THE COMPLEXITY OF THE MAX WORD PROBLEM
AND THE POWER OF ONE-WAY INTERACTIVE
PROOF SYSTEMS
by

Anne Condon
Computer Sciences Technical Report #952

July 1990

The Complexity of the Max Word Problem

and the Power of One-way Interactive Proof Systems

Anne Condon *
Computer Science Department
University of Wisconsin-Madison

July 25, 1990

Abstract

We study the complexity of the max word problem for matrices, a variation of the well-known
word problem for matrices. We show that the problem is NP-complete, and cannot be approximated
within any constant factor, unless P = NP. We describe applications of this result to probabilistic
finite state automata, rational series and k-regular sequences. Our proof is novel in that it employs
the theory of interactive proof systems, rather than a standard reduction argument. As another
consequence of our results, we characterize NP exactly in terms of one-wayinteractive proof systems.

1 Introduction

We study the maz word problem for matrices, defined as follows. Given a finite set of m x m matrices,
two m-vectors, v and w, a bound ¢ and an integer k, is there a way to select a sequence of & matrices
My, ..., My (not necessarily distinct) from the set in such a way that the product vM; ... My wl > ¢?
We assume that all entries of the matrices and the vectors, as well as the bound ¢, are rational numbers
expressed in binary and that k is an integer, expressed in unary notation. We describe applications of
the max word problem in the theory of probabilistic finite state automata, rational series and k-regular
sequences. We show that the max word problem for matrices is NP-complete and furthermore, that the
corresponding optimization problem cannot be approximated within any constant factor, unless P = NP

The max word problem is easily seen to be in NP. Our proof that it is NP-complete is based on
properties of a special class of interactive proof systems that we call one-way interactive proof systems.
These are protocols between a prover and a probabilistic verifier, in which all communication is in one
direction, from the prover to the verifier. The verifier is computationally limited and the prover’s goal
is to convince the verifier that a common input is in some language. We denote by oneway-IP(log,poly)
the class of languages accepted by one-way interactive proof systems where the verifier uses only log
space and polynomial time.

We prove that the max word problem for matrices is NP-complete by showing that (1) any language
in NP is in the class oneway-IP(log,poly) and (ii) any language in the class oneway-IP(log,poly) is
polynomial time many-one reducible to the max word problem. An additional consequence of these

*Work supported by NSF grant number DCR-8402565

results is that NP = oneway-IP(log,poly), giving a nice characterization of the class NP in terms of
interactive proof systems.

In the rest of this section, we describe applications of the max word problem and outline the necessary
background on interactive proof systems needed for the proof of the main result. We prove that the
max word problem is NP-complete in Section 2 and also that NP = oneway-IP(log,poly). In Section
3 we show that an optimization version of the max word problem cannot be approximated within any
constant factor, unless P = NP.

1.1 Applications and Related Work

An instance of the max word problem for matrices is a tuple (S, v,w, k,¢), where S is a set of m x m
matrices, v and w are m-vectors, k is an integer and c¢ is a constant. We assume that all entries of the
matrices and the vectors, as well as the bound ¢, are rational numbers expressed in binary and that
k is an integer, expressed in unary notation. The instance is a “yes-instance” if there a way to select
a sequence of k matrices Ay, ..., My (not necessarily distinct) from S in such a way that the product
oM .. MpwT is greater than c.

The max word problem for matrices is a variation of the well-studied word problem for matrices,
which is to determine if the product of a given list of matrices equals the identity matrix. Lipton and
Zalcstein [6] showed that the word problem for matrices is in log space. They point out that the word
problem for groups — the problem of deciding whether or not a product of group elements equals the
identity element — is undecidable, a result proved by Novikov and Boone (see [9], Chapter 12). The max
word problem is also a restriction of the following problem: given a finite set of matrices, two vectors, v
and w and a bound ¢, is there some number k and matrices My, ..., M}, in the set, so that the product
oM ... MpwT is greater than ¢? This problem is actually undecidable; see Salomaa and Soittola ([10],
Theorem 11.12.1), for one proof.

We describe three applications of the NP-completeness of the max word problem for matrices in the
theory of probabilistic finite state automata, rational series and k-regular sequences.

We consider probabilistic finite state automata (pfa’s) with rational transition probabilities, as defined
in Paz [7] - we describe the model in detail in Section 2. Suppose we define the k-empliness problem
for pfa’s as follows. Given a pfa and a number k, expressed in unary notation, does the pfa reject every
string of length < £? By a simple reduction from the max word problem, we prove that the k-emptiness
problem for pfa’s is co-NP-complete.

This result also has implications for the complexity of the emptiness problem for pfa’s with bounded
error. Bounded error pfa’s are those for which the probability that any string is accepted is hounded
away from 1/2 by some constant. Rabin [8] showed that bounded error pfa’s accept exactly the regular
languages. He proved this by showing that for any bounded error pfa with ¢ states, there is an equivalent
deterministic finite state automaton with k = 29(9) states. Thus the pfa accepts some input if and only
if it accepts an input of length at most &, and hence the emptiness problem for pfa’s with bounded error
can be decided by reduction to the k-emptiness problem for pfa’s. We know of no more efficient decision

procedure for the emptiness problem for pfa’s with bounded error.

The second area in which the max word problem arises is in the study of rafional series, a special class
of formal power series. Salomaa and Soittola develop the theory in [10] and describe many applications
to problems in automata theory, such as finding the density of regular languages or closure properties

of pfa’s. For an alphabet X and a semi-ring A, a formal power series is a map ¢ from ¥ into A. It is
written as o =)~ .. o(z)x. For concreteness, we suppose that A is the set of integers in this paper.
The family of rational power series over the integers is a subclass of the class of formal power series and
can be characterized in a number of ways, one in terms of matrices. The power series o is ralional, or
equivalently, admils ¢ matric representation if there is an integer m > 1 and a map g from ¥ into the
family of m x m matrices with integer entries, such that for all non-empty strings ¢ = zy ...z, where
each x; € I, o(x) is the (1, n)th entry of the matrix product p(zy) ... u(zy).

There is a close relationship between rational series and regular languages. In fact, a language L is
regular if and only if L = {& € £* | ¢(x) # 0}, where o is a rational power series that admits a matrix
representation where the matrix entries are non-negative integers. Rational series generalize regular
languages in a natural way: a language assigns a 0-1 value to each string in ©*, depending on whether
the string is in L, whereas a rational series o assigns a number, or multiplicily, o(z) to a string 2. Thus
rational series can be thought of as regular languages with multiplicities. Again it follows easily from the
NP-completeness of the max word problem that the problem of finding strings of a rational series with
high multiplicities is NP-complete. That is, it is NP-complete to decide, given the matrix representation
of a rational series o for alphabet £, and integers k and ¢, if there is a string in ¥* of length < k& with
multiplicity > e.

Allouche and Shallit [1] studied sequences closely related to rational series, which they call k-regular
sequences. Think of the base k representation of a number n as a string over alphabet {xg,y,. ., xr_1},
with no leading zeroes and denote it by basez(n). Then a sequence S(n) is k-regular if and only if
> S(n)basei(n) is a rational series. Allouche and Shallit [1] list many natural examples of k-regular
sequences. Ior example, the numerators of the left endpoints of the Cantor set is 2-regular, as is the
sequence of numbers represented by the binary Gray code.

Consider the problem of finding local mazima of a k-regular sequence, that is, given a k-regular

sequence S(n), an integer j and an integer ¢, Is max S(n) > ¢? Again, using the max word
) 2i<n2it!

problem, we can show that the problem of finding local maxima of k-regular sequences, given their
matrix representation, is NP-complete.

1.2 Background on one-way interactive proof systems

In this section we introduce some background on interactive proof systems that we will need in the proofs
of Section 2. The model of an interactive proof system (IPS) was introduced by Goldwasser et al. [5]
In this paper, we describe a restricted class, called one-way interactive proof systems

A one-way IPS consists of a verifier and a prover. The verifier is a probabilistic Turing machine with
a 2-way, read-only input tape, a read-write work tape and a source of random bits {a coin). The states
of the verifier are partitioned into reading and communication states. In addition, the Turing machine is
augmented with a special communication cell that allows the prover to send information to the verifier.
A transition function describes the one-step transitions of the verifier in the usual way when the verifier
is in a reading state; there are two possible transitions each equally likely. Whenever the verifier is in
a communication state, the next configuration is determined as follows. The prover writes a symbol in
the communication cell, and, based on the state and the symbol written by the prover, the verifier’s
transition function defines the next state of the verifier.

The prover P is specified by a prover transition function, which is a function from inputs to strings
over the prover’s alphabet. For a fixed input x, the ith symbol in the string is the symbol written by

the prover the ith time the verifier enters a communication state on input z. Informally, we say that
the prover sends this string to the verifier. This definition guarantees that the ith symbol the prover
writes in the communication cell does not depend on the verifier’s computation, but only on the input
and 7. The IPS is one-way because the verifier never writes in the communication cell, and so never
communicates with the prover.

The pair (P, V) is a one-way interactive proof system for L with error probability e < 1/2 if

o for all z € L, the probability that (P, V) accepts z is > 1 — ¢,

o for all @ ¢ L, and all provers P*, the probability that (P*, V) rejects 2 is > 1 —e.

An interactive proof system (P, V) is s(n) space bounded if for all provers P*, the number of work
tape cells read or written by the verifier is O(s(n)), on any input of length n. Similarly, (P, V) is t(n)
time bounded if for all provers P*, the number of transitions of the verifier is O(¢(n)), on any input of
length n. We denote by oneway-IP(log,poly) the class of languages accepted by one-way interactive proof
systems that are simultaneously logn space bounded and poly(n) time bounded, for some polynomial
poly. If a language L is in the class oneway-IP(log,poly), then for any constant ¢, 0 < ¢ < 1/2, there is
a one-way IPS that accepts L with error probability €, which is logn space bounded and poly(n) time
bounded.

2 The max word problem and one-way interactive proof sys-
tems

In this section we show that any language in oneway-IP(log,poly) is polynomial time many-one reducible
to the max word problem for matrices. We also show that NP C oneway-IP(log,poly). The NP-
completeness of the max word problem follows from these two results.

Theorem 2.1 Let L be any language in oneway-IP(log,poly). Then L is polynomial time many-one
reducible to the maz word problem for mairices.

Proof: Suppose L is accepted by (P, V) that is logn space bounded and polynomial time bounded
and has error probability e. We use the following notation and assumptions in the proof. Let t(n) be
a polynomial bounding the running time of (P, V). Just as for Turing machines, a configuration of an
interactive proof system for a fixed input is a tuple containing an encoding of the work tape, the positions
of the tape heads on the input and work tapes, the state and the contents of the communication cell.
We call a configuration of (P, V) that contains a communication state or reading state a communication
configuration or reading configuration, respectively. Without loss of generality, we assume that the
number of configurations of (P, V) on z is 2m for some m which is polynomial in n, where m are
communication configurations and m are reading configurations. Assume that the initial configuration
and all accepting configurations are communication configurations. Let the prover’s alphabet be {a, b}.

Given any input , we construct an instance ({4, B}, v,w,k, ¢) of the max word problem as follows.
We first define the two m x m matrices A and B. For 1 < i,j < m, let p;jo be the probability of
reaching communication configuration j from communication configuration i of ¥V when the symbol a
has just been written by a prover in the communication cell. Note that this probability is completely
determined by =, 7, j, a and the transition function of V. Let A = [p;j,]. Define B = [p;;3] similarly,

replacing a everywhere by b. The vector v has all 0 entries except for the entry corresponding to the
initial configuration, which is 1, and the vector w has all 0 entries except for the positions corresponding
to accepting configurations, which have the entry 1. Finally, let £ = ¢(Ja]) and let c = 1 — €.

This reduction can be computed in polynomial time; in particular, all entries in A and B can be
written as rational numbers of the form p/q where p < ¢ < 2™+, The proof of this is very similar to
a proof of Gill ([4], Theorem 6.4) on the transition probabilities of logn space bounded probabilistic
Turing machines. The entry pija can be computed in the following way. Let C be an ordered set,
consisting of the reading configurations, plus the ith communication configuration, and let @ be the
(m+ 1) x (m + 1) probability transition matrix between these configurations, defined as follows. The
transition probabilities between reading configurations are given by the transition function of V. The
transition probabilities from 7 to the reading configurations are given by the transition function of V
from configuration 7, when the prover writes an « in the communication cell. Define the transition
probabilities from reading configurations to ¢ to be 0.

Let % be the (m + 1)-vector whose entries are the probabilities that j is the first communication
configuration reached from the configurations in C. In particular, the entry of & for configuration i
is pija. Then o satisfies the equation & = Qo + b, or equivalently, 2(/ — Q)% = 2b, where b is the
vector whose entries are the probabilities of reaching communication configuration j in 1 step from the
configurations of C. Moreover, 2(I — Q) is invertible, so by Cramer’s rule, each entry e of & can be
expressed as the quotient of two integers N./D where D is the determinant of 2(I — Q) and N, < D.
Also, it is straightforward to see from the definition of @ that each row of 2(I — Q) has a constant
number of non-zero entries, which are integers whose absolute values sum to at most 4. Using this fact
and expansion by minors, it can be shown by induction that the determinant of 2(I — @) is at most
27+ Thus p;j, can be written in the form p/q where p < ¢ < 27! and these entries can be computed
from @ and b in polynomial time.

To complete the proof, we show that (P, V) accepts « if and only if ({4, B}, v, w, k, ¢) is a yes-instance
of the max word problem. Fix any prover P*, and suppose P*(z) = a1 .. .oy € {a,b}*. Let X; = Aor B
if a; = a or b respectively, for 1 < i <t. Then the probability that the {th communication configuration
entered by (P*, V) is j is the (1, j)th entry of the product X; ... X;. This can be proved by induction
on . Hence the probability that (P*, V) accepts z is vX1 ... Xpw. If 2 € L, then (P, V) accepts 2 with
probability > 1 — ¢. Hence ({4, B}, v, w, k,c) i1s a yes-instance of the max word problem. However, if
x ¢ L, then for all provers P, the probability that (P*, V) accepts @ is < ¢ Hence ({4, B}, v, w. k,¢)
is not a yes-instance of the max word problem, as required. O

In the next theorem, we show that NP C oneway-IP(log,poly). The proof is a refinement of a proof of
Condon ([2], Theorem 2) that IP(poly) C IP(log,poly). Here IP(poly)and IP(log,poly)are the classes
of languages accepted by interactive proof systems, not necessarily one-way, that are polynomially time
bounded, and simultaneously polynomially time bounded and log space bounded, respectively. We give
a brief summary of the proof of the theorem; the details are similar to those of [2].

Theorem 2.2 NP C oneway-IP(log,poly)

Proof: Let L be in NP, and suppose that L is accepted by a nondeterministic Turing machine M,
with one worktape, which runs in time ¢(n). We construct a one-way IPS (P, V) that accepts L. The
idea of the construction is that on a fixed input z, the prover P repeatedly sends to V a computation
of M on z. V checks that on every repetition, the computation sent by the prover is a valid, accepting
computation, and in that case accepts z. Using only O(log n) space, the verifier cannot store the complete
computation in order to check that it is valid, but instead randomly chooses symbols to check.

Let « be an input of length n. A computation of M on 2 is a string moa;my ... a;m; My, Where
each m; is a configuration and my is the initial configuration. Each a; € {1, 2} and the a;th possible next
configuration from m;.1 is m;, according to the transition function of M. Since M has one worktape,
each configuration m; can be represented as a string ¢; ...cr_1 ¢ Ck ... Cy(n), Where ¢ is a state of M,
C1...Cy(n) Tepresents the contents of the worktape and the tape head is positioned on the kth tape cell.
Bach ¢; is either an input symbol, a worktape symbol or a special blank symbol.

The verifier V' checks that a string sent by the prover is the concatenation of dt(n) accepting com-
putations of M, where d is a constant. V can easily verify in O(logn) space that the string sent by
the prover is syniactically correct. That is, each computation is composed of ¢(n) + 1 configurations m;
separated by strings a; € {1,2}, that each m; has length t(n) + 1, that the first configuration is the
initial configuration of M on x and the last is an accepting configuration.

The verifier must also check that the a;th possible next configuration from m;_; is m;. To do this, IV
checks one symbol of each configuration. We say the kth symbol of m; is valid if it is consistent with the
symbols at positions k — 1,k, k+ 1 and k + 2 of configuration m;_, and a;, and the transition function
of M. To check that the kth symbol of m; is valid, where ¢ > 0, V stores on a tape the four symbols
numbered k — 1, &,k -+ 1,k + 2 of configuration m;._1, together with k and a;. In doing this, the verifier
uses Ologt(n)) space to store & and constant space to store a; and the four symbols. For each of the
computations sent by the prover, V randomly chooses a number £ in the range from 1 to ¢(n) + 1, and
checks the kth symbol in each configuration of that computation.

It is easy to see that if M accepts 2, then there is a prover P such that (P, V) accepts ¢ with
probability 1. Suppose that x is not accepted by M, and let P* be any prover. We show that (P~ V)
accepts z with probability at most 1/4. If the string P* sends to V' is not syntactically correct, then
(P*,V) rejects = with probability 1. Otherwise, on each of the dt(n) computations, some configuration
contains an invalid symbol. The probability that V' detects it is at least 1/(t(n) + 1). Hence the
probability that V accepts z is at most (1 — 1/(t(n) 4+ 1))%(). Choose d so that this quantity is at most
1/4. O

Corollaries 2.1 and 2.2 below follow immediately from the last two theorems.
Corollary 2.1 NP= oneway-IP(log,poly).

Proof: The direction NP C oneway-IP(log,poly) is proved in Theorem 2.2. To see that the other
direction holds, note that for any pair of languages Ly and L+, if L; is many-one reducible to Ly and
Ly € NP, then Ly € NP. From Theorem 2.1 every language in oneway-IP(log,poly)is many-one reducible
to the max word problem, which is in NP. O

Corollary 2.2 The maz word problem is NP-complete.

In fact, the theorems show that the max word problem is NP-complete even when the set of matrices
is restricted to 2 stochastic matrices, that is, the entries in each row of the matrices are nonnegative and
sum to 1.

To illustrate one application of the NP-completeness of the max word problem for matrices, we include
the proof that the k-emptiness problem for probabilistic finite state automata (pfa’s) is co-NP-complete

Corollary 2.3 The k-emptiness problem for probabilistic finite state auiomaia 1s co-NP-complede

Proof: We first describe our model of a probabilistic finite state automaton (pfa). A pfa is a finite
state automaton with a 1-way input tape with probabilistic transitions between states. That is, each

letter of the alphabet of the pfa corresponds to a probabilistic transition matrix of dimension ¢ x ¢,
where ¢ is the number of states of the pfa. The probability that a string @ = 2, ...2, is accepted is
oMy, .. ,]\/[wan, where M, is a matrix corresponding to the symbol z;, v is the vector with a 1 in the
position corresponding to the start vertex and 0’s everywhere else, and w is the vector with a 1 in each
position corresponding to a final state and 0’s everywhere else. Associated with a pfa is a cut point,
which is a rational number between 0 and 1, that determines the language accepted by the pfa as follows.
A string is in the language if and only if the probability that the pfa accepts that string is greater than
the cut point of the pfa.

To prove our result, we show how the max word problem can be reduced to the complement of the
k-emptiness problem. Let an instance of the max word problem be given by a finite set S of m x m
matrices, m-vectors v and w, an integer k& expressed in unary notation and a bound ¢. From the proof
of Theorem 2.1, we can assume that the set S consists of two stochastic matrices {4, B}, that 0 < ¢ < 1
and that v has only one non-zero entry. Then the states of the corresponding pfa are {1, .., m}, the
alphabet is {a,0} and the matrices A and B define the probability transitions of the pfa on a and b,
respectively. The cut point of the pfa is ¢. For any 1,1 < i < m, i is the initial state if the ith entry of
v is non-zero and 7 is a final state if the ith entry of w is non-zero. The resulting pfa accepts a string of
length < k if and only if the instance is a yes-instance of the max word problem. O

3 Approximation

The optimization (maximization) version of the max word problem for matrices is: given a finite set 5
of m x m matrices, two m-vectors, v and w, and an integer k, output the maximum of v, .. My w?,
for all choices of M; from S. We call this maximum, for an instance I of the max word optimization
problem, the solution of I and denote it by soln(I). In this section, we show that this optimization
problem cannot be approximated within any constant factor in polynomial time, unless P = NP. By
this we mean that for any constant C' > 1, there is no polynomial time algorithm that, given any instance
I of the max word optimization problem, outputs a value in the interval [soln(I)/C, Csoln(])].

Theorem 3.1 The max word oplimization problem for mairices cannot be approzimated within any
constant factor in polynomial time, unless P = NP.

Proof: Suppose that for some constant C' > 1 there is a polynomial time approximation algorithm
for the max word optimization problem. To prove the theorem, we show that under this assumption, if
L is any language in NP then L € P.

Let M be a one-way IPS for L with error probability e which is less than 1/(1+4 C?). From Theorem
2.1, given any instance @ of L, there is a polynomial time computable reduction {constructed using M)
that maps @ to an instance I, of the max word optimization problem. This reduction has the property
thatif # € L, then 1—e < soln(I;) < 1, whereas if & ¢ L then 0 < soln(l;) < e. Hence the approximation
algorithm A outputs a number in the interval [(1—¢)/C,1]if ¢ € L and in the interval [0, Ce], if « & L.
These intervals do not intersect, by our choice of €. Hence the output of the approximation algorithm
determines conclusively whether 2 € L. Also the algorithm runs in polynomial time. Hence . € P. O

4 Acknowledgement

Jeff Shallit introduced me to the max word problem and its applications. Thanks also to Jefl and to
Eric Bach for a careful review of an earlier draft of this paper. Their comments much improved the
presentation. ‘

References

[1] J.-P. Allouche and J. Shallit, The Ring of k-regular Sequences, Proceedings of the 7th Annual Sym-
posium on Theoretical Aspects of Computer Science, Springer-Verlag Lecture Notes in Computer
Science, Number 415 February 1990, pp 12-23.

[2] A. Condon, Space Bounded Probabilistic Game Automata, Proceedings of the Third Annual con-
ference on Structure in Complexity Theory, June 1988, pp 162-174. To appear in the Journal of the
Associaiion for Computing Machinery.

[3] A. Condon and R. J. Lipton, Upper Bounds on the Complexity of Space Bounded Interactive Proofs,
Technical Report 841, Computer Sciences Department, University of Wisconsin-Madison, April 1989,

[4] J. Gill, Computational Complexity of Probabilistic Turing Machines, SIAM Journal on Computing,
6, No. 4, 1977, pps 675-695.

[5] S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive proof systems,
Proceedings of 17th Symposium of the Theory of Computing (STOC), 1985, pp 291-304.

[6] R.J. Lipton and Y. Zalcstein, Word Problems Solvable in Logspace, Journal of the Association [or
Computing Machinery, 24, No. 3, July 1977, pp 522-526.

[7] A. Paz, Introduction 1o Probabilistic Automata, Academic Press, 1971.
[8] M. O. Rabin, Probabilistic Automata, Information and Conirol 6, 1963, pp 230-245.
[9] J. Rotman, The Theory of Groups: An Introduction. Allyn and Bacon, Boston, second ed., 1973.

[10] A. Salomaa and M. Soittola, Automata- Theoretic Aspects of Formal Power Series, Springer-Verlag,
1978.

