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Abstract

An interior proximal point algorithm for finding a solution of a lin-
ear program is presented. The distinguishing feature of this algorithm
is the addition of a quadratic proximal term to the linear objective
function. This perturbation has allowed us to obtain solutions with
better feasibility. Implementation of this algorithm shows that the
algorithm is competitive with MINOS 5.3 and other interior point
algorithms. We also establish global convergence and local linear con-
vergence of the algorithm.

1 Introduction

The method we are proposing is a modification of the logarithmic barrier
algorithm discussed in [Gill et al, 1986]. At each iteration, the logarithmic
penalty function is perturbed by a quadratic term, giving an algorithm that
is similar to the proximal point method except that instead of solving the
proximal point subproblem exactly, a single Newton step is taken. Adding
this quadratic perturbation to the logarithmic penalty function gives a better
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conditioned subproblem and this has enabled us to obtain solutions with
improved feasibility.
We consider linear program in the following standard form

mincz subject to x € 5 := {z|Az = b,z > 0} (1)

Here c is an n dimensional vector, A is an m by n matrix and b is an m
dimensional vector

Applying the proximal point algorithm to solve (1), one starts with an
initial feasible point &° and generates sequence {#F} such that

1 .= argming®(z) 2)
z€S
oF
where gk(g;) = ex -+ “"2_”37 _ ik“Q
o >0 (3)

The problem (2) is of course at least as hard to solve as the original
problem, but Rockafellar [Rockafellar, 1976] showed that (2) need not to be
solved exactly. If the following two conditions are satisfied

1#4 — argming*(2)]l < e (4)

iek < o0 (5)

then the sequence {2*} converges to z*, a solution of the original linear
problem (1).

To use an interior point approach, we move the nonnegativity constraints
from problem (2) to the objective function and obtain #*' by minimizing
the logarithmic barrier function

i1 = argmin F*(z) (6)
TES)
o* “
where F*(z) = cz+ 7”1 — )P =4S log z;
J=1

Sy = {z|Az = b}
and o 4% > 0
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For the algorithm proposed here, we do not attempt to get #**! as the
exact solution of problem (6), instead we get an approximation for it from
yet another problem which is quadratic. Given a strictly feasible point z* |
positive scalars of and 4*, we solve

min VF4)(x - o) + 2 (& — 25 V2 FHa) (o o) (7)

subjectto Az = b

where

VF*2) = c+af(z—2F) -+ X Te
ViFMa) = ofT+4F X2

where X := diag(z).
If we denote the solution of the above quadratic problem by Z* | the next
iterate is defined to be

okt = of 4 A (TR — 2F) (8)
where A\* is chosen such that the strict feasibility of z**! is ensured. We
call this algorithm the Interior Proximal Point (IPP) and describe it in
Section 2. The rest of the paper is organized as follows. In Section 3 we
give the convergence of the algorithm, in Section 4 we present computational
results from our implementation of the algorithm. In Section 4 we describe
a refinement technique for improving the accuracy of the optimal solutions
obtained by the algorithm. We give summary of the paper in Section 6.

2 Statement of the algorithm

Algorithm IPP:

e Initialization
We assumne that at the start of the algorithm 2° > 0 such that Az° = b
is known and a® > anin > 0 and ¥° > Y > 0 are given.

Set £ = 0.



o [terations
Solve the following quadratic minimization problem

1
mxinVFk(a:k)(m —z") + 5(:6 — 2F)VEF* (%) (2 — 2F)

subjectto Az =b

Denote the solution of this minimization problem by Z*.

1. Determine Az as follows

1 if >0
/\ma:c = . ¥ .
min;ej | === | otherwise
&5\ 257

where J := {j|a¥ — 7% > 0}
2. Update

= oF 4 \F (R — 2F)
where M\ = NAmaz, 0 < <1

o Termination
If some convergence criterion is satisfied, then Stop
Else
1. if &F > aynin, reduce the value of oF
2. If v¥ > ~pin, reduce the value of *
3. Setk:=k+1
4.

Go to Iterations

3 Convergence of IPP

(10)

(11)

We begin by stating the following lemmas that will be used in proving the

convergence of our algorithm.



Lemma 1 Let T be a solution of linear program (1) and for some v > 0 let
z(y) be the solution of

min cz — > logz; subject to Az =1b (12)
J=1
then
(c,z(y) =) < ny
Proof

Since x(vy) is the solution of problem (12), there exists u(vy) € IR™ such that
(z(7),u(y)) satisfies the following KKT conditions
c—7X(7)'e— Alu(y) = 0
Az(y) = b

where X () is a diagonal matrix with z(-y) as its diagonal. Consider the dual
of linear program (1)

max bu

subject to ¢ — Alu—v =

v
o

v
Let

2 = a(y)

u()
vt o= 1X(y)7e

IS
*
i

then (z*,u*,v*) is dual feasible, hence by duality

cx > bu”
= cz* — (u*, Az" — b) — v"z”
= ca* —ny
this completes proof of the lemma. O



Lemma 2 Lety € IR®

Lemma 3 Let 2z € IR®

Then

Proof

n

J=1

\

be such that ||y|| = B for some § € [0,1). Then

n oo i ﬂ2
3525 yf-z(l-m

j=11=2

j=11=2

1 n oo
52 2 sl
l il

§Z|yjl ZlJJ

1 & 1 : , .

3 Sl (since byl <9 <1 for all)
ﬂZ

2(1- )

(e,z) = n

z > 0
Clogz; <0
1=1

log ] ] =;

j=1

n log (m—————z'izl lj)
n

(By Geometric Mean < Arithmetic Mean)
0



To prove the convergence of the algorithm, we assume that the linear
problem is of the following form

min cz (13)
subject to

Az =

(ev:E) =
z > 0

There is no loss of generality in this, since every linear problem in standard
form (1) can be transformed into problem (13) (see for example [Dennis Jr.
et al, 1987]). We also assume that for the above linear program e is feasible

and that ¢ # 0.
Regarding this linear problem, we have the following lemmas.

Lemma 4 Let 2* be an iterate of the Algorithm IPP and let T be the possibly
nonpositive solution of quadratic problem (9). Define an ellipsoid

k
J

IL‘J'——QI
k

B(g) = {IZ( ) < 6%

Z;

for some B > 0. Let

) = ca~A* > logz;

J=1
v = pfF for some p* € (0,1]
and suppose that TF ¢ FE(0.25), then there exists a point 1 on the line
joining £ and T, is on the boundary of E(0.25), and f¥1(3*1) < f*(2*) -

2
Zlg,.),k —oF Hmk-f-l _ 1A“

Proof
Define #*t! as follows

#4 = ok 4 (B/0)(@* — a*) (19)



where

n =k 5\ 2
ﬁ2<5222(1§1$§>
J

=1 T

then #++1

E(B).
Since Z* is the solution of quadratic problem (9), there exists u* € R™
such that

is on the line joining z* and T*, and #**! lies on the boundary of

c— Y(XH) e+ (&F T + XY (E - 2b) - AT =0
or equivalently
= (XF) e H (@ T (XE) ) (3 ) (0 L (XH) ) (@~ A = 0
Multiplying both sides of the last equation by #¥*! — 2* and letting

FhHT _ gk

Y

y; = ok
J

k
J

gives
2
0 = (e —t) — 9t Sy +at e+ o
j=1
P+ (B - 2t (ab T A (X)) )
j=1

Since #**! is on the boundary of the ellipsoid E(B), it follows that ||y| =
B, B = 0.25. Rearranging terms in the last equation and substituting from
(14), we get

j=1
._..,Yk iy? - é_:é__é(ik—i-l . :Bk)(afl + 'yk(_Xk)—z)(fckH N .'L‘k)
=1

n T

2

k . k 2 k|| xk+1 k

S ST 31 ] ey
j=t1 J=1

8



Subtracting
n n
v S log #5 — 4 " log 2
j=1 i=1

from both sides of the previous relation gives

ekl — Rl Z log & P ) — (caF — Z loga:

n n ~k+1 - 2

< o (z TR (1- pk>21ogw“1) aill A

=1

]” n n gt — gk 2
< 9 (Zw—ny 2 log(1+ ~— ’>) = ot - o]

=1 i=1 =1 =}

(by Lemma 3) (p* € (0 1])
- (S-S5 ) ot o
J=1 i=2
< [ﬂz (1 - *‘(‘IE:ESN —af H:T;k“ — a;kuz (by Lemma 2) (B = 0.25)
hence f&+1(8541) < f¥(a*) — Lok — oF ”a”:k“ — mk|l2. O

Remark 5 Instead of B = 0.25, we can pick § = 0.3596 and mazimize the
expression in the square bracket above, but any f € (0,0.5) will also work for
our convergence proof.

Corollary 6 Let ¢ be the solution of quadratic problem (9) and suppose
that T € E(0.25), then

£ ER) < fEHah) - of ”le B kaZ

Proof

We consider the following 2 cases



1. T% = zF

We have

FHU () = fHab) = et -9y logTh — eaf +4F Y log 2t
i=1

7=1
= (¥ =71 log e}
J=1
< 0 (by definition of 4v**! and Lemma 3)

2. TF £ gt
If this is true, then there must exists ' € (0, 0.25) such that Z* lies on
the boundary of E(8') and

k1 (= ok Y RY 1 ;|| <<k : ||
fk-l» (xk)_fk(mk) < m_,yk(ﬁ) (1 _ M) —aF “mk mzk”

The proof is similar to that of Lemma 4. O

If a line search procedure is employed, we can establish the nonincreasing
property of the iterates by using the results of the above lemma and corollary.

Lemma 7 Suppose that z*+!

search procedure as follows

in the Algorithm IPP is computed using a line

S S )\k(-i;k B wk)
where

; . : 2 —k o _k L] 2
Aei=arg min  ffU(ef 4+ M@ - b)) 4+ oFA? “a:’” o lku
AE{0,Amasl

where Aoy is defined as in (10), then
2
fias ($k+1) _ j_.k(a:k) < —aF “$k+1 _ :r’”“

Proof
Let T8 be the solution of the quadratic problem (9) and consider the following
2 cases

10



1. = ¢ F£(0.25)
By Lemma 4, there exists #*+! on the boundary of E(0.25) such that

FEUET) < fR(eb) - of “jk-ﬂ _ $k”2

Let A* > 0 be such that #*1 = 2% + \*(@* — %), we have
PR 4 oF Ilmk+1 _ mknz
_ fk+l(fl,'k + )\k(jk _ .'EL)) + ak()\k)Q “-,I-:-L . .’I:k“2
< fk+1($k + S\k(?fk _ :LL)) + ak(:\k)2 ”5:"” . wkH2
(by definition of AF)
FEF(EHHY) 4 o “i"”’l . xkllz

< fH=h)

i

2. 7% € F(0.25)
By similar derivation as in case 1 above, we have

2
fk+1(37k+1) n ak ”wk-l-l . :LL“ < jk(xk)
This completes the proof. O
The following theorem establishes the convergence of the algorithm.

Theorem 8 Let T be the solution of linear program (13), and consider the
problem

min f(z) (15)
where f(z) = cx -7 logz;
j=1
subjectto Az = 0
(e,z) = n
z > 0

Suppose that the algorithm IPP is terminated only when v* < Ypmin = ¥ and
“3;"“ — 1’”” = 0, then the sequence {z*} generated by the algorithm applied

to the linear program (13) either terminates at or converges to z* which
solves problem (15) and ca* < ¢T + n7.

11



Proof
The algorithm terminates only when v¥ < 7 and z**! = 2*, and hence for
z* = z* ce* < ¢ + n¥ by Lemma 1. Suppose the algorithm does not

terminate. Then by Lemma 7 we have

k+1

F(a*) > F(a*) + o o+t — o (16)

The nonincreasing sequence {f(2*)} is bounded below by f(z*) and hence
converges. Since the sequences {\f} and {z*} lie in a compact set, they must
have accumulation points A* and z* respectively, and since of > apmin > 0,
from (16) we have

. .12
0 = lim ||2%t! — 2% H
J00
= lim(\Y)? l T — "
=00
= lim(\¥)? lim ”"L”J — "
j—roo J—roo

We either have

Case I : limj_o |79 — :c’.iH2 =0

or

Jase 11 : limj o (A9)2 =0

In the Case II, by definition of A% we have

0= <Vf(a:” + A (T — 2"), T — :L"J'> + 20t A9 T — 2t
Define diagonal matrices D and D* such that
i1
Dy = (’LLJ)
N -1
Dy, = <lim :L;j)
J—+00
for all k =1,2,3...,n. By letting j — oo we get
0 = lim <V7(xi1),i’i1 - CCij>
j—e0
= lim — <fi1 — 2% (a9 ] + 4 D*) (T — :ci’)>
j—00

12



Since the matrix o' I 4 v%.D~? is positive definite, we have

lim (Z9 — 2%) =0

J—roo

We have that Case IT implies Case I. From the KKT conditions for quadratic
problem (9), we must have

Y9 De + (o + 49 D)7 — 3) — Aud = 0
Az =0

where A" = [A! ¢] and §' = (0 n). As j — oo we have

c—-’?D’“e»—Ztu* =0
Az* = b

Hence (z*, u*) satisfies the KKT conditions for problem (15) and by Lemma
1 we have that cz* < ¢Z + n¥. Since all accumulation points of the bounded
sequence {z*} are equal to the unique solution of (15), it follows that {z*}
converges to a*, and this completes the proof of the theorem. O

The next lemma shows that if we have an iterate z* such that f(z¥) is
sufficiently close to the minimum value of problem (15) then the solution of
quadratic problem (9) is strictly feasible.

Lemma 9 Suppose for some k, 2F satisfies the following

Fleh) - (o) < =7 (7)

where ©* is the solution of (15), then TF which is the solution of the quadratic
problem (9) is strictly feasible, that is T > 0.

Proof
Suppose Z* is not strictly feasible, then =¥ ¢ E(0.25). By Lemma 4 there
exists #¥*'on the boundary of £(0.25) such that
<k+1y F 1_
T - Tb) < -2
< @) - =)
which 1s a contradiction. 0

13



For local convergence of our algorithm, we use the results given in the
paper by Garcia Palomares and Mangasarian [Garcia Palomares & Mangasar-
lan, 1976]. In this paper they describe an algorithm that solves a nonlinear
program by successively solving quadratic problems which contain an esti-
mate of the Hessian of the original nonlinear problem. The nonlinear problem
that they consider is

min f(z) subject to g(z) <0 (18)

where f and ¢ are differentiable functions from IR® into IR and IR™ respec-
tively. And the quadratic problem that is solved at each iteration is

min  Vf("(z —2") + %(a: — z)G () (z — 2F) (19)

subject to g(a¥) - <\79($k)7$ - wk> =0

where 2* = (2* u*) and G(z*) is an approximation of V2L(2*), the n by n

Hessian with respect to z of the Lagrangian L(z) = f(z) + (u,g(z)). Let
z = (T,u) be a point that satisfies the second order sufficiency conditions for
problem (18) and suppose that G(z*) satisfies the conditions

G(z") - V2L(H)| < 05

3 —\—
7= [eer]
where the function A(z) : R*™ to IR™™ defined as

Vf(z)+ Vg(z)u

h(z):= ulg?(x)

UmGm ()

If for the entire algorithm, a step size equal to one is taken (i.e. (z*+1,u*+1)
is equal to the solution of the quadratic problem (19), if the starting point
is sufficiently close to the solution point, if the second order sufficient condi-
tions are satisfied at this solution point, if the active constraints are linearly
independent and if the multipliers associated with them are positive, then
the algorithm converges locally with a linear rate.

By using their result, we have the following local linear convergence result
for our algorithm.

14



Theorem 10 Suppose the rows of the matriz A and the vector e that form
the equality constraints of problem (13) are linearly independent, and suppose
that when z* is sufficiently close to the solution point of problem (15) (that is,
if (17) is satisfied) no line search is done in the algorithm, that is z*+? k,

If & — apin and apin < T%E where 3 is the constant defined below, then

{2*} converges to z* with a linear rate and z* solves problem (15).

Proof
Since we only have equality constraints, define function d(z,u) as follows

d(z,u) = ( v?%;)__?u )

=T

where A' = [A! €], b = (0! n) and f(z) is defined in problem (15). Let
Z = (TW,T) be a point that satisfies the second order sufficiency conditions
for problem (15). The linear independence of the rows of A ensures that
V.d(Z,u) is nonsingular (see [McCormick, 1982]), hence we can define g to
be

§i= 2 |V.i@m)|

In our algorithm, we have

G(zF) - VzL(zk)“ ="

Since o is decreased at each iteration, for sufficiently large k, we must have

1
< min < —
= Gmin = 108

oF

and by Theorem 3.1 [Garcia Palomares & Mangasarian, 1976], the linear

convergence property of Algorithm IPP follows. 0O

Finally, we state the following lemma and proposition to show that the
solution of problem (15) is bounded away from zero.

Lemma 11 Lety > 0 and let i € {1,2,...,n}. Then there exists 6; > 0 such
that

0 <z, <6
Az =0 -
(e,) = n >:¢c:c—7z:110g:vj > ce
J=
z >0

15



Proof
Suppose not, then there exist sequences {6¥} | 0, such that {z*} > 0, <e, a:k> =
n, Az* =0, 0 < 2¥ < 6F and

ca® —~ > log a:;‘ < ce (20)

=1

Let k& — oo and let T be an accumulation point of {z*} such that Z; = 0
(note that I # 0 because Z; = 0), we get the contradiction

o0 = i}jjl;_fyZlogTj < ce~c§+7210gfj < o0

jel jel
O
Proposition 12 Let v > 0 and assume that the point e € S, where
S = {z|Az =0, (e, z) = n}
The problem
min cz —v Y logz; (21)

j=1

il

subject to Az

(e,2)

T

n

0

Y

has a unique solution z(vy) > be for some § = 6(y) > 0.

Proof
The point e > 0 is feasible, by Lemma 11, taking ¢ := minj<i<n 6; > 0, we
have

n
x> be=cr—v)y logaz; <ce
i=1

Hence problem (21) is equivalent to the following problem

min cx — v Y log x; (22)

J=1

16



subject to Az =
(e,z) = n
z > de

Since this problem has a continuous objective function on a compact set, it
must have a solution satisfying its constraint = > de which also solves (21).
Uniqueness follows from the strict convexity of the objective function of (22)
in its feasible region.

Corollary 13 The same & works for all v bigger than the v given in the
above proposition.

Proof
Implication of Lemma 11 holds for all v greater than the one given, because
-7, logzk > 0. 0

4 Numerical results

The proximal minimization problem that we have at each iteration is
mmingk(m) subject to z € S := {z|Az = b,z > 0}

where
k

' a” : !
" (2) = ca + —;)-—]l:v —zF|? and o >0
In our implementation, the above problem is reformulated as the following
equivalent problem

mxinhk(a:) subject to z € S := {z|Az = b,z > 0}

where

hE(z) i= =|lz — 2* + Fe||? and € >0

D

The logarithmic penalty problems associated with h*(z) is

FH(z) = B (@) — 4+ 3 log z;

i=1

17



The gradient and Hessian of f*(z) are

Vi) = z—a*+fc—y"X e
VifH(a) = T+ X7

respectively. Note that the Hessian of h*(z) is independent of the proximal

parameter ¢*, while the Hessian of ¢*(z) which is dependent on the value of
k
ar,

The Newton direction p* at the kth iteration is the solution of the follow-

ing quadratic minimization problem
: 1 :
min gp + §pHp subject to Ap =0 (23)

where ¢ = Vf¥(a*) and H = V2f*(2*). The equality constraint Ap = 0
is included in the problem to guarantee that each iterates z* satisfies the
equality constraints Az = b. The Karush-KKuhn-Tucker conditions for the
above quadratic minimization problem are

g+ Hp—Au = 0
Ap = 0 (25)

Since H is an invertible diagonal matrix, we can solve equations (24) and
(25) by first solving the m by m linear system

AH At = AH g (26)

for u, and then compute

p=H (A —g) (27)

In our implementation, the linear system (26) is solved by using the Yale
Sparse Matrix Package [Eisenstat, 1977 & 1982].

An initial strictly feasible point for the algorithm is obtained by a Phase
I scheme similar to that described in [Gill et al, 1986]. The following are the
the starting values we use

208 >0
.7:9 = ”1)” if C; = 0
0.5|b]| otherwise

18



fori=1,2,...n and
0o _ 0
Tppy = ”b—Aax ”

The initial values of the interior penalty and the proximal point parameters
are as follows

0 { min(1.d +12,10002%,,) if 25,; > 1.d + 05

[ o=
0 Wi
T otherwise

L o=
At each iteration, the value of ¢ is updated
*+1 = min(1.d + 18, 6¢%)

The interior penalty parameter is updated every 3 iterations as follows

A = v*/1.0d1 if 2k, < 1.d2
7*%/1.2d0 otherwise

Phase I is terminated as soon as the value of the artificial variable z,41
becomes less than 1.d — 05.
For both Phase I and Phase II, 2'*! is computed as follows

2" = 2F 4 min{1,0.98) e }(EF* —- xk)

where TF is the solution of the quadratic minimization problem
min Ve —aF) + %(a: —2F)\V2fE (2 — )
subject to Az = b
and Aqz 15 the maximum value of A such that
e+ ANz - 2F) >0
At the start of Phase II, the value of interior penalty parameter used is
v° = min(max(||z|*,1.d4), 1.d12)
and the value of the proximal point parameter is

® = 5.d14°

19



If v¥ > ~pnin = 1.d02, then it is updated as follows

¥¥/1.0d1 if |(ca® — buF)/czF| < 1.d — 4
AR = AR/1.5d0 if |(czF — buF)/ca*®] < 1.d — 3
7v£/1.2d0 if |(ca® — buF)/cxF] < 1.d -1

The value of ¢ is updated
¢t = min(1.d + 24, 2¢")

Phase II is terminated if one of the following stopping conditions is sat-

isfied
[
k41 k
cx”™t — ez
L_ < 3.d-08
cx
and
b+l po k1
cx U
[ ]
k41 E+1
cx™ T — by
g <3.d—-08
[ ]
k1 ok
cx —CZ
- <1.d-09
cz

When one of the above stopping conditions is satisfied, an iterative scheme
to improve the feasibility of the solutions is employed. This is done by
guessing at the basis of an optimal solution of the linear program (1). This
refining procedure is due to Gay [Gay, 1989] and we shall describe it briefly
here.

Let us denote the solution obtained after the termination of IPP by z*.
Since the interior point algorithm will not allow any of the components of z*
to equal zero, we say that a7 is in the basis if and only if 27 > é for some
small 6 > 0. Let the set B be defined as B := {j|2} > 6}. If we assume that

20



the cardinality of B is equal to m and that the m columns of the constraint
matrix A corresponding to the index set B are linearly independent, the m
variables obtained by solving the m by m linear system of equations along
with n — m zeros form a basic solution T to the linear system Az = b. If
7T > 0, then it is a basic feasible solution of the linear program (1), which
will be taken as the optimal solution of the problem.

The data structures in our implementation of the interior point algorithm
have been set up such that the linear system of the form ADA'z = r can be
solved efficiently for different diagonal matrix D. Specifically, the diagonal
matrix D in the IPP algorithm is the matrix (X*)? where * > 0 is the current
approximate solution. A basic feasible solution z can therefore be efficiently
computed from the relation

= ZAAZAYH b
where Z is a diagonal matrix such that

g4 Xi ifieB
71 0 otherwise

We have used the following iterative scheme to refine the solution of the IPP
algorithm for all the computational results reported here.

o 1t=0
e while it < itmaz do

o —ifz; > 1.d— 08 then D;; = 2?
else D;; = 1.d —12.

— compute z = DA'(ADA")~1b

— if ||(=2)4|| £ o1 and ||Az — b]| / ||b]| < o2 stop
else it =t + 1

e endwhile

The values of itmaz, o1 and o, that we used are

itmaz =8, oy =1.d—-10 o,=5.d—-38

21
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We tested the algorithm on 66 linear test problems, 63 of which are from
the Netlib collection. The dimension of these 66 problems are given in Tables
1 and 2. In columns 3, 4 and 5 of these tables we list the number of rows
(including the objective row), columns and nonzeros of matrix A of the linear
program in its original MPS format. The next 3 columns show the size of the
linear programs after the data is preprocessed so that these linear programs
can be written in standard format (1).

The algorithm was implemented using FORTRAN 77 and run on a DEC-
station 3100. For comparison purpose, we solved these problems using MI-
NOS 5.3 [B.A. Murtagh & M.A. Saunders, 1983] which is a linear program-
ming package based on the simplex method. MINOS was run using the
default parameter setting. The results that we obtained on the 66 test prob-
lems are listed in Tables 3 and 4. IPP could not find a feasible point for
problem D2q06c and failed in Phase I. On the other 65 test problems, by
refining the solutions of IPP we obtained the following results. On 8 prob-
lems the relative error of the objective function value is greater than 5.d-10,
and on 7 problems the relative primal feasibility is greater than 5.d-10. IPP
solved 35 of the 65 problems faster than MINOS 5.3. The total time taken
by IPP to solve these 65 problems is 4849 seconds, while the total time for
MINOS 5.3 is 6024 seconds giving a total time speedup of 1.24.

The relative error of the objective function value is computed as follows

*
. cT — CT
Relative Error i= |—————

cr*
where cz* is the optimal objective value reported by MINOS and the primal
infeasibility is computed as follows

Primal Infeasibility = 1Az — b

18]

where X := diag(z). In all 65 problems solved, the optimal solutions ob-
tained by our algorithm are such that

(—2)4lleo < 1.d =10

5 Summary

We have presented an algorithm based on the logarithmic barrier function
perturbed by a proximal point term. The results from our implementation
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showed that the speed of this algorithm is as good as an unperturbed interior
point algorithm, e.g. [Setiono, 1990]. However, perturbing the objective
function by a proximal point term enabled us to obtain solutions of the
linear programs with better primal feasibility.

The feasibility of the solutions obtained by IPP is on the average one
order of magnitude better than the feasibility of the solutions obtained from
the implementation of an interior point method without perturbation, e.g.
[Setiono, 1990]. Similar to other interior point algorithms, we need to solve
at each iteration the system of linear equations of the form

ADA'z =r

where D is a positive diagonal matrix, and A is the constraint matrix of
the linear program. The matrix D in our algorithm is H = I + X2
For the interior point algorithm without the perturbation on the objective
function, the matrix D is H = vX 2, which can be very ill-conditioned as
some of the components of & will become large, while some other components
become close to zero. The presence of the identity matrix in the Hessian is a
stabilizing factor that has enabled us to solve the system of linear equations
more accurately. This in turn improved the primal feasibility of the solutions
of the linear programs.

Our preliminary test results on a set of 66 linear programs indicate that
this algorithm could be a viable alternative to the simplex method for solving
linear programs.
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Pr. | Problem Original Adjusted
No. | Name |rows | columns | nonzeros | rows | columns | nonzeros
11| 25fv47 822 1571 11127 820 1876 10705
2 | Adlittle 57 97 465 56 138 424
3 | Afiro 28 32 88 27 51 102
4 | Agg 489 163 2541 488 615 2862
5| Agg2 517 302 4515 516 758 4750
6 | Aggl 517 302 4531 516 758 4756
7 | Bandm 306 472 2659 305 472 2494
8 | Beaconfd 174 262 3476 173 295 3408
9 | Blend 75 83 521 74 114 522
10 | Bnl1 644 1175 6129 642 1586 5532
11 | Bnl2 2325 3489 16124 | 2324 4486 14996
12 | Bore3d 234 315 1525 246 346 1473
13 | Brandy 221 249 2150 193 303 2202
14 | Capri 272 353 1786 446 641 2230
15 | Cre-a 3517 4067 19054 | 3428 7248 18168
16 | Cre-c 3069 3678 16922 | 2986 6411 15977
17 | Czprob 930 3523 14173 | 1158 3562 10937
18 | D2¢06¢ 2172 5167 35674 | 2171 5831 33081
19 | Degen2 445 534 4449 444 757 4201
20 | Degen3 1504 1818 26230 | 1503 2604 25432
21 | E226 224 282 2767 223 472 2768
22 | FfHI800 925 854 6235 524 1028 6401
23 | Finnis 498 614 2714 619 1141 2959
24 | Gfrd-pnc 617 1092 3467 876 1420 2965
25 | GrowlH 301 645 5665 900 1245 6820
26 | Grow22 441 946 8318 | 1320 1826 10012
27 | Grow7 141 301 2633 420 581 3172
28 | Israel 175 142 2358 174 316 2443
29 | Kb2 44 4] 291 52 77 331
30 | Lotfi 154 308 1086 153 366 1136
31 | Pilot.we 723 2789 9218 | 1256 3384 10255
32 | Rabo 391 576 5510 317 560 5201
33 | Recipe 92 180 752 211 300 903
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Pr. | Problem Original Adjusted
No.| Name |[rows | columns | nonzeros | rows | columns | nonzeros
34 | Scl105 106 103 281 105 163 340
35 | Sc205 206 203 552 205 317 665
36 | Sc50a 51 48 131 50 78 160
37 | Sc50b 51 48 119 50 78 148
38 | Scagr25 472 500 2029 471 671 1725
39 | Scagr7 130 140 553 129 185 465
40 | Scfxml 331 457 2612 330 600 2732
41 | Sctxm?2 661 914 5229 660 1200 5469
42 | Scfxm3 991 1371 7846 990 1800 8206
43 | Scorpion 389 358 1708 388 466 1534
44 | Scrs8 491 1169 4029 490 1275 3288
45 | Scsdl 78 760 3148 77 760 2388
46 | Scsd6 148 1350 5666 147 1350 4316
47 | Scsd8 398 2750 11334 397 2750 8584
48 | Sctapl 301 480 2052 300 660 1872
49 | Sctap2 1091 1830 8124 | 1090 2500 7334
50 | Sctap3 1481 2480 10734 | 1480 3340 9734
51 | Sharelb 118 225 1182 117 253 1179
52 | Share2b 97 79 730 96 162 777
53 | Ship041 403 2118 8450 360 2166 6380
54 | Ship04s 403 1458 5810 360 1506 4400
55 | Ship08l 779 4283 17085 712 4363 12882
56 | Ship08s 779 2387 9501 712 2467 7194
57 | Shipl12] 1152 5427 21597 | 1042 5533 16276
58 | Shipl2s 1152 2763 10941 | 1042 2869 8284
59 | Stocforl 118 111 474 117 165 501
60 | Stocfor2 2158 2031 0492 | 2157 3045 9357
61 | Trussl 201 1602 6586 200 1602 4984
62 | Truss2 501 4312 17896 500 4312 13584
63 | Truss3 1001 8806 36642 | 1000 8806 27836
64 | Vip.base 199 203 914 347 477 1331
65 | Woodlp 245 2594 70216 244 2595 70216
66 | Woodw 1099 8405 37478 | 1098 8418 37487

Table 2: LP dimensions (continued)
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Pr. | Problem | Itera- Rel. Primal | MINOS IPP Time
No. | Name tions Error Infeas. | (seconds) | (seconds) | Ratio
1| 25fv47 54 | 1.98E-12 | 3.67TE-08 339.47 138.83 2.45
2 | Adlittle 32 | 4.88E-13 | 1.98E-14 0.97 0.75 1.29
3 | Afiro 24 | 0.00E+00 | 2.62E-15 0.31 0.70 0.54
4 | Agg 69 1.25E-12 | 5.62E-13 4.43 45.02 0.10
5| Agg2 47 | 4.93E-14 | 3.74E-14 7.71 52.33 0.15
6 | Agg3 48 | 0.00E+00 | 2.83E-15 7.76 50.45 0.15
7 | BandM 44 | 6.31E-14 | 9.03E-13 9.64 8.56 1.13
8 | Beaconfd 43 | 0.00E+00 | 2.85E-13 3.45 9.17 0.38
9 | Blend 251 3.25E-14 | 3.46E-13 1.20 1.43 0.84
10 | Bnll 62 | 2.37E-07 | 3.90E-10 42.18 36.00 1.17
11 | Bnl2 77 | 6.59E-09 | 8.10E-08 609.54 1124.26 0.54
12 | Bore3d 68 | 7.27E-14 | 1.80E-13 3.01 7.78 0.39
13 | BrandY 44 { 6.59E-14 | 2.13E-12 6.43 7.86 0.82
14 | Capri 44 { 1.00E-12 | 1.80E-16 4.46 12.44 0.36
15 | Cre-a 68 | 1.73E-07 | 8.17E-10 592.03 143.23 4.13
16 | Cre-c 69 | 3.56E-13 | 3.81E-13 665.41 124..60 5.34
17 | CzProb 82 | 0.00E+00 | 2.20E-14 75.20 39.79 1.89
18 | D2q06¢c - - - - - -
19 | Degen2 40 | 2.37E-12 | 6.11E-12 29.19 38.79 0.75
20 | Degen3 53 | 3.04E-14 | 9.62E-13 720.18 954.51 0.75
21 | E226 50 | 4.533E-12 | 6.39E-07 7.59 9.11 0.83
22 | F{IF800 77 | 7.75E-09 | 4.33E-13 27.37 80.88 0.34
23 | Finnis 62 | 5.79E-07 | 3.23E-11 10.75 16.82 0.64
24 | Gfrd-Pnc 48 | 1.44E-14 | 1.40E-14 18.17 8.13 2.23
25 | Growlh 35| 2.99E-10 | 1.05E-12 18.37 20.15 0.91
26 | Grow?22 37| 1.81E-09 | 3.24E-12 34.51 32.35 1.07
27 | GrowT 33 | 2.10E-14 | 1.20E-14 4.98 8.36 0.60
28 | Israel 37| 1.39E-10 | 5.52E-14 4.09 32.83 0.12
29 | Kb2 39| 1.14E-13 | 5.14E-11 0.67 0.92 0.73
30 | Lotfi 35 | 0.00E+00 | 1.84E-13 3.83 2.83 1.35
31 | Pilot.we 70 | 1.22E-06 | 3.47E-13 229.08 85.66 2.67
32 | Rabo 32 | 2.39E-09 | 6.77E-15 16.52 73.19 0.23
33 | Recipe 34| 3.75E-14 | 1.02E-14 1.04 1.99 0.52

Table 3: Comparison between Minos 5.3 and IPP (DECstation 3100)
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Pr. | Problem | Itera- Rel. Primal | MINOS IPP Time
No.| Name | tions Error Inf. (seconds) | (seconds) | Ratio
34 | Scl05 36 | 0.00E+00 | 2.45E-14 0.88 1.16 0.76
35 | Sc205 40 | 0.00E+00 | 1.48E-13 1.99 1.95 1.02
36 | Sch0a 25 | 1.54E-14 | 6.35E-15 0.45 0.42 4.74
37 | Sc50b 25 | 0.00E+00 | 1.15E-15 0.43 0.44 4.52
38 | Scagr2) 351 2.03E-13 | 2.98E-13 8.49 4.01 2.12
39 | Scagr? 58 | 4.27E-14 | 3.67TE-14 1.27 1.48 0.86
40 | Scfxml 48 | 0.00E+400 | 1.18E-12 7.75 9.38 0.83
41 | Scfxm?2 56 | 3.54E-13 | 9.10E-12 22.99 22.43 1.02
42 | Scfxm3 65 | 1.82E-14 | 1.17E-11 45.64 40.34 1.13
43 | Scorpion 33| 1.60E-13 | 1.28E-12 4.57 3.61 1.27
44 | Scrs8 58 | 1.84E-12 | 2.03E-07 18.71 13.39 1.40
45 | ScSdl 24 | 1.04E-13 | 1.47E-13 4.62 2.88 1.60
46 | ScSd6 24 | 0.00E-12 | 1.80E-14 17.51 5.05 3.47
47 | ScSd8 21| 0.00E-14 | 6.07E-13 97.11 10.21 9.51
48 | ScTapl 32 | 0.00E+00 | 2.23E-13 4.55 3.92 1.16
49 | ScTap?2 29 | 0.00E+00 | 2.85E-14 32.03 25.00 1.28
50 | ScTap3 33 | 0.00E+00 | 1.01E-13 61.23 36.99 1.66
51 | Sharelb 72 | 2.66E-12 | 3.28E-10 1.64 3.53 0.46
52 | Share2b 23 | 4.81E-13 | 1.86E-11 2.90 1.53 1.90
53 | Ship04l 43 | 9.48E-13 | 3.13E-12 12.00 12.25 0.98
54 | Ship04s 39| 1.00E-12 | 3.91E-12 7.49 7.96 0.94
55 | Ship08l 44 | 0.00E+00 | 1.19E-13 31.08 27.55 1.13
56 | Ship08s 41 | 5.20E-14 | 6.48E-14 16.45 14.64 1.12
57 | Ship12l 44 | 6.81E-14 | 5.70E-13 67.34 36.74 1.83
58 | Shipl2s 43 | 6.71E-14 | 6.82E-13 31.66 19.02 1.66
59 | Stocforl 38 | 2.42E-14 | 2.54E-12 1.07 1.60 0.67
60 | Stocfor2 165 | 2.57E-14 | 1.89E-10 182.63 154.17 1.18
61 | Trussl 26 | 1.75E-13 | 9.00E-13 23.43 9.82 2.39
62 | Truss2 28 | 1.92E-13 | 5.69E-13 176.07 58.53 3.01
63 | Truss3 30 | 2.18E-14 | 6.88E-13 930.90 160.87 5.49
64 | Vtp.base 50 | 0.00E+00 | 5.31E-16 2.25 6.34 0.35
65 | Woodlp 52 | 5.76E-11 | 1.94E-08 165.14 711.35 0.23
66 | Woodw 56 | 1.89E-11 | 1.73E-08 542.64 270.54 2.01
| - |TOTAL | - - - | 6024.46 | 484882 | 1.24 |

Table 4: Comparison between Minos 5.3 and IPP (DECstation 3100)

(continued)
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