ISSUES IN MULTIPROGRAMMED
MULTIPROCESSOR SCHEDULING

Scott T. Leutenegger

Computer Sciences Technical Report #954

August 1990

ISSUES IN MULTIPROGRAMMED MULTIPROCESSOR
SCHEDULING

by

SCOTT T. LEUTENEGGER

A thesis submitted in partial fulfillment of the

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

1990

Abstract

Scheduling policies for general purpose multiprogrammed multiprocessors are not well
understood. This thesis examines various policies to determine which characteristics of a
scheduling policy are the most significant determinants of performance. In particular we
consider three scheduling policy characteristics: allocation of processing power among com-
peting jobs, support for inter-process synchronization, and preemption frequency. We find
that allocation of processing power among competing jobs is at least as important as the
other two scheduling policy characteristics.

We compare a more comprehensive set of policies than previous work, including four
scheduling policies that have not previously been examined. We also compare the policies
under workloads that may be more realistic than previous studies have used. Using these
new workloads, we arrive at different conclusions than reported in earlier work. In particu-
lar, we find that the "smallest number of processes first" (SNPF) scheduling discipline per-
forms poorly, even when the number of processes in a job is positively correlated with the
total service demand of the job. We also find that policies that allocate an equal fraction of
the processing power to each job in the system perform better than practical policies that
allocate processing power unequally.

We find that allocation of processing power among competing jobs is at least as impor-
tant as explicit support for spin-lock and barrier synchronization. (Minimizing spin-waiting
is achieved by coscheduling processes within a job, or by using a thread management pack-
age that avoids preemption of processes that hold spinlocks.) We also find that allocation of
processing power among competing jobs is a more important characteristic of a scheduling
policy than preemption frequency for a wide range of preemption overhead values. Our stu-
dies are done by simulating abstract models of the system and the workloads.

Acknowledgements

I would like to thank Mary Vernon for being my advisor for the last 4 years. Through
class work and three research projects, she has taught me the techniques and importance
of performance modeling. The quality of this thesis was vastly improved by her many
suggestions while conducting the research and preparing the thesis.

I would like to thank Josh Chover, Bart Miller, Jim Goodman, and Mark Hill for serv-
ing as committee members for my final defense. In addition I would like to thank Jim Good-
man and Mark Hill for serving as readers, and providing numerous suggestions to improve
the presentation of the material. I would also like to thank Miron Livny for numerous
technical discussions, serving on my prelim committee, and providing the DeNet simulation
environment used for conducting this research.

I would like to thank Lisa Leutenegger for discusing these ideas with me, proofreading
this thesis, and offering many suggestions on how to enhance the presentation of the work.
I would also like to think George Bier for many discussions about this work and in particu-
lar for pointing out that finding the optimal scheduling sequence for a multiprocessor is an
NP-complete problem. I would also like to thank fellow students Lisa Leutenegger, Lester
McCann, Donovan Schneider, Vikram Adve, Sarita Adve, George Bier, Amarnath Mukerhjee,
and Shahram Ghandeharizadeh for discussing computer science as a whole, and providing
companionship over the last 5 years. I would also like to thank Mark Friedman for provid-
ing the famous "Bubber" macros used in formatting this thesis.

On the non-technical front, I would like to thank my parents for instilling in me the
importance of education. The most deserved thanks to anyone mentioned in this thesis go
to my wife Lisa for her emotional support, patience, and love during my years in graduate
school. Lisa, it is impossible to overstate your contributions towards this thesis. Last, but
not least, I would like to thank our cats Toxie, Raid, Indie and Ashley for all the purrs and
distractions they provided.

Contents

ADSETACTE uivveinesieeenseneenitrsetneeasseenesesrearnesasasssasentsoriiersssraestrstsssasssasessttseesttisserssesionans il
ACKNIOWIEAGEIMENILScuiiiiiiiiiiiiiiiieitieieie e ettt ae e s s s iv
LISt OF FAGUTIES 1vvvveereeieiiiiiiiiiiiiiiiiniieieiinir et re s e s s s e st s se et snnans X
LISt OF TADIES 1iuuiiueeenriiierniiererieeseenessnaassressemesssnosstasenssnsnsirrssareetsssssssrsessistosetsinissnnees xiv
Chapter 1. INtrodUCHON ...ooiviiiiiiiiiiiiiiiiiiie et 1
1.1 Thesis Research OVEIVIEWc.coiiciiiiiiiiiiiiiiiieir i eioe ettt asnnss 1

1.2 Organization of thesiScvieveriiiniieinnii 4

1.3 Contributions of this THESIScccvevviiiiiiiiiii e 5

1.4 Uniprocessor Scheduling ReSultscccoviiieriiiiineen 6

1.5 Previous Multiprocessor Scheduling Researchccccooiiiiii. 8

1.6 Concurrent Multiprocessor Scheduling Researchocccooiininin 10
Chapter 2. Scheduling POUCIEScccvuriiieniiiiieiiiiiii e 13
2.1 Scheduling Policy Definitionscoooeiiiimiiiiii e 13
2.1.1 Previously Proposed POUCIEScoiviiiiiiiiiiiienniiiiin e 13

2.1.2 Recently Proposed POUCIESccccoviuiiiieiieriennniniiiiiicniiinienee 14

2.1.3 NEW POUCIES .uvvviiirrireinrireirenneenteiatiinsriirsiarenrassats et era st taetnsttssanessanes 15

2.2 Optimal Discipline for Multiprocessor Schedulinngccoooniiiiiiiiinnennne 16

2.3 Reasons for Inclusion In Studyccooviiiiimni 17

2.4 Expected Behavior of the POUCIES ..o 18
Chapter 3. Multiprocessor and Workload Models ..o, 22
3.1 JOD SEITICLUTE Lueianiinninirrnrruneerisrterrneraestunerieasestsrsesstaeresaarrreseuestnsrusstneessrnnees 22

3.2 Multiprocessor MOAEleeermiiiiiriveiiieiiiiiii e 23

3.3 Job CharTacterISHES ..ouiiveiiiiriierrr ettt e r ettt s s e e e 23
3.3.1 Distribution of Number of Processes Per JoObcoooooviviiiiiinnn 23

3.3.2 Distribution of Job Demandcccceoviimiiiiniiiiii 26

3.3.3 Division of Job Demand Amongst ProCessesccovcceviiivniiiiiiniiin. 27

3.4 Inter Process Synchromization ... 27
3.4.1 Spin-lock Synchromizationccccceeeieeiiiii 27

3.4.2 Barrier Synchronization ... 28

3.5 Summary of Model Parameterscocveeriiiiinietiniimmiii e 29
Chapter 4. No-Synchronization RESUIS ... 30
4.1 Correction to PTevious WOTKccoveeveieiiiiiiiiiiniii ettt 31

4.2 ITmpact of Workload ChoOICEooviiivimiiiiiiii e 33

4.3 Baseline Comparison of the POUCIEScoiviimiieeiininini 37

4.4 Sensitivity to Input Parameters ... 41

-iv -

4.4.1 Sensitivity to Variation of Job Demandcccoeiiminniiii 41

4.4.2 Sensitivity to Mean Job Demandcocoovimimiminiiiin 45

4.4.3 Effect of Varying Parameter P,ccoooveeiiiiinniiiimnniensi 49

4.4.4 Effect of Varying Parameter Tlccoveeerriinmmnminirmimmsisi 52

4.5 Effect of Foreground - Background Schedulingcocccviiinn. 55

2.8 COTCIUSIONL vvunevneeerensernieruuerernaesneetusisetsssernasssessesseesnsmmitemesomttiisssesststeteastarise 55
Chapter 5. Importance of Equal Allocation Per J (0] o JPUUTR TSP SO 60
5.1 Open System Uncorrelated Geometric-bounded Workloadccooeveiiininnien. 61

5.2 Open System Correlated Geometric-bounded Workloadccccceeviiiiiiiiiininn, 65

5.3 Closed System MOAEDccoeeiiiimiiiemniiiiiitirie st 65

5.4 Closed System Uncorrelated Geometric-bounded Workloadcceeeviiiiiiininnns 69

5.5 Closed System Correlated Geometric-bounded Workloadooceciiniiiiiiiiinnnnns 75

5.6 CONCIUSIONL ..evuniiiiueieiiaieeeeeieeerieutterriieerrrnaestraseterraitr it sttt taatesasttasstttaattes 75
Chapter 6. Importance of Supporting Inter-process Synchronizationcccecoeeeenns 77
6.1 Spin Lock Synchromization ... 78

6.2 Barrier Synchronizatione.cciiiiiiim e 83
6.2.1 Impact of Barrier Synchronizationccoeiiiiae. 83

6.2.2 Inclusion of Application Level Scheduling ..o, 87

5.3 COTICIISIONL 1evververiiinniineerranerrrerarasterssrenirersassiasrssoretrasstntesmaseteostessiossttiiensasisens 89
Chapter 7. Importance of Preemption FIEQUENCYcoceoriiiinriiimnmmmieeessissees 90
7.1 Preemption Overhead ESHMAtiONccoooiiiiiiiiiiiinenenne 91

7.2 Sensitivity of Policies to Preemption Penaltycccccoiieiiniiiie. 92

7.3 CONCIISIONL 1nevueieeenirneittriseerasesaeeaerssrnrtressataassnasttomtusstosatsanearessesitsiotesinananies 99
Chapter 8. CONCIUSIONS ..iiurrriiseenris ittt 101
8.1 SUITHIIATY ..uuvvvvrereereiiursnrrressnaisstsee st aisatnrts st s aases e res s ot ban s as s sttt 101

8.2 Future Research DIreCtOonSccoiviiiiimnirmienreiinii e 102

1.1
3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3
4.4
4.5
46
4.7
4.8
4.9

List of Figures

Uniprocessor Scheduling Poicies
JOb SETUCtUIEovvviinniiniiiieiiierereie e
Open System Modelcccooeiiiiiniiiiininnnn.
Closed System Modelccooovvinieiieenininnnn,
Hyperexponential PMFc.ccccooiiiiinn
Geometric-bounded PMFcccoerviiiinininennne.

..

..

..

..

..

..

Majumdar et. al. Hyperexponential Uncorrelatedoeevveiienmriniiinieee
Correct Hyperexponential Uncorrelated Workloadccoceeiviiiinniiciiciiinn.

Hyperexponential Correlated Workload
Geometric-Bounded Correlated Workload, P,

..

—— 0.05 ..

Effect of Coefficient of Variation of the Number of Processescco.coceeviiinnnes

Baseline Uncorrelated Workload
Baseline Correlated Workloado.oeeveiet
Effect of C4, Uncorrelated Workload
Effect of C,, Correlated Workload

..

..

..

..

4.10 Effect of C,, P, = 0.05, Correlated Workloadccccoimneniniininr
4.11a Effect of d, Uncorrelated Workload
4.11b Effect of d, Uncorrelated Workload
4.12a Effect of d, Correlated Workload
4.12b Effect of d, Correlated Workload
4.13 Effect of P,, Uncorrelated Workload
4.14 Effect of P,, Correlated Workload
4.15 Effect of i, Uncorrelated Workload
4.16 Effect of fi, Correlated Workload
4.17a Foreground Background Scheduling Uncorrelated Workloadc..coveeveennne.
4.17b Foreground Background Scheduling Uncorrelated Workloadcooovvviininnnnnnn,
4.18 Foreground Background Scheduling Correlated Workloadcooovvniviniinnenns
Response Time Ratios, Baseline Uncorrelated ...
Response Time Ratios, P, Varied, Uncorrelatedccocmiminiiin.
Response Time Ratios, 7 Varied, Uncorrelated ...

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Response Time Ratios, Baseline Correlated

..

..

..

..

..

..

..

..

..

Response Time Ratios, P, Varied, Correlated ...,

Response Time Ratios, 7 Varied, Correlated

..

Response Times, Closed System Uncorrelatedccocvmininniiniee

Response Times, Closed System Correlated

..

23
24
24
26
26
32
33
35
36
38
39
40
42
43

45
46
48
49
50
51
53
54
56
57
58

SXE

67

70
71

5.9

Response Time Ratios, Closed System, Uncorrelated

..............................

5.10 Response Time Ratios, P, Varied Closed System Uncorrelated ..o,
5.11 Response Time Ratios, 7 Varied Closed System Uncorrelatedccoeeeen.

5.12 Response Time Ratios, Closed System Correlated

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6

............

..............................

Spin Lock Synchronization Uncorrelated Exponential-boundedcc.coeeeeenn.

Spin Lock Synchronization Closed System Uncorrelated

..............................

Spin Lock Synchronization, P, Varied Closed System Uncorrelated

Barrier Synchronization, Closed System Uncorrelated
Barrier Synchronization, Closed System Correlated

Barrier Synchronization With Application Scheduling Closed

System, Uncorrelatedccoocviniiimiiiii
Percent Preemption Overhead versus W, @ = 0.1 seconds

..............................

..............................

..............................

..............................

Effect of Preemption Overhead, Uncorrelated Utilization = 50%ccocennienne
Effect of Preemption Overhead, Uncorrelated Utilization = 70%o.cooeiiennne
Effect of Preemption Overhead, Uncorrelated Utilization = GO euierrinreciiriaaans

Effect of Preemption Overhead, Correlated Utilization = 50%
Effect of Preemption Overhead, Correlated Utilization = 70%

..............................

..............................

72
73
74
76
80
81
82
84
86

88
92
94
95
96
98
99

List of Tables

2.1 Summary of the Expected Behavior of the Policiesccccoeeeieie.
2.2 Scheduling POHCY ACTONYINSccveveununeeneeitmmmiiiiniiiiiiiesnenisaan.
3.1 Summary of Model Parameterscccceoveiireemmmiiiiiiiii .

.................

.................

.................

7.1 Percent Increase in Response Time for RRprocess Uncorrelated Workload

7.2 Percent Increase in Response Time for RRjob Uncorrelated Workload

.................

20
21
29
97
97

CHAPTER 1

Introduction

1.1. Thesis Research Overview

The goal of this thesis is to determine how to schedule competing jobs running on a
general purpose multiprogrammed multiprocessor. In general, we aim to further our under-
standing of the issues involved, to identify the characteristics of a scheduling policy that are
the most significant determinants of the policy’s performance, and to identify the policies
that are most promising for implementation. The environment we consider is a small (20
processor) tightly-coupled shared-memory multiprocessor. Examples include commercial
products such as the Encore Multimax, the Sequent [LoTh 88], the DEC Firefly {TaSS 88],
the BBN Butterfly, the Cray MPs, and the IBM 3090 MPs. We are interested in scheduling
general workloads, allowing both serial and parallel jobs to share the processors. Our pri-
mary metric for comparing policies is mean job response time. We define a job to be a pro-
gram composed of one (serial) or more (parallel) processes. We define job response time to
be the time from when the job enters the system until its last process is completed. We
assume the scheduling policy allocates processors to processes that are queued in a con-
ceptually centralized ready queue.

There are three characteristics of a multiprocessor scheduling policy that may be
important to the performance of the policy. These three characteristics are:

1) Allocation of processing power among jobs. How processing power is allocated among the
jobs competing for service may have a significant impact on performance. For unipro-
cessor systems, it is well known that the preemptive smallest remaining processing
time first (SRPT) policy results in the minimum mean job response time [Shra 68].
Furthermore, processor sharing (or round robin) scheduling performs well in the
absence of a priori knowledge of job demands, and the performance is insensitive to
the coefficient of variation of job demand. The good performance of the round robin
policy results from giving each job in the system an equal fraction of processing power.
Similarly, multi-level queues have been shown to perform well in the absence of a

-1-

2)

3)

priori job demand knowledge. We expect these general lessons to apply to the mul-
tiprocessor environment. However, the multiprocessor scheduling problem introduces
two new considerations. First, the multiprocessor equivalent of the SRPT policy is not
the optimal policy. Determining the optimal scheduling sequence for a multiprocessor
is an NP-complete problem since the restricted problem of determining the optimal
scheduling sequence for a multiprocessor with single tasking jobs is NP-complete
[GaJo 79]. In a real system it is unlikely the scheduler would know job demands.
Hence it is important to develop scheduling policies that perform well in the absence of
a priori job demand knowledge. Second, processing power can be divided among com-
peting jobs either temporally by time slicing, or spatially by partitioning the processors
among the jobs.

Support for inter-process synchronization. Jobs that have inter-process synchronization can
be adversely affected if the scheduling policy does not facilitate synchronization. In
particular, processing power may be wasted if a policy allows processes to spin (busy-
wait) on a processor while waiting for synchronization to occur when otherwise useful
work could be done. We consider two approaches to facilitate inter-process synchroni-
zation: coscheduling and application level scheduling. Coscheduling facilitates inter-
process synchronization by maximizing the number of processes from a job that are
run at the same time. Application level scheduling facilitates inter-processes syn-
chronization by making sure a job is always executing the processes most important
for forward progress.

Preemption Frequency. Preemption of processes causes two types of overhead. First,
there is the operating system context switch overhead at the time of the preemption.
Second, there it the time to rebuild cache entries when a descheduled process is
rescheduled on a processor. Even when the process is rescheduled on the same pro-
cessor, a portion, possibly all, of the process’ cache entries will have been removed by
intervening processes. How frequently a policy preempts processes affects the response
time of all jobs since the overhead for preemption directly translates into a slower exe-
cution rate.

Previous and concurrent work with one exception has proposed and evaluated specific

policies that address either the second or third characteristic [Oust 82] [ZaLE 88] [ZaLE 89]

[SeSt 89] [TuGu 89] [SqLa 90] . Our work seeks to determine the importance of the first
characteristic, allocation of processing power per job, relative to the other two characteris-

tics. In addition, we seek to directly compare the scheduling policies so we can determine
which policies are good candidates for implementation. We use simulation to study twelve

scheduling policies under a wide range of workloads. The study of these policies helps elu-
cidate the importance of the three characteristics.

A previous study that looked only at the first characteristic concluded that allocating

processing power to jobs with the smallest number of processes results in good performance

3

even when there is no correlation between the number of processes per job and job demand
[MaEB 88]. In addition, the study concluded that policies that allocate processing power on
a round robin basis result in poor performance. We reexamine these results in our study.
The questions pertaining to allocation of processing power we wish to address are:

¢ Does scheduling jobs with the smallest number of processes first result in good perfor-
mance?

e Is it desirable to give all jobs in the system a fraction of the processing power as in the
uniprocessor round robin policy?

e If each job is given a fraction of the processing power, is it important to give each job an
equal share?

e What are the costs and benefits of temporally allocating the processing power versus
spatially allocating the processing power?

e How important is allocation of processing power?

To evaluate the importance of a policy’s support for inter-process synchronization we
have run experiments assuming two types of inter-process synchronization: spin-lock and
barrier synchronization. We consider both coscheduling and application level scheduling as
techniques to support inter-process synchronization. By application level scheduling we
mean there is two-level scheduling, a system level scheduler that allocates processors to
jobs, and an application level scheduler responsible for deciding which processes of a job
are run on the processors assigned to the job. By allowing the job to determine which
processes are to be run we can assure that the processes executing are the most beneficial
to forward progress. When a two level scheduler is used, threads instead of processes are
actually scheduled. We will always refer to threads as processes to make the discussion
simpler. More details on threads are found in section 1.5. Of all the policies studied only
two require application level schedulers. For barrier synchronization, we consider both the
absence and existence of two-level scheduling for the policies studied. The questions we
wish to address are:

e In the absence of an application level scheduler, does coscheduling improve perfor-
mance?

¢ Is coscheduling or application level scheduling a more effective approach for supporting
inter-process synchronization?

e Does the combination of coscheduling and application level scheduling result in the best
performance?

¢ How important is support for inter-process synchronization?

To evaluate the importance of preemption frequency we determine the likely overhead
cost per preemption and then study the policies under a wide range of preemption overhead
values. The overhead per preemption is equal to the operating system context switch

overhead plus overhead for rebuilding process cache entries once a descheduled process is
rescheduled. We have developed a simple analytical model to aid in estimating the over-
head incurred in rebuilding process cache working sets. We wish to address the following
questions:

e How large is the preemption overhead due to rebuilding process cache entries?
e How does preemption overhead affect the relative performance of the policies?
e How important is preemption frequency?

Multiprocessor scheduling policies can be divided into two classes: static and dynamic.
In a static policy some number of processors are allocated to a job. Once allocated, the
number does not change. If too many processors are allocated to a job the processors
remain idle even if other jobs in the system could make us of them. In addition, if too few
processors are allocated to a job, processing power is wasted if any of the other processors
are idle. This wasted processing power results in poor overall performance. Dynamic poli-
cies allow the number of processors allocated to a job to vary during the job’s execution.
For example, FCFS is a dynamic policy since the number of processors allocated to a job
changes as the processors become available. We consider only dynamic policies in this
study since the static policies are not promising. We state other objections to the static pol-
icles in section 1.5. Concurrent work supports our decision to not consider static policies
[ZaMc 90].

We study the twelve scheduling policies under six workload models with a variety of
parameter settings. We choose these policies because they address one or more of the three
characteristics above. We study three synchronization workload models: no synchroniza-
tion, spin-lock synchronization, and barrier synchronization. We also consider two job
demand models: uncorrelated and correlated. The uncorrelated model assumes no correla-
tion between the number of processes per job and job demand, whereas the correlated
workload model assumes there is a positive linear correlation between the number of
processes per job and the job demand. We combine the three synchronization workload
models with the two job demand workload models for a total of six workload models. We
explore the implications of increasing job parallelism and also explore the effects of chang-
ing the distribution of the number of processes per job. From our studies we gain insight
into the relative importance of the three scheduling policy characteristics listed above, and
learn which policies are most promising for implementation.

1.2. Organization of thesis

In the remainder of this chapter we summarize the contributions of this thesis and dis-
cuss related work. Section 1.3 lists the contributions of this thesis, section 1.4 discusses
relevant uniprocessor scheduling work, section 1.5 discusses previous multiprocessor
scheduling work, and section 1.6 discusses recent (i.e. concurrent) multiprocessor schedul-
ing research. Chapter 2 defines the twelve scheduling policies studied in this thesis. We

include motivation as to how we would expect these policies to behave in regards to the
three characteristics and why. Chapter 3 describes the models and parameters used in the
study. We present the job structure model, the multiprocessor model, how the number of
processes per job is distributed, how demand per job and per process is distributed, and
what type of inter-processes synchronization is assumed. Chapter 4 presents the results of
experiments assuming no inter-process synchronization. We demonstrate the importance of
how processing power is divided among the jobs in the system. In chapter 5 we explore the
importance of allocating processing power equally per job. In Chapter 6 we explore the
importance of supporting inter-process synchronization. We present results from spin-lock
synchronization and barrier synchronization. In chapter 7 we explore the importance of the
preemption frequency. Chapter 8 contains our conclusions and plans for future work.

1.3. Contributions of this Thesis

It is well-known that a key characteristic of a good uniprocessor scheduling policy is that
it rapidly grants some processing time to small jobs so that they finish quickly. One of the
principal results of this thesis is that a key characteristic of a good multiprocessor scheduling
policy is that it rapidly grants some processing power to small jobs so that they finish
quickly.

The idea that rapidly granting processing power to small jobs is important in multipro-
cessors may seem obvious in retrospect, but this result has not been given much attention
by all but one previous study of multiprocessor scheduling policies. Most studies have
ignored this factor in favor of considering more complex multiprocessor interactions, such
as supporting inter-process synchronization or minimizing overhead due to the rebuilding of
process cache entries after switching processes. The one previous study that focused on
the allocation of processing power was incomplete in regards to sensitivity studies and the
policies included in the study. In addition, the study erroneously concluded that policies
that give highest priority to jobs with the smallest number of processes result in good per-
formance. No earlier study examined of all three characteristics of a multiprocessor
scheduling policy enumerated in section 1.1.

Other more-specific contributions of this thesis, include:

® Scheduling policies that give highest priority to jobs with the smallest number of
processes result in poor performance when the coefficient of variation of job demand is
3.0 or higher.

. In the absence of a priori job demand knowledge, policies that do not allocate a frac-
tion of processing power to each job in the system result in poor performance.

. Policies that allocate processing power equally to all jobs result in better performance
than policies that allocate processing power proportional to the number of processes
per job. The difference in performance is magnified when job demand is correlated

with the number of processes per job.

) We present a new workload model that may be more realistic than models used in pre-
vious studies. We find that the qualitative performance of the policies is different for
this new model than for a previous model.

e How processing power is allocated among the jobs is at least as important as support
for inter-process synchronization.

° Spin-lock synchronization does not affect the relative performance of the scheduling
policies unless the policies compared allocate processing power equally well.

® Barrier synchronization changes the relative performance of the policies only when
there are more than two barriers per unit where a unit equals the duration of a quan-
tum in a round robin policy.

e A high degree of coscheduling actually degrades performance when there is application
level scheduling.

® For a wide range of likely process cache working set sizes, overhead due to rebuilding
processor caches is likely to be less than 10%. As a result, scheduling policies that
give each job in the system a fraction of the processing power by time slicing still per-
form better than polices that do not give a fraction of processing power to each job in
the system. Thus, allocation of processing power among the jobs appears to be a more
important characteristic of a scheduling policy than the preemption rate when the
overhead per preemption is less than 10%.

1.4. Uniprocessor Scheduling Results

There has been much work done in studying uniprocessor scheduling policies. For a
good overview of analytical models of uniprocessor scheduling we refer the reader to [Klet
76]. Figure 1, which is a reproduction of figure 1 in [MaEB 88}, summarizes relevant
uniprocessor scheduling results. The figure shows that as the coefficient of variation of ser-
vice demand increases the mean job response time of First Come First Served (FCFS) and
Shortest Job First (SJF) increases, Processor Sharing (PS) remains constant, and Shortest
Remaining Processing Time (SRPT) decreases. The SJF policy is a non-preemptive schedul-
ing policy that gives highest priority to the job with the smallest demand. The SRPT policy
is a preemptive policy that gives highest priority to the job with the smallest remaining pro-
cessing time.

From this figure we point out three key ideas. First, SRPT has the minimum response
time, and improves as the coefficient of variation of job demand increases. In fact, SRPT has
been shown to be the optimal uniprocessor scheduling policy [Shra 69]. The SRPT policy
requires a priori knowledge of service demands and hence is not a practical policy to imple-
ment. Analysis of the policy does add intuition to our understanding of uniprocessor
scheduling, and provides an optimal baseline to compare the other policies against. An

FCFS: First Come First Served

A PS: Processor Sharing
' SIF: Shortest Job First
SRPT: Shortest Remaining Processing Time
Mean FCFS
Job , SIF

Response /
Time PS

——

SRPT

S

Coefficient of Variation of Job Service Demand

Figure 1.1: Uniprocessor Scheduling Poicies

optimal multiprocessor scheduling policy would be useful for the same reasons.

The second key idea is that FCFS and SJF perform poorly at a high variation in service
demand. This is important since real uniprocessor systems have been observed to have a
high variation in service demand [SaCh 81]. FCFS performs poorly because it makes no
attempt to give small jobs good service. Although SJF does schedule the job with the
current smallest demand, it is nonpreemptive. Once a job with a large service demand
begins execution it can not be preempted, hence holding back jobs with smaller demands
that may arrive after the large job begins service. We expect that multiprocessor scheduling
policies that are nonpreemptive and/or do not take into consideration a job’s demand will
also perform poorly.

Third, PS is an attractive policy because of the following four properties [Klei 76]:
1) Mean job response time is insensitive to the coefficient of variation of job demand.
2) Job response time is linear to service demand.

3) Mean job response time is independent of the service time distribution.

4) The ratio of waiting time to service time is constant for all jobs. Hence, there is no way
to "cheat" the system by breaking up a big job into several smaller jobs.

These properties can be attributed to the fact that each job in the system is allocated an
equal share of processing power. The PS policy seems to be a good choice for uniproces-
sors. Since providing equal allocation per job for uniprocessors results in such good
behavior, we conjecture that it may be desirable to allocate processing power equally per job
in a multiprocessor.

1.5. Previous Multiprocessor Scheduling Research

In this section we present related research in multiprocessor scheduling conducted
prior to the research presented in this thesis. Each of the studies addresses one of the
three characteristics of a multiprocessor scheduling policy.

A comparison study of six policies was done by Majumdar, Eager and Bunt [MaEB 88]
[Maju 88]. This is the only other work we know of that addresses the importance of how
processing power is allocated to the jobs in the system. The six policies studied were: first
come first served, preemptive and nonpreemptive smallest cumulative demand first,
preemptive and nonpreemptive smallest number of processes first, and round robin pro-
cess. Non-preemptive shortest demand first gives highest priority to jobs with the smallest
unscheduled cumulative demand. Preemptive shortest demand first gives highest priority
to jobs with the smallest remaining cumulative demand. Non-preemptive smallest number
of processes first gives highest priority to jobs with the smallest number of unscheduled
processes. Preemptive smallest number of processes first gives highest priority to jobs with
the smallest number of processes including processes in service. Majumdar et. al. found
that the smallest demand and smallest number of processes first policies performed better
than round robin process, which in turn performed better than first come first served. They
drew these conclusions for workloads where total job demand is independent of the number
of processes per job, and also for workloads where the job demand is positively correlated
with the number of processes per job.

We have confirmed that for their workloads the smallest demand first policy has a
lower mean job response time than the other policies. Contrary to their results, we find that
polices that give preference to jobs with the smallest number of processes perform poorly
when job demand is independent of the number of processes per job. This discrepancy is
the result of a subtle programming error in their workload generator [MaEa 89]. We also
find that under what we hypothesize may be more realistic workload assumptions, the
smallest number of processes first policies perform worse than the round robin policy even
for the correlated workload. Their study also presented tables showing the frequency of
preemptions for the policies, but did not consider what possible overheads per preemption
might be, or the significance of the preemption frequency. This work was the starting point
for our study. We include all of the policies they studied in our studies except the

nonpreemptive smallest demand first policy.

Another area of related work that has been studied is how a multiprocessor scheduling
policy should schedule processes so as to support inter-process synchronization. Two
approaches have been proposed. An early approach is to maximize the number of
processes from the same job running at the same time. The idea is called coscheduling and
specific policies to achieve coscheduling were proposed by Ousterhout [Qust 82]. If all
processes are not scheduled at the same time, a process requesting synchronization with a
descheduled process must wait until the descheduled process is rescheduled. If all
processes are scheduled at the same time this waiting time is eliminated. The policies as
proposed by Ousterhout have a high degree of coscheduling. We modify the best policy pro-
posed by Ousterhout, "undivided”, and include it in our studies.

A more recent approach to support inter-process synchronization is to have a two-level
scheduler. The system level scheduler is responsible for allocating processors to jobs while
the application level scheduler is responsible for deciding which processes should be run on
the processors currently allocated to the job. It was shown that by using threads parallel
programs can quickly deschedule and reschedule processes with little overhead [Doep 87]
[BeLL 88] [AnLL 89]. This ability to quickly change which process a job has running allows
a job to ensure that it is currently running the most important processes.

When using a two-level scheduler a job is normally composed of "threads" [Doep 87]
[BeLL 88] [AnLL 89]. Threads are also known as "light weight" processes. Threads are the
execution of code, including a program counter and stack of activation records, but not the
rest of the information normally associated with a process. All threads of a job share the
same address space. Since threads have much less information associated with them,
scheduling and descheduling of threads can be accomplished two orders of magnitude fas-
ter than scheduling and descheduling processes [AnLL 89]. For simplicity of discussion, we
will refer to threads as processes for the remainder of the thesis. When we say an applica-
tion level scheduler exists we mean the there is a two-level scheduler, and that processes
(threads) can be scheduled and rescheduled by the job (application). We will assume no
overhead for the switching of processes by the application level scheduler. Note that such a
two-level scheduler requires significantly more effort to implement and maintain than a sin-
gle level scheduler. In [ZaEL 88] and [ZaEL 89] Zahorjan et al. found that using application
level scheduling can greatly reduce the amount of time wasted spinning in a multipro-
grammed environment for barrier synchronization. Two of the policies included in our study
assume this two-level scheduling idea.

A third area of less closely related work is how best to statically partion processors
among jobs on a multiprocessor. In [EalZ 89] and [Seve 89] rules of thumb are suggested
for how to determine the best allocation of processors to an arriving job for static or semi-
static partitioning. One of the contributions in the paper by Eager et al. is the suggestion
that average parallelism be used as a rule of thumb for deciding the number of processors

10

that should be allocated to a job in static partitioning. Sevcik proposes using variance of
parallelism, minimum parallelism, maximum parallelism, and system utilization in addition
to average parallelism. The resultant response times are significantly better at high loads
than when just using average parallelism.

Both of these approaches provide good rules of thumb and add insight to our under-
standing of static multiprocessor scheduling, but it appears that static policies are not suit-
able ways to schedule for a general purpose multiprogrammed multiprocessor. One objec-
tion is that processors sit idle when a job’s parallelism shrinks below (or grows beyond) the
number of processors allocated to the job. A second objection is that in order for the pro-
posed policies to be implemented, we need to know the characterization parameters (aver-
age, maximum, minimum, and variance of parallelism). In a general purpose system where
applications are being developed and tested, or execution time is data dependent, it is not
reasonable to assume that this information is known.

1.8. Concurrent Multiprocessor Scheduling Research

In this section we discuss related multiprocessor research conducted concurrently
with the research presented in this thesis. Once again, each study addresses one of the
multiprocessor scheduling policy characteristics.

The issue of supporting inter-process synchronization has been further addressed by
Seager and Stichnoth [SeSt 89]. In this paper they compare three different scheduling poli-
cies by simulating an 8 processor system. They assume the parallel jobs have frequent bar-
rier synchronization. Upon reaching a barrier a process will spin for a certain amount of
time. If all of the other processes from the job do not reach the barrier within that time, the
spinning process blocks and relinquishes the processor. The process remains blocked until
all of the job’s processes reach the barrier. The policies they compare are called dog-eat-
dog, family, and gang. Dog-eat-dog is simple round robin scheduling on a shared process
queue. Family is a variation that achieves slightly better coscheduling than dog-eat-dog.
Gang scheduling is a policy similar in spirit to Ousterhout's coscheduling policies. These
policies do not assume the presence of a thread package to allow for changing processes as
barrier points are reached. The lack of an application level scheduler coupled with the fact
that the workloads studied assume frequent barriers results in a high degree of spinning
and descheduling of processes. The study found that gang scheduling performs much
better than the other two policies as a result of less spinning and blocking. The study
further demonstrates the importance of coscheduling in an environment with frequent spin-
ning barrier synchronization. We include a round robin policy (dog-eat-dog) in our studies.
The other two policies are not included in our study because they are variations of the
Ousterhout coscheduling policy that is included.

Another issue recently addressed is whether static or dynamic allocation results in
better performance [ZaMc 90]. Zahorjan and McCann propose a dynamic partitioning policy

11

that spatially partitions the processors among the jobs. The number of processors allocated
to each job may change when a new job arrives to the system or the parallelism of the job
changes. They compare their dynamic partitioning policy to two static partitioning policies.
They found dynamic partitioning to be superior to static partitioning over a wide range of
processor preemption overhead values. Their study confirms our intuition about the poor
potential performance of static partitioning disciplines.

Another issue recently addressed is how the existence of processor caches may affect
the performance of multiprocessor scheduling policies. The presence of processor caches
may change the relative performance of scheduling policies due to different cache hit ratios
for the different policies. When a process is preempted from a processor and then later
rescheduled on another processor the process must rebuild its cache entries. Even if the
process is rescheduled on the same processor, a portion of the process’ entries may have
been removed by intervening processes.

Tucker and Gupta proposed a dynamic partitioning policy to minimize cache miss
penalty [TuGu 89]. Their policy allocates a subset of the processors to a job upon job
arrival. The allocation changes as jobs enter and depart the system so that each job gets an
equal share of the processors. They use application level scheduling to determine which of
the job's processes are scheduled on the processors allocated to the job. By keeping
processes on a processor for as long as possible they minimize cache misses needed to
rebuild a process’ cache working set upon the rescheduling of a process. They implemented
and compared their dynamic-partitioning policy to a simple round robin process policy.
Their experiments found the performance of the dynamic-partitioning to be superior to the
round robin process policy for the workloads they studied. There are three reasons that may
have caused their scheduling policy to perform better than the round robin process
scheduling policy. Their policy gives an equal share of processing power to each job in the
system, it minimizes cache misses by keeping processes on a processor as long as possible,
and it minimizes spinning as a result of application level scheduling. A determination of
how much each of these three factors contributes to the improvement in performance was
not included. Note that the dynamic partitioning policy proposed by Zahorjan and McCann
also minimizes cache misses.

The importance of processor caches has also been addressed by Squillante and
Lazowska [SqLa 90]. They consider several policies that attempt to reschedule a process on
the same processor from which the process was previously preempted. They found that
when a processor needs a process, choosing the first process in the shared ready queue
which last ran on that processor results in higher throughput than simply taking the first
process from the queue. They found that at high system loads accompanied by large cache
reload overhead, up to 60% improvements in throughput occur. At the operating points
where this large improvement is seen, half of the time a process spends on a processor is
spent rebuilding the process’ cache entries. Squillante and Lazowska propose other slightly

12

more sophisticated policies that exhibit slightly better performance. None of the policies pro-
posed allocate an equal share of processing power to each job in the system. Instead, some
policies allocate an equal share of processing power to each process. In some cases the pol-
icies favor specific processes.

Due to the complexity of modeling the parallelism and the synchronization in the sys-
tem, analytical models to date have only had limited success. Most models to date have
considered only FCFS or PS scheduling and ignored interprocess synchronization. Two
recent papers have made progress in modeling more complex scheduling policies and
including synchronization [Nels 90] [NeTo 90]. Nelson included barrier synchronization in a
markov chain model of FCFS multiprocessor scheduling. Nelson and Towsley have con-
sidered less restrictive scheduling policies in the absence of inter-process synchronization.
Due to the complexity of modeling more general systems, we decided to use simulation as a
tool for our studies.

CHAPTER 2

Scheduling Policies

In this section we define the twelve scheduling policies studied, and consider the
expected behavior of each. We include each of the policies in order to conduct a comprehen-
sive study of general purpose multiprogrammed multiprocessor scheduling policies. The
policies included in our studies are chosen either because they have been proposed as
addressing one of the three characteristics of a multiprocessor scheduling policy
enumerated in chapter 1, or because they add insight into understanding the importance of
the three characteristics. Some of the policies studied address two or all three of the mul-
tiprocessor scheduling policy characteristics.

In section 2.1 we define the policies. In section 2.2 we discuss the optimal multipro-
cessor scheduling policy. In section 2.3 we explain why we chose to include each policy. In
section 2.4 we discuss how we well we expect the policies to address the three characteristic
of a scheduling policy.

2.1. Scheduling Policy Definitions

In this section we describe the policies studied. We first describe the policies proposed pre-
viously, then two policies recently proposed, and finally four policies we have proposed for
study.

2.1.1. Previously Proposed Policies

) First Come First Served (FCFS) : When a job arrives, its processes are placed at the
end of the shared process queue. When a processor becomes idle the process at the
head of the queue is scheduled and run to completion.

. Smallest Number of Processes First (SNPF) and Preemptive Smallest Number of
Processes First (PSNPF): For SNPF, highest priority is given to processes from jobs with

the smallest number of unscheduled processes. Jobs of equal priority are scheduled
FCFS. When a processor becomes idle, the first process from the queue is scheduled

- 13 -

14

and run to completion. For PSNPF highest priority is given to jobs with the smallest
number of incomplete processes. An arriving job with a smaller number of processes
than an executing job will preempt processes belonging to the scheduled job.

Preemptive Smallest Cumulative Demand First (PSCDF) : Highest priority is given to
jobs with the smallest remaining cumulative service demand. An arriving job with a
smaller demand will preempt processes belonging to scheduled jobs with the largest
demand.

Coscheduling (Cosched) : There exists a linked list of processes. When a job arrives its
processes are appended to the end of the list. When a process completes it is removed
from the list. Scheduling is done by moving a window of length equal to the number of
processors over the linked list. Each process in the window gets one quantum of ser-
vice on a processor. At the end of the quantum, the window is moved down the linked
list until the first slot of the window is over the first process of a job that was not com-
pletely coscheduled in the previous quantum. When a process within the window is
not runnable (blocked for 1/0), the window is extended by one process and the non-
runnable process is not scheduled. The quantum ends for each processor at the same
time. This policy is similar to Ousterhout's undivided policy. We use a linked list of
processes to eliminate some of the problems associated with filling the holes in the
array structure proposed by Ousterhout. Note, this policy requires special hardware to
cause all processors to end their quanta simultaneously.

Round Robin Process (RRprocess) : When a job arrives each of the processes are placed
at the end of the shared process queue. A round robin scheduling policy is invoked on
the process queue.

2.1.2. Recently Proposed Policies

Equal Allocation Dynamic Partitioning (EqualDP) : This policy was proposed and imple-
mented by Tucker and Gupta. Their goal was to minimize context switching so that
less time is spent rebuilding processor caches. Each job is dynamically allocated an
equal fraction of the processors, except that no job is allocated more processors than it
has runnable processes. Thus, if a machine has 20 processors and three jobs with 4,
10 and 20 runnable processes each, the first job would be allocated 4 processors and
the other two would be allocated 8 processors each. The dynamic acquiring and
releasing of processors requires coordination between the system scheduler and the
application processes, as described in [TuGu 89]. In their paper, Tucker and Gupta
state that if the processes frequently reach states where they can safely suspend, then
the actual number of processors a job is using will be very close to the allocated
number. In our experiments, we assume the ideal case where the number of running
processes in a job changes instantly whenever the allocations change. We also assume
that when there are more jobs in the system than processors the extra jobs are held

15

back in a "load queue”. When a job leaves the system another job from the load queue
is allowed into the system. We made this assumption in keeping with the idea that
processes remain on a processor for as long as possible to minimize cache misses. As
a result each job is always allocated at least one processor once it starts executing. If,
instead, we assume all jobs in the system get one runnable process, the policy would
be forced to time slice between the jobs. In this case many of the cache benefits of
dynamic-partitioning would be lost.

Unequal Allocation Dynamic Partitioning (UnequalDP) : This policy was proposed by
Zahorjan and McCann [ZaMc 90]. To describe the policy we describe the actions taken
on job arrival and process departure. On job arrival the following actions are taken: (1)
If there are idle processors allocate them to the job. If the job needs fewer processors
than are idle, just allocate as many as are needed. (2) If there are no idle processors
and one or more jobs have 2 or more processors allocated, then take one of the proces-
sors away from one of the jobs with two or more processors. We assume the most
recently arrived job with two or more processors allocated to it relinquishes one of its
processors. (3) If no processors are idle and no job has two or more processors than
the new job must wait until a scheduled job departs the system. When a processes
finishes, the following actions are taken: (1) If the job has other processes still not
scheduled, schedule one of them on the processor. (2) If the job has no unscheduled
processes allocate the processor to the first job, based on arrival time, with unallocated
processes.

2.1.3. New Policies

Round Robin Job (RRjob) : Instead of a shared process queue there is a shared job
queue. Each entry in the job queue has a queue holding its own processes. Schedul-
ing is done round robin on the jobs. Each time a job comes to the front of a queue the
job receives P quanta of size g, where P equals the number of processors in the system.

If a job has fewer than P processes, each process gets a quantum of size % X @, where

N is the number of processes in the job’s process queue. If a job has greater than P
processes there are two choices. The first is to run P processes for one quantum each.
Processes are chosen round robin from the job’s process queue. The second choice is

to give a quantum of size -g— x ¢ to each process. This second choice has higher

scheduling overhead. All of our studies assume P processes are scheduled for one
quantum each.

Foreground-Background First Come First Served (FB-FCFS) : We assume two queues, a
high priority queue and a low priority queue. When a job arrives, its processes are ini-
tially placed in the high priority queue. When a process from the high priority queue is
scheduled it executes for T units. After t units the process is moved to the low priority

16

queue. Processes in the high priority queue have preemptive priority over processes in
the low priority queue. Once a process from the low priority queue is scheduled it
remains in service until it finishes or is preempted by a new arrival to the high priority
queue. Processes from a queue are served FCFS.

® Foreground-Background Preemptive Smallest Number of Processes First (FB-PSNPF) :
Same as FB-FCFS except processes of the same queue are scheduled PSNPF.

e Foreground-Background Round Robin Job (FB-RRjob) : Same of FB-FCFS except jobs
of the same queue are scheduled RRjob. Once a process has received T units in the
high priority queue it is moved to the low priority queue. When a job comes to the
head of a queue, the quantum size for the job is determined by the number of
processes the job has in that queue. Note, another modification not considered is to
have the job moved to the lower priority queue after the job has received some number
7 units of service.

2.2. Optimal Discipline for Multiprocessor Scheduling

Unlike the uniprocessor case, PSCDF is not the optimal policy for multiprocessor
scheduling. To see this consider the following simple counter example. A machine has
three processors. There are two jobs. Job A has one process requiring 5 units and job B
has 4 processes each requiring 1 unit. If jobs are scheduled PSCDF the mean response

time is _(_@_i__%)__
2
time Proc 1 Proc 2 Proc 3
1 B B B
2 B A
3 A
4 A
5 A
6 A

_(_5_+2)

If we schedule jobs in the following order the mean response time is 5

17

time Proc 1 Proc 2 Proc 3
1 A B B
2 A B B
3 A
4 A
5 A

In [GaJo 79] a restricted problem of finding the optimal policy for a two processor sys-
temn with single tasking jobs is shown to be NP complete. Hence, simulating the optimal
scheduling policy is not practical since it can not be done in polynomial time.

2.3. Reasons for Inclusion in Study

Only a subset of the twelve policies have been studied before in a comparative study.
We include the FCFS policy because it is a simple policy and it provides a baseline for com-
parison of other multiprocessor scheduling policies. We include the SNPF and PSNPF poli-
cies since they may approximate shortest job first scheduling if job demand is correlated
with the number of processes per job. In the absence of job demand knowledge, there are
two methods employed in uniprocessor scheduling provide good service to the short jobs.
The first way is to give each job in the system a share of the processing power. By giving
each job a share of the processing power, jobs with a small demand are not blocked in the
queue behind jobs with a large demand. In the uniprocessor environment this is done tem-
porally by round robin scheduling. We include five multiprocessor scheduling policies that
use the approach of allocating a share of the processing power to each job in the system:
Cosched, RRprocess, RRjob, EqualDP, and UnequalDP. The policies RRprocess, Cosched,
and RRjob temporally divide processing power by time slicing. The policies EqualDP and
UnequalDP spatially divide the processing power by allocating processors to jobs in the sys-
tem. The second uniprocessor method to provide good service for short jobs is to have a
multi-level queue where jobs decrease in priority as they acquire more processing time. We
include the three foreground-background policies, FB-FCFS, FB-PSNPF, and FB-RRjob, to
see if this adaptive approach improves mean response time for the multiprocessor environ-
ment. We include the policy PSCDF since shortest remaining processing time first is
optimal in the uniprocessor environment, and although not optimal for the multiprocessor
case, we would expect the policy to perform well.

In addition to the insight gained about division of processing power, we include some
of the policies because they address the issue of support for inter-process synchronization.
The policy Cosched was proposed to facilitate message passing. The policies EqualDP and
UnequalDP include two level schedulers which have been shown to improve performance in
the presence of synchronization.

We also include some of the polices because they were designed to have a low preemp-
tion frequency. The policies EqualDP and UnequalDP minimize cache misses by not time

18

slicing.

2.4. Expected Behavior of the Policies

In this section we consider whether and how each of the twelve policies addresses each
of the three characteristics of a scheduling policy enumerated in chapter 1. We first con-
sider the division of processing power among the jobs in the system. From uniprocessor
results we would expect good performance for multiprocessor scheduling policies to result
from either giving preference to jobs that have a small demand, or, in the absence of
knowledge of job demand, giving a share of the processing power to each job in the system.
In addition, we would expect policies that give a fraction of processing power to each job to
not be adversely affected by a high variation in job demand. Conversely, we would expect
FCFS to perform poorly when there is a large coefficient of variation of job demand just as
FCFS performs poorly in the uniprocessor case. The policies SNPF and PSNPF are not as
easy to predict. In earlier work the policies were shown to exhibit good performance. We
would expect the policies might perform well when job demand is correlated with the
number of processes per job, but we would not expect the policies to perform well when job
demand is not correlated with the number of processes per job. Like FCFS these two poli-
cies only allocate processing power to a subset of the jobs in the system, hence they may
not perform well when there is a high coefficient of variation of job demand. The policies
RRprocess, RRjob, Cosched, EqualDP, and UnequalDP all give some fraction of processing
power to each job in the system under most conditions, hence we would expect these poli-
cies to perform well. The policies RRjob and EqualDP give an equal share of processing
power to each job whereas the other three do not. We wish to determine whether this equal
allocation results in better performance. The policies FB-FCFS and FB-PSNPF only
schedule a subset of the jobs, but small jobs do not suffer since jobs are moved to the lower
priority queue after T units of execution. We would expect FB-FCFS and FB-PSNPF to per-
form well as long as 1 is chosen appropriately. Whether the performance is comparable to
the policies that allocate a fraction of processing power to each job needs to be determined.
The policy FB-RRjob moves large jobs to a lower priority in addition to giving each job
within a queue an equal share of the processing power. How much the foreground-
background scheduling improves RRjob needs to be determined.

The second important characteristic of a multiprogrammed multiprocessor scheduling
policy is how well the policy supports inter-process synchronization. We consider both
spin-lock and barrier synchronization. As stated in chapter 1, we consider two approaches
for supporting synchronization: coscheduling and application level scheduling. Of the poli-
cies studied, only EqualDP and UnequalDP assume application level scheduling. None of
the other policies assume applicatibn level scheduling, but we consider the effect of includ-
ing application level scheduling for RRjob and Cosched when there is barrier synchroniza-
tion.

19

For spin-lock synchronization, spinning occurs when a processes requests a lock and
the lock is not available. The lock may not be available for two reasons, there is a currently
scheduled processes holding the lock, or there is a descheduled process holding the lock.
We would expect the latter case to cause the processes waiting for the lock to spin for
greater periods of time. All policies are susceptible to spinning due to the lock being held
by a currently scheduled process. The policies FCFS and SNPF are immune from the latter
case since they do not deschedule processes. Hence we would not expect FCFS and SNPF
to be as adversely affected by spin-lock synchronization as policies that do descheduled
processes. If we assume application level scheduling, processes holding locks are not
descheduled. Hence, we would expect EqualDP and UnequalDP to perform very well in the
presence of spin-lock synchronization. All other policies may deschedule processes and
hence may deschedule processes holding a lock. The amount of time a process holding a
lock is descheduled affects the performance of the policy. RRprocess and RRjob may
deschedule processes holding locks, but a process holding a lock will be rescheduled as
soon as the process comes to the front of the queue again. PSNPF and PSCDF on the other
hand may deschedule processes holding a lock for long periods of time. Although the policy
Cosched does deschedule processes, it usually deschedules all processes from the same job
at the same time so that if a process holding a lock is descheduled, it is likely that the lock
will not be requested until the processes holding the lock is rescheduled. We would expect
as a result that Cosched will not be as adversely affected by spin-lock synchronization as
RRprocess and RRjob.

For barrier synchronization spinning occurs when processes reach the barrier. Once a
process reaches a barrier it spins until it is either descheduled or all other processes from
the job reach the barrier. Once all processes from the job reach the barrier, all processes
can proceed. If we assume each process requires about the same amount of time to reach
the barrier, we would expect that having all processes from a job scheduled at the same
time would result in less spinning. As a result we would expect Cosched to be less affected
by barrier synchronization than the other policies. Policies such as PSCDF, FCFS, SNPF,
PSNPF, FB-FCFS, and FB-PSNPF that may schedule only a fraction of a job's processes will
likely result in poor performance since upon reaching a barrier processes will spin until all
other processes from the job get scheduled and reach the barrier. In addition, FCFS and
SNPF will deadlock if a job has more processes than there are processors, and the PSNPF
policy will never complete jobs that have more processes than there are processors. If there
is application level scheduling, processes that reach a barrier can be swapped with other
processes from the job that have not yet reached the barrier. As a result, we would expect
barrier synchronization to not affect performance much in the presence of an application
level scheduler.

The third important characteristic of a scheduling policy is the preemption frequency.
Preemptions cause overhead due to the context switch and the rebuilding of process cache

20

entries after the process is rescheduled. The policies FCFS and SNPF never preempt
processes once scheduled. The policies PSCDF, PSNPF, EqualDP and UnequalDP preempt
processes only when higher priority jobs arrive to the system resulting in a low preemption
overhead. The polices RRprocess, Cosched, and RRjob all time slice, hence we would
expect these three policies will pay a performance penalty for these extra preemptions. The
foreground-background policies will preempt a process at most once more than their non-
foreground-background equivalents.

We present a summary of whether the twelve policies address the three scheduling pol-
icy characteristics in table 2.1. Table 2.2 contains a concise lest of the policies and their
acronyms.

Table 2.1: Summary of the Expected Behavior of the Policies

. Policy Good Service Spin-lock Barrier Preemption
for Short Jobs Synchronization Synchronization ~ Overhead

FCFS no yes no yes
PSCDF yes no no yes
SNPF yes yes no yes
PSNPF yes no no yes
RRprocess yes somewhat somewhat no
Cosched yes yes yes no
RRjob yes somewhat somewhat no
EqualDP yes yes yes yes
UnequalDP yes yes yes yes
FB-FCFS yes no no yes
FB-PSNPF yes no no yes
FB-RRjob yes somewhat somewhat no

Table 2.2: Scheduling Policy Acronyms

Acronym Policy
FCFS First Come First Served
SNPF Smallest Number of Processes First
PSNPF Preemptive Smallest Number of Processes First
PSCDF Preemptive Smallest Cumulative Demand First
RRprocess Round Robin Process
RRjob Round Robin Job
Cosched Coscheduling
EqualDP Equal Dynamic Partitioning
UnequalDP Unequal Dynamic Partitioning
FB-FCFS Foreground Background FCFS
FB-PSNPF Foreground Background PSNPF

FB-RRjob

Foreground Background RRjob

21

CHAPTER 3

Multiprocessor and Workload Models

In this section we describe our models of the multiprocessor and the parallel jobs that
compete for the processors. Our goal is to keep the models simple, yet still capture the
essence of the system. There are two reasons for keeping models simple. One is that model
solutions can be obtained in less time. The second, and more important reason, is that
keeping the models simple makes it easier to interpret the results. In section 3.1 we
present the job structure model. In section 3.2 we present two multiprocessor models. In
section 3.3 we describe the job characteristics, including distribution of number of
processes per job, and distribution of job and process demand. In section 3.4 we describe
the different types of inter-process synchronization. In section 3.5 we conclude with a sum-
mary of model parameters.

3.1. Job Structure

Each job in all of our workload models has the simple structure shown in figure 3.1.
That is, the job forks into some number of processes. The processes are either assumed to
be independent or to have some sort of synchronization behavior as explained in section
3.4. Once all of the processes complete, the job is finished. Similar structures have been
studied in [NeTT 87] [MaEB 88] [ToRS 90]. This simple model captures the essence of the
system, allowing us to gain initial insight and understanding of the issues pertaining to
multiprogrammed multiprocessor scheduling.

.29 -

23

Figure 3.1: Job Structure

3.2. Multiprocessor Model We have studied two queueing models of the multiprocessor.
The two differ only in that one is an open system and the other is a closed system. The
open system model is show in figure 3.2. The servers represent the processors. We assume
there are 20 processors. Jobs arrive to the system according to a Poisson process. Upon
entering the system, jobs fork into some number of processes and enter a shared ready
queue. The processes then are served by the processors according to the scheduling policy.
Processes may be preempted, in which case they return to the shared ready queue. All
processes from a job must complete before the job departs the system. In the closed system
model there is a fixed population with a think time instead of a Poisson arrival process. Fig-
ure 3.3 shows the closed system model.

3.3. Job Characteristics

In this section we describe the job characteristics. In section 3.3.1 we discuss the dis-
tribution of the number of processes per job. In section 3.3.2 we discuss the distribution of
job demand. In section 3.3.3 we discuss how the job demand is divided between the job's
processes.

3.3.1. Distribution of Number of Processes Per Job

In this section we describe how the number of processes per job is determined. We
have included two models of the number of processes per job. The first model we call the
hyperexponential workload and the second the geometric-bounded workload. The hyperexponential

24

Arrive

Think

Figure 3.3: Closed System Model

workload was used in [MaEB 88]. We include the hyperexponential workload so we can
compare our results with the results presented in that paper. A premise of our work is that
the hyperexponential workload may not accurately model workloads of a real system, and
that the geometric-bounded workload may be a more realistic representation of actual

25

system workloads. We will emphasize the geometric-bounded workload. We explain our
reasons for chosing the geometric-bounded instead of the hyperexponential workload below.

Hyperexponential workload: The number of processes is drawn from a two stage hyperex-
ponential distribution, with 95% of the jobs having the number of processes drawn from an
exponential distribution with the small mean and 5% of the jobs having the number of
processes drawn from an exponential distribution with the large mean. The input parame-
ters are mean number of processes (7)) and coefficient of variation of number of processes
(C,). Under these assumptions, a distribution with mean 4.0 and coefficient of variation of
5.0 results in 95% of the samples drawn from an exponential distribution with a mean of
0.82 and 5% of the samples drawn from an exponential distribution with mean 64.4. The
number of processes is set equal to the ceiling of the number returned from the hyperex-
ponential distribution.

The above model can be used to generate workloads with values for C, greater than or
equal to 1.0. One parameter setting that is used extensively in earlier work is C, = 5.0 and
fi = 4.0. Figure 3.4 shows the probability mass function for these parameters. We see that
67% of the jobs are sequential. In addition there is a very long thin tail which is not seen
on the graph. Specifically, 4.6% of the jobs have more than 6 processes, 2.0% have more
than 60 processes, and 1.0% have more than 100 processes. In a real system with 20 pro-
cessors it is unlikely that many jobs would have more than 20 processes. We hypothesize
that a real workload might have a larger fraction of jobs with small amounts of parallelism,
jobs with parallelism equal to the number of processors, and far fewer jobs with parallelism
much greater than the number of processors. When C, equals 1, we feel the distribution of
number of processes may still be unrealistic. There would be a reasonable percentage of
jobs with small degrees of parallelism, but there would be few jobs with high degrees of
parallelism. We thus define the following new model of the number of processes per job.

Geometric-bounded workload: The maximum number of processes per job is equal to the
number of processors. Input parameters are the probability that a job has a number of
processes equal to the number of processors (Pp), and the mean number of processes for all
other jobs (7). With probability (1 - Py) the job has a number of processes chosen from a
truncated geometric distribution with mean fi. The number of processes is set equal to the
number of processors if the random number chosen from the geometric distribution exceeds
the number of processors. (For a geometric distribution with a mean of 4.0 only 0.3% of the
samples exceed 20.) We designate this workload as "bounded" since there is a bound as to
the maximum number of processes a job may have. Figure 3.5 shows the probability mass
function for the geometric-bounded workload with parameters P, = 0.05 and 71 equal to 4.0
for the remaining (1 - P,) jobs. The size of the spike at 20 can be changed by adjusting P,
and the distribution of the jobs with a smaller number of processes can be changed by
adjusting 7.

26

0.75 1
0.50 |

025 -

0.00

0 2 4 6 8 10 12 14 16 18 20
Number of Processes

Figure 3.4: Hyperexponential PMF

3.3.2. Distribution of Job Demand

In this section we describe how job demand is determined. We assume the two work-
loads defined in [MaEB 88]:

Uncorrelated job demands: There is no correlation between the number of processes and
the total demand of the job. The input parameters are mean job demand (d and the
coefficient of variation for the demand (Cy). The job demand is determined from a two stage
hyperexponential distribution with 95% of the jobs having the demand chosen from the
exponential distribution with the small mean. The input C, determines the means for the
two stages of the distribution.

025
020
0.15
0.10
0.05 |

0.00 . — : e S — . I—l

0 2 4 6 8 10 12 14 16 18 20
Number of Processes

Figure 3.5: Geometric-bounded PMF

27

Correlated job demands: Mean job demand is linearly correlated with the number of
processes per job. Thus, jobs with a large number of processes are likely to have a large
demand, whereas jobs with a small number of processes are likely to have a small demand.
(Such a linear correlation is partially justified by the arguments presented in [Gust88].) The
input parameters are a demand variation parameter (C,), and a scalar (f). Let the number of
processes computed for a job be represented by N. The demand for the job is obtained from
a hyperexponential distribution with the mean set equal to (N X ¢) and coefficient of varia-
tion equal to C,. Note that the input C, is not equal to the output coefficient of variation of
demand, Cg4, due to the linear dependence.

3.3.3. Division of Job Demand Amongst Processes
In this section we describe how job demand is divided among the job’s processes. We
divide job demand among the job's processes equally. Let D equal the job demand and N

equal the number of processes a job has. Then process demand simply equals %

We also divided demand unequally as in [MeEB 88]. Assume a job has N processes.
Generate N, u; - uy, random numbers distributed uniformly between 0 and 1.0. Demand
for a particular process, d;, is:

Dx LlJ
‘——n
N
i=1
As also observed in [Maju 88], we found that the results for both methods of job

demand division were within a few percent of being the same. As a result we have decided
to report only results for the equal job division.

d,

3.4. Inter Process Synchronization

In this section we describe the three models of inter process synchronization used in
our study. The first is to assume no synchronization. The other two synchronization
models we studied are spin-lock synchronization and barrier synchronization. The actions
taken upon reaching a synchronization point differ depending on the presence or absence of
an application level scheduler. In sections 3.4.1 and 3.4.2 we describe the spin-lock and
barrier synchronization models.

3.4.1. Spin-lock Synchronization

Our model is essentially the same as in [ZaL.E 89]. We assume there is one shared lock
for each job, and all processes within a job contend for the lock. We only consider a single
lock per job to keep the model simple. A process requesting a lock that is currently held by
another process spins (busy waits) until the lock becomes available. When a lock is

28

released, the next process to acquire the lock is chosen randomly from all running
processes waiting for the lock. One common example of spin-lock synchronization in a real

system would be a lock needed to gain access to a shared queue. We assume that the lock

holding time is deterministic and small, ——1—%.6- of a quantum. The time between requests to

the lock is exponentially distributed. The mean inter-request time is set according to the
number of processes in the job, so that the total lock demand per job remains fixed. Total
lock demand is defined as (process lock demand) x (number of processes), where process
lock demand is the percent of time each process would use the lock if there were no com-
petition. For example, if job lock demand is 100% and the number of processes is 10, then

the process lock demand is 10% and the inter-request time is % of a quantum. Each

time a process releases the lock a new interrequest time is taken from the exponential dis-
tribution with this mean. The process does not request the lock again if the time to the next
request plus the lock holding time is greater than the remaining service time of the process.
If there is no application level scheduler, then a preemptive policy may deschedule a pro-
cess holding a lock. If there is an application level scheduler, then a process holding a lock
is never descheduled unless no other process from the same job is scheduled. In this case,
the process holding the lock will be the first process from the job to be rescheduled in the
future.

3.4.2. Barrier Synchronization

All processes of a job must reach a synchronization point in their code before any
proceed. This point in the code is called a barrier. Once all of the processes in a job have
reached the barrier all the processes can proceed.

The actions taken upon reaching a barrier differ depending on whether or not there
exists an application level scheduler. If there is not an application level scheduler, then
upon reaching a barrier the processes will spin (busy wait) until all the other processes from
the job reach the barrier. If there is an application level scheduler, then if upon reaching a
barrier the process is not the last to reach the barrier and there exists another process from
the same job that is currently descheduled and could be doing productive work, then the
first process is descheduled and the later is scheduled in its place. If there are not any
descheduled processes from the same job that could be doing productive work, then the
process spins until either all other processes from the job reach the barrier, or the process
is descheduled by the system level scheduler.

During the execution of a job some number of barriers are achieved. We consider
three options for the distribution of the time between barriers.

1) The time between barriers for each process is independent and exponentially distributed.

29

92) The time between barriers is deterministic.

3) The time between barriers is a set amount of time, ¢, plus or minus 0.1 x t. In other
words, the time between barriers for each process is uniformly distributed between

t t
(t— 1o)and(t+ 0).

The first option results in a large variation in the amount of time for each processes to
reach a barrier. Real applications are not likely to have this much variation in the time
between barriers. The second option is not realistic since the amount of time for each pro-
cess to achieve a barrier might vary, either due to differences in number of instructions or
due to different execution rates due to cache effects. We hypothesize that the third option
is the most realistic and use it in our simulation studies. Note that the third option is the
same inter-request time distribution as found in [ZaEL 88] [ZaEL 89].

3.5. Summary of Model Parameters
Table 3.1 summarizes the model parameters.

Table 3.1: Summary of Model Parameters

Parameter Definition
P, Percent of jobs that have number of processes set to 20
il Mean number of processes per job
C, Coefficient of variation of the number of processes per job
d Mean job demand
Cq Coefficient of variation of the job demand
t Scalar for the correlated workload
Cy Input coefficient of variation of job demand for

Input the correlated workload

CHAPTER 4

No-Synchronization Results

In this chapter we examine the issue of how a scheduling policy should allocate pro-
cessing power to the jobs competing for the processors so as to achieve the best perfor-
mance. There are two basic choices, allocate the processors to a subset of the jobs based
on some priority scheme, or give each competing job some fraction of the processing power.
If the later is chosen the processing power can either be divided spatially by dynamically
partitioning the processors among the jobs as in EqualDP and UnequalDP, or temporally by
giving each processes from each job time slices as done in RRprocess, Cosched, and RRjob.

We surmise that allocation of processing power per job is a very important characteris-
tic of a scheduling policy. We study this issue experimentally with workloads in which all
processes execute independently. That is, there is no inter-process synchronization. We
also do not include any preemption overhead. We omit synchronization and preemption
overhead in these initial experiments in order to isolate the impact of processing power allo-
cation among the jobs. We then study the impact of synchronization and preemption over-
head in chapters 6 and 7 respectively.

All results in this chapter assume an open system. We choose to use the open system
since the same fixed set of input parameter values results in the same system utilization for
all policies. This allows us to more easily compare the results from our parametric studies.
We will consider the closed system in chapter 5.

We first study nine policies: FCFS, SNPF, PSNPF, RRprocess, RRjob, Cosched, PSCDF,
EqualDP, and UnequalDP, for both the uncorrelated and correlated workloads. We look ini-
tially at one particular setting of all the input parameter values and then conduct a sensi-
tivity study of each input parameter. From the results of these experiments we gain insight
into the impact of how a scheduling policy divides processing power among the jobs in the
system. We then consider whether the addition of foreground-background scheduling can
benefit the policies by studying the three foreground-background polices FB-FCFS, FB-
PSNPF, and FB-RRjob.

-30-

31

Section 4.1 presents and corrects results from previous work. In section 4.2 we con-
sider the impact of workload choice. In section 4.3 we present results for two baseline
cases of the geometric-bounded workload. In sections 4.4 we explore the sensitivity of the
baseline results to variations in model parameters for both the uncorrelated and correlated
workloads. Section 4.4.1 examines the effect of varying the coefficient of variation of job
demand, C,. Section 4.4.2 examines the effect of varying the mean job demand, d for the
uncorrelated workload and t for the correlated workload. Section 4.4.3 examines the effect
of varying input parameter P,. Section 4.4.4 examines the effect of varying input parameter
fi. Section 4.5 examines the effectiveness of foreground-background scheduling. Section
4.6 contains the conclusions from this chapter.

All times are normalized to the length of one quantum in the RRprocess scheduling
policy. We include all input parameter values and simulation measured parameter values
with each figure. Unless otherwise noted, the figures plot mean response time versus sys-
tem utilization. The curves are listed in the legend in order of decreasing mean response
time. Policies with nearly identical performance are drawn as one curve with multiple
labels.

All models have been simulated using the DeNet simulation language [Livn 88]. All
results have confidence intervals of 10% or less (usually less than 5%) at a 90 percent
confidence level. Confidence intervals are calculated using batch means [Koba 78] with 20
batches per simulation run. Unless otherwise noted, uncorrelated workload experiments
have a batch size of 5,000 samples and most correlated workload experiments have a batch
size of 7,500 samples.

4.1. Correction to Previous Work

In this section we reexamine and correct results from a previous study. We consider
only the uncorrelated workload since our results for the correlated workload qualitatively
agree with the earlier study. Figure 4.1 plots mean response time versus system utilization
for the uncorrelated hyperexponential workload. This figure is a reproduction of figure 4.3a
from [MaEB 88]. We see that FCFS and RRprocess perform poorly as system utilization
increases, whereas the SNPF policies perform nearly as well as the SCDF policies. In their

study, Majumdar et. al. set a quantum equal to —116- units, so a value of 19.9 for d

corresponds to 199 quanta.

In figure 4.2 we present our results for the uncorrelated hyperexponential workload.
We chose input parameter values so that our measured parameter values would be similar
to those in figure 4.1. Note that the measured parameter values differ only slightly, and
should not be the cause of qualitatively different results. However, we find a marked quali-
tative difference in our results. Specifically, RRprocess performs well, whereas the SNPF

RT 60

50

40

30

20

10

—FCFs

04

0.6

0.8

n

Cn

Ca

Output

4.2

4.0

199

4.97

Figure 4.1: Majumdar et. al. Hyperexponential Uncorrelated

policies perform poorly as system utilization increases. The difference in our results and

1'0

32

Majumdar et. al.’s results is due to a subtle programming error in Majumdar’s workload A
generator. This error resulted in a positive correlation between number of processes and
job demand [MaEa 89], [MaEB 88], although the workload is supposed to have no correla-

tion in these parameters.

e v B 0T w o X B o2 oo Z

@ 3 = =

33

750 .
700 J
650 F S —") FCFS
g—-= SNPF
600J o—o PSNPF
sso] ¥ RRprocess
X-o-omno- x PSCDF
500 4
450 |
400
350 J
300 J
250 |
200
150 p—=
100 4
50 4
0 T T 1 1 H] i 1 L] 1
0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
System Utilization
il Cn d Ca
Input 4.0 5.0 200.0 5.0
Output 4.33 4.50 200.0 4.97

Figure 4.2: Correct Hyperexponential Uncorrelated Workload

4.2. Impact of Workload Choice

In this section we explore how the choice of workload impacts the performance of the
policies. Specifically, we present results from the correlated hyperexponential workload and
then compare these results to results obtained from the correlated geometric-bounded
workload. We consider only the correlated workload since there is little difference between
the hyperexponential and geometric-bounded workloads for the uncorrelated case. After
presenting results from these two workloads, we present results from a third workload, the

34

hypergeometric-unbounded workload, to aid in explaining the differences observed between
the hyperexponential and geometric-bounded workloads. As explained in chapter 3, we
believe the geometric-bounded workload may more accurately represent typical multiproces-
sor workloads then the hyperexponential workload.

Figure 4.3 plots mean response time versus system utilization for the correlated
hyperexponential workload. Our results for the hyperexponential workload agree qualita-
tively with those in [MaEB 88]. RRprocess performs significantly worse than SNPF, PSNPF,
and PSCDF. In RRprocess each process in the system gets an equal share of the processing
power, hence jobs with a large number of processes get a larger fraction of processing power
than jobs with a small number of processes. This results in RRprocess gdiving more pro-
cessing power to jobs that are likely to have a large demand since job demand is correlated
with the number of processes. This is exactly the opposite of the goal of uniprocessor shor-
test time to completion first. As a result, the poor performance of RRprocess is not surpris-
ing. SNPF and PSNPF perform comparatively well since they give preference to jobs with a
small number of processes. Hence, they give preference to jobs that are likely to have a
small job demand. Note the preemptive version (PSNPF) performs considerably better than
the non-preemptive version (SNPF). At a utilization of 69% the mean response time of SNPF
is 57% larger than the mean response time of PSNPF. This is due to jobs with a large
number of processes being scheduled at periods of transient low utilization. Once
scheduled, these large jobs are not preempted and slow down small jobs that arrive during
the large jobs execution. The policy PSNPF is not prone to this problem since a smaller job
preempts scheduled larger jobs. The PSCDF policy performs best, but is not practical to
implement since it requires a priori job demand knowledge.

Figure 4.4 plots mean response time versus system utilization for the correlated
geometric-bounded workload. The input parameters were chosen to correspond with figure
4.3. The parameter P, equals 0.05 since 5% of the jobs in the hyperexponential workload
have the number of processes drawn from the stage of the hyperexponential distribution
with the large mean. Figures 3.4 and 3.5 show the probability mass functions for these
hyperexponential and geometric-bounded workloads respectively.

RRprocess performs better than SNPF and as well as PSNPF for the geometric-bounded
workload. Considering the distribution of the number of processes resulting from the
hyperexponential workload helps to explain why RRprocess performs better for the
geometric-bounded workload than for the hyperexponential workload. A C, of 5, with 95%
of the samples drawn from the first stage of the distributions results in the first stage of the
distribution having a mean of 0.82, and the second stage of the distribution having a mean
of 64. This results in 67% of the jobs being sequential, over 2% with more than 60
processes, and over 1% with more than 100 processes (See figure 3.4). Jobs with a small
number of processes receive a smaller fraction of processing power relative to the

35

600 .,
550 .,
M e——a FECFS
500
e 1 % RRprocess
450 = SNF
n 7 o———0 PSNPF
400 | e R x PSCDF
R
€ 350
S
P 300
o
250]
8
€ 200
T 150
i
m 100 J
[+
50 A
O 1 1] ¥ 1 ¥ 1] 1 ¥ ¥
00 ©01 02 03 04 05 06 07 08 09 10
System Utilization
fl Cn d C4 Co t
Input 4.0 5.0 3.0 50.0
QOutput 4,55 4.32 2199 | 12.70

Figure 4.3:

Hyperexponential Correlated Workload

3 » o Z

0w B O W w o0 &

03 0.4 0.5 0.6

System Utilization

Cn

d

Ca

Input

0.05

4.0

50.0

Output

4.79

1.00

237.5

6.97

Figure 4.4: Geometric-Bounded Correlated Workload, P, = 0.05

36

processing power allocated to jobs with a large number of processes. The geornetric-
bounded workload has much less variation in the number of processes. The measured C,
for the geometric-bounded workload equals 1.0, whereas the measure C, for the hyperex-
ponential workload equals 4.32. As a result, jobs with a small number of processes receive
a larger fraction of processing power for the geometric-bounded workload than for the
hyperexponential workload. Note that the measured Cy of figure 4.4 is smaller than the
measured Cy in figure 4.3. We show in section 4.4.1 that RRprocess is resilient to variation
in job demand, hence the difference between figures 4.4 and 4.3 can be primarily attributed

37

to the difference in C,,.

To further demonstrate how C, affects the performance of RRprocess, we consider the
correlated hypergeometric-unbounded workload. For this workload (1.0 - Pp) of the jobs
have the number of processes drawn from a geometric distribution with mean 71, and P, of
the jobs have the number of processes drawn from a geometric distribution with mean big.
We denote the distribution as unbounded since we do not truncate the distribution. (In actu-
ality we truncate the distribution at 500 when we generate the geometric random variable.)

In figure 4.5 the coefficient of variation of the number of processes is varied by setting
fi equal to 1, and varying big. We consider the policy RRprocess since this policy was
affected most by the change from the hyperexponential workload to the geometric-bounded,
and we include the policy RRjob to illustrate one difference between policies which allocate
processing power proportional to the number of processes per job and policies that allocate
processing power equally per job. The parameter big is varied from 1 to 20. As big
increases, the measured values of Cy,, n, Cq4, and d increase. The measured values of these
parameters are included on the x-axis. As big is increased the mean job response time of
RRprocess rises dramatically while the mean response time of RRjob only increases slightly.
At big = 20.0 RRprocess has a mean job response time 91% larger than RRjob. Hence, an
increase in C, coupled with correlated job demands causes policies that allocate equally per
process (RRprocess) to degrade, whereas policies that allocate processing power equally per
job (RRjob) are not as affected. As stated above, this degradation is due to RRprocess allo-
cating more processing power to the jobs most likely to have large job demands. Note that
the measured C, increases as big increases. We show in section 4.4.1 that these two poli-
cles are insensitive to variation of job demand, hence the degradation of RRprocess can be
primarily attributed to the difference in C,.

4.3. Baseline Comparison of the Policies

In this section we present results for two baseline cases. We present results for the
geometric-bounded workload since we hypothesize that it more accurately models typical
systems than the hyperexponential workload. We denote these experiments "baseline” since
they provide a reference point for the remaining experiments in this thesis. We include one
baseline each for the uncorrelated and correlated workloads. The parameter values for the
uncorrelated baseline experiment are: P, = 0.4, n = 4.0, C4 = 5.0, d = 200. The parameter
values for the uncorrelated baseline experiment are: P, = 0.4, i= 4.0, C, = 5.0, t= 20. We
set P, equal to 0.4 to represent a substantial portion of highly parallel jobs. We set it equal
to 4.0 since many of todays parallel programs often run with only modest parallelism, since
increases in parallelism offer little speedup gain. We set Cy and C, equal to 5 since it is
seems likely that multiprocessors will have a Cy of at least 5, given that uniprocessor work-
loads tend to have a Cy4 of around 10 [SaCh 81].

38

120 .,

M 110 4

e

a

" 100

R

¢ 9o

b4

P

o

n 80 .

8

e

70

T

i

m

60

€
o 50 4 T T T 1
big 0 5 10 15 20
Ca 0.0 1.09 198 2.60 3.06
R 1.0 1.20 1.45 1.70 1.95
Cy 2.97 436 6.51 8.21 9.52

d 49.9 59.5 715 83.4 95.5

P, n big Co t

Input | 0.05 1.0 vary 3.0 50.0

Figure 4.5: Effect of Coefficient of Variation of the Number of Processes

Figure 4.6 plots mean response time versus utilization for the uncorrelated workload.
The policies FCFS, SNPF, and PSNPF perform significantly worse than the other policies as
system utilization increases. The policy PSCDF performs best, followed by RRjob, RRpro-
cess, and Cosched. The policies EqualDP and UnequalDP perform as well as RRjob up to a
utilization of 80%. At a utilization of 90% the performance of the two polices degrades.

39

900 -
L FCFS
G—=8 SNPF

800 .|
M L a— PSNPF
e ———¥qualDP/UnequalDP
a 104 Cosched
" +—> RRprocess

600 w—=a RRjob
R
e
8
P
(¢}
n
8
e
T
i
m
€

0 ¥ ¥ L] ¥ i ¥ ¥] 1 1
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Systemn Utilization
P, n Cn d Ca
Input 0.4 4.0 200.0 5.0
Output 10.36 0.79 199.3 4.97

Figure 4.6: Baseline Uncorrelated Workload

This is due to our assumption that these policies only allow as many jobs into the system as
there are processors (L.e., 20 in our experiments). When there are more jobs in the system
than processors the excess jobs are held in a load queue, not receiving service (see section
2.1.2). At a utilization of 90% the number of jobs in the system often exceeds the number
of processors. As a result, the dynamic partitioning policies exhibit FCFS behavior at high
loads. This does not imply these policies are poor policies, but it does imply that a load
queue is a bad design choice. A multi-level queue as used in Unix would help alleviate the

40

problem. Note that in {ZaMc 0] they do propose using a multi-level queue.

Figure 4.7 plots mean response time versus system utilization for the correlated work-
load. There are two qualitative differences from the uncorrelated workload. The first is that
the SNPF policies perform better relative to the other policies for the correlated workload
than the uncorrelated workload. The second difference is that there is a larger difference in

600 no
|
550 J
M 500 |
[}
a
450
n
400 J
R
e 350])
] ;
P 300]
o
n 250]
S 7
¢ 200]
T 150 4
i
m 100 J
e
50] . ﬂ
Pl —— —
O T] 1] 1 L] ¥ I 1] 1
0.0 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
System Utilization
P, il Cn d Ca C, t
Input 0.4 4.0 5.0 20.0
Output 10.36 | 0.79 210.0 | 6.48

Figure 4.7: Baseline Correlated Workload

41

the mean response times of UnequalDP, Cosched, RRprocess, EqualDP, RRjob, and PSCDF.

That the SNPF policies still perform worse than the other policies may seem surprising
since scheduling (P)SNPF for the correlated workload gives jobs that are likely to have a
smaller demand higher priority. The reason the policies so still do not perform as well as
the other policies is because the priority is based on imperfect job demand knowledge.
While scheduling PSNPF results in running jobs that are likely to have a small demand,
jobs with a small number of processes may have a large demand. When this happens,
PSNPF will schedule jobs that actually have a large demand in preference to jobs with a
smaller demand. Note that the SNPF policies perform worse in figure 4.7 than in figure 4.4
This is because the parameter P, equals 0.4 in figure 4.7 and 0.05 in figure 4.4. We will
consider the effect of P, in section 4.4.3.

4.4. Sensitivity to Input Parameters

In this section we explore the effect of varying system parameters for the baseline
models. In section 4.4.1 we consider the sensitivity to coefficient of variation of job demand
C4 by varying the parameters Cq and C, for the uncorrelated and correlated workloads
respectively. In section 4.4.2 we consider the mean job demand d by varying input parame-
ters d and t for the uncorrelated and correlated workloads respectively. In section 4.4.3 we
consider the effect of varying P,. In section 4.4.4 we consider the effect of varying fi.

4.4.1. Sensitivity to Variation of Job Demand

In the baseline workloads Cy4 and C, were 5.0. In this section we investigate how sen-
sitive the policies are to changes in the input parameters Cq and C,. Figure 4.8 plots mean
response time versus Cy for the uncorrelated baseline workload. Figures 4.9 and 4.10 plot
mean response time versus C, for the correlated for P, = 0.4 and 0.05 respectively. The
measured C, is different for the correlated workload and is included on the x-axis. Parame-
ters C4 and C, are varied from 1.0 to 5.0. Utilization is set at 70%.

Consistent with uniprocessor scheduling results, FCFS is very sensitive to Cy and C,.
As expected, SNPF and PSNPF are also sensitive to Cq and C,. At C; and C, = 1.0, FCFS,
SNPF, and PSNPF perform somewhat better than RRprocess and almost as well as RRjob.
However, as C; and C, increase, the performance of FCFS, SNPF, and PSNPF degrade
dramatically. All other polices studied are insensitive to Cq and C,. In typical uniprocessor
workloads C4 has been shown to be on the order of 10 or more [SaCh8 1], [Klei 76 page
176]. If multiprocessor workloads are similar, FCFS, SNPF, and PSNPF are not viable poli-
cies. When the coefficient of variation is high, these three policies often result in jobs with
short demands not receiving any service until jobs with large demands finish executing.
The RRprocess, Cosched, RRjob, EqualDP, and UnequalDP policies perform better because
each job in the system receives some fraction of the processing power. The policy PSCDF is

® w B o W »w o A 5 o o X

o 3 ~ 3

270 .,

a——a FCFS

240 o SNPF
—0 PSNPF
A Cosched

210 ¥+ RRprocess
&—=a UnequalDP
s-—RRjob/EqualDP/PSCDF

180 J

150 J

120

5.0

%0 4 s
_n
60
30 J
0] L 1 1]
1.0 2.0 3.0 4.0
Ca
P, n Cn d Ca
Input 0.4 4.0 200.0 | vary
Output 10.36 | 0.79 | 200.0

Figure 4.8: Effect of C4, Uncorrelated Workload

42

550

500

450 4

(<]

»

¥ 0 W w o K

w

(4]

A FCFS
g~ SNPF
o——o PSNPF
g8 UnequalDP
+——=¢ Cosched
v———% RRprocess
e——8RRjob/EqualDP
PSCDF

G, : :
Ca 1.51 271 3.95 522 6.48
P, n Cn d Cy t
Input 0.4 4.0 vary 20.0
Output 10.36 | 0.79 | 210.0

Figure 4.9: Effect of C,, Correlated Workload

43

600 .,
et FCFS
G—--—8 SNPF
M o0l o———o PSNPF
e o———= Cosched
8 a——4a {JnequalDP
n

v——-~% RRprocess
400] F—°RRjob/EqualDP

R x-----x PSCDF
(]

S

P 300

Q

n

S

€ 200]

o 8 ~ A
S
.\“

G, 1.0 20 3.0 4.0 50
Ca 1.74 2.92 4.24 5.60 6.93
P, fi Cn d Co t
Input 0.05 4.0 vary 50.0
Output 4.79 1.00 | 238.7

Figure 4.10: Effect of C,, P, = 0.05, Correlated Workload

also resilient to variation in job demand even though at high utilizations the policy only allo-
cates processing power to a subset of the jobs in the system. PSCDF performs well because
it uses job demand information to schedule jobs with the smallest demand first. Note that
PSNPF and SNPF perform better for P, = 0.05 as shown in figure 4.10. We will further
explore the effect of P, in section 4.4.3.

45

4.4.2. Sensitivity to Mean Job Demand

In this section we investigate how sensitive the policies are to changes in mean job
demand. Figures 4.11a and 4.11b plot mean response time versus d for the uncorrelated
geometric-bounded workload. Both figures present the same results, but figure 4.11a only
plots d from O to 50 units to show more detail for the lower values. From figure 4.11a, we

70 .,
&#————a FCFS
6] == SNPF
M o-——0 PSNPF
¢ 564 ¥+ RRprocess =
: g8 Unequal DP
49] #——— EqualDP S
R #———=a& RRjob
e 42 Mermooeemd x PSCDF
8
P 35
o]
n
s 28] |
e R
1 14 | . v, /‘: / =~
m - c
. Ve / =
7 g :
E 4 / /
1';/:‘_5-:-%.:/
e
0

P, l Cn d Cy4
Input 0.4 4.0 vary 5.0
Output 10.37 | 0.79 4.96

Figure 4.11a: Effect of d, Uncorrelated Workload

550 .,

500 | e - FCFS
y o———=a SNPF
e 4504 &> PSNFF ”
. o0 (Cosched
n 400] #—— RRprocess

: T UnequalDP

R 3504 e—— EqualDP
e B8 RRjOb
; 300 L. x PSCDF
° 250
n
s

200 .
e

150
T
: P
TN ’
[+ K

50 J

&4 / /

0 40 80 120 160 200 240 280 320 360 400

d
Input 0.4 4.0 vary 5.0
Output 10.37 | 0.79 4.96

Figure 4.11b: Effect of d, Uncorrelated Workload

see that the relative performance of the policy changes as d changes. For values of d less
than 3 units PSNPF performs as well as RRjob and RRprocess. For values of d less than 15
RRprocess performs better than RRjob. For values of d less than 25 UnequalDP performs
better than RRjob. Once d is greater than 25 the relative performance of the policies does
not change. From figure 4.11b we see that the performance of RRjob, EqualDP, and PSCDF
are similar, and the performance of RRprocess and Cosched are similar. The reason that
the relative performance of the policies changes for small values of d is because RRprocess,

47

and RRjob are sensitive to the magnitude of the quantum relative to the mean job demand.
Since the quantum is the unit time measure in our studies, a decrease in job demand
implies the quantum size is increasing relative to mean job demand. As the relative quan-
tum size increases, RRprocess and RRjob perform worse. RRjob has a larger average quan-
tum than RRprocess so RRprocess performs better than RRjob at low job demands.

Figures 4.12a and 4.12b plot response time versus the scalar t for the correlated
geometric-bounded workload. The two curves are for the same experiment, but figure 4.12a
only plots t from 0.12 units to 5.78 units to show more detail for the lower values. The
curves for FCFS, SNPF, and PSNPF are omited from figure 4.12a to show more detail for the
other policies. As the scalar t increases the mean job demand also increases. We include
the measured d on the x-axis. From figure 4.12a we see that the policies EqualDP and Une-
qualDP have a lower mean response time than RRjob, RRprocess, and Cosched when tis
small. As t increases, the relative performance of RRjob, RRprocess, and Cosched improve.
The mean response time for RRjob is 5% larger than the response time of EqualDP when t
equals 5.78. When t equals 11.6 the response time of EqualDP is 1% larger than the
response time of RRjob.

From this section we conclude that with the exception of EqualDP and RRjob the value
of job demand does not affect the qualitative results if the value is in excess of 50 units.
The mean job response time of RRjob is 1% - 5% larger than the mean job response time of
EqualDP for demands in the range of 200 units to 50 units. We would expect demand in
real systems to be on the order of 50. We base this on the uniprocessor rule of thumb that
quantum length is chosen so that approximately 70% of the jobs finish within the first
quantum. For our models, 60% of the processes complete in the first quantum if mean job
demand is 50. To see this consider the uncorrelated workload. A Cy of 5.0 and d of 50.0
units results in the means of the two stages of the hyperexponential distribution being
equal to 10.2 units and 805 units. Since 95% of the samples are drawn from the stage with
the small mean, 95% of the jobs have the job demand drawn from an exponential distribu-
tion with mean 10.2. When using an exponential distribution 63% of the samples are less
than the mean of the distribution. As a result, 60% (0.63 x 0.95) of the jobs have a job
demand less than or equal to 10.2 units. Mean job parallelism for most workloads in this
study is 10.3, which implies about 60% of the processes will finish within the first quan-
tum. We will continue using a value of 200 units for all simulations. Note the policies
RRprocess, and RRjob would not perform as well relative to EqualDP if job demand were in
the range of 50 or less. If mean job demand is 3 units or less PSNPF may perform better
than RRjob, RRprocess and Cosched.

20

48

]
———— Cosched
18 § ®—8 UnequalDP
M #———% RRprocess
e 16] *——® RRjob
a 0 EqualDP
N] Memwmmmwa
14] * x PSCDF
R
e 12
8
P 10
(4] X
n ’ 7
H 8 X7
. L
6] o/ X
T 7 e
. X
1 4 - . ‘
o L
e %7
2 s
” 'x’ ‘
0 - L i 1 1 L} i
t 0 1 2 3 4 5 6
d 12 60 18.1 30.4 40.5 50.7 60.7
P, n C, Cy C, t
Input 0.4 4.0 5.0 vary
Output 10.36 0.79 6.48

Figure 4.12a: Effect of d, Correlated Workload

49

160 8 o
150 4 ‘ A FCFS
] SNPF
v 0 o————>o PSNFF
130 g——————=@ UnequalDP
e i ¢w———0 Cosched
2 120 % RRprocess
n ¢———+ EqualDP
110 | #———8 RRjob
Xommneomsan x PSCDF
R lm - i}
[
s 904
p 80 | H
o X
a 70 .
. 60] H y 4
€
504 149 .
T 40] » -
i e
o 30 J ,
e 20 / ‘ <
10 Jff
[
0 P) L] 1) H L L] ¥ 1 1
t 0 5 10 15 20 25 30 35 40 45 50
d 607 1218 2427 485.5
P, n Cn Cq C, t
Input 0.4 4.0 5.0 vary
Output 10.36 0.79 6.48

Figure 4.12b: Effect of d, Correlated Workload

4.4.3. Effect of Varying Parameter P,

We expect in the future that application programs and system tools will exhibit higher
degrees of parallelism, thus it is important to consider the effect of mean job parallelism on
the relative performance of the scheduling policies. In this section we investigate how sen-
sitive the policies are to the parameter P,. By varying P, we vary the percentage of jobs that
have 20 processes, hence we vary the mean job parallelism. A second way to vary mean job
parallelism is to vary the parameter fi. We investigate the effect of varying 1 in the next sec-
tion.

50

Figures 4.13 and 4.14 demonstrate the sensitivity of the policies to P, for the uncorre-
lated and correlated geometric-bounded workloads respectively. Parameter P, is varied while
all other input parameters are held constant. Utilization is set at 70%. Note that for the
uncorrelated case the measured parameters C, and 71 vary with P,, and for the correlated

w B Q0 T o«

o

:a,Ov.U

300

270

240

210

180

150

120

90

30

0

1

FCFS
e————8 SNPF
o————90 PSNPF
—————0 Cosched
b g——=8 nequalDP
w————% RRprocess
J o EqualDP
s———=8& RRjob

““““ x----=--=X PSCDF

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1.0

085 1.03 0.89 0.69 0.49 0.0
399 5.58 8.77 11.97 15.19 20.0
P, i d Ca
Input vary 4.0 200.0 5.0
Output 198.9 5.0

Figure 4.13: Effect of P,, Uncorrelated Workload

51

500 4

&4 FCFS
g—a SNPF
o—————o PSNPF
a——1 {Jnequal DP
o———— Cosched
w5 RRprocess
¢+ EqualDP
#———8 RRjob

Momm e x PSCDF

R
e
8
P 300 4
o
n
s

200 .

20.0
657 1710 7.29 6.76 6.14 5.62
783 947 110.7 177.0 241.7 306.7

ooy

©
W<

2 ;
o
L¥
h
[~ <]
oo
3
=
3
&
—
o

Nas|
]
O
¢

Input | vary 4.0 5.0 20.0

Figure 4.14: Effect of P,, Correlated Workload

case the measured parameters C,, 1, Cq, and d vary with P,. We include the value of these
parameters on the x-axis of the graphs.

For the uncorrelated workload, figure 4.13, the FCFS, SNPF, and PSNPF scheduling
policies degrade as P, increases, whereas all the other policies improve. The increased
parallelism causes a decrease in the number of jobs that can run in parallel by FCFS, SNPF,

52

and PSNPF. As a result, the probability of servicing jobs with small demands decreases.
Note that at P, = 1.0, SNPF and PSNPF scheduling is identical to FCFS. The other policies
benefit from the increase in parallelism since job demand is held constant and all jobs
receive some fraction of the processing power.

For the correlated workload, figure 4.14, FCFS, SNPF, and PSNPF degrade substan-
tially as P, increases, whereas all the other policies degrade slightly. As P, increases, the
mean number of processes, and hence the mean job demand increases. Even though the
parallelism and job demand increase proportionally, the increase in parallelism does not
negate the increase in demand since the increased parallelism is not useful when the
number of processes in the system exceeds the number of processors. The increase in job
demand causes the slight increase for Cosched, RRprocess, RRjob, EqualDP, and PSCDF.
The policies FCFS, SNPF, and PSNPF degrade considerably more since fewer jobs can run in
parallel. In addition, by increasing P, more jobs have the same number of processes
(observe C, decreasing), hence the policies SNPF and PSNPF are not as capable of discrim-
inating which jobs have the smallest demand.

4.4.4. Effect of Varying Parameter n

The second way to vary mean job parallelism in the geometric-bounded workload is to
vary the parameter f. In this section we investigate the sensitivity of the policies to the
parameter 7i. In figures 4.15 and 4.16 we vary the input parameter 7i while holding all other
parameters constant for the uncorrelated and correlated geometric-bounded workloads
respectively. Utilization set at 70% and P, is set to 0.05. We choose P, equal to 0.05 for this
experiment to emphasize the effect of . The parameter P, is equal to 0.4 for all other exper-
iments. The measured values of C, and 7i vary with P, for the uncorrelated workload, and
the measured values of C,, N, Cq, and d vary with P, for the correlated workload. We
include the value of these parameters on the x-axis of the graphs. At n equal to 20.0 the
measured 7i does not equal 20.0. This is due to the fact we truncate the number of
processes per job to a maximum of 20 as described in section 3.3.

For the uncorrelated workload, figure 4.15, we see that as 71 increases, FCFS, SNPF,
and PSNPF initially improve. As 7 increases further, the advantages of decreasing a job's
service time due to the additional parallelism is eclipsed by the degradation due to not being
able to run as many jobs at the same time. All of the other policies benefit from the
increase in 7.

For the correlated workload, figure 4.16, increasing 7 also increases the mean job
demand due to the linear correlation. As a result, as 7l increases the mean response time
for all the policies increases. Once again FCFS, SNPF, and PSNPF especially suffer since
they can not run as many jobs in parallel as n increases. Also, as 7 increases more jobs

53

270 .,
240 _
M
[
a 210
n
180 J
R
e
s 150 s FCFS
P G—a SNPF
o o——o PSNPF
120 | o——Cosched/UnequalDP
" v—~ RRprocess
8 #——=@ RRjob/EqualDP
® 90
T
. 60
1
m
e
30
0 4 T L)] L] 1 ¥ ¥ ¥ 1
f 00 20 40 60 80 100 120 140 160 180 200
Ca 2.12 114 092 082 0.72 0.60 0.53
measured A 1.95 38 570 135 9.34 11.65 13.17
P, il d Cq
Input 0.05 vary | 200.0 5.0
Qutput 199.3 | 4.97

Figure 4.15: Effect of i, Uncorrelated Workload

54

500
1 &—— FCES
—a SNPF
450]
o——o PSNPF
M s——=& TUnequalDP
© 4007 o—— Cosched
a
n +——~% RRprocess
350 | ®——2RRjob/EqualDP
W e
R
e 300
s
P 250]
(4]
n
s 2004
e
150 J
T
i 100]
m
[
50
0 1 1] L L [} 1 1 1 1
n 00 20 40 60 80 100 120 140 160 180 200
C. 212 114 092 082 0.72 0.60 0.53
measured 7 195 384 569 734 9.33 11.64 13.17
Cq4 1195 762 683 651 622 590 51
d 381 759 1128 1456 1859 2322 262.8

P, n C, t
Input 0.05 vary 5.0 20.0

Figure 4.16: Effect of i, Correlated Workload

have the same mean demand resulting in SNPF and PSNPF not being as capable of discrim-
inating short jobs. Note that FCFS actually experiences a decrease in mean response time
when i is raised form 1.0 to 3.0. This is because the improvement from the drop in varia-
tion of job demand, note C4 on the x-axis, affects FCFS more then the drop in the number
of jobs simultaneously running.

55

4.5. Effect of Foreground - Background Scheduling

The previous sections have shown that each job in the system must receive some frac-
tion of processing power in order to have good performance. The reason performance
suffers for FCFS, SNPF, and PSNPF is that sometimes jobs with a large demand are
scheduled while other jobs that have a smaller demand receive no service. We have seen
that allocating a fraction of processing power to each job in the system can alleviate this
problem. Another approach to giving small jobs good service is to have jobs drop in priority
after receiving some amount of service. Such a multi-level queue is used in many current
uniprocessor scheduling policies. In this section we consider a two level priority queue.
When jobs enter the system they are placed in the high priority queue. After some amount
of service, t, processes drop to the lower priority. The high priority queue is given preemp-
tive priority over the low priority queue. Since we consider only two levels we refer to this
type of scheduling as foreground-background scheduling. We consider only the policies
FCFS, PSNPF, and RRjob. We assume that behavior for SNPF will be similar to PSNPF and
behavior of the other policies will be similar to RRjob.

We experiment by varying the amount of time before a process is moved to the lower
priority queue, 1, while holding all other parameters constant. Figures 4.17a and 4.17b plot
mean response time versus time in the high priority queue before being lowered to the low
priority queue for the uncorrelated geometric-bounded workload. System utilization is fixed
at 70%. The two figures are the same except that figure 4.17a only plots up to a value of
100 units on the x-axis to show more detail for small values. We see in figure 4.17a that
PSNPF quickly performs as well as RRjob. Performance improves because jobs with large
demands do not compete for processing power until periods of low utilization. Note that
RRjob does not derive much benefit from the foreground - background scheduling. This is
because RRjob was not hindered much by large jobs without the two level queue. On the
other hand, FCFS and PSNPF were hindered by the large jobs, so a large improvement in
performance is gained from scheduling foreground - background. Figure 4.17b shows that
as 1 is increased, performance reverts back to just the single level case. When 1 equals
10000 units the performance is the same as a single queue.

Figure 4.18 plots mean response time versus time in high priority queue for the corre-
lated workload. We see that once again the foreground - background scheduling improves
performance of FCFS and PSNPF, but does not help RRjob much.

It appears that PSNPF may be a good policy if a multi-level queue is used. One prob-
lem with such a multi-level queue is that performance will suffer if is not chosen correctly.

4.6. Conclusion

The main conclusion of this chapter is that it is important for a multiprocessor
scheduling policy to give small jobs rapid service. We have considered three ways to

o w B 0 T w o X

280 -

=g —3
60 |
40
20 |
O ¥ 1 L ¥ L] 1 T ¥ 1 1
0O 10 20 3 4 S0 6 70 8 90 100
Time In High Priority Queue (%)
P, il Cn d Ca
Input 0.4 4.0 200.0 5.0
Output 10.37 0.79 197.5 4.96

Figure 4.17a: Foreground - Background Scheduling
Uncorrelated Workload

56

o

®

w 83 0 B w o X

o

280
260 %

S
2404 oo
220 . -a
200
180 J
160 §

FCFS
PSNPF
RRjob

57

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
Time In High Priority Queue (%)

P, n Cn d Cq
Tnput | 0.4 2.0 200.0 | 5.0
Output 10.37 0.79 197.5 4.96

Figure 4.17b: Foreground - Background Scheduling
Uncorrelated Workload

300 ,
270
M
€ 240 J
a
n
210 4
R
e 180 -
8
P 150 |
o
n
. 120
e W -8
90
T
i 60
m
e
30 J
O 1 T 1 L ¥ 1 i T L) 1 1 ¥]
0 100 200 300 400 SO0 600 700 800 9S00 1000 1100 1200 1300
Time In High Priority Queue (%)
P, il Cn d Ca C, t
Input 0.4 4.0 2.0 50.0
Qutput 10.36 0.79 522.5 2.70

Figure 4.18: Foreground - Background Scheduling
Correlated Workload

achieve this goal:

1)
2)
3)

Give highest priority to short jobs.
Give each job in the system a fraction of the processing power.

Use multi-level scheduling.

58

The first approach has been shown to perform best if we have perfect job demand
knowledge and preemptive scheduling as in PSCDF. If job demand knowledge is imperfect,

59

as in SNPF and PSNPF for the correlated workload, performance suffers if the coefficient of
variation of job demand is 2 or higher. The second approach, giving a fraction of processing
power to each job in the system, appears to work well. This is the approach used by
Cosched, RRprocess, UnequalDP, EqualDP, and RRjob. These policies are insensitive to
variations in job demand. The third approach appears to benefit the policies FCFS and
PSNPF but not RRjob. This is because RRjob already gives the small jobs rapid service. If
the amount of time spent in the high priority queue is tuned appropriately, it appears that
the simple policies may be viable.

Other more specific conclusions from this chapter are:

. The policies FCFS, SNPF, and PSNPF perform as well as the other policies when the
coefficient of variation of job demand is less than 2. Real systems would most likely
exhibit much more variation in job demand, resulting in the policies FCFS, SNPF, and
PSNPF not being feasible policies.

° Increases in mean job parallelism cause the policies FCFS, SNPF, and PSNPF to per-
form poorly for both the uncorrelated and correlated workloads.

° The policies EqualDP and UnequalDP do not give a fraction of processing power to
each job in the system when the number of jobs in the system exceeds the number of
processors. This results in poor performance at high utilizations.

) The policy PSCDF performed best for all workloads studied. Unfortunately the policy
is not practical to implement since a real system would not have complete job demand
knowledge.

. Policies that allocate processing power proportional to the number of processes per job
(RRprocess and Cosched) perform worse for the correlated workload than policies that
allocate processing power equally per job (RRjob and EqualDP).

We have shown that RRjob and EqualDP perform the best of all the practical polices stu-
died. We attribute this superior performance to the fact that these two policies allocate pro-
cessing power more equally per job that the others. In the next chapter we consider the
importance of this equal allocation per job.

CHAPTER 35

Importance of Equal Allocation Per Job

In the previous chapter we have shown that in the absence of perfect job demand
knowledge or a properly tuned multi-level queue, the most promising policies continuously
allocate some fraction of processing power to each job in the system. We also demonstrated
that the policies RRjob and EqualDP performed better than all other policies except PSCDF.
We attribute the superior performance of RRjob and EqualDP to the equal allocation of pro-
cessing power per job. In this chapter we highlight and further investigate the importance
of allocating processing power equally per job. We consider only the policies RRprocess,
Cosched, RRjob, EqualDP, and UnequalDP. We do not consider FCFS, SNPF, and PSNPF
since we have shown that the performance of these three policies is inferior to the others.
We do not consider PSCDF since in a real system we usually do not know job service
demands.

The policies RRjob and EqualDP allocate processing power equally to all jobs that can
make use of the available parallelism, while the other policies do not. In actuality, RRjob
and EqualDP do not truly provide equal allocation per job. For example, consider a 20 pro-
cessor system with two jobs, one with 1 process the other with 20 processes. If a policy pro-
vided true equal allocation per job, then both jobs would get one processor each while the
other 18 processors sit idle. We will use a looser definition of equal allocation, where each
job gets an equal share of processing power, but any additional capacity not being used is
divided equally between all jobs that have enough parallelism to use it. RRjob provides
equal allocation per job temporally by giving jobs with a small number of processes a longer
time slice. EqualDP provides equal allocation per job spatially by partitioning the proces-
sors equally among the jobs. In addition to the unequal allocation due to jobs that can not
make use of the additional parallelism, EqualDP divides processing power somewhat less
equally than RRjob since the number of jobs may not evenly divide the number of proces-
sors. For example, a 20 processor system with 13 jobs having at least 2 processes results
in 7 jobs receiving 2 processors and 6 jobs receiving one processor.

- 60 -

61

We investigate the importance of equal allocation by comparing the other four policies
to RRjob for both the uncorrelated and correlated workloads. When comparing each policy
to RRjob, we use the ratio of mean response time for the other policy over the mean
response time for RRjob as our metric of comparison. We refer to this metric as the
response time ratio. We plot the response time ratio for the policies Cosched, RRprocess,
UnequalDP, and EqualDP for the uncorrelated and correlated baseline workloads, and for
the sensitivity to P, and 7 experiments presented in chapter 4.

At high utilizations there are often more jobs than processors in the system. As a
result, the mean response times of EqualDP and UnequalDP increases at high utilizations
due to the load queue assumptions. To remove this side effect, we consider a closed system
model with only 20 jobs so there are never more jobs than processors in the system. We
include a section highlighting the difference between the open and closed system models to
aid in understanding the closed system results.

Section 5.1 presents response time ratios for the open system model with an uncorre-
lated geometric-bounded workload. Section 5.2 presents response time ratios for the open
system model with a correlated geometric-bounded workload. Section 5.3 presents mean
response time results for the closed system model and highlights differences between the
open and closed models. Section 5.4 presents response time ratios for the closed system
model with an uncorrelated geometric-bounded workload. Section 5.5 presents response
time ratios for the closed system model with a correlated geometric-bounded workload.

5.1. Open System Uncorrelated Geometric-bounded Workload

In this section we consider an open system with the uncorrelated geometric-bounded
workload. Figure 5.1 plots the response time ratio versus system utilization for the baseline
uncorrelated workload. As system utilization increases, the policies that do not provide
equal allocation of processing power per job perform worse relative to RRjob. At 70% utili-
zation Cosched, RRprocess, and UnequalDP perform 22.5%, 13.7%, and 11.2% worse
respectively than RRjob. The polices EqualDP and UnequalDP have mean response times
twice as high at a utilization of 90% due to the load queue.

Figure 5.2 explores the effect of varying mean job parallelism by varying the parameter
P,. System utilization is set at 70%. The response time ratio versus P, is plotted. As Pp
increases, the output parameters C, and 7 also change. We include these two measured
output parameters on the x-axis. The response time ratios of Cosched and RRprocess ini-
tially increase as P, is increased. At P, = 1.0 the mean job response time of RRprocess,
Cosched and RRjob are identical. This is because equal allocation per process is equivalent
to equal allocation per job when all jobs have the same number of processes. As P,
increases, the response time ratio of the UnequalDP policy increases. At P, = 1.0 Une-
qualDP has a mean response time that is 65% greater than the mean response time of

1.0

2.0 .,
. 194 @——— UnequalDP
.) 2 EqualDP
1.8
s o——— (Cosched
p 17 $————% RRprocess
° s———=a RRjob
n
8
e
T
i
m
€
R
a
t
i
[}
0.9 T T T T v T T Y T 1
0 o0l ©02 03 04 05 06 07 08 09
System Utilization
P, n Cn d Ca
Input 0.4 4.0 200.0 5.0
Output 10.36 0.79 199.3 4,97

Figure 5.1: Response Time Ratios, Baseline Uncorrelated

62

2.0 .
1.9 J
R
¢ 18]
3
P
n ¢ (Cosched
16 B3 [Jnequal DP
s 1 w—~% RRprocess
e +———+ EqualDP
15] =—* RRjob
T
i
m
[
R
a
t
i
[+
0.9 T T T T T T T ¥ T 1
P, 00 01 02 03 04 05 06 07 08 09 10
C, 085 103 0.89 0.69 0.49 0.0
fi 3.99 5.58 8.77 11.97 15.19 20.0
P, i d Cq
Input vary 4.0 200.0 5.0
Output 198.9 5.0

Figure 5.2: Response Time Ratios, P, Varied, Uncorrelated

RRjob. This is because scheduling UnequalDP results in the first job getting all processors
in the system less one for each other job in the system. This implies that Equal allocation
per job is more critical as job parallelism increases. The policies EqualDP and RRjob are
not identical since neither are providing truly equal allocation, but the difference in
response times is always less than 10%. This 10% differences is within confidence intervals
of the sirnulations.

64

In figure 5.3 we vary mean job parallelism by varying the input parameter n. Figure
5.3 plots the response time ratio versus i with utilization set to 70% and P, set to 0.05.
Measured output parameters C, and 7 are included on the x-axis. The response time ratios
of RRprocess and Cosched become larger as 7 increases. When input parameter n = 20,

2.01
1.9 J
R
¢ 18]
s
P 1.7 J
° o————= (Cosched
n
. 16 »——% RRprocess
e &———8 {JnequalDP
1541 = EqualDP
T s———=& RRjob
i 14]
m
e 1.3
R 1.2 4
a
LI 8
i
0
1.0 J
09 T T T T T T T T T 1
n 0.0 2.0 4.0 6.0 8.0 100 120 140 160 180 200
C, 2.12 1.14 092 082 0.72 0.60 0.53
measured A 1.95 3.86 570 1735 9.34 11.65 13.17
P, n d Cq
Input 0.05 vary 200.0 5.0
Output 199.3 4.97

Figure 5.3: Response Time Ratios, 1 Varied, Uncorrelated

65

UnequalDP, Cosched, and RRprocess have mean response times 27%, 24%, and 11.3%
higher than RRjob. We see again that as the mean parallelism increases equal allocation
per job becomes more important. Note that at n = 1.0 the mean response times of Une-
qualDP and EqualDP are 6.3% higher than RRjob. This is due to the load queue, as will be
demonstrated in section 5.3.

5.2. Open System Correlated Geometric-bounded Workload

In this section we consider the importance of equal allocation per job for the correlated
geometric-bounded workload. The qualitative behavior is the same as for the uncorrelated
geometric-bounded workload, but the magnitude of the differences between the policies is
larger. Thus, equal allocation per job is even more important when a job’s demand is posi-
tively correlated with the number of processes per job.

Figure 5.4 plots the response time ratio versus system utilization. At 70% utilization
UnequalDP, Cosched, and RRprocess have mean job response time that are 48%, 44% and
229% larger respectively than RRjob. Once again at high utilizations the load queue assump-
tion make UnequalDP and EqualDP much worse. The ratios of response times are consider-
ably larger for the correlated workload than for the uncorrelated.

In figure 5.5 we vary mean job parallelism by varying the input parameter P,. Figure
5.5 plots the response time ratio versus P, with utilization set at 70%. The qualitative
results are similar to the uncorrelated workload results, but the magnitude of the difference
between policies is much larger. Once again we see that allocating processing power
equally per job becomes more critical as mean job parallelism increases.

Figure 5.6 plots the response time ratio versus fi for a utilization of 70%. As 7Tl
increases RRprocess and Cosched improve while UnequalDP degrades. Unlike figure 5.3,
RRprocess and Cosched improve relative to RRjob as 7 increases. This behavior can be
attributed to the fact that as 7i increases, C, decreases as can be seen on the x-axis. As we
saw in chapter 4, Cosched and RRprocess are adversely affected by an increase in variation
in the number of processes per job when job demand is correlated with the number of
processes per job, hence we would expect a drop in the response time ratio as C, decreases.

5.3. Closed System Model

The load queue assumption for EqualDP and UnequalDP causes these policies to per-
form poorly at high loads. As a result we are unable to compare the performance of these
policies to other policies at high system utilizations. To enable a fair comparison between
these policies it is necessary to remove the need for the load queue. We eliminate this need
by using a closed system with a population of 20 jobs. In sections 5.4 and 5.5 we show
response time ratios for the 5 policies studied in this chapter with the closed system. This
allows us to better measure the importance of equal allocation per job at high utilizations.

2.0 .

194 @—8UnequalDP
R o——¢ Cosched
e 184 ¥ RRprocess
s +————= EqualDP
P 7 s——# RRjob
[¢)
n
s
e
T
i
m
e
R
a
t
i
4]
0.9 T r . . . T
00 01 02 03 04 05 06 07 08 09 10
System Utilization
P, nl Cn d Ca C, t
Input 0.4 4.0 5.0 2.0
Output 10.36 | 0.79 | 210.0 | 6.48

Figure 5.4: Response Time Ratios, Baseline Correlated

(4]

=2 - B

L5 .
T
i 1.4]
m
€ 1.3]
R 1.2

ENIRO I TR ST,

w

2.0 .

1.9

1.8 .

1.7 J

1.6

g8 nequal DP

—— Cosched

$———3F RRprocess

+——— EqualDP

=———= RRjob

67

1.0 r— L . 3
0—)

09 T T T T T T T T T 1
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
085 1.03 0.89 0.69 0.49 0.0
399 5.58 8.77 11.97 15.19 20.0
657 17.10 729 6.76 6.14 5.62
783 947 110.7 177.0 241.7 306.7

P, il Cy t
Input vary 4.0 5.0 2.0

Figure 5.5: Response Time Ratios, P, Varied, Correlated

68

2'07
& (Cosched
194 +———¥ RRprocess
R
&8 [JnequalDP
[
1.8
. &t EqualDP
P s————=a& RRjob
1.7 4
o
n
s
e
T
i
m
e
R
a
t
i
0
0.9
- ¥] 1 1]] ¥ L] 1] 1
fi 00 20 40 60 80 100 120 140 160 180 200
Cn 212 114 092 082 0.72 0.60 0.53
measured 7 195 384 569 734 9.33 11.64 13.17
Cy 1L.95 762 683 651 6.22 5.90 571
d 381 759 1128 1456 1859 2322 262.8
P, n Cy t
Input 0.05 vary 5.0 2.0

Figure 5.6: Response Time Ratios, n Varied, Correlated

For all closed system results there are 20 jobs in the system. Think time is varied to
change the load on the system. Unlike the open model where a given arrival rate results in
all policies having the same utilization, a given think time does not result in all policies hav-
ing the same utilization. This is because policies that have smaller mean response times
service jobs faster, which results in increased throughput and higher utilizations.
Throughputs can be derived from Little’s results.

69

Before we present the response time ratio results for the closed system we will com-
pare the behavior of the policies for the closed system to that for the open system. We
present these results to show that the qualitative results do not change as we move from an
open system to a closed system.

Figure 5.7 plots mean response time versus system utilization for the baseline
uncorrelated geometric-bounded workload presented in section 4.3. There are seven points
on the curve plotted for each of the policies. These seven points correspond to think times
of 50000, 1900, 320, 240, 180, 130, and 90. At a think time of 90, the resultant utilizations
range from 93% for Cosched to 98% for RRjob. In the closed system with 20 jobs, at most
20 jobs can ever be queued for service. As a result the policies EqualDP and UnequalDP
never place jobs in a load queue. Hence EqualDP and UnequalDP do not degrade at high
utilization due to a load queue as they did in the open system. Note that the same ordering
of policy performance appears in the closed system as in the open system (see figure 4.6).
The performance difference between the policies is smaller because there are never more
than 20 jobs in the system at once.

Figure 5.8 plots mean response time versus system utilization for the baseline corre-
lated geometric-bounded workload presented in section 4.3. The seven points plotted for
each policy are for think times of 400000, 2500, 380, 230, 180, and 130. At a think time of
130, the resultant utilizations range from 92% for UnequalDP to 99.9% for RRjob. As in the
uncorrelated workload, Once again, the same ordering of policies appears in the closed sys-
tern as in the open system (see figure 4.7).

The main conclusion of this section is that the qualitative ordering of the policies
remains the same for the closed system model as for the open system model.

5.4. Closed System Uncorrelated Geometric-bounded Workload

The load queue effects colored the results for EqualDP and UnequalDP in sections 5.1
and 5.2. In this section we eliminate the problem by assuming a closed system with 20
jobs. The magnitude of the differences of response times are not as large in the closed sys-
tem as in the open system since there can never be more than 20 jobs competing for service
at once. Figures 5.9 - 5.11 correspond to the closed system versions of the experiments
presented in section 5.1. Figure 5.9 plots the response time ratio versus the RRjob system
atilization. We use the measured utilization of the RRjob policy for the x-axis coordinates.
For figure 5.9 the corresponding think times are 1900, 320, 240, 180, 130, and 90 units.
Figures 5.10 and 5.11 show the effect of increasing mean job parallelism by increasing Py
and 71 respectively. Think time is set equal to 180 units. As the mean job parallelism
increases, response time decreases causing system utilization to increase. We draw the
same conclusions from these three graphs as we drew for the open system, policies that
provide equal allocation per job result in better performance than policies that do not

120 .
110 4————= Cosched
1 #—————= RRprocess
M g1 UnequalDP
004 =R RRjob
e ———o EqualDP
a
90]
n
80 J
R
e 70]
s
P 60
[+]
noo50
s
¢ 40
T 30
i
m 20
€
10
0 1 L T 1 T 1 i ¥ i H
00 01 02 03 04 05 06 07 08 09 10
System Utilization
P, n Cn d Ca
Input 0.4 4.0 200.0 5.0
Output 10.44 0.79 192.4 5.05

Figure 5.7: Response Times, Closed System Uncorrelated

70

71

100
90 J
M g————8 JnequalDP
e 0 ————= Cosched
a 1 % RRprocess
o s————& RRjob
70] *—* EqualDP
R
e 60
8
P 50
[
n
g 40
€
30
T
i 20
m
e
10 4
O 1 T] } 4 L] T 1 1 ¥ 1
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 09 1.0
System Utilization
P, i Cn d Cq Cy t
Input 0.4 4.0 5.0 20.0
Output 10.42 | 0.79 | 207.8 | 6.42

Figure 5.8: Response Times, Closed System Correlated

2.0

7
19 J
R
¢ 18]
H)
Z 1.7] o= Cosched
n $—¥ RRprocess
s 164 s———=a{UnequalDP
e e———< EqualDP
154 #————=a RRjob
T
i 1.4]
m
€ 1.3
R 1.2 4
a
t 1.1 4
i
o o
1.0] B 2 S)
0.9 T T T T T
0.0 0.1 0.3 0.4 0.5 0.7 0.9
Utilization of RRjob
P, n Cn d Ca
Tnput 0.4 4.0 200.0 5.0
Output 10.44 0.79 192.8 5.06

Figure 5.9: Response Time Ratios, Closed System, Uncorrelated

72

<0

H

RRjob U

2.0

1.9

1.8

1.7]

1.6

1.5

1.4]

o————0 Cosched

+————+ EqualDP

s———=a RRjob

#——¥ RRprocess

g——8 [JnequalDP

0.9
1 1 1 1 1 4 1 i 1 i
0.0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1.0
085 103 089 079 070 0.50 0.00
399 559 879 1037 1195 15.17 20.0
1% 73% 76% T1% 79% 82% 88%
P, f Cn d Cq
Input vary 4.0 200.0 5.0
QOutput 197.5 4.96

Figure 5.10: Response Time Ratios, P, Varied
Closed System Uncorrelated

73

74

20 _
19 |
R
€ 18]
8
1
1.7 | &——& UnequalDP
(]
o————= (Cosched
n
. 16 v—-———% RRprocess
. o-————¢ EqualDP
a- -8 RRjob
1.5
T
i 14
m
e 1.3
R 12
a
! 1.1
i
[}
1.0 |
0.9
1) 1 i i 1
A 0 2 4 6 10 14 20
C, 212 115 092 082 0.71 0.60 0.53
measured 71 198 387 570 735 9,34 11.65 13.17
RRjob U 3% 6% 3% TI% 9% 81% 83%
P, l Cn d Cy
Input 0.05 vary 200.0 5.0
Output 192.8 5.06

Figure 5.11: Response Time Ratios, N Varied

Closed System Uncorrelated

provide equal allocation per job, and that equal allocation becomes more important as the
mean job parallelism increases. Note that in figure 5.11 the mean response time for RRjob,

75

EqualDP and UnequalDP at i = 1.0 are equal now that there is no load queue effect.

5.5. Closed System Correlated Geometric-bounded Workload

As in the section 5.4 we consider the closed system for the correlated geometric-
bounded workload to remove any effects of the load queue assumption. We only present the
graph for the changing RRjob utilization. Figure 5.12 plots the ratio versus RRjob utiliza-
tion. Think times for the figure are 400000, 2500, 380, 230, 180, and 130 units. We now
see that at high utilizations EqualDP performs as well as RRjob.

5.6. Conclusion

We find that policies that provide equal allocation per job result in lower mean
response times than polices that do not provide equal allocation of processing power per
job. In particular:

. For the uncorrelated workload, policies that do not provide equal allocation per job
result in mean job response times that are 10% - 20% greater and up to 65% greater
for extreme parameter values than the mean response time of policies which do pro-
vide equal allocation of processing power per job.

) For the correlated workload, policies that do not provide equal allocation per job often
result in mean job response times that are 15% - 50% greater than the mean response
times of policies that do provide equal allocation per job.

) Providing equal allocation per job becomes more important as mean job parallelism
increases.

. Providing equal allocation of processing power per job is less important for the closed
system than the open, but mean job response times of policies that do not provide
equal allocation are still often 10% - 20% higher than polices that do provide equal
allocation per job.

20

1

19 J
R
€ 18
8
P
. 174 m————m UnequalDP

>— Cosched

n % RRprocess
] I R —— EqualDP
e B RRjob

1.5]
T
i 1.4]
m
e 1.3
R 12
a
t 1.1
i
° 10 a e

0.9 T ¥ T T T T T T T 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
utilization of RRjob
P, i Cn d Ca C, t
Input 0.4 4.0 5.0 20.0
Output 10.42 | 0.79 | 207.8 | 6.42

Figure 5.12: Response Time Ratios, Closed System Correlated

CHAPTER 6

Importance of Supporting Inter-process Synchronization

In this chapter we investigate the importance of supporting inter-process synchroniza-
tion. We consider both coscheduling and application level scheduling as approaches to
facilitating inter-process synchronization. Coscheduling means that when a process is
scheduled, all other processes from the same job will most likely be scheduled at the same
time. Application level scheduling implies the existence of a two level scheduler, a system
level scheduler for allocating processors to jobs, and an application level scheduler that
determines which processes of a job are to run on the processors currently allocated to the
job. A more detailed description is given in chapter 1.

We concentrate only on the policies RRjob, EqualDP, and Cosched. The policies
EqualDP and Cosched explicitly support inter-process synchronization whereas RRjob does
not. EqualDP provides support through application level scheduling. Cosched provides
support through coscheduling. We do not consider UnequalDP because we expect inter-
process synchronization to affect UnequalDP the same way it affects EqualDP. We do not
consider RRprocess since it does not offer better inter-process synchronization support than
RRjob, and in general it has worse performance than RRjob. We do not consider the poli-
cies FCFS, SNPF, and PSNPF because they exhibit poor performance under a variety of sim-
ple workloads, as shown in chapter 4, and are thus not very promising policies.

Of the policies considered, EqualDP and RRjob have been shown in the previous two
chapters to perform better than Cosched since Cosched does not provide equal allocation
per job. By including synchronization when comparing these policies we can determine
whether the support for inter-process synchronization changes the relative ordering of the
policies. In particular, we wish to determine whether the benefits of coscheduling can over-
come the benefits derived from equal allocation per job. Our approach is to study the per-
formance of the policies in the presence of spin-lock and barrier synchronization and draw
conclusions about the importance of support for inter-process synchronization from the
results of our experiments.

-77 -

78

All experiments in this chapter, other than the first one, assume a closed system with
40 jobs. With the inclusion of interprocess synchronization, the simulation time required
for the open system is too prohibitive, often up to eight days per data point. The closed sys-
tem allows us to decrease simulation time by 60%. All results in this chapter have
confidence intervals of 10% or less (usually less than 5%) at the 90 percent confidence level.
Confidence intervals are again calculated using batch means with 20 batches per simula-
tion run. Other than the first experiment, all uncorrelated workload experiments in this
chapter have 2,000 samples per batch, and all correlated workload experiments have 3,000
samples per batch.

Section 6.1 presents the results for spin lock synchronization. Section 6.2 presents
the results for barrier synchronization. Section 6.3 contains the conclusions of this
chapter.

6.1. Spin Lock Synchronization

In this section we explore the effect of spin-lock synchronization on the relative perfor-
mance of the policies. We assume processes from the same job compete for a single shared
lock. The workload model is described in section 3.5.1. Processes spin when they request
a lock that is held by another process. There are two types of spinning overhead that occur.
The first is spinning while the requesting process waits for a process that is currently
scheduled and holding the lock to relinquish the lock. This type of spinning occurs in all
policies. However, a higher degree of coscheduling leads to higher competition and thus
more spinning. The second type of spinning overhead occurs when a process requests a
lock held by a process that is descheduled. In this case the requesting process must wait
(spin) for the processes holding the lock to be rescheduled and release the lock. RRjob is
prone to this problem since it preempts processes. Coscheduling and application level
scheduling attempt to eliminate the second type of spinning. While Cosched does preempt
processes, all other processes from the same job are almost always descheduled at the same
time. As a result there are few points in time where only a fraction of the job's processes
are scheduled, hence if a processes holding a lock is descheduled it is less likely to cause
spinning than in RRjob. EqualDP uses application level scheduling to eliminate the second
type of spinning. The application level scheduler makes sure that a process holding a lock
is never descheduled while a process requesting the lock is spinning. The policy RRjob
might use application level scheduling to avoid the second type of spinning, but it is not
included in the experiments we perform in this section.

In all of the figures presented in this section we plot mean response time versus job
lock demand. Lock holding time is deterministic and equals 0.01 units where one unit is a
quantum in the RRprocess policy. We define job lock demand as (process lock demand) X
(number of processes), where process lock demand is the percent of time each process
would use the lock if it never has to spin. For example, if job lock demand is 100% and the

79

number of processes is 10, then the process lock demand is 10%, hence the inter-request
time is 0.09 units. For a job with 20 processes running by itself on the machine, a job lock
demand of 100% results in the lock being utilized 84.6 percent of the time. A job lock
demand of 100% is more contention for a lock than is reasonable for a real parallel pro-
gram. A job lock demand of below 50% is a more likely operating range.

Figure 6.1 plots mean response time versus job lock demand for the uncorrelated
exponential-bounded workload assuming an open system. The exponential-bounded work-
load is nearly identical to the geometric-bounded workload. The difference is that the trun-
cated geometric distribution is replaced by a truncated exponential distribution and the
ceiling of the sample is used. The graph is from earlier work before the geometric workload
was defined. The no-synchronization utilization is set at 70%. We define no-
synchronization utilization as the utilization of the system for RRjob assuming no-
synchronization. The utilization of the system increases as job lock demand increases due
to the extra work introduced by the spinning.

At zero job lock demand Cosched has a larger mean response time because it does not
provide equal allocation per job. As job lock demand increases the mean response time of
all policies increases. Policies which provide better support for spin-lock synchronization
are less affected. The mean response times of Cosched, RRjob, and EqualDP are 75%, 45%.
and 11.3% larger respectively at a job lock demand of 100% than for zero job lock demand.
Even though RRjob is more affected by the spin-lock synchronization than Cosched, it still
performs better because it provides equal allocation per job. In the likely ranges of less
than 50% job lock demand RRjob performs considerably better than Cosched. RRjob does
not explicitly support inter-process synchronization, but it does exhibit a reasonable degree
of coscheduling. The mean response time of the EqualDP policy increases only slightly as
job lock demand increases because the policy provides good support for spin-lock syn-
chronization. EqualDP performs best of all the policies because it provides the best support
for inter-process synchronization in addition to providing equal allocation per job. Cosched
does perform better than RRprocess (not shown), but not until job lock demand exceeds
70%. We include a variation of EqualDP in this experiment called EqualDP*, which is the
same as EqualDP except that it does not assume application level scheduling. Processes
within a job a placed in a queue randomly and then serviced FCFS. As a result, processes
holding locks can be descheduled for long periods of time. This accounts for the poor per-
formance of EqualDP* at high lock demands. At a lock demand of 85%, the mean response
time for EqualDP* is 2192. Note that another alternative to an application level scheduler
for EqualDP not considered in this thesis is to time slice the processors allocated to a job
between the job’s processes. In this case processes holding a lock could not be
descheduled for long periods of time, and an application level scheduler is not needed.

80

160
"
150
M
[
2 140]
n
130
R
e
s 120
P
o
110 -
n
8
© 100]
T
. 90
! <
m
€
80
70
00 01 02 03 04 05 06 07 08 09 L0
Job Lock Demand
P, n Cn d Cq U’
Input 0.4 4.0 200.0 5.0 70%
Output 10.68 0.76 197.5 4.97

Figure 6.1: Spin-lock Synchronization
Uncorrelated Exponential-bounded

Figure 6.2 plots response time versus job lock demand for the uncerrelated geometric-
bounded workload assuming a closed system. Think time is set to 550 units resulting in
RRjob having a no-synchronization utilization of 62%. The workloads for figures 6.1 and 6.2
are essentially the same, the two differences are that the system is closed, and the no-
synchronization utilization is lower. Once again EqualDP performs best, followed by RRjob

81

100

————0 (Cosched

83 =2 0 ¥

0O w 23 0 TV w o X

70

e 3 = 4

0.0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1.0
Lock Demand

L]

Pp

n

Cn

d

Cad

Input

0.4

4.0

200.0

5.0

62%

Output

10.44

0.79

192.4

5.05

Figure 6.2: Spin-lock Synchronization, Closed System Uncorrelated

and then Cosched. The differences in the performance of the policies are not as significant.
This is because the lower utilization and closed system cause the queue lengths to be
shorter so that the impact of descheduling processing holding a lock is not as significant.

In figure 6.3 parameter P, is varied while all other parameters are held constant for the
uncorrelated geometric-bounded workload assuming a closed system. Think time is set to
550 units as in figure 6.2. Job lock demand is equal set equal to 50%. The maximum

82

o w =2 o W »w o % s » 0o

o B =~ 3

PP
Tnput | varied 4.0 200.0 5.0 60%
Output 192.4 5.05

=
o
o N
O
S

Figure 6.3: Spin-lock Synchronization, P, Varied
Closed System, Uncorrelated

difference between the policies is seen for P, in the 40% - 70% range. When we varied P,
without synchronization, figure 4.13, we saw the same behavior. This indicates that the
way processing power is divided among jobs may be a more important characteristic of a
scheduling policy than the ability to facilitate spin-lock synchronization.

The qualitative behavior of the policies for the correlated workload (graphs not shown)
is the same as the qualitative behavior for the uncorrelated workload shown in figures 6.1

83

and 6.2. We conclude from this section that the ability of a policy to support spin-lock syn-
chronization does not appear to be as important as providing equal allocation per job as
long as a policy provides a reasonable degree of coscheduling (such as RRjob). If a process
holding a lock can be descheduled for long periods of time as in EqualDP*, then the perfor-
mance can suffer dramatically.

6.2. Barrier Synchronization

In this section we explore the effect of barrier synchronization on the relative perfor-
mance of the scheduling policies. The barrier synchronization workload is described in sec-
tion 3.4.2. Our goal is to determine the importance of a scheduling policy’s ability to sup-
port barrier synchronization. A secondary goal is to determine how much of a performance
improvement results from application level scheduling versus coscheduling. We first
explore the impact of barrier synchronization on the relative performance of the polices
RRjob, Cosched and EqualDP. We then investigate how including application level schedul-
ing for RRjob and Cosched affect the relative performance of the policies.

6.2.1. Impact of Barrier Synchronization

In this section we compare the policies RRjob, Cosched, and EqualDP in the presence
of barrier synchronization. In the previous section we have shown that the Cosched policy
results in worse performance than RRjob even in the presence of spin-lock synchronization.
In this section we wish to see whether Cosched’s support of barrier synchronization can
offset the performance loss due to unequal allocation.

Figure 6.4 plots mean response time versus barriers per time slice for the uncorrelated
geometric-bounded workload assuming a closed system model. The solid lines are for a no-
synchronization utilization of 59%, whereas the dashed lines are for a no-synchronization
utilization of 38%, these utilizations correspond to think times of 600 and 1000 units
respectively. EqualDP is only included for the 59% no-synchronization utilization. The
RRjob policy has a lower mean response time than Cosched at 0 barriers per time slice, but
crosses over at around 2.7 (3.5) barriers per time slice for the 59% (38%) no-
synchronization utilization workload. This demonstrates that support of barrier synchroni-
zation is important if there is frequent barrier synchronization. When the frequency of bar-
rier synchronization is in a more likely range, 1 barrier per time slice or less, Cosched per-
forms worse than RRjob due to the unequal allocation per job. The policy EqualDP performs
significantly better than RRjob and Cosched. For a no-synchronization utilization of 59%
with 5 barriers per quantum the mean response time of RRjob and Cosched are 172% and
49% larger respectively than the mean response time of EqualDP. RRjob has a mean
response time 17% larger than EqualDP when there is 1 barrier per quantum, and 6%
larger when there are 0.5 barriers per quantum.

210

84

RRjob (U" = 59%)

[]

M o———o Cosched (U" = 59%)

© 1804 o EqualDP (U =59%)

2 e —a RRjob (U’ =38%)
o— — - Cosched (U" = 38%)

R

e 150

s

P

o

n

g 1204

e

< <

B
~
- ~
- /8/
e e e e el D e ey e e =
T
0.0 1.0 2.0 3.0 4.0 5.0
barriers per time slice
P, i Cn d Ca
Input 0.4 4.0 200.0 5.0
Output 10.45 0.79 197.4 5.03

Figure 6.4: Barrier Synchronization, Closed System, Uncorrelated

We find that supporting barrier synchronization is less important as offered utilization
decreases. We see that the difference between Cosched and RRjob is smaller for a no-
synchronization utilization of 39% than for 59%. For a no-synchronization utilization of
59% and 5 barriers per quantum, RRjob is 83% worse than Cosched whereas for a no-
synchronization utilization of 39% RRjob is 18% worse than Cosched. The reason is that at
lower utilizations processes are descheduled less often.

85

The increase in response time for all the policies is caused by processes spinning upon
reaching the barrier. We now offer explanations for why the response time curve for
Cosched remains flat, and why the response time curves for RRjob keep increasing. First
we explain why the Cosched curves becomes flat. When a process reaches a barrier, all the
other process in the job are currently scheduled unless the process belongs to a partially
scheduled job at the end of a scheduling window. For sake of the argument, let us assume
perfect coscheduling, hence when a processes reaches a barrier all other processes from the
job are currently scheduled. Since our workload states all processes reach the barrier at
the same time + 10% of the inter-request time, the ratio of spinning to useful work remains
constant as the inter-request time is decreased. Hence the flat line.

For RRjob it is not true that when a processes reaches a barrier all the other processes
will be currently scheduled. To explain why RRjob keeps degrading as the amount of bar-
rier synchronization increases let us illustrate by an example. Assume a system with 4 pro-
cessors and 2 jobs, X and Y, with 4 processes each. Let us denote the processes X; ... X4,
and Y, ... Y4. Assume job X currently has all four processes scheduled on the processors.
Assume job Y has just reached a barrier and barrier inter-request time is orders of magni-
tude smaller than the quantum length. Assume the four processors context switch exactly
0.25 quantums apart, hence process Y; is scheduled at time ¢ Y, is scheduled at time
t + 0.25, Y5 at time t + 0.5, and Y, at £ + 0.75. Since Y, reaches the barrier almost immedi-
ately, it spins until Y, is scheduled 0.75 units later. Once Y, is scheduled the 4 processes
can do useful work, but Y; is descheduled at time ¢t + 1. Hence, every time a process gets
scheduled it only executes productively 25% of the time. In a system with 20 processors
and jobs with 20 processes the problem is further exasperated. The amount of spinning
can be more or less than our example depending on when the processors context switch.
The example considers the case when the inter-request time is vary small relative to the
quantum size, but the argument extends to less frequent synchronization. Thus, as the
inter-request time decreases, the ratio of spinning time to useful work increases. At very
frequent synchronization, such as in our example, but not shown in our results, we would
expect the mean job response time of RRjob to plateau.

From figure 6.4 we also note that Cosched experiences a larger initial rise in mean
response time than RRjob. For a think time of 600 units, the mean job response time of
Cosched increases by 33%, whereas the mean response time of RRjob increases by only
13% when the amount of barrier synchronization is increased from no synchronization to
0.5 barriers per quantum. This is because the higher degree of scheduling causes more
spinning near the time that all processes reach the barrier, whereas RRjob deschedules
processes after reaching the barrier due to quantum expiration.

Figures 6.5 plots mean response time versus barriers per quantum for the correlated
geometric-bounded workload assuming a closed system. The solid lines are for a no-

86

300 -
L — RRjob (U = 64%)
20 o—e Cosched (U’ = 64%)
M - — -4 RRjob (U* = 41%)
e | *—= Cosched (U" =41%)
a
n
210
R
e 180
8
P 150 .
[¢]
n
s 120
€
90
T o P
i 60
m & et
e ,0“—0-’“—::3;9—‘51—0-'—*—“—0*-—-——-———0
0y~ e —F T
0 1 T H L] 1
0.0 1.0 20 3.0 40 5.0
barriers per time slice
P, nl Cn d Ca Cy t
Input 0.4 4.0 5.0 2.0
Output 104468 | 0.79 | 205.1 6.46

Figure 6.5: Barrier Synchronization, Closed System, Correlated

synchronization utilization of 64%, whereas the dashed lines are for a no-synchronization
atilization of 41%. The corresponding think times are 600 and 1000 units. Qualitatively
the behavior is similar to the uncorrelated workload.

We conclude from these results that coscheduling is an important characteristic of a
scheduling policy in the presence of frequent barrier synchronization. Coscheduling is not
as important as processing power allocation when barrier synchronization occurs less fre-
quently than twice per quantum. We would anticipate that many parallel programs would

87

synchronize less frequently than once per quantum, hence it appears that division of pro-
cessing power per job is at least as important as the ability to support barrier synchroniza-
tion.

6.2.2. Inclusion of Application Level Scheduling

In section 6.2.1 we showed that coscheduling can result in significantly better perfor-
mance than RRjob if there is frequent barrier synchronization and no application level
scheduling. In this section we add application level scheduling to the policies RRjob and
Cosched. In the presence of application level scheduling three actions may be taken when a
process reaches a barrier:

1) The process is the last to reach the barrier. In this case all other processes that
may be spinning start productive work again.

2) The process is not the last to reach the barrier and the job has other processes
currently not executing that could be doing productive work. In this case we assume
the process is descheduled and another process from the same job which has produc-
tive work to do is scheduled in its place.

3) The process is not the last to reach the barrier and the job has no other processes
not executing that could be doing productive work. In this case the process spins until
either the quantum expires or the barrier is reached by all other processes.

Figure 6.6 plots mean response time versus barriers per time slice for the uncorrelated
geometric-bounded workload assuming a closed system. Think time is set to 600 resulting
in a no-synchronization utilization of 59%. The solid lines are the same as in figure 6.4,
that is RRjob and Cosched do not assume application level scheduling, whereas the dashed
lines assume the addition of application level scheduling.

Adding application level scheduling to RRjob and Cosched results in improved perfor-
mance. RRjob experiences a larger benefit from the addition of application level scheduling
than does Cosched. When application level scheduling is included. Cosched now performs
worse than RRjob. This is because both polices provide support for synchronization and
RRjob also provides equal allocation per job whereas Cosched does not. Note that RRjob
performs worse than EqualDP even though both policies have application level scheduling
and provide equal allocation per job. This is because RRjob has a higher degree of cos-
cheduling. As a result, more processes are scheduled at the time a barrier is achieved
resulting in more spinning. If there is a low degree of coscheduling, such as in EqualDP, a
process will reach the barrier and then be swapped with a process that has not yet reached
the barrer. If there is a high degree of coscheduling there will not be any descheduled
processes to swap with, hence processes that are in the spinning state are forced to be
scheduled. Cosched experiences a larger percent increase in response time than RRjob

88

210 .,
8--—4=a RRjob
M — Cosched
© 1804 o — —o Cosched with application
: s— — —a RRjob with application
— EqualDP
R
e 150
8
p
(¢}
n
, 120
[
T
i
m o e e 0
€
____________ —
3.0 40 5.0
barriers per time slice
P, il Cn d Ca U’
Input 0.4 4.0 200.0 5.0 59%
Output 10.45 0.79 197.4 5.03

Figure 6.6: Barrier Synchronization With Application Scheduling
Closed System, Uncorrelated

when the number of barriers per quantum is raised from zero to five barriers per guantum.
This is because Cosched has a higher degree of coscheduling than RRjob. When all policies
include application level scheduling EqualDP performus best, followed by RRjob and the
Cosched.

The qualitative behavior of the policies for the correlated workload is the same as for
the uncorrelated workload. We conclude from this section that application level scheduling

89

improves performance and that scheduling policies which provide a high degree of cos-
cheduling result in worse performance if the policies provide application level scheduling.

6.3. Conclusion

We have consider both spin-lock and barrier synchronization for the RRjob, Cosched
and EqualDP polices. Are main conclusion from the chapter are:

. In general, for reasonable frequencies of synchronization, how well a policy supports
synchronization does not have as significant an impact on the relative performance of
the policies as does the allocation of processing power among the jobs. This leads us
to conclude that allocation of processing power is at least as important as support for
inter-process synchronization.

° At very frequent barrier synchronization, EqualDP performs best, followed by Cosched
and then RRjob. At likely frequencies of barrier synchronization, EqualDP performs
best followed by RRjob, and then Cosched.

° If we assume all policies use application level scheduling, a higher degree of cos-
cheduling actually hurts performance when there is barrier synchronization, hence
EqualDP performs best followed by RRjob and then Cosched.

CHAPTER 7

Importance of Preemption Frequency

In this chapter we investigate the effect of preemption frequency on the relative perfor-
mance of the scheduling policies. The policies RRprocess, RRjob, and Cosched all periodi-
cally preempt processes. As a result, we would expect that the cost for these preemptions
may cause the policies to perform worse than the other policies that only preempt processes
when new jobs arrive to the system.

Preemption results in two types of overhead. The first is operating system overhead for
the context switch. The second is overhead for rebuilding process cache working sets when
processes are rescheduled. When a process is rescheduled it is often rescheduled on a pro-
cessor different from the one on which it last ran. The process must then rebuild the cache
working set. Even if rescheduled on the same processor, some portion of the process’ work-
ing set entries are removed by intervening processes. Earlier work has implied that the cost
for rebuilding cache entries may be more important than other characteristics of a schedul-
ing policy. Tucker and Gupta state that the performance improvement seen for their policy
is most likely attributable to higher cache hit rates for their policy than in the round robin
process policy [TuGu 89]. Their policy also provides equal allocation per job and better sup-
port for inter-process synchronization. They do not provide any evidence as to how much
each of the three improvements is responsible for the resultant improvement in perfor-
mance.

This chapter has two goals. The first goal is to determine likely costs per preemption.
In section 7.1 we estimate the overhead per preemption through the use of a simple model.
The second goal of this chapter is to determine the importance of preemption frequency.
Our approach is to study the policies including preemption overhead for a wide range of
preemption overheads. In doing so we also determine the range of preemption overheads
for which the policies RRprocess, Cosched, and RRjob are feasible. Section 7.2 contains the
results from this study. Section 7.3 contains the conclusions from this chapter.

-90 -

91

7.1. Preemption Overhead Estimation

In this section we estimate the overhead cost per preemption. We divide preemption
overhead into two parts. The first part is the overhead for the context switch and schedul-
ing policy invocation. This overhead is machine dependent and usually 1% - 2% of a quan-
tum. The second part is the overhead for rebuilding a process’ cache entries once the pro-
cess is rescheduled. The overhead for rebuilding process cache working set can be
estimated as:

__&_/'xD
Q

Where:

W = The number of cache blocks in the process’ working set.
D = Delay for servicing a cache miss.
Q = Length of a quantum

This overhead can vary greatly depending on the values of the parameters. Typical or
specific values for the number of additional cache block misses resulting from preemption
are not known. We view the process cache working set size as the number of cache block
misses until the miss rate reaches steady state. In earlier work Agarwal et. al showed that
the rate of cold misses drops off after around 1000 - 2000 misses for a variety of uniproces-
sor programs including system references [AgHH 87] [AgHH 88] [Agar 89]. The decrease in
the rate of cold misses signifies the start of steady state. We hypothesize that if a process
finds none of its cache entries in the cache, the number of additional misses due to preemp-
tion, W, is approximately equal to the number of cache block misses needed to achieve
steady state. From Agarwal et. al's results we conclude that the number of additional cache
block misses due to preemption will be on the order of 1000 cache blocks.

The parameter @ would be determined by studying what value results in optimal per-
formance. Based on current multiprocessor quantum sizes, we hypothesize that likely
values would be around 0.1 to 1.0 seconds. The parameter D is dependent on the machine
architecture. For many architectures D is currently about ten times larger than the time to
service a cache hit. Thus for a ten MIPS processor D would be approximately 1 X 1078
seconds.

Figure 7.1 plots percent overhead per quantum versus the process working set size, W,
for 3 different values of D with Q set equal to 0.1 seconds. We see that when W is 3000 or
less percent preemption overhead is 6% or less. This leads us to conclude that the preemp-
tion overhead including operating system context switch overhead will likely be less than
10%. Other input parameters could be used to quickly estimate preemption overhead

92

18 .,

16 - G D5 x 1077
P premm—) T= U [0
e Bl +— D2x10°
T
[+
12]
¢
n
to10
Q
8 |
v
e
T 6
h
e
a 4]
d
2 4
0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Working Set Size (W)

Figure 7.1: Percent Preemption Overhead versus W, @ = 0.1 seconds

values for real systems.

7.2. Sensitivity of Policies to Preemption Penalty

In this section we explore how an increase in preemption penalty affects the relative
performance of the scheduling policies. We conduct experiments by varying the percent
preemption overhead. We define precent preemption overhead as the percent of a unit lost
for preemption overhead, where a unit is the length of the quantum for RRprocess. A 10%

preemption overhead means that when a process is scheduled on a processor, —1% of a unit

is wasted. The percent preemption overhead is equal to the amount of time for the context
switch plus the amount of time to rebuild process cache entries upon rescheduling the

93

preempted process. Section 7.1 suggests that the preemption overhead may be less than
10%.

We consider the five policies FCFS, SNPF, RRprocess, RRjob, and EqualDP. We omit
PSCDF because the policy is not a practical policy to implement. We omit Cosched because
the policy results in the same number of preemptions as RRprocess, hence the effect of the
preemption overhead on Cosched will be the same as the effect of the preemption overhead
on RRprocess. We omit the UnequalDP and PSNPF policies because like EqualDP they only
preempt processes when new jobs enter the system, hence the effect of the preemption over-
head on PSNPF and UnequalDP is the same as the effect of the preemption overhead on
EqualDP. We omit the foreground-background policies because they will result in at most
one more preemption per job than in their non foreground-background counterparts, there-
fore the preemption overhead will have a similar effect on them as their non foreground-
background counterparts.

Figures 7.2, 7.3, and 7.4 plot mean response time versus percent preemption overhead
for the uncorrelated geometric-bounded workload for offered utilizations of 50%, 70%, and
90% respectively. Actual system utilization increases as the percent preemption overhead
increases. The policies RRprocess and RRjob are adversely affected by an increase in
preemption overhead, yet both RRjob and RRprocess have a lower mean response time than
SNPF and FCFS for preemption overheads less than 10%. The RRprocess and RRjob poli-
cies become more sensitive to preemption overhead as the system utilization increases.
This is because there are more preemptions at higher utilizations since there are fewer
times where there are not any processes waiting for service. Note that in figure 7.4 EqualDP
performs worse that RRprocess and RRjob at small preemption overhead values due to load
queue effects.

The policy RRjob degrades more slowly than RRprocess because RRjob’s average quan-
tum size is larger, resulting in fewer preemptions. Tables 7.1 and 7.2 contain the percent
increase in response time for different percent preemption overhead values compared to the
response time at a 1% preemption overhead for the RRjob and RRprocess policies respec-
tively. We see that the mean response time of RRjob increases by less than 10% with a
preemption overhead of 10% and offered utilizations of 50% and 70%. RRjob appears to be
an acceptable policy for preemption overhead values of up to 10%.

Figures 7.5 and 7.6 plot mean response time versus percent preemption overhead for
the correlated geometric-bounded workload with offered utilizations of 50% and 70%
respectively. The qualitative performance for the correlated workload is the same as the
uncorrelated workload.

140.1
M 120]
e L - R i s — £)
a
" 100
R
[
80 J
8
P
o === o @ M v
n 60
s
€
s4————da FCFS
, 04 o———a SNPF
i +——% RRprocess
m a———=a& RRjob
e 24 e——— EqualDP
0 T ¥ ¥ ¥) 1
0 5 10 15 20 25 30
Percent Premmption Overhead
P, f Cn d Cq
Input 0.4 4.0 200.0 5.0
Output 10.37 0.79 197.5 4.96

Figure 7.2: Effect of Preemption Overhead, Uncorrelated
Utilization = 50%

94

400

95

]
4———a RCFS
30| 8 SNPF
M »——% RRprocess
e 320 | " B RR]Ob
a —————= EqualDP
n
R
[+
8
p
(o]
n
S
e
T
i
m
e
40
O 1 T L] 1 1
0 5 10 15 20 30
Percent Preemption Overhead
P, n Cn d Ca
Input 0.4 4.0 200.0 5.0
Qutput 10.37 0.79 197.5 4.96

Figure 7.3: Effect of Preemption Overhead, Uncorrelated

Utilization = 70%

@ w B3 0 "W w o X

1500 .,

1350 J

1200 J

1050 J

900 .

750

450

300 J

150 4

10

15

20

Perecent Preemption Overhead

Pp

n

Cr

d

Ca

Input

04

4.0

200.0

5.0

Output

10.37

0.79

197.5

4.96

Figure 7.4: Effect of Preemption Overhead, Uncorrelated

Utilization = 90%

96

Table 7.1: Percent Increase in Response Time for RRprocess
Uncorrelated Workload

Percent Preemption Overhead

Offered Utilization 5% 10% 15% 20% 30%
50% 3 8 13 21 46
70% 7 20 41 75 575
90% 33 197 796
Table 7.2: Percent Increase in Response Time for RRjob

Uncorrelated Workload
Percent Preemption Overhead

Offered Utilization 5% 10% 15% 20% 30%
50% 1 3 5 8 16
70% 3 9 15 25 59
90% 14 47 110

97

240

1 N N N N - —a
210 |
M
€
a
180
n B— e o e G —8
R 150 .
e b FCFS
8 g8 SNPF
P 120 #—% RRprocess
z =———= RRjob
s o————= EqualDP
90
[
T
i
m
€
0 L) T 1 ¥ 1 1
0.0 5.0 10.0 15.0 20.0 25.0 30.0
Percent Preemption Overhead
P, n Cn d Ca C, t
Input 0.4 4.0 5.0 20.0
Output 10.36 | 0.79 | 210.0 | 6.48

Figure 7.5: Effect of Preemption Overhead, Correlated
Utilization = 50%

98

99

800 .,
4——b FCFS
g8 SNPF
01— RRprocess
. M == RRjob
: 6404 +——— EqualDP
n
R
e
s
P
[+
n
s
e
T
i
m
e
0 ¥ 1 1 L] 1]
0.0 5.0 10.0 15.0 20.0 25.0 30.0
Percent Preemption Overhead
P, n Cn d Cq Cy t
Input 0.4 4.0 5.0 20.0
Output 10.36 | 0.79 | 210.0 | 6.48

Figure 7.6: Effect of Preemption Overhead, Correlated
Utilization = 70%

7.3. Conclusion

We have shown that the policies RRprocess and RRjob perform better than FCFS and
SNPF if the penalty per preemption is 10% or less. This implies that the additional overhead
for time slicing preemption caused by cache misses is less significant than ramifications of
not allocating each job competing for service a fraction of the processing power. We have
shown that the performance of RRjob becomes worse relative to the performance of EqualDP
as preemption overhead increases. This implies that preemption overhead is an important

100

characteristic of a scheduling policy if the policies being compared allocate processing
power equally well.

CHAPTER 8

Conclusions

8.1. Summary

We have identified three characteristics of general purpose multiprogrammed multipro-
cessor scheduling policies that are important to their resultant performance. These three
characteristics are:

1) How the policy allocates processing power among the jobs competing for service.
2) How the policy supports interprocess synchronization.
3) How frequently the policy preempts processes.

To gain insight into the relative importance of these three characteristics we have studied
twelve scheduling policies.

We have found that under a variety of workloads, the first characteristic is at least as
jmportant as the other two. In particular, we have found that in the absence of accurate job
demand knowledge, policies should allocate a fraction of processing power to each job in the
system. The policies that allocate a fraction of processing power to each job provide good
service to jobs with small demands, which results in smaller mean job response times. In
chapter 4 we demonstrate that for many workloads with a system utilization of 70%, poli-
cies that do not allocate a fraction of processing power to each job, such as FCFS, SNPF,
and PSNPF, result in mean job response times 2 - 8 times larger than policies that do allo-
cate a fraction of processing power to each job. Our results contradict and correct earlier
work that concluded that the policies SNPF and PSNPF perform well.

In addition to providing each job with a fraction of the processing power, we propose
that each job be allocated an equal fraction of the processing power. In chapter 5 we demon-
strated that when job demand is correlated with the number of processes per job the poli-
cies that do not allocate processing power equally per process result in a mean job response
time 10% - 50% larger than policies that do allocate processing power equally per job. The
difference in response times is less significant when job demand is not correlated with the

- 101 -

102

number of processes per job.

Scheduling policies may provide a fraction of processing power to each job either tem-
porally (i.e. by time slicing) or spatially (i.e. by dividing the processor among the jobs). The
major difference between these two approaches is the resultant preemption frequency. The
time slicing policies exhibit a much higher frequency of preemption. Each preemption
results in overhead for the operating system context switch plus the time to service extra
cache misses for rebuilding a process’ cache working set once a descheduled process is
rescheduled. In chapter 7 we used a simple model to conclude that the overhead cost per
preemption is likely to be 10% of a quantum or less. For preemption overhead values of
10% or less we have found temporal division of processing power (i.e. RRjob) is competitive
with spatial division of processing power (i.e. EqualDP)

In chapter 6 we have found that the importance of supporting inter-process synchroni-
zation depends on the type and frequency of the synchronization. Explicit support for
spin-lock synchronization is not necessary as long as processes holding locks can not be
descheduled for long periods of time. As a result spin-lock synchronization does not affect
the relative performance of the polices for reasonable workload parameters. Explicit support
for barrier synchronization is beneficial when there is frequent synchronization, although
based on estimates from today’s multiprocessors, the frequency of synchronization where it
becomes important to provide explicit support for inter-process synchronization is higher
than may be found in a real systems. Application level scheduling results in the best per-
formance, but coscheduling is better than no explicit support for inter-process synchroniza-
tion. If application level scheduling is included in a policy, we have found that a high
degree of coscheduling actually degrades performance when there is barrier synchroniza-
tion.

Of the policies studied, RRjob and EqualDP have been shown to be the most promis-
ing. Both policies provide equal allocation per job, resulting in almost identical performance
for most workloads with no synchronization. The choice between these two policies
depends the availability of an application level scheduler. Developing an application
scheduler is a non-trivial task. The cost of developing and maintaining (or porting) an
application level scheduler may lead system designers to not include an application level
scheduler. In the absence of an application level scheduler, EqualDP with out time slicing
processes within a job performs poorly in the presence of inter-process synchronization.
Hence, RRjob would be a better choice for implementation. If all jobs do use application
level scheduling, then EqualDP would be preferable since EqualDP has a much lower
preemption frequency than RRjob, and better supports interprocess synchronization.

8.2. Future Research Directions

In these section we list several possible directions for future work.

103

1) Multi-level Queues.

Further work needs to be done in considering multi-level queues. First, more work
should be done on the effects of two level queues. We have not considered the effect
of two level queues for all the policies. Adding multi-level queues to the other poli-
cies will likely decrease the difference in performance of the policies studied. In par-
ticular, UnequalDP may rival EqualDP if both policies have multi-level queues.
Second, multi-level queues with more levels should be considered. One reason to
consider multi-level queues is that they decrease the preemption rate, hence
processes remain on processors for longer periods of time. Another reason to con-
sider multi-level queues is that we expect they will eliminate the poor performance of
EqualDP and UnequalDP seen at high loads due to only allowing 20 active jobs at a
time.

2) Workload Characterization.

Currently there are no measurement studies of general purpose multiprogrammed
multiprocessor to draw upon for characterizing workloads. A good understanding of
actual workloads would be beneficial in determining what issues are most impor-
tant. Parameters of especial interest are: the number of processes per job, the
demand per job, the demand per process, the I/0O behavior of processes, the working
set size of processes, and the optimal size of the quantum for time slicing policies.

3) Importance of Preemption Frequency

For today’s working set and quantum sizes it appears that time slicing is a competi-
tive approach. It is important to further investigate the amount of time processes
need to spend on a processor relative to the process working set size in order for
time slicing to remain a competitive approach. In addition to the working set and
quantum size, the amount of time to service a cache miss needs to be considered.
We anticipate that this parameter will increase as processors become faster. If the
cost for moving processes becomes too high, time slicing will not be feasible.

4) Study the effect of I/0.

How the inclusion of 1/0 will affect these multiprocessor scheduling policies is not
known. It is possible that I/O requirements may limit the utility of policies that
include application level schedulers. In addition, frequent I/O would result in more
frequent context switches, and hence decrease the advantages of dynamic partition-
ing polices in regards to preemption overhead. Virtual memory may also impact the
utility of certain policies. Thrashing may result if the scheduling policy does not
consider virtual memory needs.

5) Scheduling for large scale systems.

104

Systems with thousands of processors may become a reality in the near future. For
such large scale multiprocessors the scheduling issues may be significantly dif-
ferent. First, a single centralized ready queue may not be viable. The contention for
the lock on the queue could become a bottle neck [LiCh 89]. Second, such large
scale multiprocessors have distributed memory for the processors. This may neces-
sitate keeping processes on a specific processors during their entire execution.

6) Analytical Models.

Analytical models may be able to provide some additional insight into the problem of
multiprocessor scheduling. To date analytical modeling of multiprocessor schedul-
ing has only meet with limited success. It is difficult to capture the parallelism and
synchronization of real multiprocessor system in a tractable analytical model. New
models are necessary in order to deal with the difficulty of the problem.

Bibliography

[Agar 87] Agarwal, A., "Analysis of Cache Performance for Operating Systems and Multipro-
gramming," Ph.D. Thesis, Technical Report No. CSL-TR-87-332, Computer Sys-
tems Laboratory, Department of Electrical Engineering, Stanford University, May
1987.

[AgHH 88lAgarwal, A., Horowitz, M., Hennessy, J., "Cache Performance of Operating System
and Multiprogramming Workloads," ACM Transactions on Computer Systems,
Vol. 6, Number 4, November 1988, pp. 393-431.

[AgHH 89]Agarwal, A., Horowitz, M., Hennessy, J., "An Analytical Cache Model,” ACM Tran-
sactions on Computer Systems, Vol. 7, Number 2, May 1989, pp. 184-215.

[AnLL 89] Anderson, T.E., Lazowska, E.D., Levy, H.M., "The Performance Implications of
Thread Management Alternatives for Shared-Memory Multiprocessors,” Proceed-
ings of the ACM SIGMETRICS and Performance 89 joint Conference on Measure-
ment and Modeling of Computer Systems, Berkeley, CA, May 23-26, 1989.

[BeLL 88] Bershad, B.N., Lazowska, E.D., Levy, H.M., "PRESTO: A System for Object-
Oriented Parallel Programming," Software: Practice and Experience 18,8, August
1988, pp. 713-732.

[Doep 87] Doeppner, T.W., "Threads: A System for the Support of Concurrent Program-
ming," Technical Report CS-87-11, Department of Computer Science, Brown
University, 1987.

[EaZL 89] Eager, D.L, Zahorjan, J., Lazowska, E.D., "Speedup Versus Efficiency in Parallel
Systems," LE.E.E. Transactions on Computers, March, 1989, pp. 408-423.

[GaFF 89] Garcia, A., Foster, D., Freitas, R., "The Advanced Computing Environment Mul-
tiprocessor Workstation,” Research Report RC-14419, IBM Research Division,
March 1989.

[GaJo 79] Garey, M.R., Johnson, D.S., "Computers and Intractability, A Guide to the Theory
of NP-Completeness,” W.H. Freeman and Company, 1979, pp. 238.

[Gust 88] Gustafson, J.L., "Reevaluating Amdahl's Law," Communications of the ACM, May
1988.

- 105 -

106

[Koba 78] Kobayashi, "Modeling and Analysis," Addison-Wesley, 1978.

[Klei 76] Kleinrock, L., Queueing Systems, Vol. II: Computer Applications, John Wiley and
Sons, 1976.

[KrWe 85] Kruskal, C.P., Weiss, A., "Allocating Independent Subtasks on Parallel Proces-
sors,"” IEEE Transactions on Software Engineering, October 1985, pp. 1001-1016.

[LeVe 90] Leutenegger, S.T, Vernon, M.K., "Multiprogrammed Multiprocessor Scheduling
Policies," Proceedings of the ACM SIGMETRICS 1990 Conference on Measure-
ment and Modeling of Computer Systems, Boulder, CO, May 22-25, 1990.

[LICh 89] Lionel, M.Ni., Ching-Farn, E.WU, "Design Tradeoffs for Process Scheduling in
Shared Memory Multiprocessor Systems,” IEEE Transactions on Software
Engineering, March 1989, pp. 327-334.

[Livn 88] Livny, M., DeNet User's Guide, Version 1.0, Computer Sciences Department,
University of Wisconsin, Madison, 1988.

[LoTh 88] Lovett, T., Thakkar, S., "The Symmetry Multiprocessor System," Proceedings of
the 1988 International Conference on Parallel Processing, August, 1988.

[Maju 88] Majumdar, S., "Processor Scheduling in Multiprogrammed Parallel Systems,"
Ph.D. Thesis, Research Report #88-6, Department of Computational Science,
Saskatoon, Saskatchewan, Canada, April 1988.

[MaEa 89]Majumdar, S., Eager, D., Private communications, 1989.

[MaEB 88]
Majumdar, S., Eager, D., Bunt, R, "Scheduling in Multiprogrammed Parallel Sys-
tems," Proceedings of the ACM SIGMETRICS 1988 Conference on Measurement
and Modeling of Computer Systems, Santa Fe, NM, May 24-27, 1988, pp. 104-
113.

[NeTa 88] Nelson, R., Tantawi, A.N., "Approximate Analysis of Fork/Join Synchronization in
Parallel Queues," IEEE Transactions on Computers, June, 1988, pp. 739-743.

[NeTT 88] Nelson, R., Towsley, D., Tantawi, A.N., "Performance Analysis of Parallel Process-
ing Systems," IEEE Transactions on Software Engineering, April 1988, pp. 532-
540.

[Nels 90] Nelson, R., "A Performance Evaluation of a General Parallel Processing Model,"
Proceedings of the ACM SIGMETRICS 1990 Conference on Measurement and
Modeling of Computer Systems, Boulder, CO, May 22-25, 1990.

[NeTo 90] Nelson, R., Towsley, D., "A Performance Evaluation of a Several Priority Policies
for Parallel Processing Systems," Preprint, 1990.

[Oust 82] Ousterhout, J., "Scheduling Techniques for Concurrent Systems," Proceedings of
the Distributed Computing Systems Conference, 1982, pp. 22-30.

107

[Shra 68] Shrage, Linus, "A Proof of the Optimality of the Shortest Remaining Processing
Time Discipline,” Operations Research, 1968, pp. 687-690.

[SaCh 81] Sauer, C.H., Chandy, K.M., "Computer System Performance Modeling", Prentice-
Hall, 1981, page 16.

[SeSt 89] Seager, M., Stichnoth, J., "Simulating the Scheduling of Parallel Supercomputer
Applications,"” Preprint UCRL-102059, Lawerence Livermore National Laboratory,
September 19, 1989.

[Seve 89] Sevcik, K., "Characterizations of Parallelism in Applications and Their Use In
Scheduling," Proceedings of the ACM SIGMETRICS 1989 Conference on Measure-
ment and Modeling of Computer Systems, Berkeley, CA, May 23-26, 1989, pp.
171-180.

[SqLa 90] Squillante, M., Lazowska, E., "Using Processor-Cache Affinity Information in
Shared-Memory Multiprocessor Scheduling,” Technical Report, Department of
Computer Science, University of Washington, Seattle, 1990.

[TaSS 88] Thacker, C.P., Stewart, L.C., Satterthwaite, E.H., "Firefly: A Multiprocessor
Workstation,” IEEE Transactions on Computers, August, 1988, pp. 909-920.

[ToRS 90] Towsley, D, Rommel, C.G., Stankovic, J.A., "Analysis of Fork-Join Program
Response Times on Multiprocessors,” IEEE Transactions on Parallel and Distri-
buted Systems, July, 1990, pp. 286-303.

[TuGu 89]Tucker, A., and Gupta, A., "Process Control and Scheduling Issues for Multipro-
grammed Shared-Memory Multiprocessors," Proceedings of the 12th ACM Sym-
posium on Operating System Principles, December 1989.

[ZaLE 88)] Zahorjan, J., Lazowska, E.D., Eager, D.L., "Spinning Versus Blocking in Parallel
Systems with Uncertainty,” Proceedings of the International Seminar on Perfor-
mance of Distributed and Parallel Systems, Kyoto Japan, December 7-11, 1988,
pp. 445-462.

[ZaLE 89] Zahorjan, J., Lazowska, E.D., Eager, D.L., "The Effect of Scheduling Discipline on
Spin Overhead in Shared Memory Parallel Systems,” Technical Report 89-07-03,
Department of Computer Science, University of Washington, Seattle, July 1989.

[ZaMc 90] Zahorjan, J., McCann, C., "Processor Scheduling in Shared Memory Multiproces-
sors," Proceedings of the ACM SIGMETRICS 1990 Conference on Measurement
and Modeling of Computer Systems, Boulder, CO, May 22-25, 1990.

