SPIM S20: A MIPS R2000 SIMULATOR
by

James R. Larus

Computer Sciences Technical Report #966

September 1990

SPIM S20: A MIPS R2000 Simulator *

th
“513 the performance at none of the cost”

James R. Larus
larus@cs.wisc.edu
Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706, USA
608-262-9519

Copyright (©1990 by James R. Larus
September 5, 1990
(Revision 3)

1 Introduction

SPIM $20 is a simulator that runs programs for the MIPS R2000/R3000 RISC computers.!
SPIM can read and immediately execute files containing assembly language or MIPS executable
files. SPIM is a self-contained system for running these programs and contains a debugger and
interface to a few operating system services.

The architecture of the MIPS computers is simple and regular, which makes it easy to
learn and understand. The processor contains 32 general-purpose registers and a well-designed
instruction set that make it a propitious target for generating code in a compiler.

However, the obvious question is: why use a simulator when many people have workstations
that contain a hardware, and hence significantly faster, implementation of this computer? One
reason is that these workstations are not available to most undergraduates since they are used
for research. Another reason is that these machine will not persist for many years because of
the rapid progress leading to new and faster computers. Unfortunately, the trend is to make
computers faster by executing several instructions concurrently, which makes their architecture
more difficult to understand and program. The MIPS architecture may be the epitome of a
simple, clean RISC machine.

In addition, simulators can provide a better environment for low-level programming than an
actual machine because they can detect more errors and provide more features than an actual
computer. For example, SPIM has an X-window interface that is ahead of the debuggers for the
actual machines.

*The students in CS536, Spring 1990, painfully found the last few bugs in an “already-debugged” simulator. I
am grateful for their patience and persistence. Alan Yuen-wui Siow wrote the X-window interface, which David
Wood debugged with malicious glee.

! For a description of the real machines, see Gerry Kane, MIPS RISC Architecture, Prentice Hall, 1989.

Finally, simulators are a useful tool for studying computers and the programs that run on
them. Because they are implemented in software, not silicon, they can be easily modified to add
new instructions, build new systems such as multiprocessors, or simply to collect data.

2 Simulation of a Virtual Machine

The MIPS architecture, like that of most RISC computers, is difficult to program directly because
of its delayed branches and loads and restricted address modes. This difficulty is tolerable since
these computers were designed to be programmed in high-level languages and so present an
interface designed for compilers, not programmers. A delayed branch takes two cycles to execute.
In the second cycle, the instruction immediately following the branch executes. This instruction
can perform useful work that normally would have been done before the branch or it can be
a nop (no operation). Similarly, delayed loads take two cycles so the instruction immediately
following a load cannot use the value from memory.

MIPS wisely chose to hide this complexity by implementing a virtual machine with their
assembler. This virtual computer appears to have non-delayed branches and loads and a richer
instruction set than the actual hardware. The assembler reorganizes (rearranges) instructions to
fill the delay slots. It also simulates the additional, or pseudo, instructions by generating short
sequences of actual instructions.

By default, SPIM simulates the richer, virtual machine. It can also simulate the actual
hardware. We will describe the virtual machine and only mention in passing features that
do not belong to the actual hardware. In doing so, we are following the convention of MIPS
assembly language programmers (and compilers), who routinely take advantage of the extended
machine. Instructions marked with a dagger () are pseudo instructions.

3 SPIM Interface

SPIM provides both a simple terminal and a X-window interface. Both provide equivalent
functionality, but the X interface is superior.
SPIM has the following command-line options:

-bare

Simulate a bare MIPS machine without pseudo instructions or the additional addressing
modes provided by the assembler. Implies -quiet.

-asm
Simulate the virtual MIPS machine provided by the assembler. This is the default.

-notrap
Do not load the standard trap handler. This trap handler has two functions that must
be assumed by the user’s program. First, it handles traps. When a trap occurs, SPIM
jumps to location 0x80000080, which should contain code to service the exception. Second,
this file contains startup code that invokes the routine main. Without the trap handler,
execution begins at the instruction labeled __start.

-trap
Load the standard trap handler. This is the default.

-noquiet
Print a message when an exception occurs. This is the default.

-quiet
Do not print a message at an exception.

-file
Load and execute the assembly code in the file.

-execute
Load and execute the code in the MIPS executable file a.out. The program cannot invoke

any operating system services (e.g., input or output) since SPIM does not simulate the
MIPS kernel traps.

3.1 Terminal Interface
The terminal interface provides the following commands:

exit
Exit the simulator.

read "file"
Read file of assembly language commands into SPIM’s memory.

load "file"
Synonym for read.

execute "a.out"
Read the MIPS a.out executable file into SPIM’s memory.

run <addr>
Start running a program. If the optional address is provided, the program starts at that
address. Otherwise, the program starts at the global symbol __start, which is defined by
the default trap handler to invoke the routine at the global symbol main.

step <N>
Step the program for N (default: 1) instructions. Print instructions as they execute.

continue
Continue program execution without stepping.

print $N
Print register N.
print $£fN
Print floating point register N.

print addr
Print the contents of memory at address ADDR.

print_sym
Print the contents of the symbol table, i.e., the addresses of the global (but not local)
symbols.

xopitn

PC = 00000000 EPC = 00Q00GO0 Cause ~ 0000000 HadVaddr = 00000000
Btatun= 00000000 HI = 00000000 10 = 5000000

A C 360 RO - 2R30RS00 NS - B308R0% A3 = 8308830
R2 AL 00 mid R26

- 90900000 A1 = 80000000 = 5000000 < 20000090
31 T oRRRdteR Mi - 3308080 P - 800088 NBI 1 33083538 1 Roglster
RS = 000CO00G RIJ = QOU00000 RZL = 0000000 R29 « 00000002 Display
RE = 00000000 A14 = QUODOOO0 RIZ w DODOODD R3O = 00000006
RY = 00000000 WLS = ODCOC0OO RZI = 000000 R3L « 00006908
¥G o~ 0.000000 EB = 0.000000 R1§ ~ 0.00000 R4 « 0.000000
2w o.000000 Elg - 0.000000 W 0100000 NZ¢ - 9.000000
BE - 300808 BT - B:B0300% M3 - 380380 MM = 8:33888

(i) (CGed) Con Y (Cetep) (etoar) &nm) Control

GO G Cor) Gt Buttona
No Source Fiie
Source
Fite
SPIN Veramion 3.0bata of Auguwt 28, 1990
SPiM
Messages

Figure 1: X-window interface to SPIM.
reinitialize
Clear the memory and registers.

breakpoint addr
Set a breakpoint at address ADDR.

delete addr
Delete all breakpoints at address ADDR.

list
List all breakpoints.

Rest of line is an assembly instruction that is stored in memory.

<nl>
A newline reexecutes previous command.

Print a help message.

Most commands can be abbreviated to their unique prefix e.g., ex, re, 1, ru, s, p. More
dangerous commands, such as reinitialize, require a longer prefix.

3.2 X-Window Interface

The X interface window has four panes (see Figure 1). The top pane displays the registers. It
is continually updated, except while a program is running.
The next pane contains the buttons that control the simulator.

quit
Exit from the simulator.

load
Read a source or executable file into memory.

run
Start the program running.

step
Single-step through a program.

clear
Reinitialize registers or memory.

set value
Set the value in a register or memory location.

print
Print the value in a register or memory location.

breakpoint
Set or delete a breakpoint or list all breakpoints.

help
Print a help message.

terminals
Raise or hide terminal windows.

mode
Set SPIM operating modes.

The next pane displays the source file loaded into SPIM. Remember that the instructions
displayed in this pane may include assembler pseudo instructions that expand into several actual
MIPS instructions.

The bottom pane is used to display messages from the simulator. It does not contain output
from an executing program. That appears in a separate window, called the Console, which pops
up when the program produces output.

4 Surprising Features

Although SPIM faithfully simulates the MIPS computer, it is a simulator and certain things
are not identical to the actual computer. The most prominent is that SPIM does not represent
instructions as binary numbers, but rather uses a structured representation that is easier to
interpret. This difference means that programs cannot write into memory and expect to execute
an instruction or read from memory and decode an instruction. In fact, SPIM prevents programs
from reading or writing the text segment or executing in the data segment.

Another surprise (which happens on the real machine also) is that a pseudo instruction
expands into several machine instructions. When you single-step or examine memory, the in-
structions that you see will be slightly different from the source program.

5 Assembler Syntax

Comments in assembler files begin with a sharp-sign (#). Everything from the sharp-sign to the
end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (_), and dots (.) that do not
begin with a number. Labels are declared by putting them at the beginning of a line followed
by a colon, for example:

.data
item: .word 1

.text

.globl main # Must be global
main: lw $t0, item

Strings are enclosed in double-quotes (). Special characters in strings follow the C conven-
tion:

newline \n
tab \t
quote \"

SPIM supports a subset of the assembler directives provided by the MIPS assembler:

.align n
Align the next datum on a 2" byte boundary. For example, .align 2 aligns the next value
on a word boundary. .align O turns off automatic alignment of .half, .word, .float,
and .double directives until the next .data directive.

.ascii str
Store the string in memory, but do not null-terminate it.

.asciz str
Store the string in memory and null-terminate it.

.byte b1, ..., bn
Store the n values in successive bytes of memory.

.data
Next data values should be stored in the data segment.

.double di, ..., dn
Store the n floating point double precision numbers in successive memory locations.

.extern sym size
Declare that the datum stored at sym is size bytes large and is a global symbol. This
directive enables the assembler to store the datum in a portion of the data segment that
is efficiently accessed via register $gp.

.float f1, ..., fn
Store the n floating point single precision numbers in successive memory locations.

.globl sym
Declare that symbol sym is global and can be referenced from other files.

| Service [Type Code | Arguments

print_int 1 $a2 = integer

print.float 2 $1£12 = float

print_double 3 $£12 = double

print_string 4 $a2 = string

read_int 5

read_float 6

read.string 7 $a2 = buffer, $a3 = length
sbrk 8 $a2 = amount

exit 9

Table 1: System services.

.half hi1, ..., hn
Store the n 16-bit quantities in successive memory halfwords.

.ktext

The next items are put in the kernel text segment. In SPIM, these items must be instruc-
tions or words (see the .word directive below).

.space n
Allocate n bytes of space in the current segment (which must be the data segment in

SPIM).

.text

The next items are put in the user text segment. In SPIM, these items must be instructions
or words (see the .word directive below).

.word wi, ..., wn
Store the n 32-bit quantities in successive memory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata, and .sdata).

6 System Calls

SPIM provides a small set of services through the system call (syscall) instruction. To
request a service, a program loads the type code (see Table 1) into register $a0 and the arguments
into registers $al...$a3 (or $£12 for floating point values). System calls that return values put
their result in register $v0 (or $£0 for floating point results). For example, to print “the answer
= 57, use the commands:

.data
str: .asciz '"the answer = "
.text
1i $a0, 4 # print_str
la $al, str
syscall
1i $a0, 1 # print_int
1i $al, &
syscall

Memory

CPY FPU (Coprocessor 1)
Registers Registers
= $0
I— — -—l $31
Arithmetic Mutti
IUnit Divitf;ly I
ﬁrighmeﬁc
I::l""

Coprocessor 0

BadVAddr

Status

Figure 2: MIPS R2000 CPU and FPU

7 Description of the Machine

A MIPS processor consists of an integer processing unit (the CPU) and a collection of coproces-
sors that perform ancillary tasks or operate on other types of data such as floating point numbers
(see Figure 2). SPIM simulates two coprocessors. Coprocessor 0 handles traps, exceptions, and
the virtual memory system. SPIM simulates most of the first two and entirely omits details of
the memory system. Coprocessor 1 is the floating point unit. SPIM simulates most aspects of
this unit.

7.1 CPU Registers

The MIPS (and SPIM) central processing unit contains 32 general purpose registers that
are numbered 0-31. Register n is designated by $n (though SPIM prints it as Rn). Register 0
always contains the hardwired value 0. Table 2 lists the registers and describes the convention
governing their use.

In addition, coprocessor 0 contains registers that are used for exception handling. SPIM
does not implement all of these registers, since they are not of much use in a simulator (or are
part of the memory system). However, it does provide the following:

| Register Name | Number | Usage |
BadVAddr 8 Memory address at which address exception occurred
Status 12 Contains interrupt enable bits
Cause 13 Type of exception
EPC 14 Address of instruction that caused exception

These registers are part of coprocessor 0’s register set and can be accessed by the lwc0, mfcO,
mtcO, and swcO instructions.

Register Name | Number |

Usage

ZEero
at
v0
vl
a0
al
a2
ad
t0
t1
t2
£3
t4
153
6
t7
s0
sl
52
s3
s4
sH
s6
s7
t8
t9
kO
k1
gp
sp
s8
ra

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Constant 0
Reserved for assembler
Expression evaluation and

results of a function
Argument 1
Argument 2
Argument 3
Argument 4
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Reserved for OS kernel
Reserved for OS kernel
Pointer to global area
Stack pointer
Saved temporary (preserved across call)
Return address (used by function call)

Table 2: MIPS registers and the convention governing their use.

7.2 Byte Order

Processors can number the bytes within a word to make the byte with the lowest numer either
the leftmost or rightmost one. The convention used by a machine is its byte order. MIPS
processors can operate with either big-endian byte order:

Byte #

or little-endian byte order:

1]0]
SPIM also operates with both byte orders. SPIM’s byte order is determined by the byte order

of the underlying hardware that is running the simulator. On a DECstation 3100, SPIM is
little-endian, while on a Sun 4 or PC/RT, SPIM is big-endian.

7.3 Addressing Modes

MIPS is a load/store architecture, which means that only load and store instructions access
memory. Computation instructions operate only on values in registers. The bare machine
provides only one memory addressing mode: c(rx), which uses the sum of the immediate
(integer) c¢ and the contents of register rx as the address. The virtual machine provides the
following addressing modes for load and store instructions:

f Format | Address Computation |
(register) contents of register
imm immediate
imm (register) immediate + contents of register
symbol address of symbol
symbol =+ imm address of symbol & immediate
symbol + imm (register) | address of symbol + (immediate + contents of register)

Most load and store instructions operate only on aligned data. A quantity is aligned if its
memory address is a multiple of its size in bytes. Therefore, a halfword object must be stored
at an even address and a full word object must be stored at an address that is a multiple of 4.
However, MIPS provides some instructions for manipulating unaligned data.

7.4 Load and Store Instructions

la Rdest, address Load Address t
Load computed address, not the contents of the location, into register Rdest.

1b Rdest, address Load Byte

1bu Rdest, address Load Unsigned Byte
Load the byte at address into register Rdest (and sign-extend it).

1d Rdest, address Load Double-Word 1
Load the 64-bit quantity at address into registers Rdest and Rdest + 1.

10

1h Rdest, address Load Halfword
lhu Rdest, address Load Unsigned Halfword
Load the 16-bit quantity (halfword) at address into register Rdest (and sign-extend it).

lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into register Rdest.

lwcz Rdest, address Load Word Coprocessor
Load the word at address into register Rdest of coprocessor z (0-3).

1wl Rdest, address Load Word Left
lwr Rdest, address Load Word Right
Load the left (right) bytes from the word at the possibly-unaligned address into register Rdest.

sb Rsource, address Store Byte
Store the low byte from register Rsource at address.

sd Rsource, address Store Double-Word T
Store the 64-bit quantity in registers Rsource and Rsource + 1 at address.

sh Rsource, address Store Halfword
Store the low halfword from register Rsource at address.

sw Rsource, address Store Word
Store the word from register Rsource at address.

swcz Rsource, address Store Word Coprocessor
Store the word from register Rsource of coprocessor z at address.

swl Rsource, address Store Word Left
swr Rsource, address Store Word Right
Store the left (right) bytes from register Rsource at the possibly-unaligned address.

ulh Rdest, address Unaligned Load Halfword *
ulhu Rdest, address Unaligned Load Halfword Unsigned !
Load the 16-bit quantity (halfword) at the possibly-unaligned address into register Rdest (and
sign-extend it).

ulw Rdest, address Unaligned Load Word
Load the 32-bit quantity (word) at the possibly-unaligned address into register Rdest.

ush Rsource, address Unaligned Store Halfword t
Store the low halfword from register Rsource at the possibly-unaligned address.

usw Rsource, address Unaligned Store Word
Store the word from register Rsource at the possibly-unaligned address.

11

7.5 Exception and Trap Instructions

rfe Return From Exception
Restore the Status register.

syscall System Call
Register a1 contains the number of the system call (see spim-syscall.h) provided by SPIM.

break n Break
Cause exception n. Exception 1 is reserved for the debugger.

nop No operation
Do nothing.

7.6 Constant-Manipulating Instructions

1i Rdest, imm Load Immediate T
Move the immediate into register Rdest.

1li.d FRdest, float Load Immediate Double t
Move the double-precision floating point number into floating point registers FRdest and FRdest
+ 1.

li.s FRdest, float Load Immediate Single '
Move the single-precision floating point number into floating point register FRdest.

lui Rdest, integer Load Upper Immediate
Load the lower halfword of the integer into the upper halfword of register Rdest. The lower bits
of the register are set to 0.

7.7 Arithmetic and Logical Instructions

In all instructions below, Src2 can either be a register or an immediate value (integer). The
immediate forms of the instructions are only included for reference. The assembler will translate
the more general form of an instruction (e.g., add) into the immediate form (e.g., addi) if the
second argument is constant.

abs Rdest, Rsource Absolute Value t
Put the absolute value of the integer from register Rsource in register Rdest.

add Rdest, Rsrcl, Src2 Addition (with overflow)
addi Rdest, Rsrcl, Imm Addition Immediate (with overflow)
addu Rdest, Rsrcl, Src2 Addition (without overflow)
addiu Rdest, Rsrci, Imm Addition Immediate (without overflow)

Put the sum of the integers from register Rsrci and Src2 (or Imm) into register Rdest.

and Rdest, Rsrcl, Src2 AND
andi Rdest, Rsrci, Imm AND Immediate
Put the logical AND of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

12

div Rdest, Rsrcl, Src2 Divide (with overflow) 1
divu Rdest, Rsrcil, Src2 Divide (without overflow) t
Put the quotient of the integers from register Rsrc1 and Src2 into register Rdest.

mul Rdest, Rsrci, Src2 Multiply (without overflow) !
mulo Rdest, Rsrci, Src2 Multiply (with overflow)
mulou Rdest, Rsrcl, Src2 Unsigned Multiply (with overflow)
Put the product of the integers from register Rsrc1 and Src2 into register Rdest.

mult Rsrcl, RSrc2 Multiply
multu Rsrcil, RSrc2 Unsigned Multiply

Multiply the contents of the two registers. Leave the low-order word of the product in register
LO and the high-word in register HI.

neg Rdest, Rsource Negate Value (with overflow) !
negu Rdest, Rsource Negate Value (without overflow) T
Put the negative of the integer from register Rsource into register Rdest.

nor Rdest, Rsrcl, Src2 NOR
Put the logical NOR of the integers from register Rsrci and Src2 into register Rdest.

not Rdest, Rsource NOT 1t
Put the logical negation of the integer from register Rsource into register Rdest.

or Rdest, Rsrci, Src2 OR
ori Rdest, Rsrci, Imm OR Immediate
Put the logical OR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

rem Rdest, Rsrci, Src2 Remainder t
remu Rdest, Rsrci, Src2 Unsigned Remainder f
Put the remainder of the integers from register Rsrc1 and Src2 into register Rdest.

rol Rdest, Rsrcil, Src2 Rotate LeftT
ror Rdest, Rsrcl, Src2 Rotate Right 1

Rotate the contents of register Rsrci left (right) by the distance indicated by Src2 and put the
result in register Rdest.

s1ll Rdest, Rsrcl, Src2 Shift Left Logical
sllv Rdest, Rsrcl, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrci, Src2 Shift Right Arithmetic
srav Rdest, Rsrci, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrcl, Src2 Shift Right Logical
srlv Rdest, Rsrcl, Rsrc2 Shift Right Logical Variable

Shift the contents of register Rsrci left (right) by the distance indicated by Src2 (Rsrc2) and
put the result in register Rdest.

sub Rdest, Rsrcl, Src2 Subtract (with overflow)
subu Rdest, Rsrcl, Src2 Subtract (without overflow)
Put the difference of the integers from register Rsrc1 and Src2 into register Rdest.

13

xor Rdest, Rsrcl, Src2 XOR
xori Rdest, Rsrcl, Imm XOR Immediate
Put the logical XOR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

7.8 Comparison Instructions

In all instructions below, Src2 can either be a register or an immediate value (integer).

seq Rdest, Rsrcil, Src2 Set Fqual t
Set register Rdest to 1 if register Rsrcl equals Src2 and to be 0 otherwise.

sge Rdest, Rsrcl, Src2 Set Greater Than Equal1L
sgeu Rdest, Rsrcl, Src2 Set Greater Than Equal Unsigned !
Set register Rdest to 1 if register Rsrcl is greater than or equal to Src2 and to 0 otherwise.
sgt Rdest, Rsrcl, Src2 Set Greater Thant
sgtu Rdest, Rsrcl, Src2 Set Greater Than Unsz'gned’r
Set register Rdest to 1 if register Rsrc1l is greater than Src2 and to 0 otherwise.

sle Rdest, Rsrci, Src2 Set Less Than FEqual t
sleu Rdest, Rsrcl, Src2 Set Less Than Equal Unsigned
Set register Rdest to 1 if register Rsrcl is less than or equal to Src2 and to 0 otherwise.

slt Rdest, Rsrcil, Src2 Set Less Than
slti Rdest, Rsrcil, Imm Set Less Than Immediate
sltu Rdest, Rsrcil, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrcl, Imm Set Less Than Unsigned Immediate

Set register Rdest to 1 if register Rsrci is less than Src2 (or Imm) and to 0 otherwise.

sne Rdest, Rsrcl, Src2 Set Not Fqual 1
Set register Rdest to 1 if register Rsrci is not equal to Src2 and to 0 otherwise.
7.9 Branch and Jump Instructions

In all instructions below, Src2 can either be a register or an immediate value (integer).

b label Branch instruction 1
Unconditionally branch to the instruction at the label.

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False
Conditionally branch to the instruction at the label if coprocessor z’s condition flag is true

(false).

beq Rsrcl, Src2, label Branch on Equal
Conditionally branch to the instruction at the label if the contents of register Rsrci equals Src2.

beqz Rsource, label Branch on Equal Zero !
Conditionally branch to the instruction at the label if the contents of Rsource equals 0.

14

bge Rsrcl, Src2, label Branch on Greater Than EqualJr
bgeu Rsrcl, Src2, label Branch on GTE Unsz'gnealT
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater
than or equal to Src2.

bgez Rsource, label Branch on Greater Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsource are greater than
or equal to 0.

bgezal Rsource, label Branch on Greater Than Fqual Zero And Link
Conditionally branch to the instruction at the label if the contents of Rsource are greater than
or equal to 0. Save the address of the next instruction in register 31.

bgt Rsrcl, Src2, label Branch on Greater Than t
bgtu Rsrcl, Src2, label Branch on Greater Than Unsigned t
Conditionally branch to the instruction at the label if the contents of register Rsrcl are greater
than Src2.

bgtz Rsource, label Branch on Greater Than Zero
Conditionally branch to the instruction at the label if the contents of Rsource are greater than

0.

ble Rsrci, Src2, label Branch on Less Than Equal 1
bleu Rsrcl, Src2, label Branch on LTE Unsigned !
Conditionally branch to the instruction at the label if the contents of register Rsrci are less
than or equal to Src2.

blez Rsource, label Branch on Less Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsource are less than or
equal to 0.

blezal Rsource, label Branch on Less Than Equal Zero And Link
bltzal Rsource, label Branch on Less Than And Link
Conditionally branch to the instruction at the label if the contents of Rsource are less than (or
equal to) 0. Save the address of the next instruction in register 31.

blt Rsrcl, Src2, label Branch on Less Than t
bltu Rsrcl, Src2, label Branch on Less Than Unsigned1L
Conditionally branch to the instruction at the label if the contents of register Rsrci are less
than Src2.

bltz Rsource, label Branch on Less Than Zero
Conditionally branch to the instruction at the label if the contents of Rsource are less than 0.

bne Rsrcl, Src2, label Branch on Not Equal
Conditionally branch to the instruction at the label if the contents of register Rsrci are not
equal to Src2.

bnez Rsource, label Branch on Not Equal Zero !

Conditionally branch to the instruction at the label if the contents of Rsource are not equal to
0.

15

j label Jump
Unconditionally jump to the instruction at the label.

jal label Jump and Link
jalr Rsource Jump and Link Register
Unconditionally jump to the instruction at the label or whose address is in register Rsource.
Save the address of the next instruction in register 31.

jr Rsource Jump Register
Unconditionally jump to the instruction whose address is in register Rsource.

7.10 Data Movement Instructions

move Rdest, Rsource Move
Move the contents of Rsource to Rdest.

The multiply and divide unit produces its result in two additional registers, HI and LO.
These instructions move values to and from these registers. The multiply, divide, and remainder
instructions described above are pseudo instructions that make it appear as if this unit operates
on the general registers and detect error conditions such as divide by zero or overflow.

mfhi Rdest Move From HI
mflo Rdest Move From LO
Move the contents of the HI (LO) register to register Rdest.

mthi Rdest Move To HI
mtlo Rdest Move To LO
Move the contents register Rdest to the HI (LO) register.

Coprocessors have their own register sets. These instructions move values between these
registers and the CPU’s registers.

mfcz Rdest, Copsource Move From Coprocessor z
Move the contents of coprocessor z’s register Copsource to CPU register Rdest.

mfcl.d Rdest, FRsrci Move Double From Coprocessor 1 1
Move the contents of floating point registers FRsrcl and FRsrci + 1 to CPU registers Rdest
and Rdest + 1.

mtcz Rsource, Copdest Move To Coprocessor z
Move the contents of CPU register Rsource to coprocessor z’s register Copdest.

7.11 Floating Point Unit

The MIPS has a floating point coprocessor (numbered 1) that operates on single precision
(32-bit) and double precision (64-bit) floating point numbers. This coprocessor has its own
registers, which are numbered f0-f31. Because these registers are only 32-bits wide, two of
them are required to hold doubles. To simplify matters, floating point only use even-numbered
registers—even instructions that operate on single floats.

16

Values are moved in or out of these registers a word (32-bits) at a time by lwci, swci, mtcl,
and mfcl instructions described above or by the 1.s, 1.4, s.s, and s.d pseudo instructions
described below.

In all instructions below, FRdest, FRsrci, and FRsrc2 are floating point registers (e.g., $£2).

abs.d FRdest, Rsource Floating Point Absolute Value Double
abs.s FRdest, Rsource Floating Point Absolute Value Single
Compute the absolute value of the floating float double (single) in register Rsource and put it
in register FRdest.

add.d FRdest, FRsrcl, FRsrc2 Floating Point Addition Double
add.s FRdest, FRsrci, FRsrc2 Floating Point Addition Single
Compute the sum of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and put
it in register FRdest.

c.eq.d FRsrcl, FRsrc2 Compare Equal Double
c.eq.s FRsrcl, FRsrc2 Compare Fqual Single
Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if they are equal.

c.le.d FRsrci, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrcl, FRsrc2 Compare Less Than Fqual Single

Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if the first is less than or equal to the second.

c.1t.d FRsrcl, FRsrc2 Compare Less Than Double
c.1t.s FRsrcil, FRsrc2 Compare Less Than Single
Compare the floating point double in register FRsrcl against the one in FRsrc2 and set the
condition flag true if the first is less than the second.

cvt.d.s FRdest, Rsource Convert Single to Double
cvt.d.w FRdest, Rsource Conwvert Integer to Double

Convert the single precision floating point number or integer in register Rsource to a double
precision number and put it in register FRdest.

cvt.s.d FRdest, Rsource Convert Double to Single
cvt.s.w FRdest, Rsource Convert Integer to Single
Convert the double precision floating point number or integer in register Rsource to a single
precision number and put it in register FRdest.

cvt.w.d FRdest, Rsource Convert Double to Integer
cvt.w.s FRdest, Rsource Convert Single to Integer

Convert the double or single precision floating point number in register Rsource to an integer
and put it in register FRdest.

div.d FRdest, FRsrcil, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrcl, FRsrc?2 Floating Point Divide Single
Compute the quotient of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

17

1.d FRdest, address Load Floating Point Double
1l.s FRdest, address Load Floating Point Single
Load the floating float double (single) at address into register FRdest.

mov.d FRdest, Rsource Move Floating Point Double
mov.s FRdest, Rsource Move Floating Point Single
Move the floating float double (single) from register Rsource to register FRdest.

mul.d FRdest, FRsrcl, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrcl, FRsrc2 Floating Point Multiply Single
Compute the product of the floating float doubles (singles) in registers FRsrci and FRsrc2 and
put it in register FRdest.

neg.d FRdest, Rsource Negate Double
neg.s FRdest, Rsource Negate Single
Negate the floating point double (single) in register Rsource and put it in register FRdest.

s.d FRdest, address Store Floating Point Double t
s.s FRdest, address Store Floating Point Single
Store the floating float double (single) in register FRdest at address.

sub.d FRdest, FRsrcl, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrcl, FRsrc2 Floating Point Subtract Single

Compute the difference of the floating float doubles (singles) in registers FRsrc1l and FRsrc2
and put it in register FRdest.

18

