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BALANCED SOLUTION TO A CLASS OF GENERALIZED SET COVERING
R. CERULLI*, R. DE LEONE!, M. GAUDIOSO* AND R. MAUTONE*

Abstract. In this paper we consider a generalization of the set covering problem that has
applications in manpower scheduling and in multiple cover system design for air traffic control and
defense. The heuristic technique we propose calculates well-balanced approximate solutions to the
problem. The worst—case behavior of the algorithm for a special case is analyzed.
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1. Introduction. In this paper we are interested in analyzing an approximation
scheme to the solution of the system of linear inequalities:

Az > b
(1.1 efz =n
z > 0 and integer

where A is a binary matrix of dimension mxp, b is a m-dimensional vector with
positive integer components, e is a vector of ones and n is a given positive integer.
The problem we investigate is a generalization of the problem of finding a feasible
solution for the set covering problem. A vast literature has been devoted to the
solution of set covering problems especially in view of the large number of real-world
applications of these problems (see [6, 4] for a survey of the results in this area). In
[1] various techniques based on combination of different approaches are presented
for the solution of the classical set covering problem. In [2, 3] the behavior of greedy
algorithms for this class of problems is discussed. Our formulation differs from the
classical formulation of set covering feasibility problem in two important features:
1. The right-hand-side vector b s a positive integer vector (not necessarily with
unit components). This corresponds to a “multiple” cover for a given set
that is extremely important in many practical applications (for example in
manpower schedule creation, high reliability systems, defense systems, etc.)
2. The possibility of replicating a particular column of A in the covering
obtained by using integer variables instead of binary variables.
In a previous paper [5] a similar problem has been analyzed in the context of optimal
manpower scheduling.

In this paper we will present a new greedy algorithm for determining a “bal-
anced” solution of (1.1). The key idea of the heuristic is that, at each step, a new
column of the matrix A is chosen in such a way that the largest value of the vector
s — b (where s is the sum of the already selected columns of the matrix A) is close to
the smallest value of the same vector.
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In the next section alternative variants of problem (1.1) will be discussed and
the heuristic will be defined. In Section 3 an analysis of the worst-case behavior
for the algorithm is presented. Finally in Section 4 we will discuss some alternative
formulation of the problem and modifications to the proposed heuristic.

In our notation, a superscript T will denote the transpose and the inner product
of two vector z and w in IR* will be denoted by zTw. For a mxp matrix A, A; will
denote the jth column of A and 4;; the element of A in row : and column j. The
ith component of a vector = in IR” will be denoted by z;. The symbol := denotes
definition of the term on the left of the symbol.

2. Definition of the heuristic. In many practical cases, the objective represents
the best use of the available resources (in our case, the choice of the n columns of
the matrix A, with some of the columns chosen more than once) with the goal of
obtaining a cover as close as possible to the target indicated by the vector b. In these
cases, it seems useful to formulate an optimization problem in the form

minimize Vmax = Vmin
2.1) A
e Tr=n

z > 0 and integer
The above problem is equivalent to the following problem:
minimize x(z):= (,_1 ax (Az — b)i> - <__min (Az — b)i>

subject to efz=n
z > 0 and integer

(2.2)

The function x(z) is a piecewise linear convex function since it is the difference
of a convex function and a concave function. In the above formulation (2.1) the
variables vmax and vmin are not restricted in sign. The solution obtained is, therefore,
the most balanced solution but does not necessarily satisfy Az — b > 0 (even if a
feasible solution of this system of inequalities exists). Different formulations can be
obtained by requiring vmin > 0 0r Vmax 2 0 and will be discussed in Section 4.

It should be noticed that the solution provided by the above model (2.1) is
different from the solution obtained by choosing as objective function the Chebyshev
normof Az—b, || Az — b||_, = maxi=1,..» |(Az — b);|. Inthis case the largest component
(in modulus) of the vector Az — b will be minimized, without any attempt to obtain
a well balanced solution.

The heuristic we propose for problem (2.1) is similar to the heuristic described, in
a different context, in [5]. First, note that the problem requires to select, in an optimal
way, n columns, not necessarily distinct, of A. The proposed greedy algorithm will
choose a column at the time from the matrix A based on a local merit function with
the goal of making the vector s — b as balanced as possible, where s is the sum of the
columns of A already selected. At the first step, the vector s is set equal to zero. At
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the generic step, we define a merit function #(7), s = 1,...,p and associate a value
to each column j in the following way. First, the minimum and the maximum values
of s — b are computed

(2.3) Vmin +— ‘_{{ﬁn {Si - bl}
(2.4) Vmax = .P}ax {si - bt}

and the set L and U are defined:

L::{i:si—b,'zumm}

U= {Z 8 - bi = Vmax}
Finally the function #(7) is defined as
(2.5) () = 8(7) + #(7)

where

¢(7) =3 Ay #(7) = D_(1— Aij)

€L €U

This merit function corresponds to assigning, for each column, unitary value to
the ones in row corresponding to minimal components of s — b and to the zeroes
corresponding to maximal components of s — b. The obvious choice is to select at
every iteration a column j* such that

J* = argmax ¢(j).

7=1,,p

We are now ready to describe completely our algorithm:

Greedy algorithm
begin
sets=0,k=0,z=0
while £ < n do
begin
compute ¢(])7] =1,...,p
find j* = argmax ¢(j)
7=140p

SetS=S+Aj~,:L‘j« ::Ej~+l,k=k+1
end
end
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It is easy to show that the complexity of the algorithm is O(nmp).

Remark. The proposed merit function assigns equal weights to both functions
4(j) and ¢(5) and therefore tries to construct the most balanced solution (not
necessarily a feasible cover). This is in the spirit of problem (2.1) where the difference
between the largest and the smallest component of Az — b is minimized. It should
be also noticed that the maximum value of the merit function ¢(j) can be achieved
by more than one value of j. Therefore some tie-breaking mechanism must be
implemented in choosing the column index j*.

0

3. Worst—case Analysis. In this section we will analyze the worst-case behavior
of the greedy algorithm. More specifically, we will discuss the behavior of the
algorithm for the following problem:

determine the minimum value of n such that efz = n,z > 0, integer
and there exists a feasible solution of the system of inequalities
Az > b.
The following assumptions will be made on the problem:

1. the vector b has all positive identical component (that is b = re for some
positive integer r);

2. all columns of A have the same number 7 of nonzero entries;

3. at every iteration ¢(j*) = max. $(5) > 2and ¢(5*) > 1, 6(;%) > 1

Note that the last condition is verified if the columns of A are all the cyclic
permutation of the same nonperiodic vector. In [5] a class of problems where these
assumptions are satisfied is presented. In [5] the vector b represents the workload
request for a particular shift and the assumption b = re corresponds to the case of
uniform staffing that is frequent in many applications.

The following proposition provides an upper bound for the value n computed
by the greedy algorithm. In view of Assumption 1, will be sufficient to consider the
behavior of the vector s instead of s — b.

PROPOSITION 3.1. Suppose that the Assumptions 1, 2 and 3 are satisfied. Then
the greedy algorithm provides a solution z* of the system of inequalities Az > b with
efz* <r(m—-1)+1

Proof. After m — 7+ 1 iterations, taking into account that ¢(;*) > 1, we have that

Smin = Min {Si} > 1.

i=1,..,m

Obviously we also have that

Smez = max {s;} <m—-71+1
i=1,..,m

It should be noticed that |L| < m — 7 (otherwise, all remaining elements of s should

be greater than or equal to m — 7 + 1 that is impossible since #(5*) = 1. The two
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above observations imply that, in the worst case, after m — 7 4 1 iterations at most
m - T components of s have a minimum value equal to 1, all remaining components
having larger values. Therefore, we can conclude that after r(m — 7) + 1 iterations,
the minimum value of s is at least r. 0

In order to evaluate the maximum error, we observe that, (see [5]) under the
Assumptions 1, 2 and 3, [rm/7] provides a lower bound on n. Therefore, the
maximum relative error is:

rim—71)+1 «rm/'r.

emax = rm/T

For sufficiently large values of rm/7:

7.2

emaz = (T —1) — —

Note that, for any choice of m, the maximum error is obtained for r = %

4. Alternative problem formulation. In the section we will discuss some pos-
sible alternative formulations to problem (2.1) and modifications to the greedy
algorithm presented in Section 2. As already noted, the solution obtained from (2.1)
is the most balanced solution (i.e. the difference between the largest and the smallest
component in Az — b is minimum). However the optimal solution is not necessarily
feasible and in many cases it is extremely important to obtain a feasible or “almost
feasible” cover. We will show that the feasibility (or “almost feasibility”) condition
can be enforced by adding the constraint vmin > 0 or the constraint vmax > 0. In the

first case (i.e if we add the constraint vmin > 0 to the problem formulation (2.1)), we
restrict our attention to only feasible solutions and among these solutions we select
the most balanced. The drawback of this approach is that the feasible region can be
empty.

In the second case the problem has the form:

minimize Vmax — Vmin
“.1) subjectto  vmine < Az — b < vmaxe
eTz =n Vpax >0
z > 0 and integer

In this formulation, negative values of vmin are penalized by the objective function
and since the difference between vmay (that caanot assume negative values ) and Vmin
is minimized, the error in satisfying the covering constraint is also minimized. Note
that in this case the problem is equivalent to the minimization of a piecewise linear
convex function:

minimize x'(z):= (max{O, Inax (Az — b)i}) - (,_r?in (Az — b)i>

42)  subject to efz=n

z > 0 and integer
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We now indicate how to construct an alternative merit function that will take
into account the new constraint imposed on vmax. First, redefine the quantity (2.4)
and let

Vmax = maz{0, max {s; —bi}}
Define vmin, the set L and U and the quantities ¢(j) and () as in Section 2. Finally,
set

$(7) = Ae(j) + (1 = N)e(5)

where )\ is a parameter varying between 0 and 1. Choosing A = 1 the greedy
algorithm of Section 2 (with the new merit function) will attempt to construct a
feasible cover (but not necessarily a balanced cover). In fact for A = 1 we favor
columns of A with ones corresponding to minimal components of s — b. If, instead,
we chose A = 0 columns of A that, if chosen, will produce an overshooting of
the cover are penalized. Finally, if A = 0.5 the greedy algorithm will produce an
approximate solution to (4.1).

5. Conclusions. A simple heuristic technique has been discussed for the gener-
alized set covering feasibility problem. The algorithm produces a balanced solution
with the goal of obtaining a cover as close as possible to the target value. A
worst—case analysis for a special structured case has been also presented.
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