-Basic and the List-C-Basic
algorithms. First, the performance of our Index-C-Basic algorithm should be comparable to (or

better than) the performance of their index-based algorithm. This is because the list of concurrent

23

updates is inserted into the index built with the scanned entries in the Index-C-Basic algorithm,
while in their index-based algorithm the sorted scanned entries are inserted concurrently into the
index built with concurrent updates. In realistic situations, the list of concurrent updates is likely
to be much smaller than the list of scanned entries, leading Index-C-Basic to perform better than

their index-based algorithm.

Turning to their list-based algorithm, the qualitative performance of their list-based algorithm
seems to be similar to that of our List-C-Basic algorithm. Their algorithm should perform better
than List-C-Basic (in the best case having about half of the response time of List-C-Basic) since
updaters selectively (rather than always) record updates to the update-list. Note, however, that our
list-based and index-based algorithms can also be modified to make use of a similar optimization
[Stin91b]. Since we found the performance of List-C-Basic to be an order of magnitude worse
than that of the other on-line algorithms (Figures 5 and 7), their list-based algorithm can be
expected to perform similar to List-C-Basic relative to the other on-line algorithms (once they too
are optimized to selectively record updates). Finally, due to the multi-phase catch-up strategy used
in their list-based algorithm, a race condition could occur if the rate of concurrent updates to the
update-list happens to be higher than the rate at which the build process can apply these updates
to the intermediate index; under such circumstances, the build process may never terminate. This
problem condition cannot occur in the *-C-* algorithms of Section 2 due to the fact that the build

process and the concurrent updaters share the same index during the catchup phase.

7 Conclusions

In this paper, we have studied the performance of a collection of candidate algorithms for on-line
index construction. To aid in our study, we defined a new performance metric that measures the
loss to the system due to interference between concurrent updaters and the index building process.
An important property of the loss metric is that it enables us to directly compare the on-line

algorithms with the best off-line algorithm as well as among themselves.

An important conclusion of this study is that in most cases, the fully on-line algorithms (which
have no exclusive phase) perform very well and do better than the partially on-line algorithms
(which have a concurrent relation scan phase but an exclusive build phase) or the off-line algorithm.
In fact, even in a highly resource-bound situation, which is the worst case for a fully on-line
algorithm, some fully on-line algorithms were only a factor of 2 to 3 worse in terms of loss than
the best partially on-line or off-line algorithm. The list-based fully on-line algorithms were found
to perform better than the index-based alternatives overall due to the smaller overhead that they
impose on concurrent updaters. The fully on-line list-based algorithm that uses the merge strategy

(i.e., List-C-Merge) appears to be a very good candidate for use in a real system.

24

In terms of further work, this study has only examined concurrency issues that affect the
performance of on-line index construction algorithms. As mentioned earlier, index construction for
a terabyte relation may take days, which means that the index building process must be able to
complete without having to restart from scratch after every crash. Appropriate recovery strategies
thus have to be designed for this purpose. (Recovery strategies are described for the algorithms in
[Moha91] and could be adapted for the algorithms studied in this paper.) Also, since a terabyte
relation is likely to be declustered across several disks, it is necessary to parallelize the various
on-line algorithms for use in parallel database systems. Still another interesting issue is to extend
our on-line index construction strategies to work for indices other than B-tree indices; a further
generalization would be to extend the ideas employed here for use in computing aggregate functions

on a relation with minimal interference. These issues are all promising candidates for future work.

References

[Baye72] Bayer, R. and McCreight, E.M. “Organization and Maintainance of Large Ordered Indices”,
Acta Informatica, 1(3), 173-189 (1972).

[ComeT9] Comer, D. “The Ubiquitous B-Tree”, ACM Computing Surveys, 11(4), (1979).

[Dewi90] DeWitt, D. J. and Gray, J. “Parallel Database Systems: The Future of Database Processing
or a Passing Fad?”, SIGMOD Record, 19(4), December 1990.

[Gray79] Gray, J. “Notes On Database Operating Systems”, Operating Systems: An Advanced Course,
Springer-Verlag, 1979.

[Lehm81] Lehman, P., and Yao, S. “Efficient Locking for Concurrent Operations on B-trees”, ACM
Transactions on Database Systems, 6(4), December 1981.

[Livn90] Livny, M. “DeNet User’s Guide”, version, 1.5, (1990).

[Moha91] Mohan, C. and Narang, I. “Algorithms for Creating Indexes for Very Large Tables Without
Quiescing Updates”, IBM Research Report, RJ 8016, March 1991.

[Pu85] Pu, C. “On-the-Fly, Incremental, Consistent Reading of Entire Databases”, Proceedings of the
International Conference on Very Large Data Bases, 369-375 (1985).

[Pu88] Pu, C., Hong, C. H. and Wha, J.M. “Performance Evaluation of Global Reading of Entire
Databases”, Proceedings of the International Symposium on Databases in Parallel and Distributed Systems,
167-176 (1988).

[Silb90] Silberschatz, A., Stonebraker, M. and Ullman, J. D. “Database Systems: Achievements and
Opportunities”, SIGMOD Record, 19(4), December 1990.

[Srin91a] Srinivasan, V. and Carey, M. J. “Performance of B-tree Concurrency Control Algorithms”,
Proceedings of the ACM SIGMOD Conference, May 1991.

[Srin91b] Srinivasan, V. and Carey, M. J. “On-Line Index Construction Algorithms”, Proceedings of
the High Performance Transaction Systems Workshop, September 1991, to appear.

[Ston88] Stonebraker, M., Katz, R., Patterson, D. and Qusterhout, J. “The Design of XPRS”, Proceed-
ings of the 14th VLDB Conference, Los Angeles, CA, August 1988.

[Yao78] Yao, A. C. “ On Random 2-3 Trees”, Acta Informatica, 9, 159-170 (1978).

25

