EXACT DATA DEPENDENCE ANALYSIS
USING DATA ACCESS DESCRIPTORS

by

Lorenz Huelsbergen, Douglas Hahn & James Larus

Computer Sciences Technical Report #945

July 1990






Exact Data Dependence Analysis
Using Data Access Descriptors

Lorenz Huelsbergen Douglas Hahn James Larus
lorenzQcs.wisc.edu  hahn@tekcrl.labs.tek.com  larus@cs.wisc.edu

Computer Sciences Department
University of Wisconsin~Madison
1210 West Dayton St.
Madison, Wisconsin 53706

July 12, 1990



Abstract

Data Access Descriptors provide a method for summarizing and representing
the portion of an array accessed by a program statement. A Data Access
Descriptor does not, however, indicate if its characterization is exact or
conservative, nor does it record the temporal order of accesses. Exactness is
necessary to expose maximal parallelism. Temporal information is necessary
to calculate direction vectors for inter-loop dependences.

This paper presents an extension to basic Data Access Descriptors that
identifies exact representations. We illustrate the value of extended Data Ac-
cess Descriptors by showing how to calculate information typically provided
by direction vectors and by refining potential conflicts between statements
with array kill information.

Keywords: data dependence analysis, Data Access Descriptors, direc-
tion vectors, loop analysis, compilers, parallel computers.







1 Introduction

Compiler optimization of array-manipulating programs and parallelization
of program loops depends on accurately detecting and precisely categorizing
data dependences between array references. The efficiency of this analysis
depends on the underlying representation of the array elements referenced by
a statement. Some representations allow efficient detection of dependences
at the expense of efficient summarization. Since large programs generate
an unwieldy number of data dependences, summarization is essential for
efficient dependence analysis. On the other hand, compromising precision
for efficiency raises the possibility of overlooking potential optimization and
parallelization opportunities. The descriptor used in this paper allows effi-
cient summarization and calculation of data dependences and other types
of array analysis information.

Our work extends Balasundaram’s Data Access Descriptors (DADs)
[Bal89a, Bal90] with additional operations that compute dependence analy-
sis information previously unavailable in this representation. The modified
representation allows efficient summarization as well as efficient calculation
of data dependences and other types of array analysis information. This
includes calculation of the direction of dependences, array kill information,
and a temporal ordering of accesses. To support these extensions, we pro-
vide an efficient test that characterizes whether summarized accesses are
ezactly or conservatively represented by a DAD.

1.1 Data Access Descriptors (DADs)

Balasundaram’s DADs are derived from the work of Callahan and Kennedy
on Regular Sections [Cal86]. While Callahan’s Regular Section Descriptors
are very general—they include information on bounds of iteration variables
and original subscript expressions—they are inefficient. The primary advan-
tage of DADs is efficiency. Intersection of Data Access Descriptors computes
data conflicts and union of Data Access Descriptors approximates summary
information. Both operations require constant time if the number of array
dimensions is bounded. Appendix A provides an overview of DADs.

The component of DADs relevant to our work is the simple section, an
n-dimensional polytope describing the portion of an array referenced by an
n-dimensional access. A simple section is composed of a pair of bounding
planes for each array dimension. These bounding planes are efficiently com-
puted by a variation of Banerjee’s inequality [Ban88]. Figure 1 delineates




X-y=c6 y=c2 X+y=C3

X=C7 X=C8

X+y=04 y=c1 X-y=C5

Figure 1: A simple two-dimensional section and its boundaries. The simple section is
the shaded area enclosed by the eight lines, all of which are of the form z =¢, y = ¢, or
rky=c

the boundaries of a simple section that describes a two-dimensional array
access.

DADs can efficiently summarize array accesses over several statements or
entire subprograms. The ability to summarize the effects of multiple state-
ments, together with DADs’ ability to test for data dependences with simple,
linear algorithms, make DADs a good candidate for a general representa-
tion of array references. However, DADs cannot determine some information
easily computed by conventional data-dependence analysis techniques. Our
extensions to DADs rectify this problem by computing the direction vector
[Wol89] for a dependence and precise array kill information.

1.2 Exact Information

Exact information is necessary for some compiler analyses (e.g., deciding if
one loop kills the definitions produced by another) and is generally desirable
in applications of dependence information. Furthermore, inexact informa-
tion may prevent the detection of any parallel execution orders since a false
dependence can cause independent statements to appear to conflict. Our
work detects when summary information becomes inexact, and hence allows
the use of optimizations that require precise information.

A summary is eract if it describes all referenced array elements and
includes no extraneous, unreferenced elements. Combining summarized in-
formation from multiple DADs with Balasundaram’s union operator some-



times produces an inexact, conservative representation of array references.
Conservative approximation is unavoidable in general, however it is useful
to know when a representation is exact and when it is conservative.

Since simple sections are not closed under set union, it cannot be known
whether the simple section approximating the set union of two arbitrary
simple sections is exact. The union of inexact simple sections can produce
an exact simple section. However, determining if the union of two ezact
simple sections can be precisely represented by a simple section is possible
and an algorithm is described below.

For example, Figure 2 depicts simple sections representing rectangular
and triangular access in a two dimensional array. The simple section S
precisely describes an access of the form:

fori «~ 0to N do
for j «— 0 to N do
AL G-
endfor
endfor

S’ precisely represents an access similar to:

fori — L to M do
forj—0toi-1Ldo
AL ).
endfor
endfor

It may be convenient to summarize both accesses as a single simple
section—for example if both loops occur in a subprogram. If S and 5§’ in
Figure 2a are both exact, the simple section summarizing their effects is
exact (and is equivalent to §). However, Figure 2b depicts slightly different
simple sections S and S’ whose summary simple section is inexact since it
contains elements neither loop accesses (those lying in the concavity pro-
duced by S and S’). Unextended DADs conservatively characterize both
summary sections as inexact. Extended DADs detect the exactness of the
section in Figure 2a, potentially exposing potent optimizations.

A new polynomial-time algorithm, union_exact, determines if a DAD
is an exact summary of several exact accesses. This algorithm proceeds by
comparing corresponding bounds of the regions described by two operand
DADs. As the union DAD is constructed, certain constraints are imposed




b
. I A
S

o
125 ¥ AR~
[+

'
188,
1T

Figure 2: Examples of (a) exact and (b) inexact simple section unions.

by union_exact on the remaining unprocessed boundaries, i.e., a boundary
must be selected for the union DAD, or may not be selected for the union
DAD. If these constraints are violated, the resulting union is inexact. The
algorithm is amenable to integration with the original DAD union operation.

1.3 New DAD Operations

A direction vector indicates whether a dependence exists in the same iter-
ation of a loop, crosses iteration boundaries forwards or backwards, or is a
combination of these. Array kill information describes the portions of an ar-
ray defined by an assignment statement. Over the course of a loop, an array
assignment may overwrite the values written by previous assignments into
the array. Most conventional data-flow analysis techniques (e.g., def/use
chains) produce overly conservative array kill information since exact array
accesses are not identified or categorized as such. Our extensions efficiently
provide accurate direction vectors and array kill descriptions. These exten-
sions are based on temporal slices, which are computed by a simple variation
of Balasundaram’s algorithm for computing simple sections.

Temporal slices are simple sections with symbolic bounds that describe
the elements of an array accessed prior to, during, and after an arbitrary loop
iteration. This ordering permits calculation of the direction of a dependence.
For example, if the slice representing the locations accessed by a statement
in the present loop iteration conflicts (e.g., intersects) with the past slice of
a write statement, the read statement is data flow-dependent on the write
statement.

Temporal ordering information is also used in an algorithm that com-



putes array kill information for exact write references. Examples show that
this analysis is better than conventional techniques since a DAD can repre-
sent the killed array elements more precisely.

1.4 Overview

This paper is divided into two parts. First, we describe extensions that allow
detection of exactness when performing DAD union (Section 2). We then
present dataflow analysis techniques that use extended simple sections and
exactness knowledge to compute dependence direction information (Section
3) and array kill information (Section 4). Appendix A reviews Balasun-
daram’s work regarding DADs. Appendix B proves the correctness of our
exact union test.

2 Exact Union Test

Since simple sections are not closed under set union (see Appendix A), it
cannot be known whether the simple section approximating the set union
of two simple sections is exact. The union of inexact simple sections may
produce an exact simple section. Detecting this is impossible due to infor-
mation lost by the DAD abstraction. Determining whether the union of two
exact simple sections can be precisely represented by a simple section in-
volves restricting possible boundary choices for the resulting simple section.
This section develops a polynomial-time algorithm (O(n?)) in the number
of array dimensions, n, that determines if these conditions hold.! This al-
gorithm is amenable to integration with the standard simple section union
algorithm.

2.1 Exactness Criteria

The algorithm for simple section union selects appropriate boundaries for
the resulting simple section from the simple sections supplied as operands.
If the result is to be exact, the selection of certain boundaries may require
the selection of other boundaries from the same operand. If this is the case,
the first boundary b is said to constrain the other boundary b'.

Before any simple section boundaries are selected for the union, all
boundaries are unconstrained and may be selected from either constituent

'In most programs, n is limited to 3 or 4, so the algorithm runs in constant time




simple section. As a boundary is selected from one of the simple sections,
“neighboring” boundaries from the same simple section become constrained.
These neighboring boundaries are termed adjacent.

Informally, a boundary b is adjacent to a boundary &' if b and b’ are not
parallel or perpendicular to one another and b and &’ both contain a common
point in the simple section they define. Referring to Figure 1, boundaries
z —y =cg and z + y = c3 are adjacent to the boundary y = ¢,. Note that
T = cg and = = ¢y are not adjacent to y = ¢y since they are perpendicular.
Similarly, boundaries z = ¢7 and y = ¢, are adjacent to = — y = cg.

The key observation is that if a boundary b is chosen for the simple
section union, b’s adjacent boundaries must be included as well. Figure 2
provides an example. Figure 2a shows two simple sections of dimension
n = 2, S and §', that form an exact union. Boundary b is chosen over
b since it is the “more exterior” (b < b'—it is a lower boundary). This
choice imposes the constraints that boundaries @ and ¢ be chosen as well
to maintain an exact union. In Figure 2b, boundary b again constrains the
choice between a and a’ to a, and between ¢ and ¢’ to ¢. However, the
constraint is violated because the union algorithm selects ¢/, which is more
exterior, over c.

A special case arises when the two corresponding boundaries, b and ¥,
are of identical magnitude. Neither is “more exterior” to the other. Here,
we must verify that the corresponding simple sections induced by b and
b' form exact simple sections in one-dimensional space (or two-dimensional
space if the simple sections are of dimension n > 2). This can be viewed
as successively checking all the lower dimensional simple sections that have
b and b’ as boundaries. Immediately reducing the check to one- or two-
dimensional space is valid because simple section boundaries are defined in
terms of no more than two coordinate axes. This check insures that no
“gaps” exist between the two simple sections, or, in other words, that an
overlap exists between the sections in the hyperplanes induced by the equal
bounds. If all such lower dimensional simple sections are exact, the resulting
simple section union is sub-section consistent.

A simple section S is boundary consistent with respect to its constituent
simple sections if the adjacency and sub-section conditions are not violated.

Theorem 1 The union of two simple sections, S = S, Usimp Sz,
is ezact if and only if S is boundary consistent.

A proof is presented in Appendix B.



boolean function union._exact (simplesection 51, S;, integer n);
simplesection Ty, T5; '

if not exact(.S;) or not exact(S3) then
return false;
if n =1 then
return overlap(S5i, 52);
unmark (Sy); unmark (5;);
for each simple boundary pair B; = o; < ¢¥(21,...,2,) < B1 € 51 do
pick its corresponding boundary pair B! = o} < ¢¥(z1,...,2,) < B € So;
if 8; < B! then
if marked(;) then return false;
else
begin
mark(5;);
markadjacent(5!);
end
else if ! < f; then
if marked(f}) then return false;
else
begin
mark(f;);
markadjacent(5;);
end
else
begin
for all simple sections in min(n — 1,2) space do
T, « simple section induced by g;
T, « corresponding simple section induced by f;
if not union.exact(Ty, Ty, min(n — 1,2)) then
return false;
endfor
end
endfor
return true;
end union.exact;

Figure 3: Algorithm union.exact.

7




2.2 Exact Test Algorithm

Theorem 2.1 provides the basis for an algorithm to determine whether the
simple section union of two exact simple sections is exact. This algorithm
is presented in Figure 3.

Parameters to the function union_exact are two simple sections, S; and
S,, and their dimension, n. If S3 Usimp S2 = S1 U §2 the function returns
the Boolean value true; otherwise it returns false. Initially 57 and S, are
examined to ensure that they are exact. If either simple section is inexact,
exactness of the resulting union cannot, in general, be determined. In this
case, the algorithm returns the conservative answer. If the simple sections
are one-dimensional, an auxiliary function overlap indicates whether 57 and
S, abut or contain a common point. This test suffices for one-dimensional
exactness.

The algorithm continues by unmarking the simple boundaries of both
simple sections. A mark indicates that a constraint has arisen requiring
subsequent selection of the marked boundary. Initially all boundaries are
unconstrained, hence unmarked.

Next, the algorithm compares corresponding boundary pairs. If a bound-
ary is selected as participating in the boundary of the resulting union, a check
is made to ensure that the boundary not marked is not required to partic-
ipate in the union (by a boundary encountered earlier). When a boundary
is selected, it and its adjacent boundaries are constrained by mark and
markadjacent respectively.

In case the corresponding boundaries being examined are equivalent,
all corresponding simple sections in lower dimensions induced by the equal
boundaries are compared via recursive calls to union_exact.

Algorithm union_exact requires extensions to simple sections allowing
a flag indicating whether the simple section is known to be exact and a flag
marking every simple boundary.

The algorithm is quadratic in the number of dimensions n. Each call
to union_exact may iterate through all 2n? boundary pairs performing
a worst-case bounded number of calculations for each. If the number of
dimensions is fixed, as suggested in [Bal89a], time and space requirements
are constant.



3 Dependence Analysis

DADs summarize all array references made by a statement or set of state-
ments during the execution of a loop. The presence of a data dependence can
be detected by intersecting two simple sections. By contrast, conventional
methods such as Banerjee’s Exact Test [Ban76] compare the statements’ ar-
ray index expressions and attempt to find a common integer solution. While
intersection of DADs detects dependences, more detail is necessary for most
uses of dependence information. Knowledge of a dependence’s type, its di-
rection, and the loops that carry it permit aggressive optimization.

Three types of dependences connect program statements. A statement
S, that reads a memory location previously written by statement S, is flow-
dependent on S,,. A memory location read in statement S, and subsequently
reassigned in S, makes S, anti-dependent on S.. Finally, S, is output-
dependent on S, if S, and §, write to the same memory location and 5,
precedes S,.

Further detail is provided by direction vectors, which indicate whether
a dependence exists in the same iteration of a loop, crosses iteration bound-
aries forwards or backwards, or is comprised of a combination of these. Con-
ventional analysis computes a direction vector with the Banerjee-Wolfe Al-
gorithm [Wol89]. This algorithm uses Banerjee’s inequality to discover possi-
ble dependences by incrementally refining induction variable value-ordering
between linearized subscript equations. For example, if two references are
enclosed in a doubly-nested loop, the algorithm first checks for dependences
with no constraints. If a dependence is discovered, the outer loop’s induction
variable in the first statement is constrained to be greater than, equal to,
or less than ((>, %), (=, ¥),(<, *)) the variable in the second statement. For
each dependence thus discovered, the algorithm constrains the inner loop’s
induction variable. When complete, this test establishes the conditions un-
der which a dependence exists. For example, it may occur when the outer
loop induction variable is less (‘<’) and the inner is greater (‘>’) in the first
reference than in the second reference expression. If the first reference writes
and the second reads, the dependence is a flow-dependence and the outer
loop carries it.

Information this detailed cannot be gathered directly from DADs be-
cause simple sections are computed by the Banerjee inequality without con-
straints. While this test is potentially more accurate since subscripts are
not linearized, it is equivalent to the unconstrained, top-level Banerjee-Wolf
test. Since simple sections also abstract references to the induction variable,




function temporal slice ();
for j « 1to k do
pastj(p) « (Lj<z; <I;-1);
present;(p}— (I; < z; < Ij);
future;(p) — ([; + 1 < z; < U;);
endfor
end temporal_ slice;

Figure 4: Algorithm temporal_slice computes the primitive temporal slices for a

statement containing an n dimensional array access, Aldi,...,dn], that is enclosed in k
loops with lower bounds (L, ..., Lx), upper bounds (Ui,...,Ux), and induction variables
(L1, ooy Ie).

constraints cannot later be imposed on the geometric intersection opera-
tion. Central to the computation of dependence information from DADs is
the inclusion of temporal information.

3.1 Temporal Slices

Simple sections must be extended to include temporal information. This in-
formation can be represented by triples of simple sections. Each component
section is a temporal slice of an array reference. Temporal slices with respect
to a single loop are primitive. Slices of multiple nested loops are composite.

The algorithm in Figure 4 constructs the primitive slices: past;(5),
present;(S5), and future;($) with respect to loop j, 1 < j < k, for a state-
ment S containing an n dimensional array access, Aldy,...,d,], enclosed
in k loops with lower bounds (Ly,..., L), upper bounds (Uy,...,Us), and
induction variables (Iy, ..., Ix).

The three temporal slices represent the portion of an array accessed in
the loop iterations prior to an arbitrary iteration, during that iteration, and
in subsequent iterations. past; is a simple section containing elements of A
accessed in preceding iterations of the current invocation of loop j (ignoring
surrounding loops). Elements accessed in the current iteration of this loop
are described by the present; slice. The future; slice contains elements
referenced in subsequent iterations of the current invocation of loop j. For
each loop j in a k-loop nest, the algorithm substitutes appropriate loop
bounds for the jth induction variable, I;, in the symbolic simple section

10



Tj,past;;;, = |1;N U (past; U present;) | N past;

1<i<;

T;,present;, ; = T;N present;

T;,future;1, = [T;N U (present; U future;) | N future;
1<igg

Figure 5: Rules for constructing composite temporal slices from primitive slices. Tj is

a temporal slice whose last component is computed with respect to loop j.

(di < z; < d;).

past, present, and future primitive temporal slices can be combined
into composite slices by the composition rules of Figure 5. Composite slices
are formed from primitive slices by moving from the outermost to innermost
enclosing loop. If a temporal slice, T', describes elements accessed by the first
7 loops, intersection with present;,; produces a slice defining the elements
referenced in the present iteration of loop j + 1 (rule 2). Adjoining other
slices from loop j+1 constrains the elements in slices from surrounding loops.
For example, adding past;,; eliminates elements in future; for 1 <7 <y
since these elements cannot be referenced prior to the current invocation of
the j + 1 loop.

For a pair of nested loops ¢ and j, the meaningful composite slices have
the following interpretations:

past; present; future;

past; Before current in-
voc. of j loop

present; | Earlier in current | During current exe- | Later in current in-
invoc. of § loop cution of statement | voc. of j loop

future; Subsequent invoc.
of j loop

For example, applying the temporal slice algorithm to the loop:

11



present i pasti past i present ; past j

Figure 6: Primitive slices present;, past;, and past; used in forming the composite
temporal slice present,, past;.

fori «— 0 to N do
for j — 0 to M do
Al J] « ... : [* 1%/
— A+, 1 /*¥2%*/
endfor
endfor

generates temporal slices for the past, present, and future of the array
accesses in statements 1 and 2. For each access, the algorithm generates two
sets of slices—with respect to the 7 and j loops. Some of the slices are:

past; future; present,, present, present,, past;
(1 (0<z<i-1) (t+1<z <N) (1< =z <) (i< <)
(0< = < M) (0 <22 < M) (7 <22 <) (0<z2<75-1)

(2) (1 <3 <4) (t+2<e; SN+ (4+1<n<i+1) (+1<z <04 1)
(12 <M+1) (1<z<M+1)  (G+1<22<5+1) (1< 22 <j)

past; and future; are primitive slices. The slice present,, present ; follows
from application of rule 2. The composite slice present,, past ; is computed
from present;, past;, and past; by rule 1. Figure 6 geometrically illustrates
the elements described by these primitive temporal slices and the resulting
(composite) slice obtained by intersecting present; with the union of past,
and past,;.

3.2 Computing Data Dependences

A data dependence exists between two statements if the simple sections
describing the accesses overlap, i.e. their intersection is non-empty. Table 1
categorizes the dependence according to which pairs of temporal slices of

12



WNR#D | Dependence

present(R) past(W) flow
present(R) present(W) | flow/anti
present(R) future(W) anti

Table 1: A data dependence exists between an assignment (W) and a read (R) state-
ment if the intersection of the respective DAD sections are non-empty. The type of de-

pendence is detected by intersecting temporal slices.

the respective statements contain common elements. In the above example,
the loop-carried anti-dependence between statements 1 and 2 is detected
upon intersection of elements written by statement 1 during this invocation
of the loop, present;,present;(1), with the elements read in the “past” of
statement 2, past;,past;(2).

As a program text is lexically processed, detect and and classify data
dependences by intersecting the present slices of previously encountered
references with the past, present, and future slices of the current state-
ment.

3.3 Computing Direction Vectors

Direction vectors {Wol89] are extracted from temporal slices in the follow-
ing manner. Given a data dependence between two references T and S,
the presence of elements in past;(T) N present;(.S) corresponds to an ‘<’
entry for the i*! loop’s component in the direction vector. This indicates
that the dependence crosses an iteration boundary in the forward direction.
Similarly, a non-empty intersection of present;(T") with present;(5) cor-
responds to an ‘=’ in the direction vector (dependence exists in the current
loop invocation) and future;(T) N present;(S) # @ to an ‘>’ (dependence
crosses iteration boundary backwards). The temporal relationship between
statements is implicit in the slices used to compute the intersection.

3.4 Computing Temporal Slices

Temporal slices can be computed efficiently. The lifetime of a temporal
slice spans only the enclosing loop, inducing no long term storage cost. If
references within the loop are processed in lexical order, only present slices
need be saved between statements.

13




Figure 7: Banerjee-Wolf tree for two enclosing loops.

The method and time complexity of computing temporal slices is identi-
cal to that of initially generating the simple sections for the references. By
judicious saving of intermediate slices, Balasundaram’s simple section gener-
ation algorithm can additionally compute all “useful” temporal slices. In a
doubly-nested loop, for example, temporal slices equivalent to the direction
vectors listed in Figure 7 are generated at no cost during computation of
the original simple section.

Since the temporal slices are defined symbolically, boundaries compared
by the simple section operators may be incomparable due to insufficient con-
straints between symbolic bounds. If this is the case, the most conservative
bounds are used, which may introduce unnecessary dependences.

4 Array Kills

An advantage of extended DADs is that they indicate whether a simple sec-
tion ezactly represents an array reference. A reference that is an assignment
and is exact, kills previous assignments to a portion of an array. This means
that over the course of a loop, the assignment overwrites the effects of pre-
vious assignments into a portion of the array. By computing array kills, we
can refine the dependence relation by eliminating conflicts that are killed
by intervening assignments. However, to compute kill information we need
exact DADs since conservative descriptions produce incorrect kills.

Simple sections summarize an access over an entire loop’s execution.
Assertions about interference between statements within a loop—whether
they overwrite each others effects or not—cannot be made on the basis of
an overlap between simple sections. Consider the following loop:

14



fori« 1to N

— Alfi] /* 1%/
Alil  ~ /*2%*/
o A1)  /*3%/
Afi+2]— [* 4%/

— A[i-1) /*5*/
endfor

In this loop, conventional dependence analysis and naive use of DADs would
incorrectly indicate flow-dependences from statement 4 to statements 3 and
5, when in fact, statement 2 kills the definition. However, by employing
temporal slices it is possible to determine how array references overwrite
each other, effectively calculating array kills.

Calculating array reaching definitions using extended DADs is similar
to the technique described by Gross and Steenkiste [GrSt90]. The DAD,
however, is a generalization of their rectangular descriptor and is able to
precisely describe a larger class of array references.

4.1 Array Reaching Definitions

The algorithm below refines an assignment statement’s temporal sections
with a reaching-definition data-flow analysis. Exact assignments to an array
may supersede other assignment’s definitions. For example, if an exact array
assignment at statement T reaches an assignment S, the algorithm refines
the past(9) slice to include only those elements not defined by T—the
elements in the past of S not defined in the past or present of T

Throughout this section, we assume that each statement reads or writes
all elements in an array A exactly once, so for a statement S, the DAD is
exact and yields the invariant : past(5)U present(S)U future(S) = A. It
follows that the intersection of a section X with any two of a statement’s
three sections is the set difference of X and the third section. For example,
X N (present(S) U future(S)) = X — past(S).

The array kill algorithm computes a form of reaching definitions among
array assignments through the equation: Def! = (Def, N Refine,) U Gens.

The confluence operator N is an intersection in which tuples in the left-hand
set that do not match a tuple for the same statement in the right hand set
are put in the result.

Propagated definitions are four-tuples: (S, pag, prs, fs) containing a
statement S, its past slice pag, its present slice prg, and its future slice fs.

15




Past Future Past Future Past Future

[ ] T T ] T[]
|| SL___:_J s [

]
]

Figure 8: Three cases in calculating the Refineset. Statements T and S are assignments
whose temporal slices overlap. In the first case, S is ahead of T. In the second case it is

behind. And, in the third case, they traverse the array in lockstep.

The intersection and union of sets of these tuples is the component-wise
intersection or union of tuples for the same statement.

The set Refineg contains the portions of the array defined by a previous
statement T' that is redefined by the current statement S:

Refineg = {(T, —, —, pasUprg) | pasNprr # 0 and T is exact }
U {(T, prsU fs, —, =) | prr N fs # 0 and S is exact}
u {(T,0,0, —) | preNprs# 0 and S is exact }

‘~’ ig the identity element under intersection—a descriptor of the entire ar-
ray A. The one-dimensional version of this problem is illustrated in Figure 8.

The set Geng contains the portions of the array defined by S in previous
iterations that have not been killed by T

Gens = {(S, (prr U fr)Npas, prs, fs) | pas Nprr # 0 and T is exact }
U {{S, pas, prs, (par Upry) N fs) | prr N fs # 0 and S is exact }
U {(S, pas, prs, §) | prr N prs # 0 and § is exact }

Since temporal slices for a statement are relative to the current loop it-
eration, slices propagated along loop backedges in the dataflow framework
must be “shifted.” In particular, only the pag slice is allowed to reach a loop
header along a backedge. This slice represents elements defined in the loop
body that remain live throughout the current iteration of the loop, thereby
reaching the header of the loop.

Another view of this problem is an algorithm to directly compute mod-
ifications to the temporal slices (Figure 9). The algorithm produces past’,
present’, and future’ slices at each assignment statement. Note that while

16



for array assignment statements T', S such that T reaches S along all paths do
if past(S) N present(T') and assignment 7" is exact then
/* assignment T kills a portion of assignment S (type 1) */
past’(S) — past(S) N (present(T) U future(T'))
future'(T) « future(T) N (past(S) U present(S))

if future(S) N present(7") and assignment S is exact then
/* assignment S kills a portion of assignment T (type II) */
past’(T) — past(T') N (present(S) U future(S))
future'(S) — future(S) N (present(T") U past(T))

if present(S) N present(7") and assignment S is exact then
/* assignment S kills assignment T (type III) */
past’'(T) — 0
present’ (T) «— 0
future'(S) — 0
endfor

Figure 9: Algorithm array kill

exact sections can kill inexact sections, the opposite is not true.

After computing the array kills, the refined DADs can be used to com-
pute better dependence information. Dependences are found by the methods
of Section 3.2 and classified via the relations of Table 1.

The following loop demonstrates the operation of algorithm array kill:

fori +— 1to N
Al [*1*/
Al - [* 2%
— Ali-1] /*3*/
Ali+2]— /*4*/
« Al /*5%/
Afi] /* 6%/

— Ali+3] /7%
endfor

The past, present, and future slices input of the assignment statements
are:

17




past present future

(2) (1<z1<i-1) i<z <4) i+1<z1<N)
(4) (<o <i+1) (i+2<z <i+2) (i+3<z <N+2)
6 (1<m<i-1)  (i<zm<i) (+1<om<N)

The algorithm discovers that statement 2 kills statement 4 (type I), and
statement 6 kills statements 2 and 4 (type II). The following temporal slices
are solutions to the flow equations at the end of the loop:

past present future
(2) @ 9 G+1<2<14+2)
(4) ((<z1<i+1l) (+2<21<i+2) (43<z < N+2)
) 1<m<i-1)  (i<z <) g

Intersection of these past, present, and future slices with present(1),
present(3), present(5), and present(7), reveals the following dependences:
statement 4 is anti-dependent on statement 7, statements 2 and 6 are anti-
dependent on statement 1 (the anti-dependence to 6 is extraneous), state-
ment 1 is flow-dependent on statement 4, and statement 3 is flow-dependent
on statement 6.

4.2 Nested Loops

Since temporal slices describe the portion of an array assigned into relative
to the immediate enclosing loop, the algorithm can be extended to nested
loops by working from the inner-most to outermost loop. After completing
the analysis of the innermost loop, compute the past, present and future
for the next outer loop (leaving the inner loop indices unconstrained). The
analysis is repeated for the immediately enclosing loop, as in the following
example:

fori « 1 to 10

Ali,1] <« 0 /¥ 1%/
for j — 1to 10
Alif) = [*2%
endfor
endfor

After trivial analysis of the inner loop, the past, present and future
temporal slices are computed for the outer loop (illustrated in Figure 10):

past present future
(1) (<2<l (1<m <l (1<m <)
(2) (1<22<i~-1) (i<z2<i)  (i+1< 32 <10)
(1) (1<5:<10) (1<21<10) (1< <10)
() (Sm<i-1) (i<za<i) (i+1<as <10)

18



Past Present Future

(1) zl ile iT

(2) | i i I

Figure 10: past, present, and future temporal slices input to algorithm array.kill.

In this example, since future(2) and present(2) contain elements defined
in present(l), the assignment at (2) kills definitions of (1). This type
II kill reduces past(1) to @, and restricts future(2) to (2 < z; < 10),
(i+1< 2y <10).

5 Conclusion

For dependence analysis to be tractable, data dependences must be summa-
rized for loops and subprograms. The Data Access Descriptor representation
provides an efficient geometric summary of data dependences. Previously,
however, the information in the Data Access Descriptor abstraction has only
been regarded as a conservative approximation of data dependences, even
though the information it contains is often precise.

By detecting when the dependences described by a Data Access Descrip-
tor are exact, our work increases the number of analysis techniques based
on them. The union_exact algorithm determines whether the union of ex-
act simple sections in n dimensions remains exact, thereby enhancing the
precision of Data Access Descriptors.

Data dependence analyses based on Data Access Descriptors are im-
proved by methods for extracting array kill information (algorithm ar-
ray kill) and calculating direction vectors from the simple section (tem-
poral_slice algorithm). This new precision and information is valuable in
exposing optimization and parallelization opportunities previously inacces-
sible via Data Access Descriptors.

19




References

[Aho85]

[Bal89al

[Bal89b]

[Bal90]

[Ban88]

[Ban76]

[BuCy86)

[Cal86]

[GrSt90]

[Wol89)]

A. Aho, R. Sethi, J. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, Mass., 1985.

V. Balasundaram, K. Kennedy. A Technique for Summarizing
Data Access and Its Use in Parallelism Enhancing Transforma-
tions. SIGPLAN, Portland, Oregon, June 1989.

V. Balasundaram. Interactive Parallelization of Numerical Sci-
entific Programs. Ph.D. Thesis, Department of Computer Sci-
ence, Rice University, Houston, Texas, July 1989.

V. Balasundaram. A Mechanism for Keeping Useful Internal
Information in Parallel Programming Tools: The Data Access
Descriptor. Journal of Parallel and Distributed Computing, Vol.
9, pages 154-170, 1990.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer
Academic Publishers, 1988.

U. Banerjee. Data Dependence in Ordinary Programs. M.S. The-
sis, University of Illinois at Urbana-Champaign, Department of
Computer Science, TR 76-837, November 1976.

M. Burke, R. Cytron. Interprocedural Dependence Analysis and
Parallelization. Proceedings of the SIGPLAN ’86 Symposium on
Compiler Construction, pages 162-175, June 1986.

D. Callahan. A Global Approach to Parallelism Detection. PhD
Thesis, Rice University, July 1986.

T. Gross, P. Steenkiste. Structured Dataflow Analysis for Arrays
and its Use in an Optimizing Compiler. Software—Practice and
Experience, Vol. 20(2), pages 133-155, February 1990.

M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT
Press, 1989.

20



Appendices

A Data Access Descriptors
In [Bal89b], the Data Access Descriptor is defined as follows:

Definition 1 (Data Access Descriptor) Given an n dimen-
sional array A that is accessed within a region R of a program,
the Data Access Descriptor for 4 in R, denoted by 6g(A) is a 3
tuple (0| S|7), where 8 is the reference template, S is the simple
section approximating the portion of A that is accessed within
R, and 7 is the traversal order of S.

The reference template of the Data Access Descriptor is used in translating
the Data Access Descriptor between differing contexts. Access order of the
array is described by the traversal order. Relevant to this paper, however,
are Balasundaram’s simple sections.

A.1 Simple Sections

The simple section is used to the section of an array that is accessed by
with a region, i.e. loop or subprogram body. Simple sections are bounded
by simple boundaries.

Definition 2 (simple boundary) Given an n dimensional space
with coordinate axes z1,zs,...,Z,, a simple boundary is a hy-
perplane of the form z; = ¢ or z; £ z; = ¢, where z;,z; are any
two different coordinate axes, and ¢ is an integer constant.

We later extend this definition to allow symbolic integer variables to
replace the integer constant. A simple section is described with simple
boundaries.

Definition 3 (simple section) Any convex polytope with sim-
ple boundaries is a simple section.

A boundary that does not contribute to the shape of the section being
described is termed redundant. We also require all boundaries to be tight—
they must contain at least one point of the simple section.

We follow Balasundaram’s notation for describing a simple section S by
its simple boundary pairs.

21




Definition 4 (simple boundary pair) A simple boundary pair
is an inequality of the form a < ¥(z1,...,%,) < B, where

¥(z1,...,%,) is a function of the coordinate axes z1,. .., Ty, such
that ¥(z1,...,%n) = @ and ¥(z1,...,2,) = B are both simple
boundaries of the section S. ¥(z1,...,2,) = a is called a lower

boundary and ¥(z1,...,T,) = B is called an upper boundary.

Figure 1 shows a two dimensional simple section along with functions
defining the simple boundaries. Note that the upper bound z — y = c5 is
both redundant and tight.

Two or more simple sections may be compared for data conflict by per-
forming an intersection operation, and summarized into one simple section
by performing a union operation. If an upper bound on the number of array
dimensions is fixed, these operations require constant time.

A.1.1 Intersection of simple sections

Computing the intersection of two simple sections, § = 51 Nsimp S2, results
in a simple section describing common array elements accessed by the refer-
ences described by S; and Sy. It is important to note that simple sections
are closed under intersection. This implies that the intersection of simple
sections S and S, is necessarily exact if S and S are themselves exact.

Given two simple sections S; and Sq, both of dimension n, the intersec-
tion S is computed by comparing corresponding boundary pairs from the
two simple sections.

;From the sets of simple boundaries, the intersection operation always
chooses the “more interior” of the two boundary pairs to participate in the
corresponding boundary pair of the resulting simple section 5. An additional
check ensures that 0 is returned if S; and S, do not intersect.

In Figure 11, for example, the boundary f; is “more interior” to 82 and
is therefore chosen as a simple boundary of S. The lower bound a3 is chosen
similarly.

A.1.2 Union of simple sections

The union of two simple sections, S = Sj Usimp S2, is performed in a manner
similar to intersection. The “more exterior” of the simple boundaries being
compared is chosen to be a simple boundary in the resulting simple section.
This is exemplified in Figure 11 where 32 and «; are combined to form the
boundary pair a3 <y < fzin S = 51 Usimp S2.

22



B2

S )
B
a2
2%
= Sl r‘simp S2
S1
B2
a
51 U 52 Sl Usimp 52

Figure 11: Intersection and union of simple sections. « and f represent lower and

upper bounds of the boundary pair in the y dimension.

23




In [Bal89b] it is shown that S7 Usimp So is the smallest simple section
containing the union S; U S,. It is also proved that: Sy Usimp (52 Usimp S3) =
(Sl Usimp 52) Usimp SB-

Unlike intersection, simple sections are not closed under set union. Hence,
the simple section representing the union of two simple sections, S = S1Usimp
S9, may be an approximation to S1US;. However, the union is in many cases
exact, i.e. S1 Usimp S2 = 51 U S99, and therefore important as dependence
and optimization information. Section 2 describes a test which determines
if the resulting simple section S is exact.

B Proof of Exact Union Theorem

Definition 5 A simple boundary b; in an n dimensional simple section S
is adjacent to a simple boundary by € S if by and by form a 135° interior
angle in the geometric section described by .

Definition 6 An n dimensional union of simple sections, S = St Usimp S2,
is boundary consistent with respect to S; and Sp if for all b € S where b is
the “exterior” boundary chosen from b; € S;, by € S5:

|b; — bs| # 0 : A boundary b’ adjacent to b in S; must also be in S.

|b; — bs| =0: Al corresponding simple sections in n — I dimensional
space induced in S; and Se by by and b, respectively are exact under

U5imp .

Theorem 2 The union of two simple sections, 5 = Sy Usimp Sz, is ezact if
and only if S is boundary consistent.

Proof.

(1) («<=) Assume S is boundary consistent. We show that there is no
point z € S such that z ¢ S; and ¢ ¢ Se. Assume z € S and
z ¢ S; and show z € S,. By the assumptions, z must lie outside of
Sy but in S. For this to happen, a simple boundary “exterior” to a
boundary S; must be in .S. This bound b must be from Ss. Since S is
boundary consistent, b and its adjacent bounds define a section of S’s
perimeter. Since z € S, z is bounded by b and boundaries adjacent
to b. Continuing this argument by examining boundaries adjacent to
b’s boundaries, it is clear that z € Ss. Hence S = S; Usimp So is exact
if S is boundary consistent.

24



(2) (=) Assume S = S; Usimp S2 exact. Proof by induction on the
number of dimensions, n.

Base case. n = 2 Let S and S’ describe two simple sections in 2
dimensional space.

) S’
By: ay <z < By By: oy <z <
By: az <zp < P By: oy <19 < [y

By: as <zitwe < By By oy <zt <P
Byr oy <z -z2<6; By aggxl—xggﬂfi

Compare corresponding boundary pairs. Without loss of gener-
ality, consider the two cases when examining B, and Bj:

Be

Be

> [, : Show that the adjacent boundaries must be equal
to S’s adjacent boundaries, By and By, iLe. 8} < fs and
By < By

Suppose B > 5. This implies that there exists at least one
point in S’ that is not in S and lies on the boundary Gs. Let
z be the point of intersection of 8% and Bs. Then B, > F%
implies z ¢ S’ and by assumption that 85 > 85,z € S. An
identical argument shows 3 < .

= f% : In this case we must examine the simple sections in-
duced by these boundaries in the 1-dimensional hyperplane.
Since these simple sections are lines, they must be contigu-
ous for the union to be exact. If the line segments are not
contiguous, the points X creating the discontinuity will be
in the union of S and S/, but X € S and X € S".

Symmetric arguments can be made for B; and B}, 2 < 1 < 4. The
above cases correspond to the conditions necessary for a simple
section to be boundary consistent. Therefore, a simple section .S
in 2 dimensions is boundary consistent with respect to S; and S5

if it

is exact.

Induction Hypothesis. Assume simple section union in n — I dimen-
sions is boundary consistent.

Induction Step. Show that the S = S; Usimp S2 is boundary con-
sistent if S is exact. Since a simple boundary can only lie in a
plane defined by at most two coordinate axes (by the definition

25




of simple boundary), we need only examine the 1‘-(“—2"—1—1 induced
simple sections in 2 dimensions. By the induction hypothesis,
these “projections” are boundary consistent. It follows that the
n dimensional simple section is also boundary consistent because
the simple bounds that comprise it, must be the simple bounds

from the exact simple sections in 2 dimensions.

Combining (1) and (2) we have S = S; Ugimp S2 exact if and only if §
is boundary consistent. O

26






