CORRECTNESS OF AN ALGORITHM FOR
RECONSTITUTING A PROGRAM FROM
A DEPENDENCE GRAPH

by

Thomas Ball, Susan Horwitz & Thomas Reps
Computer Sciences Technical Report #947

July 1990

Correctness of an Algorithm for Reconstituting
a Program from a Dependence Graph

THOMAS BALL, SUSAN HORWITZ and THOMAS REPS
University of Wisconsin — Madison

Given an arbitrary program dependence graph, the algorithm ReconstimteProgram determines whether the graph is feasible (i.e., is the
dq)endmcegnlildwmcprognm).mdiflopmdueumchlpmgnm- Rmzﬁml’rommiswnmdymedforprognminwgn-
tim,mdhuthepaumidlobeusedbyolherllaai!hmuhummip\ﬂnepmgmdq)mdmce;nphl- This paper corrects a minor
umnlmwuintheoti;imldeﬁnidmofkmuﬁmw?mnm,mdpmvuﬂmthemwmimoﬁhealgoﬁmmixconea.

1. INTRODUCTION

A program dependence graph G is feasible if there exists some program P such that G is P’s program
dependence graph. Given an arbitrary program dependence graph G, the algorithm ReconstituteProgram
determines whether G is feasible and, if G is feasible, produces a program corresponding to G.

ReconstituteProgram is vital to the program-integration algorithm of [Horwitz89). It also has potential
for use by optimizing, vectorizing, or parallelizing compilers that perform transformations on dependence
graph representations of programs. Given the key role of this algorithm, we considered it important to pro-
vide a proof of its correctness. In fact, while attempting to prove the correctness of the algorithm defined
in [Horwitz89), we discovered an error. This paper provides a correct version of ReconstituteProgram
(Section 3) as well as a proof of its correctness (Section 4).

There have been a number of dependence graph representations defined in the literature; the definition
under consideration here is given in Section 2. An important characteristic of these dependence graphs is
that their control-dependence edges impose a tree structure on the graph, albeit a tree in which a vertex’s
children are unordered. The crux of the program-reconstitution problem is to define a total order for each
vertex's control-dependence children; given these total orders, the control dependence subgraph of G can
be easily converted to an abstract syntax tree and then 1o a program. Given a feasible graph G, a correct
program-reconstitution algorithm defines a total order for the children of each vertex in the tree such that
the corresponding program’s dependence graph is G. Such a set of total orders (i.e., one total order for the
children of each vertex) is called a good total order for graph G.

By definition, a feasible graph has one or more good total orders. The proof of correctness for Reconsti-
tuteProgram has two main parts. The first part of the proof (Section 4.1) shows that given a feasible graph
G, the total order defined by ReconstituteProgram for the children of an arbitrary individual vertex of G
mpeasatleastoncgoodwtalorderofG(i.e.,Vverﬁcesv e G, 3 good total order t, such that
ReconstituteProgram's order for the children of v respects t). The second part of the proof (Section 4.2)
shows that the union of the total orders defined for each individual vertex’s children is a good total order

m'«kwuwppoﬂedinptnbylbnvidandwmckud FellomhipfotScimesden;ineethg.bychnﬁoml Science
Foundation under grants DCR-8552602 and CCR-8958530, by the Defense Advansed Research Projects Agency, monitored by the
Office of Naval Research under contract N0OO14-88-K-0590, as well as by grants from IBM, DEC, Xerox, and Kodak.

Authors’ address: Computer Sciences Department, Univ. of Wisconsin, 1210 W. Dayton St., Madison, WI 53706,

-2

(i.e., 3 good total order t, such that V vertices v € G, ReconstituteProgram’s order for the children of v
respects t).

3. PROGRAM DEPENDENCE GRAPHS

NOTATION. The following notation is used throughout the paper: capital letters (G, R, P) represent graphs,
subgraphs and programs; bold lowercase letters (v, w, r) represent the vertices of a graph; italic lowercase
letters (x, y) represent variables.

We assume that programs are written in a simple language in which expressions contain scalar variables
and constants, and the only statements are assignment staiements, conditional statements, while loops, and
end statements. An end statement, which can only appear at the end of the program, names all the vari-
ables that are of interest as output from the program; by definition, only the variables named in the end
statement have values in the final state. Although the language does not include read statements, variables
can be used before being defined; these variables’ values come from the initial state.

The program dependence graph under consideration here is as defined in [Horwitz89]. The program
dependence graph for program P, denoted by Gp, is a directed graph whose vertices are connected by
several kinds of edges.! The vertices of Gp represent the assignment statements and control predicates that
occur in program P. In addition, Gp includes three other categories of vertices:

(1) There is a distinguished vertex called the entry vertex.

(2) For each variable x for which there isa path in the standard control-flow graph for P on which x is
used before being defined (see [Aho86]), there is a vertex called the initial definition of x. This ver-
tex represents an assignment to x from the initial state. The vertex is labeled “x := InitialState(x).”

(3) For each variable x named in P’s end statement, there is a vertex called the final use of x. It
represents an access to the final value of x computed by P, and is labeled “FinalUse(x)”.

The edges of Gp represent dependences among program components. An edge represents either a con-
trol dependence or a data dependence. Control dependence edges are labeled either true or false, and the

source of a control dependence edge is always the entry vertex or a predicate vertex. A control dependence
' edge from vertex v to vertex w, denoted by v —>, w, means that during execution, whenever the predicate
represented by v is evaluated and its value matches the label on the edge to w, then the program component
represented by w will eventually be executed if the program terminates. A method for determining control
dependence edges for arbitrary programs is given in [Ferrante87); however, because we are assuming that
programs include only assignment, conditional, and while statements, the control dependence edges of Gp
can be determined in a much simpler fashion. For the language under consideration here, the control
dependences reflect a program’s nesting structure; program dependence graph Gp contains a control
dependence edge from vertex v to vertex w of Gp iff one of the following holds:

) vismeemryvm,andwtepmenmacompomntoﬂ’ﬂmisnotneswdwithin any loop or condi-
tional; these edges are labeled true.

(2) v represents a control predicate, and w represents a component of P immediately nested within the
loop or conditional whose predicate is represented by v. If v is the predicate of a while-loop, the

1A directed graph G consisis of a set of vertices V(G) and a set of edges E(G), where E(G)c V(G)xV(G). Eachedge (b, c)€ E(G)
is directed from b 10 c; we say that b is the sowce and ¢ the target of the edge.

-3

edge v—>, W is labeled true; if v is the predicate of a conditional statement, the edge v—>, W is
labeled true or false according to whether w occurs in the then branch or the else branch, respec-
tively.2
A data dependence edge from vertex v to vertex W means that the program’s computation might be
changed if the relative order of the components represented by v and w were reversed. In this paper, pro-
gram dependence graphs contain two kinds of data-dependence. edges, representing flow dependences and
def-order dependences. The data-dependence edges of a program dependence graph can be computed
using standard data-flow analysis techniques.

A program dependence graph contains a flow dependence edge from vertex v 0 verex w iff all of the
following hold:

(1) visa vertex that defines variable x.
(2) wisa vertex thatuses x.

(3) Control can reach w after v via an execution path along which there is no intervening definition of x.
That is, there is a path in the standard control-flow graph for the program by which the definition of x
at v reaches the use of x at w. (Initial definitions of variables are considered to occur at the begin-
ning of the control-flow graph; final uses of variables are considered to occur at the end of the
control-flow graph.)

A flow dependence that exists from vertex v (0 vertex w, where v and w define variable x, is denoted by
v —-)7.w. When the variable defined by v and w is irrelevant, the notation v —>,w is used.

Flow dependences can be further classified as loop carried or loop independent. A flow dependence
v —),w is carried by loop L, denoted by v —> ¢ W, if in addition to (1), (2), and (3) above, the following
also hold:

(4) ‘There is an execution path that both satisfies the conditions of (3) above and includes a backedge to
the predicate of loop L.

(5) Bothvand w are enclosed in loop L.

A flow dependence v —>,w is loop independent, denoted by v —>; W, if in addition to (1), (2), and (3)
above, there is an execution path that satisfies (3) above and includes no backedge to the predicate of a
loop that encloses both v and w. It is possible to have both v —> ¢, w and v -3 ; W.

A program dependence graph contains a def-order dependence edge from vertex v to vertex w iff all of
the following hold:

(1) v and w both define the same variable.

(2) vand w are in the same branch of any conditional statement that encloses both of them.
3) There exists a program component u such that v—,u and w —>,u.

(4) v occurs to the left of w in the program’s abstract syntax tree.

A def-order dependence from v to w with “witness” u is denoted by v bW

%In other definitions that have been given for control dependence edges, there is an additional edge from each predicate of a while
satemnent to itself labeled true. mlkindded;ehldtmo(omdeﬁnhimmhilnolnecesuryforwxpurposu.

—4-

Note that a program dependence graph is a multi-graph (i.e. it may have more than one edge of a given
Kind between two vertices). When there is more than one loop-carried flow dependence edge between two
vertices, each is labeled by a different loop that carries the dependence. When there is more than one def-
order edge between two vertices, each is labeled by a different “witness”™ vertex.

3. RECONSTITUTING A PROGRAM FROM AN ARBITRARY PROGRAM DEPENDENCE
GRAPH '

Given an arbitrary program dependence graph G, function ReconstituteProgram must determine whether G
is feasible (i.e., corresponds to some program), and if it is, create an appropriate program from G.

Because we are assuming a restricted set of control constructs, each vertex of G has at most one incom-
ing control dependence edge (from a predicate vertex or the entry vertex); i.e., the control dependences of
G define a tree rooted at the entry vertex. The crux of the program-reconstitution problem is to determine,
for each predicate vertex v (and for the entry vertex as well), an ordering on the targets of v's outgoing
control dependence edges that is consistent with the data dependences of G. Once all vertices are ordered,
the control dependence subgraph of G can be easily converted to an abstract-syntax tree.

The rest of this section describes the function ReconstituteProgram. Most of this description is taken
from [Horwitz89]; however, the original definition of ReconstituteProgram given there contained a minor
error, which has been corrected here (see Section 3.3 and Figure 7).

ReconstituteProgram is presented in outline form in Figure 1. ReconstituteProgram alters graph Gc.,
which is a copy of G; G itself is saved, unaltered, for use in the test on line [9]. In the for-loop (lines 21-
(7)), the tree induced on G by its control dependences is traversed in post-order. For each vertex v visited
during the traversal, an attempt is made to determine an acceptable order for v's children; this attempt is
performed by the procedure OrderRegion, which is explained in detail below. We assume that a function,
named TransformToSyntaxTree, has been provided to convert G with ordered vertices into the
corresponding abstract-syntax tree.

ReconstituteProgram can fail in two different ways. Failure can occur because procedure OrderRegion
determines that there is no acceptable ordering for the children of some vertex. Failure can also occur at 2
later point, after OrderRegion succeeds in ordering all vertices of Gc. If OrderRegion succeeds,
TransformToSyntaxTree is used to produce program P from Gc, P’s program dependence graph Gp is
built, and Gp is compared to G; failure occurs if G and Gp are not identical.

3.1. Procedure OrderRegion: Ordering vertices within a region

DEFINITION. The subgraph induced on a collection of vertices, all of which are targets of control depen-
dence edges from some vertex v, is called a region; v is the region head. If v represents the predicate of a
conditional, v is the head of two regions; one region includes all statements in the “true” branch of the con-
ditional, the other region includes all statements in the “false” branch of the conditional. For all vertices w,
EnclosingRegion(w) is the region that includes w (not the region of which w is the head).

NOTATION. R is used to denote a region; Both r and head(R) are used to denote the vertex that is the head
of region R.

Given region R, the main job of procedure OrderRegion (shown in Figure 2) is to find a total ordering of
the vertices of R that preserves the flow and def-order dependences of G, or to discover that no such ord-
ering is possible. Note that simply using a topological ordering of the region is not satisfactory. For exam-
ple, consider the dependence graph fragment shown in Figure 3. A topological ordering of the vertices of

region headed by vertex ¢ is: f, d, g, e; however, the dependence graph of the program generated

function ReconstituteProgram(G) returns a program or FAILURE
declare
G, Gp: program dependence graphs
Gc: a graph
v, w: vertices of G¢
begin
(11 Gc:=acopyofG
[2] for each vertex v of G¢ in a post-order wraversal of the control-dependence subgraph of G¢ do
31 if OrderRegion(Gc, (W] (Vv—> Tw)e E(G¢))) fails then return(FAILURE) fi
4] if v represents an if-predicate then

(5] if OrderRegion(Ge, (W (v— ’w)e E(Gc))) fails then return(FAILURE) fi
(6] 1
{7] end

81 P:= TransformToSyntaxTree(Gc);
[9] it G =G, then return(P)

[10] else return(FAILURE)

(111 f

end

Figure 1. The operation ReconstituteProgram(G) creates a program corresponding to the program dependence graph G
by ordering all vertices, or discovers that G is infeasible.

procedure OrderRegion(Gc R
declare
Gc: a graph
R: aregionof G¢
begin
PreserveExposedUsesAndDefs(G¢.R)
If PreserveSpans(R) fails then fail else TopSor(R) fi
ProjectUsesAndDefs(Gc¢.R)
end

Figure 2. Procedure OrderRegion adds new edges to the given region to ensure that dependences are respected, topo-
logically sorts the vertices of the region, and projects information onto the region head.

Figure 3. Dependence graph fragment: Topological ordering f, d. e, g, of the vertices of the region headed by vertex ¢
is not acceptable.

according to this ordering would incorrectly have flow edges from d to g and from d to h, rather than the
ones from f to g and from fto h.

A secondary responsibility of OrderRegion is to project onto the head of R information from the vertices
of R regarding variable uses, variable definitions, and incoming and outgoing edges. This projection
ensures that, when the head of R is considered as a vertex in its enclosing region, it represents all uses and
definitions that occur in R.

To order the vertices of R, OrderRegion calls procedures PreserveExposedUsesAndDefs and Preser-
veSpans (discussed below). These procedures add edges to R to force an ordering of the vertices consistent
with the region’s data dependences. (This process is roughly that of introducing anti- and output depen-
dences consistent with the flow and def-order dependences of region R.) If this process introduces a cycle
in R, OrderRegion fails; otherwise, a topological sort of region R produces an ordering consistent with the
region’s data dependences.

Information is projected onto the head of region R both by procedure PreserveExposedUsesAndDefs,
which projects the loop-carried flow edges of R and the edges of G with only a single endpoint in R onto
the region head, and by procedure ProjectUsesAndDefs, which projects onto the head of R information
from the vertices in region R about variable uses and definitions. For example, procedure Projec-
{UsesAndDefs would designate vertex ¢ of Figure 3 as representing uses of w and x, and definitions of x, y,
and z. In other words, a vertex v represents a use (definition) of variable p if v contains a use of (or assign-
ment 10) p, or if a control-descendant of v contains a use of (or assignment to) p.

32. Procedure PreserveExposedUsesAndDefs: Preserving upwards-exposed uses and downwards-
exposed definitions

For all variables x, a use of x that is upwards-exposed [Aho86] within a region must precede all definitions
of x within the region other than its loop-independent flow-predecessors (a use of x can be upwards-
exposed and still have a loop-independent flow-predecessor that defines x within the region if the flow-
predecessor represents a conditional definition). Vertex e in Figure 3 represents an upwards-exposed use
- { variable w.

-7-

Similarly, a definition of x that is downwards-exposed within a region must follow all other definitions of
x within the region other than those to which it has a def-order edge (again, a definition of x can be
downwards-exposed and still precede a conditional definition of x). Vertex f in the example of Figure 3
represents a downwards-exposed definition of variable x.

Procedure PreserveExposedUsesAndDefs uses flow edges of G¢ having only one endpoint inside the
given region R, and loop-carried flow edges having both endpoints inside R to identify exposed uses and
definitions. It then adds edges to R to ensure that exposed uses and definitions are ordered correctly with
respect to other definitions within the region. Finally, the edges used to identify exposed uses and
definitions are removed from R and are projected onto the region head. Def-order edges with a single end-
point inside R are also projected onto head(R). This ensures that the region that includes the head of R will
be ordered correctly during a future call to OrderRegion. PreserveExposedUsesAndDefs performs the fol-
lowing four steps:

Step (1): Identify upwards-exposed uses.
A vertex with an incoming loop-independent flow edge whose source is outside region R, or with an
incoming loop-carried flow edge with arbitrary source, represents an upwards-exposed use of the
variable x defined at the source of the flow edge. Mark each such vertex UPWARDS-EXPOSED-
USE(x).

Step (2): Identify downwards-exposed definitions.
A vertex that represents a definition of variable x and has an outgoing loop-independent flow edge
whose target is outside region R, or has an outgoing loop-carried flow edge with arbitrary target,
represents a downwards-exposed definition of +3 Mark each such vertex DOWNWARDS-
EXPOSED-DEF(x).

Step (3): Preserve exposed uses and definitions.
For each vertex w marked UPWARDS-EXPOSED-USE(x), add a new edge from w to all vertices v
in the region such that v represents a definition of variable x, and v is not a loop-independent flow
predecessor of w. For each vertex w marked DOWNWARDS-EXPOSED-DEF(x), add a new edge
to w from all vertices v in the region such that v represents a definition of x and there is no def-order
edge from w to v.

Step (4): Project edges onto the region head.
Let S stand for R v { head(R)}. Replace all flow and def-order edges with source outside of § and
target inside S with an edge (of the same kind) from the source to head(R). Replace all flow and

def-order edges with source inside S and target outside of § with an edge (of the same kind) from
head(R) to the target.

Consider each loop-carried flow edge v—>) W such that both v and w are in S. If head(R) =L,
then remove the edge; otherwise, replace the edge with a loop-carried flow edge
head(R) — i ¢y head(R).

Figure 4 shows the example dependence graph fragment of Figure 3 after the four steps described above
have been performed on the region headed by vertex c. The edge from d to f was added in Step (3), due 0
f being downwards-exposed, and prevents f from preceding d in a topological ordering. The edges from b

10ur use of the term “downwards-exposed™ is slightly nonstandard; we consider a definition 10 be downwards-exposed in code seg-
memConlyifitmdmﬂ\eenddedmevaﬁnbleitdeﬁmbliventheendofC.

Figure 4. Dependence graph fragment with new edge d—f added to preserve the downwards-exposed definition of x at
vertex f .

to ¢ and from ¢ to h were added in Step (4), replacing those from b to e and f to h, respectively.

3.3. Dependences induced by spans

To simplify this section’s presentation, we begin by considering regions that only include assignment state-
ments; unde this restriction, in a feasible PDG, each use of variable x within a region is reached by at most
one definition of x that occurs within the region.

In the example dependence graph fragment of Figure 4, the ordering d, f, e, g of the vertices subordinate
to vertex ¢ is a topological ordering, but an unacceptable one for our purposes. The problem with this ord-
ering is that it allows the definition of variable x at vertex f to “capture” the use of x at vertex e. The
dependence graph of the program generated according to this ordering would incorrectly have a flow edge
from f 1o e, rather than the one from d 10 e. In general, a definition d of variable x must precede all uses it
reaches via loop-independent flow edges; other definitions of x must either precede d or follow all the uses
reached by d. This observation leads to the following definition:

DEFINITION. The span of a definition d, where d defines variable x, is the set {d], together with all uses of
x that are loop-independent flow targets of d and in the same region as d.

Span(d,x)={(d)}v (u|(d—>fu)eE (EnclosingRegion(d)) }

Span(d, x) is called an x-span, and vertex d is its head.

Restating the observation above in terms of spans, a definition d, of variable x must precede all vertices
in Span(d,, x); other definitions of x must either precede dy or follow all vertices in Span(d,, x). Further-
more, for any other x-span with head d,, if any vertex in Span(d;, x) must precede a vertex in Span(d,, x),
then all vertices in Span(d;, x) must precede d;. |

Unacceptable topological orderings are excluded by considering, for each variable x, all pairs <d;, d2>
 Aefinitions of x. If there is some vertex v in Span(d; , x) that must precede some vertex w in Span(ds, x),
(oxxau~ " 2 nath from v to w) then edges are added from all vertices in Span(d;, x) - Span(d;, x) 0

-9

vertex d,. Similarly, if there is a path from a vertex in Span(d;, x) to a vertex in Span(d,, x), edges are
added from all vertices in Span(d;, x) - Span(d;, x) to vertex d;. For example, in the graph fragment of
Figure 4, the edge ¢— t would be added because the edge d —f (introduced by PreserveEx-
posedUsesAndDefs) forms path from Span(d, x) to Span(f, x), and vertex e is in Span(d, x) — Span(f, x).

The reason for taking the set difference Span(d;, x) — Span(dy, x), is that even in regions containing only
assignment statements, spans can overlap, as illustrated in Figure 5. Because c is itself in Span(b, x),
adding edges from all vertices in Span(b, x) to ¢ would create a self-loop at ¢, making a topological order-
ing impossible.

Allowing vertices that represeat loops and conditionals introduces the possibility that spans may overlap
in two new ways, as illustrated in Figure 6. ’I‘heﬁxstcaseinﬁgure6doesnottequireanyspecialhandling;
since there is a path from dy o dj, the technique described above will add edges from all vertices in
Span(d, , x) - Span(dz, x) to vertex d,, and the two spans will be ordered correctly.

The second case in Figure 6 does require a modification to the technique described above. Note that if G
is feasible, there must be a def-order dependence edge from d, to d; or vice versa; without loss of general-
ity, assume d; —>4 d;. Since there is a path from a vertex in Span(d;, x) to a vertex in Span(d;, x),
(namely, the edge from d; 10 u), the technique described above would add edges from all vertices in
Span(d;, x) ~ Span(d;, x) to vertex dy. This would include adding an edge from d; itself to dy, thus creat-
ing a cycle (because of the def-order edge from d; to d;). The required modification to the technique
described above is to look for a path from a vertex in Span(d;, x) to a vertex in Span(d;, x) only if there is
no def-order edge from d; to d;. (The algorithm published in [Horwitz89] erroneously omits this
modification.)

There may be pairs of spans, Span(d,, x) and Span(d;, x), such that there is no path in either direction
between Span(d;, x) and Span(d,, x); such pairs are called independent x-span pairs. It is still necessary to
add edges to force one span 0 precede the other so as to exclude unacceptable topological orderings.
Although it might seem that an arbitrary choice can be made, there are examples in which making the
wrong choice leads to the introduction of a cycle in a fragment of a feasible graph.

x:ﬁ: ————

o A D> D)
X=X+Y;

=X

Span(b, x) Span(c, x)

Figure S. Straight-line code fragment and comresponding dependence graph fragment (control edges omitted) with
overlapping x-spans.

-10-

Figure 6. Conditionals and loops can lead to the two additional kinds of overlapping spans shown above. Vertices dy
and d, represent definitions of variable x; vertex u represents a use of variable x.

Unfortunately, the problem of determining the right choice in such situations is NP-complete
[Horwitz87]. However, we expect that in practice there will be very few such choices to be made, and a
simple backtracking algorithm will suffice: if a cycle is introduced when ordering spans, procedure Preser-
veSpans backtracks to the most recent choice point, and tries a different choice. If all choices lead to the
introduction of a cycle, the graph is infeasible.

3.4. Procedure PreserveSpans

Procedure PreserveSpans is presented in Figure 7. PreserveSpans makes use of an auxiliary procedure,
OrderDependentSpans, to order any span pairs of region R whose relative order is forced by a connecting
path. An invariant of the two procedures, established in the first line of PreserveSpans, is that graph R is
transitively closed. The basic operation used in PreserveSpans and OrderDependentSpans is
“AddEdgeAndClose(R, a—b)”, whose first argument is a graph and whose second argument is an edge 10
be added to the graph. AddEdgeAndClose(R, a—b) carries out two actions:

() Edge a—»b is inserted into R.
(2) Any additional edges needed to transitively close R are inserted into R.

Because R is transitively closed, paths that force span orderings correspond to edges of R; furthermore, the
cost of AddEdgeAndClose is quadratic (rather than cubic) in the number of vertices of R.

Each edge of R can be marked ot unmarked; the edges added to R by AddEdgeAndClose (by either ¢))
or (2)) are unmarked. Edges are marked at line [1] in OrderDependentSpans. An invariant of the while
loop in OrderDependentSpans is that for each marked edge e, all spans for which e forces an ordering are
appropriately ordered. Thus, after an unmarked edge v—w is selected (and marked), the invariant is rees-
tablished as follows: line [2] generates all variables x for which both v and w are elements of an x-span (but
not necessarily the same x-span); lines (3] and (4] iterate over all pairs of x-spans (represented by their
heads) such that v is a member of the first span and w is a member of the second; line (5] orders the two
spans as forced by the presence of edge v—w. |

-11-

procedure PreserveSpans(R)
declare
R: aregion
hy, hy: vertices of R
Stack: a stack
begin
TransitivelyClose(R)
if R is cyclic then fail fi
Unmark all edges of R
OrderDependentSpans(R)
Stack := EmptyStack(Q
do
R is acyclic and there exist independent x-span pairs (for some variable x) with heads h; and by —>
Push(Stack, R, hy, by)
AddEdgeAndClose(R, by —hy)
OrderDependentSpans(R)
{0 R is cyclic and Empty(Stack) —> fail
[R is cyclic and —~Empty(Stack) —>
R. h‘. hz = POp(SlaCk)
AddEdgeAndClose(R, hy—h,)
OrderDependentSpans(R)
od
end

procedure OrderDependentSpans(R)
declare
R: aregion
a, b, ¢, u, v, w: vertices of R
A, B: sets of vertices
x: a variable
begin
while there exists an unmarked edge v—w in R do
{1] Mark edge v—w
[2] for each variable x € (Defs(v)w Uses(v)) (Defs(w)w Uses(w)) do
/* v is in an x-span and w is in an x-span */
A:=(u] ve Span(u, x)} /* heads of x-spans of which v is a member */
B:={u| we Span(u,x)} /* heads of x-spans of which w is a member */

31 for each vertex a€ A do
4] for each vertex be B do
(5] ifb—>,a¢ ER) then

for each ¢ & (Span(a, x) ~ Span(b, x)) do
if c—b & E(R) then AddEdgeAndClose(R, c—b) fi
end
‘i
end
end
end
end
end

Figure 7. Procedure PreserveSpans introduces edges into region R to preserve the spans of R. The test at line (5] was
erroneously omitted from this procedure in [Horwitz89].

The initial call on OrderDependentSpans in PreserveSpans serves to introduce edges for all forced span
orderings. The do-od loop then implements a backtracking algorithm that examines all choices for
- trpendent span pairs. Each pair of independent spans (represented by their span heads, say hy and h;)

-12-

represents two possibilities—the elements of Span(h,, x) could precede the elements of Span(h,, x), or vice
versa. The first possibility is represented by the call AddEdgeAndClose(R, hy—h,), which introduces an
edge directed from by t0 h,; the second possibility (which is tried only in the backtracking step, guarded by
the condition “R is cyclic and —Empty(Stack)™) is represented by the call AddEdgeAndClose(R, hy—hy).
In both cases, OrderDependentSpans is called to introduce edges for all span orderings forced as a conse-
quence of the new edge. (A single edge, such as hy—h,, may force an ordering between spans other than
those headed by by and by.)

The information needed for backtracking is kept as a stack of triples: the graph R as it existed before a
given “choice” (including the saved marks on R’s edges), span head by, and span head h;. Backtracking
wrminatmwithfailumifRiscyclicandmestackisempty,becausenoaltcmaﬁvercmainsmbeuied
When R is cyclic but the stack is not empty, one entry is popped from the stack and the “choice” is tried in
the opposite direction. (Since there are only two choices to be tried for each pair of span heads, there is no
Push before continuing the search with the second alternative.) PreserveSpans terminates with success ifR
is acyclic and there remain no independent x-span pairs.

4. PROOF OF CORRECTNESS OF RECONSTITUTE PROGRAM
THEOREM (Correctness of ReconstituteProgram). ReconstituteProgram(G) succeeds iff graph G is feasible.

PROOF:
(1) ReconstituteProgram succeeds => G is feasible. When ReconstituteProgram(G) succeeds, it returns
a program P such that G = Gp (by the test in line [9] of Figure 1). Therefore, G is feasible.

(2) G is feasible = ReconstituteProgram succeeds. ReconstituteProgram can fail in two places. First, it
can fail in OrderRegion (see lines [3] and (5] of Figure 1) because all possible orderings lead to cyclic
graphs. Second, if OrderRegion succeeds for all regions of G, ReconstituteProgram can still fail at the test
in line [9] of Figure 1. Failure in either case means that G is infeasible. We shall show that if G is feasible
then both tests will succeed; the proof is structured as follows:

(A) G feasible = OrderRegion succeeds for all regions of G. If G is feasible then for each region R
o of G, OrderRegion will find a total ordering for region R that respects at least one good total order
(gto) of PDG G. See Section 4.1 for the proof of (2)(A).

(B) G feasible = PDG identity test at line [9] of Figure 1 succeeds. From (A) above we know that if
G is feasible then a total order will be found for each region R of G such that each total order is the
same as the total order on that region in some gto for G. Given this, we show that the total order
found for G is indeed a gto.

By the Region Independence Lemma (Section 4.2), a total order ¢ for a PDG is a good total order if
uwtoaderfmeachmgionismewneasmeorder&omanygoodmtalorderofGforthc
corresponding region. This implies that the order chosen by OrderRegion over the whole PDG is a
gto.

Since a gto is found for G by the first part of the algorithm and Gp is the PDG of the program pro-

duced from this gto, G must be identical to Gp. Therefore, if G is feasible then the test at line [9] of
Figure 1 must succeed.

-13-

4.1. Proof that OrderRegion succeeds if G is feasible

DEFINITION (good total order): Let G be a feasible PDG. Letty, b, ... I be total left-to-right orders for the
regions Ry, Rz, s Ra of G. The sett= (1, tz, ...,), is a good total order (gto) for G iff applying t 0 G's
control-dependence subgraph yields an abstract-syntax tree that corresponds to program P, and G is P's
program dependence graph.

DEFINITION (edge-set): The edge-set of a region R contains those edges, excluding loop-carried edges,

whose source and target vertices are both in region R. During the course of ReconstituteProgram’s execu-
tion, edges will be added to the edge-set of each region.

DEFINITION (graph G¢): ReconstituteProgram operates on the graph G, initially a copy of the PDG G,
leaving the original PDG G intact. G is referred to as a graph instead of a PDG because ReconstitutePro-
gram will modify it in trying to find a gto for PDG G. There is a close correspondence betweea the PDG G
and the graph G, as the control-dependence subgraphs of the two are always identical during
ReconstituteProgram’s execution. Each region R in PDG G has a corresponding region in graph G¢. At
times in the proof, we refer to the PDG G when we need to argue about a property of the original PDG.
When we argue how ReconstituteProgram modifies the edge-sets of regions, we implicitly refer to the
graph Gc.

DEFINITION (unconditional definition): In region R of feasible PDG G, vertex d is an unconditional
definition of variable x if, for all gtos of G, all paths through the control-flow graph that corresponds to the
control-dependence subree rooted at d contain a definition of x.

DEFINITION (unconditional definition with respect to a use): Vertex d is unconditional with respect o use u
if, in feasible PDG G, d is an unconditional definition of x such that at least one definition represented by d
reaches use u and the control parent of d is a control ancestor of u.

The goal of OrderRegion is to find a partial ordering of the vertices of a region R that respects at least
one good total order of G, such that any total order derived from this partial order by a topological sort
respects a gto of G. To prove that OrderRegion succeeds if G is feasible we show that for every call 10
OrderRegion of the form “OrderRegion(Gc, R)", the six properties listed below hold. The first two proper-
ties concern the edge-set of region R when OrderRegion is first called; the remaining four properties con-
cern edges added to R during this execution of OrderRegion.

(1) The edges in edge-set(R) that are also in G (i.e., excluding edges in edge-seyR) added by previous
calls to OrderRegion) respect all good total orders of G. This follows immediately from the fact
that G is feasible.

(2) The edges in edge-set(R) that were added by previous calls to OrderRegion (i.e., were added by
Step (4) of procedure PreserveExposedUsesAndDefs — see Section 3.2) respect all good total ord-
ers of G. This follows from the Project-Edge Lemma of Section 4.1.1.2.

(3) The edges added to R by procedure PreserveExposedUsesAndDefs (called at line 1 of OrderRegion
— see Figure 2) respect all good total orders of G. This follows from the Preserve-Exposed-Uses-
And-Defs Lemma of Section 4.1.1.3.

(4) The edges added to R by PreserveSpans (called at line 2 of OrderRegion — see Figure 2) up to but
not including its do-od loop (see Figure 7) respect all good total orders of G. This follows from the
following observations: (a) PreserveSpans is called by OrderRegion immediately after the call 10
PreserveExposedUsesAndDefs; by point (3) above, the edge-set of R respects all good total orders

—14 -

of G when PreserveSpans is first called. (b) The first step of PreserveSpans is to add edges so that
the edge-set of R is transitively closed; this certainly cannot exclude any good total orders. (c) The
final step of PreserveSpans before its do-od loop is to call OrderDependentSpans; the Order-
Dependent-Spans Lemma of Section 4.1.2 ensures that the edges added in this step respect all good
total orders.

(5) The edges added by the do-od loop of PreserveSpans respect at least one good total order of G.
This follows from the Preserve-Spans Lemma of Section 4.13.

(6) The total ordering produced by the topological sort performed by OrdesRegion (see Figure 2)
respects at least one good total order of G. This follows from the Preserves-Spans-Orders-
Representatives Lemma of Section 4132,

4.1.1. Project-Edge and Preserve-Exposed-Uses-And-Defs Lemmas

4.1.1.1. Discussion of flow and def-order edges with respect to PreserveExposedUsesAndDefs

Consider a flow edge or def-order edge v—w in PDG G, where v and w are possibly in different regions.
Let r be the least common control ancestor of v and w. Let ve..v) (j 20) be the control ancestors of v below
r, where vj = V. Let w,..wy (k 20) be the control ancestors of w below r, where wy = w. Letv be a
definition of variable x and let w be a definition or use of variable x, depending on whether v—Ww is a flow
or def-order edge. If v—,w is loop-carried then let s be the predicate vertex for the loop that carries the
dependence (s may be r itself). Note that there is a separate edge for each loop that carries a dependence.
Figure 8 shows the control dependence relationships described above.

@ ®)

Figure 8. Edge v—w and related vertices. In (8)(a), edge v—w is loop carried; in (8)(b), edge v—w is either
loop independent or def-order.

-18 -

All the control ancestors of vy are representatives of the definition of variable x at vertex vj. Likewise,
all the control ancestors of wy are representatives of the use (or definition) of variable x at vertex wy. A
vertex may represent both many definitions and many uses.

A flow edge v —, W implies that certain of v and w's control ancestors are upwards and/or downwards
exposed in their enclosing regions. If v —>,w is:

o loop independent, then vy..vy are all downwards exposed with respect to x in their enclosing regions,
and w,..wy are all upwards exposed with respect to x in their enclosing region.

o loop carried, then vy..v; are all downwards exposed with respect to x in their enclosing regions,
we..W are all upwards exposed with respect to x in their enclosing regions, and furthermore, all ver-
tices on the path from s to r, excluding s, are both upwards exposed and downwards exposed with
respect to x in their enclosing regions.

The PreserveExposedUsesAndDefs algorithm breaks into four major steps:

(1) Identify upwards exposed uses.

(2) Identify downwards exposed definitions.
(3) Preserve exposed uses and definitions.
(4) Project edges onto the region head.

The upwards-exposed/downwards-exposed information (as defined by the previous paragraph) is pro-
pagated through the graph G¢ by the bottom-up projection of flow edges and steps (1) and (2). We will not
prove that this information is correctly propagated, as this is obvious from inspection of steps (1), (2) and
(4) and the fact that PreserveExposedUsesAndDefs is applied bottom-up over the control-dependence sub-
graph of Gc.

Projection is the last step of the PreserveExposedUsesAndDefs algorithm. The projection step (applied
bottom-up) accomplishes several tasks: Any flow. or def-order edge (v —>yw Or V—>4 w) will be pro-
jected up until its source and target representatives (vy and wy) have the same control parent, r. At this
point, if the edge is loop-independent or def-order, then it remains in the edge-set of the region headed by
r. However, if the edge is loop-carried by r then it is deleted from G¢. If the edge is loop-carried by a
control ancestor of r, then the edge is projected onto r.

The edges that projection adds to the edge-set of region R are added Dbefore
PreserveExposedUsesAndDefs(R) is called because PreserveExposedUsesAndDefs is applied bottom-up
over the control-dependence subgraph of G¢ and because the projection step always moves an edge's
source (target) vertex from a vertex v to the control parent of v. The Project-Edge lemma defines the con-
tents of the edge-set of R just before PreserveExposedUsesAndDefs(R) is invoked.

4.1.1.2. Project-Edge Lemma

LEMMA (Project-Edge). If G is feasible, then for all regions R, headed by vertex r, the edge-set of R (in
graph G) will contain the edge ve—We just before PreserveExposedUsesAndDefs(R) is invoked and for-
ever after iff:

ot is the least common control ancestor of vertices v and w.
o There is a loop-independent or def-order edge v—w in PDGG.
e v, is a control ancestor of v and w, is a control ancestor of w.

-16-

Note that the edge ve—>Ws respects all gtos because all gtos must preserve the loop-independent or def-
order edge v—w. If wo were ordered before v in region R then v—>w could not be preserved in any total
ordering of G, since w would be ordered before v.

PROOF: By step (4) of PreserveExposedUsesAndDefs, if the source (target) of a loop-independent or def-
ordaedgeisinregionRandmelarget(source) is not in region R, then the region head of R becomes the
source (target) of this edge. Since PreserveExposedUsesAndDefs is applied bottom-up over the control
graph of G, any loop-independent or def-order edge v—w that satisfies the three criteria listed above will
be projected up to become Vo —Ws.

4.1.13. Préerve-Exposed-Usw-And-Defs Lemma

LEMMA (Preserve-Exposed-Uses-And-Defs). Given region R (headed by vertex r) of feasible PDG G such
that the edge-set of R respects all gtos of G, the edges added by PreserveExposedUsesAndDefs(R) must
respect all gtos of G.

PROOF: By contradiction. Let t be a gto of feasible PDG G. Let v and w be children of region head r such
that v follows w in gto t. Suppose that PreserveExposedUsesAndDefs adds the edge v —>peud w.* We shall

consider the two reasons for which PreserveExposedUsesAndDefs may add this edge and show that each
case leads to a contradiction:

(1) v represents an upwards exposed use of variable x, w represents a definition of x, and w is not a loop-
independent flow predecessor of v.

Since v represents an upwards exposed use there must be an x-def-free execution path from the begin-
ning of the region to vin gto t* Since w precedes v in gto t, it is on this execution path. Therefore, there is
an x-def-free execution path from w to v in gto . Since the subtree rooted at w contains a definition of x,
there must be a definition in that subtree that reaches v and so reaches the use of x in the subtree rooted at v
in PDG G. Therefore, by projection, w must be a loop-independeat flow predecessor of v under gio t,
which contradicts the third pointof (1).

(2) w represents a downwards exposed definition of variable x (d;) and v represents a definition of x (d;)
such that there is no def-order edge from w to v.

Since v (d;) follows w (d;) in gto t and d, reaches a use outside of R, d, must also reach that same use.
This means that the def-order edge dy —>4, d; must be in G. This edge will be projected up to become
W —> 4 v, the presence of which contradicts the last assumption of (2).

4.12. Order-Dependent-Spans Lemma

LEMMA (Order-Dependent-Spans). If G is feasible and the edges in region R’s edge-set respect gto t, then
any edges added to the edge-set by OrderDependentSpans must also respect gto t.

‘Bdges sdded to G by a procedure are noted using the procedure’s “initials™; thus, V= pyud W denotes an edge added by procedure
PreserveExposedUsesAndDefs, v —>,,, w denotes an edge added by procedure PreserveSpans, efc.

When we refer o “an execution path in a gio™ we mean & path in the control-flow graph of the program defined by the gto.

-17-

PROOF: By contradiction. Suppose that OrderDependentSpans adds edge c—b to region R, but that in good
total order t, b precedes €. OrderDependentSpans will add an edge from vertex ¢ to vertex b in region R if
there exist vertices a, v, W and variable x such that all the following conditions hold:

(1) v € Span(a,x), w € Span(b,x) and v—Ww € edge-set(R).
(2) ¢ € (Span(a,x) — Span(b,x)).
(3) Edge b —>4, a € edge-seyR).

Note that a and b cannot be the same vertex since ¢ € (Span(a,x) - Span(b,x)). Thus, there are two cases
to consider: either b precedes a in gto t, or vice versa.

(1) b precedes a in gto L. Since v is in Span(a,x) and v—Ww respects gto t, w must follow a in gto t. Since
(i) b—>5w, (i) b precedes a in gto ¢, and (iii) w follows ain gto t, the definition of x at a must reach the
use of x at w in gto t. This implies that w is in Span(a,x) as well as Span(b,x). Since the definitions of x at
bothaandbreachmcuseofxatw,a.ndbprecedesaingtot.thetemnstbeadcf-orderedgeb-—-)d,ain
G. However, according to condition (3) of OrderDependentSpans, c—b will not be added if the edge
b —>4, a exists.

(2) b follows a in gto t. Singe b precedes ¢ in gtotandthedeﬁnitimofxatareaches the use of x at ¢, it
must be that the definition of x at b reaches the use of x at ¢ in gto t. This implies that ¢ € Span(b,x),
which means that¢ ¢ Span(a,x) — Span(b,x). Therefore, c—b would not be added to the edge-set of R by
OrderDependentSpans since condition (2) is not met.

4.13. Preserve-Spans Lemma and related results

LEMMA (Preserve-Spans). If G is feasible then all independent x-spans of region R will be totally ordered
by the addition of edges to R’s edge-set in the loop of PreserveSpans. Furthermore, after the loop ter-
minates, every topological ordering of R’s edge-set respects a gto of PDG G.

PROOF: Since G is feasible there must be a way to order all independent x-spans so that the edge-set of R
" "respects at least one gto of PDG G. As shown in [Horwitz87], the problem of ordering independent x-
spans is NP-complete. The loop of PreserveSpans implements a backtracking algorithm to find an ordering
of R’s independent x-spans that respects at least one gto of G.

The loop terminates with success if all independent x-spans have been ordered and if the edge-set of R is
acyclic. It is easy to show (by an inductive argument) that the loop will terminate with success if only
correct choices are made when ordering R’s independent x-spans. The base case for the induction is that 0
choices need to be made to totally order the independent x-spans. As shown previously, before the loop
begins, the edge-set of R respects all gtos. Since no choices need to be made (there are no independent x-
spans) and the edge-set of R is acyclic (since it respects all gtos), the loop must terminate with success.

The induction hypothesis is that after n choices have been made the edge-set of R respects at least one
gto. The induction step (for n+1 choices) follows: Because there exist independent x-span pairs with heads
h, and h,, the algorithm must choose to add edge hy—h; or b;—h;. Suppose the algorithm makes the
correct choice - the added edge respects a gto. By the induction hypothesis, all edges in the edge-set of R
before the choice was made respect at least one gto. Therefore, any paths created by the addition of the
latest edge must also respect at least one gto. This implies that all edges added by AddEdgeAndClose will
respect at least one gto. Therefore, by the OrderDependentSpans Lemma, the call to OrderDepen-
Jdeni, ons can only add edges that respect this gto also.

—-18-

Since there are a finite number of independent x-span pairs in region R, the loop will terminate with suc-
cess if only correct choices are made.

The hard part of the proof is to show that if a bad choice is made (i.e., one that creates a partial order that
does not respect any gto), then a cycle will always arise at some later point in the execution of the loop
(possibly many iterations later). The occurrence of a cycle in R's edge-set initiates the backtracking part of
the PreserveSpans algorithm. If a cycle will always arise no matter what choices are made after a bad
choice, the backtracking will, at some point, undo the bad choice and try the other choice, which must be
carrect. The following three sections address this part of the proof and are summarized below.

Section 4.1.3.1 addresses the following issue: Suppose 4 is a gto for PDG G and t, is a bad total order
(bto) such that t;=t, except at a region headed by r, where t(F)2t; (r).5 Let G’ be the PDG of the program
corresponding to t. For each flow edge d —>;u or def-order edge d —,, d’ (with witness u) that is in one
PDG but not the other, we show that the location of the vertices d, u and d’ must be restricted to certain
portions of the PDG G. We then show that each flow or def-order edge that is in one PDG but not the other
implies that a certain order exists in t(r).

Section 4.1.3.1 characterizes the properties of a bad total order on a region. Section 4.1.3.2 uses the
results of these sections to show that a cycle will arise in region R’s edge-set if a bad choice is made by
PreserveSpans. Once a bad choice has been made, the partial order of R’s edge-set, to(r), cannot respect
any gto. Let ty(r) be a total order that respects the partial order t,(r). t,(r) cannot respect any gto. This
implies that t2(r) (and thus t,(r)) has one of the ordering mistakes enumerated in Section 4.1.3.1. In each
of the ordering cases that can arise, we show that if PreserveSpans orders the remaining independent x-
spans of the region, a cycle will arise in the edge-set of R no matter what choices are made.

4.1.3.1. Properties of a Bad Total Order

Let t, be a gto of feasible PDG G. Construct total order t, as follows: t is the same as {; exceptat the ord-
ering of vertex r's children, where t,(r) does not correspond to any gto. Let G’ be the PDG of the program
corresponding to t. Since t; is a bto there must either be: (1) An edge d —>,u that is in one PDG but not
the other, or (2) an edge d —>4 d’ that is in one PDG but not the other. Assume that d and d’ are
definitions of the variable x and that u is a use of the variable x. We first show that in each case, the loca-
tions of d and u (or d and d") are restricted to certain parts of the PDG G. Next, for each possible location
for d and u (or d and d") we characterize the possible ordering mistakes that occur in ty(r).

Location of d, u (or d,d")

(1) Let d and u be the source and target of edge d —yu, which is one PDG but not the other. One of the
following must be true of d and u:

(A)disaconnolmdantofr;uisnotacomml descendant of r.
(B)uisaconn'oldwce:mntofr;dismtaconn'oldwoendamofr.
(C)dmdumbochcmtmldwcendanmofrandmereexistcontrolchildren ¢; and ¢, of r such that
€1#C;, ¢y is a control ancestor of d, and c; is a control ancestor of u.

‘l(l')ilﬂleleh%ﬁﬂuwtﬂorduolmemuoldﬂdrmofmgimhudrintouludeﬂ. Note thet the edge-set of a region headed by
ri::hnﬂutot(r)inmnhdauminenmordering(pmsiblylotd)onmeeonuolchﬂdmofr.

-19-~

Proof of (1). We show that part (1) must hold by assuming that d —>,u is in one PDG but not the other
and then showing that such an edge could not exist in the locations not listed in part (1). It is wrivial to
show, by example, cases where (A), (B) and (C) arise and we leave them to the reader to generate. If nei-
ther (A) nor (B) nor (C) hold, then either (i) neither d nor u is a control descendant of r, or (ii) d and u are
both control descendants of r and there exists a control child ¢ of r such that both d and u are control des-
cendants of ¢. '

(i) Neitherd noru is a control descendant of r.

Without loss of generality, assume the edge d —>,u is in G, but not in G’. We show that d —>,u must be
in G".

If r is not on an execution path that gives rise to d —>;u then d —>,u must be in G’ since t; = t; outside
the subtree rooted at . If ¢ is on an execution path that gives rise 0 d —;u then we must consider two
cases:

o r is a while-predicate. r may evaluate to false, in which case, r’s children will not execute. This

implies that there is an x-def-free execution path from d to u in both ¢, and t, that does not enter the

region headed by r. Thus, d —>;u must be in G”.

e r is an if-predicate. Either the false region or the true region of r must contain no unconditional
definitions of x. Without loss of generality, suppose the true region contains no unconditional
definitions of x. No matter what the order of t,(r), there must be an x-def-free execution path through
the subtree rooted at r. Since t;=t, outside the subtree rooted at r, d —;u must be in G

(ii) d and u are both control descendants of r and there exists a control child ¢ of r such that both d and u
are control descendants of ¢. There are two cases to consider:

ed—uis loop-independent or is loop-carried by ¢ or a control descendant of ¢

Since 1, = 1, inside the subtrees rooted at children of r, any x-def-free execution path from d to u int
must be present in t; and vice versa. Therefore, d —; u must be in both G and G’ in this case.

ed—uis loop-carried by r or a control ancestor of r.

Since t; = t, inside the subtree rooted at ¢, d is potentially downwards exposed’ in subtree ¢ and u is
likewise upwards exposed in subtree ¢ in both 1, and t;. Also, t; = t, outside of the subtree rooted at r,
30 any x-def-free execution path from the point after r to the point before r in t; will be present in t; (and
vice versa). Since d—>, u is in G (or G") the region headed by r must not contain any unconditional
definitions. Therefore, d —>; u must exist in both G and G’ if it exists in either. This contradicts our
assumption that d —>,u exists in one PDG but not the other.

(2) Let d and d’ be the source and target of edge d — &) d’, which is one PDG but not the other. We

’Adeﬁniﬁmh‘potmdaﬂydownwndsexposed"ineodeupnentCifitmdmthemddC. Note that an ordered control-
subtree corresponds 1o & code segment, so that the term "potmthllydownwudsexpoced"unbeusedxo refer to &
definition in » control-dependence subtree under a particular order.

—20-

shall show that either d and d’ are both control descendants of r or that one of d, d’ or common use u is a
control descendant of F.

(A) Assume thatd —>,u and d’ —>,u are in both PDGs. Since both G and G’ are feasible, both have def-
order edges between d and d’. By assumption, the edge d —>4 & is one PDG but not the other. Without
loss of generality, suppose d —>4 d’ isin G, but not in G’. There must be a def-order edge d' —>4 din G’
if this is so. This means d’ precedes d int; and d' follows d in t;. Since t, is equal everywhere to t; except
at t,(r), it must be that d and & are control descendants of r and that t(r) reversed their order from ¢, (r).

(B) Assume that d—>,u and d’ —>u are not in both PDGs. By pan (1) of the proof, one of d, d’ or u
must be a control descendant of r.

Ordering mistakes in i
Wehavcestablishedmatiftzisabadmmlorderingﬂm(l)mereismedgeethatisinGbutnotinG’or
vice versa, and (2) there are certain restrictions on the locations of the endpoints of e. We now establish
facts about t;, using a case analysis on edge e with subcases on the location of e's endpoints; these facts
will be used to prove the correctness of OrderRegion’s backtracking algorithm.

(1) Edge e is a flow edge d —>u.

(1)(A) Suppose d is a control descendant of r, c is the child of r thatisa control ancestor of d, and u is not
a control descendant of r.

Since t; = t, inside the subtree rooted at ¢, d must be potentially downwards exposed in that subtree in
both t, and tp. Since t; =t outside the subtree rooted at r, there must be an x-def-free execution path from
the point after r to u in both t; and t;. Therefore, if:

(i d—u in G, not in G, then t;(r) must order an unconditional definition of x after c.
@) d—>u in G’, notin G, then t,(r) must order all unconditional definitions of x before c.

(1)(B) Suppose u is a control descendant of r, ¢ is the child of r that is a control ancestor of u, and d is not
a control descendant of r.

Since t; = t, inside the subtree rooted at ¢, u must be upwards exposed in that subtree in both t; and t;.
Since t; = 1 outside the subtree rooted at r, there must be an x-def-free execution path from the point after
d to before r in both t; and t,. Therefore, if:

() d —yuin G, not in G’, then t(r) must order an unconditional definition of x before c.
@i)d —yuin G’, not in G, then t;(r) must order all unconditional definitions of x after c.

(1X(C) Suppose d and u are both control descendants of r, ¢; is the control child of r that is a control ances-
tor of d, ¢, is the control child of r that is a control ancestor of u, and ¢;#C;.

Since {; = t, inside the subtrees rooted at ¢ and c,, d must be potentially downwards exposed in subtree
¢, and u must be upwards exposed in subtree ¢; in both ¢; and ;.

NOTATION. The notation v —>* w denotes that t,(r) orders vertex v before vertex w, where both v and W
are control children of r.

-21 -

(Hd—yuinG, not in G”. Consider the type of d —>,u:

(a) d—>yu is loop independent. Either there exists an unconditional definition d” of x and t,(r)
ordered ¢; —* 4" —>" €2, or 1z(r) ordered ¢; —* ¢1.

(b) d —>yu is loop carried. An unconditional definition d” must exist in this case. (Why? Since t;=t,
outside of the subtree rooted at r, there must be an x-def-free path from the point afier r to the point
before r that goes around the loop that carries d —>;c u in both {; and t;. If there are no unconditional
definitions of x under r, d =, u must be in both PDGs.) t,(r) must order d’ after ¢; (¢; —*d)or
must order d’ before ¢; (4’ —>* ¢2).

(i) d —>,uin G, notin G. Here, we consider whether t,(r) orders ¢, before ¢; or after it.

(a) t(r) orders ¢; —* ¢;. f(r) must also order all unconditional definitions of x (if any) either before
¢, or after ¢;. Note that in this case the edge is loop-independent. If it were loop-carried and there
were an unconditional definition of x under r then d —>7u could not be in G, as assumed.

(b) t,(r) orders ¢ —>* ¢;. t(r) must also order all unconditional definitions of x between ¢; and ¢;.
Note that in this case the edge is loop-carried.

(2) Edge e is a def-order edge d —>4, d.

(2)A) Suppose d —>,u and d’ —u are in both PDGs. Then, as shown above, d and d’ must be control
descendants of r such that t(r) reverses the order of d and d’ from ¢, (r).

(2)(B) Suppose d —>,u and d’ —>,u are not in both PDGs. Then t,(r) must have ordered according to
(1)(A), (1)(B) or (1)(C). -

4.13.2. A bad choice in PreserveSpans leads to a cycle

We now show that if PreserveSpans makes a bad choice, then a cycle will arise in the edge-set of R no
matter what choices are made (by PreserveSpans) after the bad choice. The argument is by contradiction:
assume that PreserveSpans makes a bad choice and finishes without a cycle arising.

Since PreserveSpans made a bad choice, the partial order t,(r) induced by PreserveSpans cannot respect
any gto of PDG G. Furthermore, no total ordering of r's children that respects L, (r) can be part of a gto.

A bad total order for R must have one of the ordering mistakes enumerated in Section 4.1.3.1. Each one
of these ordering mistakes requires the ordering of an unconditional definition with respect to other
representative definitions and uses of the same variable, or requires that the order of a representative
definition and use be switched. By the following lemma, after PreserveSpans terminates, all representative
definitions are ordered with respect to all other representative definitions and uses of the same variable.
This implies that any ordering mistake (as outlined in Section 4.1.3.1) present in any total order respecting
tp(r) must be present in t,(r).

LEMMA (Preserve-Spans-Orders-Representatives). If, for region R, PreserveSpans terminates without a
cycle arising, then for every pair of vertices v, w, such that v and w both represent definitions of variable x
or v represents a definition of x and w represents a use of x, R's edge-set includes either a path v —*wor
w—>*v,

PROOF: Any pair of vertices, v and w, that both represent the definition of variable x must be ordered
with rc;“t to each other since both vertices head x-spans and PreserveSpans totally orders all x-spans.

-22-

Any pair of vertices, v and w, such that v represents a definition of x and w represents a use of x must be
ordered with respect (o one another by the following argument:

Either w is a member of v’s span or not. If so, then there is an edge v —>u W. If not, then w is either
upwards exposed in R ot is reached by unconditional definition d’, where d’ is a child of r. If w is upwards
exposed in R then (since there is no edge d’ — w) there will be an edge W —pat v 2dded by PreserveEx-
posedUsesAndDefs. If w is reached by unconditional definition @, then there is an edge d’ —>; w. Since v
and d’ both head x-spans, PreserveSpans will either add edge v —>p, d” or edge W —>p V. In the latter case,
wisdixecdyorderedwithrespectmv.Inmet‘mnacase.wisorderedwithrespecttovby
v -—)ﬁ d’—)h w. O

Let t; be a gto of G. Construct total ordex ty, where t; = t; except at t(r) where t,(r) = a total ordering
respecting t,(r). Let G’ be the PDG corresponding to total order tz. Since is a bad total order, G #G’.
We show that a cycle must have arisen in PreserveSpans by a case analysis on the differences in the flow-
edge sets of G and G'. Each case implies that t,(r) contains a particular ordering mistake, which in turn
implies (as argued previously) that t,(r) has the same ordering mistake. We show that the presence of this
ordering in t,(r) will always lead to a cycle in PreserveSpans. For each case, the ordering mistake that
arises corresponds to the one enumerated in the corresponding part of Section 413.1

(1) Edge e is a flow edge d—yu.

(1)(A) Suppose d is a control descendant of r, ¢ is the control child of r thatis a control ancestor of d, and
u is not a control descendant of r.

(i) d—yu in G, not in G’. ty(r) must order an unconditional definition d’ after ¢ by path ¢ —* d".
Since ¢ is identified as downwards exposed in the region headed by r, PreserveExposedUsesAndDefs
would have added d’ —ppu € unless ¢ —>4 . In feasible PDGs, ¢ cannot both be downwards
exposed in the region headed by r and the source of a def-order edge to an unconditional definition in
the region. Therefore, ¢ —4 &’ does not exist and a cycle exists by &' —Dpaua € —*d.

(i) d—>,u in G’, not in G. For each unconditional definition d’ (there must be at least one), t,(r)
must order d’ before ¢ by path &’ —>* ¢. t;(r) must order at least one unconditional definition d” after
¢ (otherwise (ii) could not arise). Therefore, there must be some unconditional definition d”, a child
of r, such that d” —>,u is in G. Since d” is downwards exposed by this edge, PreserveEx-
posedUsesAndDefs would have added edge ¢ —paud”, unless d” —>4 C. Since ¢ precedes d” in
t,(r), d” —>4, ¢ cannot exist in G. A cycle exists by € —pau 4" e

(1)(B) Suppose u is a control descendant of r, ¢ is the control child of r thatis a control ancestor of u, and
d is not a control descendant of .

(@ d—,uin G, notin G'. tp(r) must order an unconditional definition d’ before ¢ by path d’ —*c.
Since ¢ is identified as upwards exposed in the region headed by r, PreserveExposedUsesAndDefs
would have added ¢ =g @’ unless d’ — €. & — ¢ could not be in PDG G since d = u isin G.
Therefore, a cycle exists by &’ ~—dpau ¢ —>* ',

(i) d—>,u in G, not in G. For each unconditiona! definition d’ (there must be at least one), L,(r)
must order & after ¢ by path ¢ —* d’. t;(r) must order at least onc unconditional definition d” before
¢ (otherwise (i) could not arise). This implies that d” —>su is in G. Since d”—;u and ¢ " d’
(for all &), a cycle exists, as d” —; u will project up to be d”" ¢

-23-

(1)(C) Suppose d and u are both control descendants of T, ¢, is the representative of d in the region headed
byr, c; is the representative of u in the region headed by r, and ¢y#c;.

(i)d —,uin G, not in G’. There are four subcases to consider:

(a) Suppose d —>u is loop independent, there exists unconditional definition d’, and t(r) orders
by ¢y —*d'—* ¢;. ¢ =y ¢; exists by projection. Since ¢, and d’ head dependent x-spans,
OrderDependentSpans must order them. When OrderDependentSpans considers ¢; —>*d’ it will
order Span(c, x) before Span(d’x). ¢, is in Span(c, %), but not in Span(d’,x) (if there were a loop-
independent edge from d’ to ¢, then there would be a def-order edge either from ¢, to d” or vice
versa, ¢ —4 d' cannot exist since d’ is unconditional; d’—g¢; creates the cycle
d' =>4 ¢, =+ d). Since ¢, is not in Span(d’.x), OrderDependentSpans will add ¢; —,, d’, creat-
ing the cycle ¢; —p &’ 7 €3

(a") Suppose d —>,u is loop independent and t,(r) arders by ¢; —* ¢;. A cycle exists since we
have ¢; —; ¢; in t(r) by projection.

(b) Suppose d —u is loop carried, there exists unconditional definition d’, and t;(r) orders by
¢, ' d. ¢, is downwards exposed in the region headed by r. In this case, the argument is the
same as in (1)(A)().

(b") Suppose d —>,u is loop carried, there exists unconditional definition d’, and t,(r) orders by
d’ —>* ¢;. ¢, is upwards exposed in the region headed by r. In this case, the argument is the same
as in ((B)().

(i) d —,u in G’, not in G. There are two subcases to consider:

(a) t,(r) orders by ¢; —* ¢;. t,(r) must also order each unconditional definition d’ either before ¢,
or after ¢;. As noted in Section 4.1.3.1, d —>;u must be loop independent in this case. Because G
is feasible, either ¢, is upwards exposed in the region headed by r or there exists unconditional
definition d’, where d’ is a control child of r, such that d’ —>; ¢;. Suppose the former case: Preser-
veExposedUsesAndDefs would have added edge €3 —pau €1 since there could be no edge
¢; —i ¢z (if such an edge existed then d —;u would have to be in G). This forms the cycle
€ —)Pﬂd € —* Cy.

Suppose the latter case, there exists unconditional definition d’ such that &’ —>; ¢, is in G. Sup-
pose d’=¢c;. This is impossible; the fact that d —>; u is in G and not in G implies that there can be
no flow dependence from the subtree rooted at ¢; to the subtree rooted at ¢; in G. If there were,
then d —; u would be in G.

Suppose d’#¢; Now, t,(r) must either order d’ after c; or before ¢;. If t,(r) orders by ¢; —*d’
then there is a loop immediately. Instead, suppose t,(r) orders by & —" ¢;. Since d’ and ¢; both
head dependent x-spans, OrderDependentSpans will order them. When OrderDependentSpans con-
siders edge d’ —* ¢y, it will order Span(d’,x) before Span(c; x), which means it will add the edge
€3 =5 €1 (since €, can not be in Span(¢y %)). This forms the cycle ¢ —>p €1 ' €.

(b) t,(r) orders by ¢;—>*¢;. For all unconditional definitions d’, t,(r) must order by
¢; —>* &' —>* ¢;. Since d —>,u is not in G, 4,(r) must order an unconditional definition d” either
after ¢, or before c,. In the first case the argument for a cycle arising is the same as in (1}(AXiD. In
the second case the argument for a cycle arising is the same as in (1}(B)(i).

(2)d —, &' in G (G), notin G’ (G).

—2%4-

(2XA) d —>,u and d —>;u are in both PDGs. Without loss of generality, assume that d —>4,d" isin G
but notin G’. () must reverse the order of d and & from t; (r) by d’ —>* d. This edge goes in the oppo-
site direction of d —>4, d’ and creates a cycle.

(2)(B) d —>,u and d’ —>,u are not in both PDGs. t,(r) must have ordered according to (1)(A), (1)(B) or
(1)(C), which, as already shown, creates a cycle. .

4.2. Region-Independence Lemma

LEMMA (Region-Independence). Let G be a feasible PDG. Let t; and t; be distinct good total orders of G.
Create total order t as follows: t; is the same as t;, except ata region R of G, headed by vertex r, where
t(r) =(r). Thentyisa good total order.

PROOF: Let G’ be the PDG of the program corresponding (0 ts. We will show that G and G’ are identical.

It is obvious that the vertex sets and control dependence edges of G and G’ must be identical. We first
show that the set of loop-independent and loop-carried flow edges in the two graphs must be identical.
Showing that the sets of def-order edges are identical follows easily once this has been done.

42.1. Loop-independent and loop-carried flow edges identical
The following properties of good total orders simplify this part of the proof:

(P1) Let d be a control child of r that represents a definition of x. Let u be a use of x such that
d—yu. Lettbeagto. If t orders d before u, then let D, be the set of vertices that are control chil-
dren of r and are ordered after d in t(r), but before u. If t orders u before d, then let D, be the set of
vertices that are control children of r and are either ordered after d or before u in t(r). None of the
vertices in D, can be an unconditional definition of x if t is a gto. Otherwise, d —>,u would not be
preserved.

(P2) Let u be a control child of r that represents a use of x. Let d be a definition of x such that
d—>yu. Lettbe a go. If t orders d before u, then let U, be the set of vertices that are control chil-
dren of r and are ordered after d but before u in t(r). If t orders u before d, then let U, be the set of
vertices that are control children of r and are ordered either after d or before u in (r). None of the
vertices in U, can be an unconditional definition of x if t is a gto. Otherwise, d —>,u would not be
preserved.

(P3) If there is a flow edge d —>,u in G such that d and u are control descendants of r (with represen-
tatives ¢; and ¢, in the region headed by r) then the relative order of ¢; and ¢; must be the same in
t(r), for all gtos t.

(P4) Let u represent a use of x. Ifnisupwardsexpowdinregionkingoodwtalordert,.menuis
upwardsexposedinxegionkinallgoodtotaladets.

Let d (a definition of x) be the source of the flow edge under consideration and u (a use of x) be the target.
We break the proof into two parts: (l)thepresenceofd—-),ninGimplicstlmd—-—),nisinG’; (2) the
pmenc:ofd—-),ninG'butmtinGleadstoacmnadicﬁon. For each part, we do a case analysis on the
location of d and u with respect to vertex r.

(1)d—uinG = d—>uinG'.

-25-

(A) Supposebomdanduareoutsidemcsubueeroowdatr.

If r is not on an execution path that gives rise to d —;uthend —u must be in G’ since t; =ty outside
the subtree rooted at r. If T is on an execution path that gives rise to d —,u then we must consider two
cases:
or is a while-predicate. r may evaluate to false, in which case, r's children will not execute. This
implies that there is an x-def-free execution path from d to u in both t; and t; that does not enter the
region headed by r. Thus d—>,u mustbe in G".

o r is an if-predicate. Either the false region or the true region of r must contain no unconditional
definitions of x. Without loss of generality, suppose the true region has no unconditional definitions
of x. No matter what the order of t(r), there must be an x-def-free execution path through the subtree
rooted at r. Since t;=t; outside the subtree rooted at r, d —>,u must be in G.

(B) Suppose d is inside the subtree rooted at r and u is outside. Let ¢ be the control child of r that is a con-
trol ancestor of d.

d and u must be in same relative order in t; and t;. d mustbe potentially downwards exposed in the sub-
tree rooted at ¢ under order t; since t; =t for this subtree. By (P1), no vertex to the right of c in t,(r) may
be an unconditional definition of x. Therefore, the definition of x at d reaches the point after r in t;, as t3(r)
= tp(r). There must be an x-def-free execution path from the point after r to u in ty since t3 = t; for all
regions outside the subtree rooted at r. Therefore, d mustreach uinty and d —,uisin G

(C) Suppose u is inside the subtree rooted at r and d is outside. Let ¢ be the control child of r that is a con-
trol ancestor of u.

d and u must be in same relative order in t; and t;. u must be upwards exposed in the subtree rooted at ¢
under order t; since t3 = t; for this subtree. By (P2), no vertex to the left of ¢ in tz(r) may be an uncondi-
tional definition of x since t; is a gto. Therefore, there is an x-def-free execution path from the point before
rto uinty. There must be an x-def-free execution path from the point after d to the point before r since t3
= 1, for all regions outside the subtree rooted at r. Therefore, d must reachuint; andd —,uisin G'.

(D) Suppose d and u are both inside the subtree rooted at r. Let ¢; be the control child of r thatis a control
ancestor of d, and let c; be the control child of r that is a control ancestor of u. ¢; and ¢; may or may not
be the same vertex.

If ¢; and ¢, are distinct vertices, then by (P3) they are in the same relative order under t; and t,, and thus
they are in the same relative order under t; and t3. If ¢, and c; are the same vertex, thend and u are in the
same relative order under t; and t3 since 4=ty in this subtree.

An execution path in a gto giving rise to d —,u may pass through three areas of the PDG: first, inside
submroowdatmechildmot‘r.wond.inmeregionheadedbyr.andthird,outsidemembu-eerootcd
atr. Forcach of these areas, we show that t; and ty have a corresponding x-def-free execution path from d
tow.

Any part of an execution path (giving rise to d —,u) interior to a subtree rooted at a child of r will be
x-def-free in both t; and t; since t; = ty for this part of the PDG. By (P1) and (P2), that part of an execu-
tion path (giving rise to d —,u) that contains children of r may not contain any unconditional definition to
x in either t;(r) or t,(r). Any part of an execution path outside of the subtree rooted at r will be x-def-free
in both t, and t since t; = t, in this part of the PDG. Therefore, d —>;u must be in G.

(2)d—uin G’ ,notinG = contradiction.

(A) Suppose d and u are outside the subtree rooted at r.
By an argument similar to that of (1)(A), we can show that d —,u in G’ implies thatd —,uisinG.

(B) Suppose d is inside the subtree rooted at r and u is outside. Let ¢ be the control child of r that is a con-
trol ancestor of d.

There must exist an x-def-free path from the point after r to w in ty, and from the point after d to the
point after ¢ in t; (since ta=t, for all regions except the one headed by r and since d reaches u in G'). Since
there is no edge d —,u in G, it must be that 1, (r) orders an unconditional definition d’ after c but that the
order t(r) does not place any unconditional definitions after ¢. Under order t;(r), there must be a flow
edge from d’ to u in G (or from some other unconditional definition d” that t, orders after d’. Without loss
of generality, assume the edge is from d)

Suppose d is a child of r. This implies that d kills d’ in order t(r), which means that d’ —>u isin G but
not in G’. This contradicts our proof of part (1). Suppose d is not a child of r but resides in a subtree
rooted at ¢, which is a child of r. There must exist a definition d” in subtree ¢ that reaches u in t, since d
reaches u and all unconditional definitions precede ¢ in ty(r). This implies that there is a def-order edge

d’ — 4 d” in G. However, t;(r) does not respect this def-order edge as it orders d’ after ¢. Therefore, t
must be a bad total order. Contradiction.

(C) Suppose u is inside subtree rooted at r and d is outside. Let ¢ be the control child of r that is a control
ancestor of u.

There must exist an x-def-free path from the point after d to before r in t;, and from the point before ¢ 10
the point before uin t; since ty = t; for all regions except R. Since there is no edge d—>,uin G, it must be
that t, () placed an unconditional definition d’ before ¢ but that the order t,(r) does not place any uncondi-
tional definitions before ¢. Without loss of generality, assume there are no other unconditional definitions
between d’ and c in t; (r). Under order t, (r), there must be a loop-independent flow edge fromd touinG.
This implies that t,(r) is a bto since it places d’ after c.

D) Supposebomdanduareinsidemesubtreerootcdatr.

(i) d and u are in the same subtree rooted at ¢, a control child of r.

fd—uisa loop-independent edge then it must be in both G and G’ since the order for subtree ¢ is the
same under t, and ty. If d —>,u is a loop-carried edge then we must consider two cases:

ed —,. u is carried by vertex r or a control ancestor of r.

dispotenﬁallydownwardscxposedinwbmcandnisupwardsexposedinmbmecinbotht, and
1y since t; =ty for these subtrees. Since d —, uis in G’, there can be no unconditional definition of x
in region R outside the subtree rooted at . Thus, any difference between t; (r) and ty(r) is irrelevant,
and d —>, u must be in G.

ed —. u is carried by ¢ or a control descendant of c.

d—-numustbeinoifitisinG’sincemeordcrforsubu'eecismesameinordmt, and t; and the
edge is carried by ¢ or a control descendant of ¢.

(ii) d and u are in different subtrees (c; and ¢;)

There are two cases 0 consider:

o d—>,u is loop independent. Since d —; u is not in G, t,(r) must order one of two ways: either
there exists an unconditional definition d” and the order is ¢; —* d’ —>* ¢;, or the orderis ¢; —*¢.
t,(r) must order c; before ¢, and must order all unconditional definitions d’ either before ¢y or after
¢,. Vertex u is upwards exposed in the subtree rooted at ¢; in t,; thus, by (P4), u is upwards exposed
in the subtree rooted at ¢; in t;. Since d—>;u is not in G, and u is upwards exposed in the subtree
rooted at ¢ in t;, there must be a definition d” in the subtree rooted at ¢; that reaches u in t. This
d” —;uisin G. If t;(r) orders unconditional definition d’ in between ¢y and ¢z, then d” —>; u could
not be in t; s PDG. Therefore, t; would be a bto.

If, instead, {, orders by ¢; —>* ¢;, then t; does not respect the edge d” —>; u and must be a bto.
Contradiction.

e d —;u is loop carried. Since d —>, v is not in G, there must exist an unconditional definition d
such that t, (r) orders by ¢; —>* d’ or d’ —* ¢;. ¢ must follow ¢; in t2(r). Therefore, t,(r) must order
all unconditional definitions d’ by ¢, —* &' —" ¢1.

umustbeupwardsexposedinmesubu'eerootedatq in t; (because d—, uisinG)andint,
(by (P4)). Either u is upwards exposed in the subtree rooted at r in both t; and tp, or there is an
unconditional definition d’, where d’ is a child of r such that d’ —>; u. In the latter case, a contradic-
tion arises immediately since t, orders all unconditional definitions after ¢;. t, must be a bto since it
does not preserve d" —>; u.

Consider the former case, where u is upwards exposed in the subtree rooted at r in G. Suppose
t,(r) orders by d’ —* ¢, d’ kills the upwards exposedness of u in the subtree r, which implies that t;
is a bto. Instead, suppose t,(r) orders by ¢; —* d’. Because u is upwards exposed in the subtree
rooted at r in G in t,, there can be no unconditional definitions before ¢, in t;(r). Thus, either 4, (r)
orders by ¢; —>* ¢, —>*d" or by ¢ —>*¢; —>*d’. In both orderings, d’ (or some unconditional
definition following d’) must reach u in t; (without loss of generality, assume d’ is the one) by a loop-
carried dependence. This implies that d’ =, u is in t, which further implies that d—>,uisin ty,
since t,(r) orders d’ before c;. Therefore, there must be a def-order edge &’ —>4 ¢, in G. However,
we assumed t; (r) orders by ¢; —* d’, which could not preserve the def-order edge. Thus, t; is a bto.
Contradiction.

4.22. Def-order edges identical
Consider def-order edge dy — 4 (s ;- There are five cases to consider:

(1) Both dy and d; are outside the subtree rooted at r.

(2) d, is inside the subtree rooted at r; d, is outside.

(3) d, is inside the subtree rooted at r; dy is outside.

(4) Both dy and dy are inside the subtree rooted at r. dy and dy are in the same subtree rooted at ¢, a con-
trol child of r.

For these four cases, the order of dg with respect to dy must be the same in both t; and t;. Since the sets
of loop-independent and loop-carried edges in the two graphs are identical dy —>3, d; must be in both G
and G’ if it is in either.

(5) Both d, and d, are inside the subtree rooted at r. dy and d, are in different subtrees (rooted at ¢; and

¢,, control children of)

Assume that dg —>do d, isin G. Both t; and t, must order ¢; —>* ¢;. Since t3(r) = tz(r), t3 also orders
¢; —* ¢, Since 1oop-independent and loop-carried edges are identical in G and G’, d¢ —>4 d; must be in
G

Assume that dg —>4 dy is in G', but not in G. This implies that t(r) orders ¢; —>* ¢;. Since t3(r) =
t,(r), t, must also order ¢; =" ¢;. However, since both dy —-)}u and d; = uare in G, there must be a
def-order edge between dq and dy in G, and since t, orders ¢; —* ¢, the edge must run from dg to d,.

References

Aho86.
Aho, A., Sethi, R., and Ullman, J., Compilers: Principles, Techniques and Tools, Addison-Wesley,
Reading, MA (1986).
Ferrante87.
Ferrante, J., Ottenstein, K., and Warren, 1., “The program dependence graph and its use in optimiza-
tion,” ACM Transactions on Programming Languages and Systems 9(5) pp- 319-349 (July 1987).
Horwitz87.
Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” Report 690,
Department of Computer Sciences, University of Wisconsin—Madison (March, 1987).
Horwitz89.
Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” ACM Trans.
Program. Lang. Syst. 11(3) pp- 345-387 (July 1989).

