ON THE COMPLEXITY OF THE
POLICY ITERATION ALGORITHM

by

Mary Melekopoglou and Anne Condon

Computer Sciences Technical Report #941

June 1990



On the Complexity of the Policy Iteration Algorithm

for Stochastic Games
Mary Melekopoglou
Anne Condon'

Computer Sciences Department
University of Wisconsin - Madison
1210 West Dayton Street
Madison, WI 53706

ABSTRACT

We consider a natural class of algorithms for simple stochastic games. It has been
proved that the problem of deciding which player has the greatest chance of winning the
game is in the class NP n co-NP. It is not known whether the problem is in P. We
examine a number of local search algorithms, called policy iteration algorithms, which
solve this problem, and prove that these algorithms require exponential time in the worst

case.

1. Introduction

Simple stochastic games model simple games of chance played by two players (these games are
described in Section 1.1). The problem of deciding which player has the greatest chance of winning such a
game has been proved to be in the class NP N co-NP, but it is an open problem if it is in P. A natural
approach to solve the problem is the policy iteration algorithm (described in Section 1.3). In this paper, we
prove that the algorithm takes exponential time in the worst case. We also describe several ways in which
the algorithm can be improved, and for all of them we construct counterexamples that require exponential

time.

1.1. Description of the Simple Stochastic Game (SSG) problem

The model of stochastic games was introduced by Shapley in 1953, [11]. We describe a simplified
version of Shapley’s original model here. A simple stochastic game (SSG) is a directed graph
G = (V, E) with the following properties. The vertex set V is the union of disjoint sets V ex, Vinins V average»

called max, min and average vertices, together with two special vertices, called the 0-sink and the 1-

1 Supported by National Science Foundation grant number DCR-8802736.




..

sink. One vertex of V is called the start vertex. Each vertex of V has two outgoing edges (not necessary

distinct), except the sink vertices, which have no outgoing edges.

The graph models a game between two players, 0 and 1. In the game a token is initially placed on
the start vertex, and at each step of the game the token is moved from a vertex to one of its neighbors,
according to the following rules: At a min (max) vertex, player 0 (1) chooses the neighbor to which the

token is moved. At an average vertex, the token is moved to each of its neighbors with probability 1/2.

The game ends when the token reaches a sink vertex; player 1 wins if it reaches the 1-sink vertex and
player O wins otherwise, that is, if the token reaches the 0-sink vertex or if the game never halts. The rea-
son for the names max and min vertices is that at the max (min) vertices, player 1 (0) chooses its move so

as to maximize (minimize) the probability of eventually reaching the 1-sink vertex.

A strategy for player 0 is (defined to be) a rule that defines what move the player takes whenever
the token is at a min vertex; formally a strategy for player 0 is a set of edges of E, each originating from a
min vertex, such that for each min vertex there is exactly one edge in the strategy originating from it. The
definition of a strategy for player 1 is similar (min should be replaced with max). Note that with this
definition, a move from a max or min vertex is not probabilistic and is the same every time that vertex is

reached. For this reason, the strategies are called pure stationary strategies.

We say a SSG halts with probability 1 if for all pairs of strategies of the players, the game ends
(that is, the token reaches a sink vertex) with probability 1.

The value of a vertex i, Vg (i), with respect to a strategy S, for player 0 and a strategy S, for
player 1 is (defined to be) the probability that player 1 wins the game, if the start vertex is i and the players
use strategies So and S;. The values of all the vertices of the graph, with respect to a pair of strategies, can
be found in the following way. The value of the 0-sink is 0, the value of the 1-sink is 1, and the value of
any vertex from which there is no path to a sink is 0. For any other vertex, we can write an equation that
gives its value as follows: the value of an average vertex is the average of the values of its two children, the
value of a min (max) vertex is equal to the value of the child that player 0 (1) moves to according to S,
(S1). The set of these linear equations can be solved in polynomial time and it has a unique solution (proof
in [1]).

The value of the game is (defined to be) msax n;in Vs,s, (start), or the probability that player 1 wins

if it reveals its best strategy, S, to player O at the start of the game, and player O plays its best strategy, S,
against §;. The SSG value problem is: Given an SSG, is its value > 1/2? A related problem is to find the
best strategies of the players.



1.2. Previous Work

The properties of stochastic games have been studied by a number of researchers since the introduc-
tion of the model by Shapley (see Peters and Vrieze, [10], or Condon, [1], for a survey of this work).
Proofs of all of the results in this section can be found in [1].

Shapley showed that for any SSG, there is a pair of strategies S 0,0PT> S1,0pT> Such that for all ,
Vs, oriSroreE) = rr})_ax n;in Vs,s, (9 (which in fact, equals n;in rrgax | ZXX )]

A pair of strategies satisfying this property is called an optimal pair of strategies.

Shapley’s results also imply the following important property of SSG’s. Suppose we define a pair of
strategies to be locally optimal if for all /, if / is a max vertex, the value of vertex i is the maximum of the
values of its children, and, if { is is a min vertex, the value of vertex i is the minimum of the values of its
children. Then for SSG’s that halt with probability 1, any locally optimal pair of strategies is an optimal
pair of strategies. Condon, [1], showed that the SSG value problem can be reduced in polynomial time to
the SSG value problem for SSG’s that halt with probability 1; hence without loss of generality we only
consider SSG’s that halt with probability 1 here. Thus, to solve the SSG value problem, it is sufficient to
find a locally optimal pair of strategies.

The SSG value problem has many interesting complexity-theoretic properties. It is a rare example of
a combinatorial problem in the class NP r co-NP, but not known to be in P, [1]. The linear programming
problem was previously an example of such a problem, but with the discovery of the ellipsoid algorithm
(Khachiyan, [7]), this problem was shown to be in P. Also, if the instances of the SSG problem are res-
tricted to have only two types of vertices (nax and min, max and average or min and average), the problem
can be solved in polynomial time. The proof of this for max and average, or min and average, vertices is

via a reduction to the linear programming problem (Derman, [2]).

There are other similarities between the linear programming problem and the SSG value problem. In
particular, there is a local search algorithm that solves each problem - the simplex algorithm in the case of
linear programming and the policy iteration algorithm for the SSG value problem (where instances of the
problem are SSG’s that halt with probability 1.) Roughly, the policy iteration algorithm initially chooses
an arbitrary pair of strategies, and repeatedly selects a better pair of strategies until a locally optimal pair of
strategies is found. It was first described for graphs with max and average vertices by Howard, [4] and later
generalized to graphs with max, min and average vertices, [10]. (The name of the algorithm is derived from
the fact that in some of the literature, strategies are called policies). However, many variations of the sim-
plex algorithm have been proved to require exponential time in the worst case (Klee and Minty, [8],
Jeroslow, [5]). In this paper, we show that the policy iteration algorithm also requires exponential time in

the worst case.




1.3. The Policy Iteration Algorithm

In this section, we describe the policy iteration algorithm in detail, and introduce some notation used
in the paper. In the remaining sections, we prove that the policy iteration algorithm requires exponential
time in the worst case.

In order to describe the algorithm, we need the following definition. We say a min (max) vertex is
switchable with respect to a fixed pair of strategies, if its value is not the minimum (maximum) of the
values of its children. Note that it can be determined in polynomial time if a vertex is switchable, since the

values of the vertices with respect to any pair of strategies can be computed in polynomial time.

We first describe the policy iteration algorithm in the case that the graph has only min and average
vertices, and then briefly outline how it can be generalized to handle max vertices as well. The algorithm
starts from an initial strategy for player 0. Then it repeatedly selects a switchable min vertex, and switches
it. That is, it changes the strategy of player 0, so that the edge corresponding to the selected vertex is
replaced by the other edge of the vertex. The algorithm halts when there is no switchable vertex, in which
case by definition, a locally optimal strategy has been found for player 0.

More than one vertex may be switchable at any iteration. Thus, to completely specify the algorithm,
a select procedure must be defined, which returns the next vertex to be switched, if any. We describe a

number of different versions of the select procedure later in this section.

The proof that this algorithm works is based on the fact that after any iteration, the value of the
switched vertex has decreased, and the value of no vertex has increased. Thus, the total sum of the values
of all the vertices decreases. Because of this, no strategy is reached twice during the execution of the algo-
rithm. Since there are at most an exponential number of strategies, the algorithm must halt within exponen-

tial time. (See [1] or [4] for details of the proof.)

The policy iteration algorithm can be extended to SSG’s with max, min and average vertices as fol-
lows. The algorithm starts from an initial strategy for each player. Then the following two steps are
repeated, until a locally optimal pair of strategies is found: (i) Keeping the strategy for player 1 fixed,
switchable min vertices are repeatedly switched as before until there is no switchable min vertex. (ii) A

switchable max vertex is switched.

In the rest of the paper, we only consider SSG’s with just min and average vertices, since we can
prove that even with this restriction, the policy iteration algorithm requires exponential time. Our results
also apply immediately to SSG’s with max, min and average vertices. The performance of the algorithm is
measured by the number of switches because all the versions of the select procedure that we describe are
polynomial time.

We consider a number of different versions of the policy iteration algorithm, based on the way the
select procedure chooses a switchable vertex. In the simplest version, we assume that the select procedure

makes an arbitrary decision, by choosing the highest numbered switchable min vertex. We call this version



-5-

the Simple Policy Iteration Algorithm, and in Section 2 we show that this algorithm requires exponential
time in the worst case. To do this, we show how to construct, for any n, a graph which has a number of
vertices polynomial in n but for which the number of switches needed by the policy iteration algorithm is
exponential in n.

In the following sections, we examine some natural improvements to the select procedure. In our first
attempt (Topological Policy Iteration Algorithm), the select procedure gives priority to vertices on which
the values of many other min vertices depend. Another idea is to select the switchable vertex with the larg-
est difference between the values of its neighbors (Difference Policy Iteration Algorithm). A still better
algorithm would be to select the switchable vertex whose value will be most improved (decreased) if
switched (Improvement Policy Iteration Algorithm). We build on our proof for the simple policy itera-

tion algorithm, to show that all of these algorithms require exponential time in the worst case.

We use the following notations in the construction of exponential time graphs for the policy iteration
algorithms. Min vertices are represented with circles numbered 1, 2, ..., average vertices with circles num-
bered 0, 1’, ..., and the sink vertices with values 0 and 1, with squares. The two edges for every min vertex
are labeled with 0 and 1; so a strategy for a graph with n min vertices can be represented as an n-bit vector,
S=8,5,1 S, where S; is the label of the edge in § that originates from i. For simplicity, when
describing the execution of a policy iteration algorithm, we denote by V(i) the value of vertex i with

respect to the current strategy for player 0.

2. Simple Policy Iteration Algorithm

The select procedure that the Simple Policy Iteration Algorithm uses selects arbitrarily one of the
switchable min vertices. Specifically, it selects the switchable vertex with the largest number. The algo-
rithm is simple in the sense that the select procedure does not select the vertex to be switched based on

either the values of the vertices or the structure of the graph.

In the rest of the section we present a counterexample for the algorithm; a graph on which we prove

that the algorithm needs exponential time.

The structure of the graph is first described. For each n, n 2 1, the graph has » min vertices (1, 2, ...,
n), n average vertices (1°, 2’, ..., ), and, of course, the two sinks. The graphs for »n equal to 2 and 3 are

presented in Figures 2.1 and 2.2 respectively.

The structure can be described recursively; to construct the graph for n min vertices, add to the graph
for n — 1 vertices the following: the average vertex n’, with two edges going to the min vertex n — 2 and the
average vertex (n — 1), and the min vertex n, with an edge labeled O to the previous min vertex, n — 1, and

an edge labeled 1 to the new average vertex n’. The graph for general n is presented in Figure 2.3.

In all these examples we suppose that the initial strategy of the policy iteration algorithm is
represefxted by a 0-vector (S =S,5,-1 - -+ 51 =00...0). With respect to this strategy, every min vertex has




0 0
2 1 1
1 1
v v - 0

Figure 2.1: Counterexample for the simple policy iteration algorithm for n = 2.

0 0 0
3 2 1 1
1 1 1
3 2 r 0

Figure 2.2: Counterexample for the simple policy iteration algorithm for n = 3.

3 2 I 0

Figure 2.3: Counterexample for the simple policy iteration algorithm for general n.
value 1. It is easy to see that the best strategy is edge O for every min vertex except vertex 1, and edge 1
for that (S = 00...01). In this case, the value of every min vertex is 0, so this strategy is the best (note that
the best strategy is unique for this structure). Although this does not differ a lot from the initial strategy (it
may be found in one step by a clever algorithm), the simple policy iteration algorithm takes 2*—1 steps to
find it.

We next describe how the simple policy iteration algorithm performs for the first graph, where n is 2.
Initially both min vertices 1 and 2 are switchable (because average vertex 1” has value 0, and 2" has value
1/2). The simple policy iteration algorithm switches min vertex 2 first and then 1. Vertex 2 is switchable
again, back to edge O (its value can be decreased from 1/2 to 0). We have a total of 22~1 =3 switches.



-7-

The sequence of strategies and values is summarized in the table of Figure 2.4, where S denotes the stra-
tegy, V(i) denotes the value of vertex i, and ¢ denotes the number of switches. The value of the average
vertex 2’ is constant (equal to 1/2), so it is not in the table. The table of Figure 2.5 summarizes the same

information for n equal to 3.

L S=8:8 | V@ | V(D)

0 00 1 1
1 10 12 1
2 11 172 0
3 01 0 0

Figure 2.4: Table of sequence of strategies and values for the graph of Figure 2.1.

tf $=838,8, | V3 | V@) | V@ | V(D)
0 000 1 3/4 1 1
1 100 3/4 3/4 1 1
2 110 3/4 3/4 12 1
3 010 112 3/4 12 1
4 011 12 1/4 12 0
5 111 1/4 1/4 12 0
6 101 1/4 1/4 0
7 001 0 1/4 0

Figure 2.5: Table of sequence of strategies and values for the graph of Figure 2.2.

Note that every time that vertex i is switched, from edge 0 to 1 or from edge 1t0 0, S, is equal to 1,

and S; is 0, forevery k > i+1.

The values V (1), V(2), V(3) can be expressed by the following expressions (if » is greater than or
equal to 3):

v)=1-5,

1
V@)=
V(@) =8,V@Y)+ (1-S)V()=V(Q1)-S, [-;— - Sl].
The value V(3) is derived in the same way:

o

V3)=V(2)-S;




-8-

This leads us to Lemma 2.2 which is the first step of the proof that the simple policy iteration algo-
rithm makes an exponential number of switches to reach the best strategy for this structure. In the main
lemma of this proof (Lemma 2.7) we show that if the strategy for the leftmost & vertices is 0...00, and these
vertices are switchable, the next 2*—1 switches of the algorithm are made on these vertices to reach the
strategy 0...01 for these vertices. The most important step to that lemma is to express the value of every
vertex with a formula that depends on the current strategy and on values of other vertices (Lemma 2.2).
(After that point we do not need the graph.) The formulas give necessary and sufficient conditions (depend-
ing only on the current strategy), for a vertex to be switchable (Corollary 2.4). The next two results (Corol-
lary 2.5 and Lemma 2.6, which are also used in the proof of the main lemma) give relations between the

switching of a vertex and other vertices becoming switchable.

Definition 2.1. a (k), for every positive £, is defined to be

ak+1) = a(k)[% —Sk] and a(l)=-1.

The next lemma is technical and it is only used in the proof of Lemma 2.2.
L.emma 2.1. Forevery 25k $n:

V@) - Vk-1)= ﬁf’%—; [viee-1m- ve-2),

where V (0) should be substituted by 1 in case k is 2.

Proof:

VE)-Vk-1)= [%V((k%)') + ';‘V(k—Z)J - [S"‘l V(E-D)+ -8V e "2)] (by the construction) =
- [.;. - sk_l] [v«k—m ~Vik -2>] =

= 2E) (vete—1y) - V (k- .
= ak-1) [V((k )-Vk 2)} (by Definition 2.1.) [J

Lemma 2.2. For every k, 2 <k < n, the values of the vertices, with respect to the current strategy S, are
given by the following formulas:
V)=V (k-1)+ Sga(k) and V(I)=1+S,a(l), O
VE)=Vk-1)+ak), VQ)=1+a(l), €]
where a (k) is as in Definition 2.1.

Proof: The formulas can be proved by induction on k. The pair (I) is proved first:
Basis Case: It has been proved that (I) holds for £ equal to 1, 2 and 3 by the relations presented before the

lemma.



-9.

Induction Hypothesis: We suppose that (I) holds for every k < m.
Induction Step: We prove that (I) holds for £ equal to m+1.

Vim+1)=Sp V({(m+1)) + (1-8,4 )V (m) (by the construction) =
=V(m)+ S, 'V {(m+1))-V(m-1)~S,a(m )] (induction hypothesis) =

r

—V(m)+ S, —;-V(m') + —;—V(m-l) —V(m—1)—-S,a(m)| (by the construction) =

\

=V(m) +Smu ‘%%(V((m—l)’)-V(m—2))-S,,,a(m)] (by Lemma2.1)= --- =

=V (m) + Spi %—({;((—%l(V(l’) -1)~S,a (m)J (by applying Lemma 2.1 m -2 times) =

=V(m)+S,.a (m)[—;— —Sm| (by the construction) =

=V (m) + Spa(m+1) (by Definition 2.1).

Proof of the pair (II):

Basis Case: The formulas obviously hold for £ equal to 1 and 2.
Induction Hypothesis: We suppose that (II) holds for every k < m.
Induction Step: We prove that (II) holds for k equal to m+1.

V{m+1))= %[V(m’) +V{(m —1)] (by the construction) =

=V(m-1)+ ~21—a (m) (induction hypothesis) =
=Vim)+ [% - s,,.]a(m> (by applying () for m ) =
=V ({m)+a(m+1) (by Definition 2.1). [
From Definition 2.1, the following corollary is easily derived.
Corollary 2.3. If a(k) is as Definition 2.1, then the following holds, for every positive k.
a(k+1)= Lj;:)ia(k)

Proof: The proof is based on the recursive formula for a (k+1): a (k+1) = a (k) B— - Sk].

S,

If S, is equal to 1 then a(k+1)=—%a(k)= (“;) ak). If S, is equal to O then a(k+1) = %a(k):




-10 -

Corollary 2.4. Vertex k is switchable if and only if either S, is 0 and a (k) is negative, or S} is 1 and a (k)
is positive, for every positive k.

Proof: Proof that if k is switchable and S, is 0, a (k) is negative:

If k is greater than 1 then, according to L.emma 2.2,

V) =V (k-1) + Sea (k).
Since Sy is 0, V (k) = V(k—1). Since the switch of the vertex to S; equal to 1 gives a smaller value,
Vk=1)> V(k~1) +a(k)=> ak) <0.

The proof also works for vertex 1 and the formula V(1) =1+ §;a(1). The rest can be proved by a very

similar reasoning. (1

Corollary 2.5. If vertex k (for every positive k) is switchable, and one or more larger numbered vertices

are switched arbitrarily, vertex k is still switchable.

Proof: The fact that k is switchable means that either S, is 0 and a (k) is negative, or S, is 1 and a (k) is
positive. Since the switches of larger numbered vertices do not have any effect on the value of a(k), k is

still switchable after these switches. [

Lemma 2.6. If vertex k (for every positive k less than n) is switched, and S, - - - ¢854 = 0...01, then all

the vertices k+1, k+2, ..., n are switchable.

Proof: First, suppose that S is switched from O to 1. From Corollary 2.4, it is deduced that a (k) is nega-
tive. By Corollary 2.3, a (k-+1) is positive, so by Corollary 2.4, vertex k+1 is switchable. By Corollary 2.3,
a (k+2) is negative, so by Corollary 2.4, vertex k+2 is switchable. It can be proved by induction that the
other larger numbered vertices are switchable, too.

If S is switched from 1 to O, the proof that the lemma holds is the same. []

Lemma 2.7. The following two statements hold (for every positive k):

—If S, -+ 8¢415, =0...01, and the vertices &, k+1, .., n are switchable, the next 2"**!—] switches of the
simple policy iteration algorithm are made on these vertices, to reach the strategy where S, - -+ Sp.41 S =
0...00. )

—If 8, -+ - Sg418, = 0...00, and the vertices k, k+1, .., n are switchable, the next 2" **1-1 switches of the
simple policy iteration algorithm are made on these vertices, to reach the strategy where S, « - - S5k =
0..01.

Proof: The lemma will be proved by induction on .

Basis Case: It is obvious that the statements hold for the case k = n.

Induction Hypothesis: The statements hold for every k > m.

Induction Step: We will prove that the statements hold for k equal to m —1. We prove the first one first:



-11-

The simple policy iteration algorithm works first on the vertices numbered n, n—1, ..., m, since the select
procedure always chooses the highest numbered switchable vertex. From the second statement of the
induction hypothesis, we deduce that it performs 2" ™*'—1 switches to reach the strategy where
Sn** Sk418m =0...01. Vertex m—1 is still switchable (Corollary 2.5), so it is switched (from S,,_; = 1 to 0).
By Lemma 2.6, the vertices n, n-1, ..., m are again all switchable. From the first statement of the induction
hypothesis, we deduce that the simple policy iteration algorithm performs 2" ™*!—1 switches on these ver-
tices to reach the strategy where S, - - * S;415,, = 0...00. The total number of the switches is 2" ™*2-1.

The second statement is proved following the same reasoning. [
We can now present the main result of the section.

Lemma 2.8. The simple policy iteration algorithm requires exponential time in the worst case. For every
positive n, the algorithm makes 2”1 switches, on the graph with n min vertices of Figure 2.3, to find the
best strategy (vector 00...01) if the initial strategy is the 0-vector.

Proof: It follows from the previous results if initially every vertex is switchable. Since the initial strategy
is the O-vector, and a (1) is negative, every other a (k) is negative, too; so, by Corollary 2.4, every vertex is
switchable. [

Two interesting observations on the values of the vertices are the following statements which can be
easily derived. (a) Min vertex n is switched 2"~ times. Initially its value is 1, and it is decreased by 1/2"!
each time. (b) The average vertex (n+1)”’s value is changed 2”1 times. Initially its value is (2"~1)/2",

and it is decreased by 1/2"! each time.

3. Topological Policy Iteration Algorithm

The select procedure of this algorithm needs some preprocessing of the graph given. The vertices
are topologically sorted, that is, an integer order is assigned to each min vertex, such that if there is a path
from vertex i to vertex j, then the order of i is greater or equal to the order of j. The graph is in this way
divided into components of vertices with the same order. The select procedure selects the largest numbered
switchable vertex in the component with the lowest order that contains switchable vertices. In this way,
when a vertex i is switched, there is a decrease in the value of every vertex with larger order from which

there is a path to Z, according to the current strategy.

Note that this algorithm, applied on the structure of the previous section, finds the best strategy after
one switch (if the initial strategy is the 0-vector). The algorithm divides the graph into components, where
each min vertex is found to be in its own component. According to the topological sorting, the component
of min vertex i comes just after the component of min vertex i~1, for every i > 1, so vertex 1 is selected

first.

If a directed graph is divided into £ strongly connected components, and the numbers of min vertices

in them are ny, n, ..., ny, then, in the worst case the algorithm takes 2™ + 2™ + - -- +2™ steps. If the




-12-

maximum size of a component is bounded by a constant, the algorithm can find a best strategy in a polyno-
mial number of steps. In particular, if the graph is acyclic the algorithm makes a linear number of

switches.

In the rest of this section we present a counterexample for this algorithm. The structure is very simi-
lar to the one of the previous section. The main difference is that, in this one, min vertex 1 depends on min
vertex n, through a new average vertex, (. Therefore this structure is cyclic, there is only one component,
and the algorithm performs like the simple policy iteration algorithm. We will prove that the algorithm
needs an exponential number of steps to find the best strategy, which is unique for this structure too.

There is another, slight, difference between the structures. In the previous structure, there is a choice
for vertex 1 to get the value 0. This is a weak point of the structure in the sense that any algorithm could
easily find that, start from that switch (because this is the minimum value that a vertex can get), and end

with only one switch. In the new structure there is no such choice (the value of 1" is 1/2).

The graphs for 2, 3 and, generally, n min vertices are presented in Figures 3.1, 3.2 and 3.3.

2 1 o 1
1 1
2 r 0

Figure 3.1: Counterexample for the topological policy iteration algorithm for n = 2.

0 0 0
3 2 1 0 1
1 1 1
3 2 ’-\1'/ = 0

Figure 3.2: Counterexample for the topological policy iteration algorithm for n = 3.



213 -

2 I 0

Figure 3.3: Counterexample for the topological policy iteration algorithm for general n.
The graph for general n has n min vertices, and n+1 average vertices (labeled 0’, 1/, ..., n"). To con-
struct the graph for n+1, given this graph, we add a new min vertex, vertex n+1, and a new average vertex,
vertex (n+1)". The two edges for vertex n+1 lead to vertex (n+1)" and vertex n. Vertex (n+1)’ is the aver-

age of n” and n—1 (or 0" if n is 1). Also, there is an edge from 0’ to min vertex n+1 instead of n.

Starting from the same initial strategy (0-vector), the topological policy iteration algorithm follows
the same sequence of strategies as the simple policy iteration algorithm of the previous section (note that
the strategy § = 00...01 is the unique best strategy that gives value 1/2 to every min vertex). The tables in
Figures 3.4 and 3.5 present the sequence of strategies and values for the graphs with two and three min ver-

tices.

) S=88, || V@) | V@) | VQ) | V()

0 00 1 3/4 1 1

1 10 2/3 2/3 5/6 5/6
2 11 2/3 2/3 112 5/6
3 01 172 5/8 1/2 3/4

Figure 3.4: Table of sequence of strategies and values for the graph of Figure 3.1.

Using the same technique that we used in Section 2, we can express the values V (0", V(1), V(2),
V(3) by the following expressions (if » is greater than or equal to 3):

Vin)
2

V()= %(1 LV ) ==+ -

=

V(1) =8,V + (1=-5,)V(0) = -‘52-‘- + (1-S1)[—;— +

V@)= 2 V(1) + V() = —;—[l R V(")] =+




-14-

EllS=8:88, | v | vy [ v | vy | vay | v
0 000 1 s | 1 | s | 1

1 100 45 | 45 | 9no | 710 | 910 | 9/10
2 110 a5 | 45 |0 | 0 | 910 | 910
3 010 23 | 34 | 23 | 23 | sk | s
4 011 w2 |23 | 23 | 12| s
5 111 a1 | 47 |ona | ona | 12 | 1114
6 101 a1 | a7 | e | ona | 1p | 114
7 001 12 | o6 | 12 | 58 | 12 | 3

Figure 3.5: Table of sequence of strategies and values for the graph of Figure 3.2.
S,Vin
2V(n) N

V@ =5V @)+ (1-S)V () =V (D) -

$18,V(n)

The value V (3) is derived in the same way:

s
V3 =V()- —-2—3-(—%- - Sl] [-;— - Sz]V(n).

These formulas leads us to Lemma 3.2 which is the first step of the proof that the topological policy
iteration algorithm makes an exponential number of switches to reach the best strategy for this structure.
The proof consists of a similar sequence of lemmas that were used to prove the same result for the simple

policy iteration algorithm on the structure of the previous section. We omit the proofs that are very similar

2

to the proofs of the corresponding lemmas of the previous section.

Definition 3.1. a (k), for every positive k, is defined to be
1 1
ak+1)= a(k)[—i- - Sk] and a(l)= -5

(Note that a (1) is different from Definition 2.1.) The next lemma states the same result as Lemma 2.1.

Lemma 3.1. Forevery 2< k <n:

V) -Vk-1)=

ak—1)

a(k)

where V(0) should be substituted by V' (0") in case & is 2.

Lemma 3.2. For every k, 2 <k < n, the values of the vertices, with respect to the current strategy S, are

given by the following formulas:

V- -ve-2),

S
=V(1)- —5?—[-;— - Sl] V(n).

V)=V k-1)+S5V(n)ak) and V(1)=V(0)+S,V(n)a(l),




-15-

Vin)
2 ?

+ D

ISP

VE)=Vk-1)+Vn)ak), V(1)=V(0)+V(n)a(l), and V()=

where a (k) is as in Definition 3.1.

Proof: The proof for (I) is the same as the proof of the pair (I) of Lemma 2.2. Pair (II) can be proved by
induction in the same way as in the proof of the pair (II) of Lemma 2.2, except for the basis case for k

equal to 2.
VY=V +V@ma@=V0)+8,V(n)a(l)+V(n)a (I)B— - Sl] =

Vin)
2

21 1 1,V

-2+ +2V(n)a(l)-2+ 4 .0

Corollary 2.3 holds obviously again and it is derived in exactly the same way for this case (from Definition
3.1).

Corollary 3.3. If a (k) is as Definition 3.1, then the following holds, for every positive &.

Ss
ak+1) = -(:—-;—)—a(k)

Corollary 3.4. Vertex k is switchable if and only if either Sy is 0 and a (k) is negative, or S, is 1 and a (k)
is positive, for every positive k.
Proof: The proof is the same as the proof of Corollary 2.4, since V (n) is always positive. [

Corollary 3.5. If vertex k (for every positive k) is switchable, and one or more larger numbered vertices

are switched arbitrarily, vertex k is still switchable.

Lemma 3.6. If vertex k (for every positive & less than n) is switched, and S, - * - Sg,28,4+; = 0...01, then all
the vertices k+1, k+2, ..., n are switchable.

Lemma 3.7. The following two statements hold (for every positive k):

—If S, * Sp41 8k = 0...01, and the vertices k, k+1, .., n are switchable, the next 2" **! -1 switches of the
topological policy iteration algorithm are made on these vertices, to reach the strategy where
Sn e Sk Sk =0..00.

—If S, SpaSe = 0...00, and the vertices k, k+1, .., n are switchable, the next 2" **1 -1 switches of the
topological policy iteration algorithm are made on these vertices, to reach the strategy where
Sp S8 =0..01.

We can now present the main result of the section.

Lemma 3.8. The topological policy iteration algorithm requires exponential time in the worst case. For
every positive n, the algorithm makes 2”1 switches, on the graph with n min vertices of Figure 3.3, to find
the best strategy (vector 00...01) if the initial strategy is the 0-vector.




-16 -

Proof: It follows from the previous results (remember that the topological policy iteration algorithm works
like the simple one for this structure), if initially every vertex is switchable. Since the initial strategy is the
0-vector, and a(1) is negative, every other a (k) is negative, too; so, by Corollary 3.4, every vertex is

switchable. O

4. Difference Policy Iteration Algorithm

As in the topological policy algorithm, the vertices are first topologically ordered. The select pro-
cedure then computes for every switchable min vertex in the component with the lowest order that contains
switchable vertices, the difference between the values of the two vertices that its two outgoing edges lead
to, and selects the vertex with the largest difference (if more than one vertex has this difference, the largest

numbered one is selected).

We believe that this is a natural approach to the problem of reducing the maximum number of
switches required by the policy iteration algorithm, because when a vertex with a large difference is
switched, the decreases of the values of the vertices with larger order may be large too. The algorithm per-
forms well for many structures. If the initial strategy is the 0-vector, the algorithm finds the best one in one
switch for the structure presented in Section 3. However a small change in that structure can mislead the
algorithm and make it run for exponentially many steps. In the rest of the section the new counterexample

is presented.

The new structure for n min vertices is constructed by adding the following gadget in appropriate

places of the graph of Figure 3.3. The gadget g, is presented in Figure 4.1.

Figure 4.1: Gadget g;

The gadget g, is placed between a min vertex j and another, m, which can be a min, average or sink
vertex. It consists of k average vertices, 1',2’, ..., k’. Vertex i’ (1 £i < k) has one edge going to min vertex
J and another going to the previous average vertex, (i—1)", or to vertex m if { is 1.

It is easy to notice that this gadget has the following properties:

—  If a strategy contains the edge (j, k"), then the value of j is equal to the value of m, so the gadget has

no effect.



-17-

- If a strategy contains the other edge from j, then

var=E Dy Y s vy - LDV ED,
so the effect in this case is that the difference between the values of the neighbors of vertex j has
been decreased by a factor of 2*.
Figure 4.2 presents the graph for two min vertices (which is produced by adding g, to the graph of
Figure 3.1). The difference between the values of the neighbors of vertex 1 is 1/8, whereas the correspond-
ing difference for vertex 2 is 1/4, so it is first switched, and the algorithm falls into the well known, by now,

scenario which takes 3 switches.

21

1 0

Figure 4.2: Counterexample for the difference policy iteration algorithm for n =2,
Figure 4.3 presents the graph for three min vertices.

To construct the graph on n min vertices, we first construct the graph on n min vertices, of the struc-
ture presented in Section 3 (counterexample for the topological policy iteration algorithm). Then we add
the appropriate gadgets in the following way: an instance of gy, is added between vertex k and each of
its two neighbors, for every k, 1 <k < n, and g,(,;) is added only between vertex 1 and 1’ (because vertex
1 is switched only once). Note that the number of new average vertices is polynomial (2(n—1)?) in the

number of the min vertices n.

Since all the min vertices lie on a cycle, the topological ordering does not affect the choices of
switchable vertices. We suppose again that the initial strategy is the 0-vector. There is a unique best stra-
tegy, § = 00...01, for the structure with respect to which the value of every min vertex is 1/2.

Lemma 4.1. The difference policy iteration algorithm requires exponential time in the worst case. For
every positive n, the algorithm makes 2"—1 switches on the graph on n min vertices to find the best strategy
(vector 00...01) if the initial strategy is the O-vector.




-18 -

0 0 0
3 2 1 0 1
1
3’
2’
v 0

Figure 4.3: Counterexample for the difference policy iteration algorithm for n =3,
Proof: Lemma 3.2 can be used for this proof. Note that the lemma holds for this structure too, because the
addition of the gadgets does not affect the values that the vertices get, but only hides the actual difference
between the min vertices. According to the lemma, the value of vertex k (k < n), according to the strategy
§=8,5,.1-.51,1s

VE)=Vk-1)+ 5 V(n)ak) and V(1) =V(0)+S5,V(n)a(l).
From these formulas it follows that the difference between the values of the two neighbors of vertex k is
V(n)a k), or %)— (by Corollary 3.3), for the original structure (without the gadgets). Note that the differ-
ence is constant for every vertex and does not depend on the strategy. With the gadgets added to it, the

difference for k£ becomes ;ﬁ'ﬁg , which is an increasing function of k, so the algorithm performs like the

simple policy algorithm, which, as proved in Section 3, takes an exponential number of steps for the struc-

ture. []

5. Improvement Policy Iteration Algorithm

The main result from the previous section is that the difference between the values of the two neigh-
bors of a vertex is not proportional to the decrease that will actually result by making the switch. So, that
greedy algorithm can require exponential time. A better approach would be to compute for each switchable

vertex the decrease that its switch will give, and decide which vertex to select based on that. This



-19-

observation leads us to the next greedy algorithm, the Improvement Policy Iteration Algorithm.

The select procedure of this algorithm first topologically sorts the vertices of the graph. For every
switchable min vertex in the component with the lowest order that contains switchable vertices, the
decrease of the value of the vertex if it is switched is computed. The vertex that will get the largest

decrease is selected (if more than one vertex can get this decrease, the largest numbered one is selected).

On the structure presented in the previous section the algorithm can find the best strategy in one step,
if the initial strategy is the O-vector. Unfortunately, based on the same structure, we can construct another,
on which the improvement policy iteration algorithm takes an exponential number of steps to find the best
strategy. In the rest of this section we will present the new structure and we will prove that the algorithm

makes an exponential number of switches on that.

For the new structure we will use another gadget; the gadget g, is presented in Figure 5.1.

Figure 5.1: Gadget g,

The gadget g, is placed between a min vertex & and another vertex j, that can be a min, average or
sink vertex. The gadget introduces a new min vertex i, and /-+m new average vertices. Each vertex p’ of
the set of m average vertices, has one edge going to min vertex k and another going to the previous average
vertex (p—1)” or to vertex j if p is 1. Each vertex p” of the set of [ average vertices (double-primed ver-
tices), has one edge going to min vertex & and another going to the next average vertex (p+1)” or to the 1-
sink if p is 1. Finally, there are edges from the new min vertex i to the average vertices 1” and m’, and an
edge from min vertex & to min vertex i. The letters a, b and ¢ denote the Iabels (0 or 1) of the edges (i, 17),
(i, m") and (k, i), respectively.

Roughly, the key property of this gadget is as follows. If S # ¢, §; # b and V (j) is much smaller than
V (k), then £ and i can decrease in value by a large amount if both are switched. However, if only one of &

or i is switched, the decrease in value of k or i is small.




-20 -

It can be easily checked that the gadget has the following properties:
— IfSy=candS; =b,then V({k)=V ()

— IfS;=a,thenV(@i)=(1-2"YW(k)+ 2"

— HS=bthen V(@) =(1-2""YWk)+2"V({).

—  I£ 8§, # ¢, then the improvement of V (i) when it is switched from a to b is:

VE)+ 27 A= VE) - V) =27V () = VRN =2V (k) - V() + 27 (1 - V (k).

—  If 8§ #c, then the improvement of V (i) when it is switched from b to a is:
VI + 2"V - V&) -V k) -2 A - VE) =2V () - V() - 271 - V (K)).

The last two properties make sense only if the value of vertices j and k are the same before and after the
switch of vertex i, because in this case V(j) and V (k) are the same with respect to the current strategy
before and after the switch. This is true for the structure that will be presented because no edge (other than

the edge labeled ¢ in the gadget) will connect any vertex with vertex .

Figure 5.2 presents the graph for n equal to 2. Gadget g ¢ is used twice, between vertices 2 and 1,
and between vertices 2 and 2°. Gadget g, ¢ is placed between vertices 1 and (', and between vertices 1 and
1”. Initially, only vertices 1; and 2, are switchable. 1, can get an improvement of 1/8, and 2; an improve-
ment of 1/4, so 2, is switched first. Vertices 1, (improvement 1/8), and 2 (improvement 1/3) are now
switchable, so 2 is switched next. Vertex 1; is still switchable (improvement 9/128), and vertex 2,
(improvement 31/192) too. Therefore, 2, is selected. Vertex 1; is the only switchable one, and it is
switched next. Again, only one vertex is switchable, vertex 1, so it is switched. Vertices 1, (improvement
29/384), and 2, (improvement 11/64) are now switchable, and 2, is selected. Between the switchable ver-
tices 1y (improvement 29/384), and 2 (improvement 1/6), vertex 2 is selected. Vertex 1, is still switchable
(improvement 7/128) but it is only switched after vertex 2, (improvement 15/128). At this point none of the
vertices is switchable. The total number of switches made is 9. The sequence of strategies and values are

summarized in the table of Figure 5.3.

To construct the graph for general n, G,, we first construct the graph on n vertices, of the structure
presented in Section 3 (counterexample for the topological policy iteration algorithm). Then we add the
appropriate gadgets in the following way: an instance of g5, 2442 is added between vertex k and each of
its two neighbors, for every k, 1 <k <n. In this gadget, the new min vertex between vertex k and the aver-
age vertex k” is labeled k,, and the new min vertex between vertex k and the previous min vertex k-1 (or
average vertex 0” if k is 1) is labeled k. The edge of k; that goes vertically down is labeled with 1, and the
other one with 0. The edge of k¢ that goes horizontally right is labeled with 0, and the other one with 1.
Note that the number of new vertices is polynomial in the number of the original vertices (the number of

the new min vertices is 2n, and the number of the new average vertices is 62 + 2n).



221 -

‘A—. 1 . .‘—‘ 1 .
Cg 20 1 10 ‘. () @

I W

[y

Figure 5.2: Counterexample for the improvement policy iteration algorithm for n = 2.
The topological ordering does not affect the choices of switchable vertices because all the min ver-
tices are given the same order. The initial strategy will be assumed to be the 0-vector. The best strategy
for the structure is unique (strategy S where S, -+ §,8, =8, -+ 8,81, =8, - 8,8, =0..01).

The proof that the algorithm makes an exponential number of switches before it reaches the best stra-
tegy will follow the steps that were followed in Section 3 (we will only need a new definition and a new

lemma). We will omit the proofs that are the same as the proofs of the corresponding lemmas in Section 3.

Definition 5.1. a (k), for every positive k, is defined to be

a(k+1) =a(k)[% -s,c] and a(1) =——;-.

Definition 5.2. A strategy is defined to be stable if for all k, either
— Sk=0andS,,°=O,or




-2

£ §=82852,52818, 8y, | V@ | V(20 | V(@) | VD) | V(o) | V) | V(©0)
0 000000 1 1 1 1 1 1 1
1 001000 1 1 3/4 1 1 1 1
2 101000 2/3 5/6 2/3 5/6 5/6 105/128 5/6
3 111000 2/3 | 43/64 23 | 56 5/6 105/128 5/6
4 111001 2/3 | 43/64 273 5/6 5/6 3/4 5/6
5 111101 2/3 | 43/64 273 12 7/12 12 5/6
6 101101 2/3 12 2/3 12 7/12 172 5/6
7 001101 12 12 518 12 9/16 1/2 3/4
8 000101 1/2 12 65/128 | 112 9/16 12 3/4
9 000111 12 12 65/128 | 172 | 65/128 172 3/4
Figure 5.3: Table of sequence of strategies and values for the graph of Figure 5.2.
—  Sy=land§; =1.

Note that from any stable strategy, it is impossible to reach an unstable strategy on any iteration of any pol-
icy iteration algorithm. This is because this would result in value 1 for vertices k and kg, or k and k;. The
reason we introduce this definition is because the sequence of lemmas of Section 3 can only be extended to

this structure if the current strategy of the improvement policy itertion algorithm is always stable.
Lemma 5.1. If the current strategy is stable, for every 2 <k < n:

V) - Vik-1)= #(’j)l)— [v«k_m - V(k—z)],

where V (0) should be substituted by V(0’) in case k is 2.
Proof: The proof is the same as the proof of Lemma 3.1, since the current strategy is stable, which, com-

bined with the first property of the gadget, means that the original vertices of the graph (vertices 1, ..., n and
0, ', ..., n’) take the same sequence of values that they would take without the addition of the gadgets. [

Lemma 5.2, If the current strategy, S, is stable, for every k, 2 <k < n, the values of the vertices k and £/,
with respect to §, are given by the following formulas:

V&)=V k-1)+8V@n)ak) and V(1)=V(0)+S5,V(n)a(l), o

Vin)

VK)Y=Vk-1)+V@n)ak), V)=V O0)+V({n)a(), and V)= =+ 0

I

0| =

where a (k) is as in Definition 5.1.

Corollary 5.3. If a(k) is as Definition 5.1, then the following holds, for every positive k.

S
a(k+1) = (;;-)ma(k)



-23.-

Corollary 5.4. For every positive k, if the current strategy is stable,

—  Vertex k is switchable if and only if either Sg =0, S, = 1, and a (k) is negative, or Sy =1, Sk, =0,
and a (k) is positive.

- Vertex k; is switchable if and only if either S =0, Sy=1-/, and a(k) is negative, or
Sg=1,85%= i~i, and a (k) is positive, for i equal to O or 1.

Proof: The first statement can be proved as Corollary 2.4 was proved. Note the additional conditions that

have been added for this corollary; if Sy were not equal to 1, vertex k would not be switchable from 0 to 1,

because this would result in value 1 for vertices k and k; (same for S, and vertex k).

Proof of the second statement: We present the proof for i equal to 0 and S, equal to 0; the rest can be
proved in a very similar way.

First, suppose that k is switchable from 0 to 1. §; should obviously be equal to 1 (otherwise the switch
will result in value 1 for vertices & and k). Since k is switchable from 0 to 1, its value will be improved
by the formula given in the third property of the gadget (note that [ is equal to 2n+2 and m is equal to
2(n—k) in the structure). Hence, the following quantity is positive.

272BVY (k-1) -V (k) - 27221 -V (k) >0 <=>

22V (n)a (k) ~ 2721 -V (k)) > 0 (by Lemma 5.2 (I),and S, = 1) => a(k) <O0.

Next, suppose that a (k) is negative and S is equal to 1. We will prove that if S is 0, vertex kg is switch-

able to edge 1. It suffices to prove that

22V (n)ak) - 272(1 - V(k)) > 0 or 2%V (n)a (k) > %
which is true, since a (k) is equal to —~—217 (Corollary 5.3),and V(n) > 1/2.00
Corollary 5.5. Suppose the current strategy, S, is stable, and the improvement policy iteration algorithm
reaches a new stable strategy, S’, by switching only vertices with numbers greater than k (for any positive
k). Then, for any j <k, j, jo or j, is switchable with respect to §’ if and only if it were switchable with
respect to S.
Proof: Since the switchability of vertex j, jo or j; depends only on the values of §;, §; , S, and a(j), and
these are not affected by switches of larger numbered vertices (by Corollary 5.4), the corollary holds. (1
Lemma 5.6. If the current strategy is stable, S, * - - Sg428k41 =0..01, 8, ** - Sraz), =0..0, Sgapy, = 1, and
vertex k is switched (for any positive k less than n), then the vertices (k+1)g, (K +2),, ..., n; are switchable.
Proof’ First suppose that vertex k is switched from 0 to 1. By Corollary 5.4, a (k) is negative, and by Corol-

lary 5.3 a(k+1) is positive. Therefore, by Corollary 5.4, vertex (k+1), is switchable. By Corollary 5.3
a (k+2) is negative, so, by Corollary 5.4 vertex (k+2), is switchable. It can be proved by induction that the




-4 -

vertices (k+3);, ..., n; are switchable too. If vertex k is switched from 1 to 0, it can be proved in exactly
the same way that the vertices (k +1)q, (k+2)1, ..., n; are switchable. O

The next lemma is a new one; it gives a relation between the amounts by which the values of the ver-
tices are improved when switched.
Lemma 5.7. Suppose that the current strategy, S, is stable, and that vertices k,, p, (or p) are both switch-
able (with respect to §), where x, y in {0, 1} and k, p are any positive integers such that k£ < p. Then the
improvement of vertex k,, if switched, is less than that of vertex p, (or p).
Proof: We first prove the statement for p,. From Lemma 5.2 and Corollary 5.3, it follows that, with
respect to any stable strategy, |V()-V({-1)|= 279v(@n) or 0O for every j>1, and
V(D) -V () =21V (n) or 0. Similarly, |V (j)— V(j)] =27V (n) or 0 for every positive j. Therefore,

from the properties of the gadget, the maximum improvement of k, is
226 2K (n) + 272721 - V (k) < 272V (n) + 2722,
Similarly, the minimum improvement of p, is
2267m 2PV (n) - 272721 - V(p)) = 272V (n) - 272,
Hence, the minimum difference between the improvement of p, and that of k, is
2727 -2V (n) - 271 > 0 (sincep > k, k=1, and V(n) 2 1/2).

The statement for vertex p can be proved in a similar way. The improvement from switching p is 277V (n),

so the minimum difference between the improvement of p and that of &, is

2PV (n) - 272V (n) ~ 272772 5 2PV (n) = 27V (n) > 0 (since p > kand p < n). O

Lemma 5.8. If the current strategy is stable, the following two statements hold (for every positive k):

— I8, - S8k = S, * 7+ Sk1, 5k, = Sa, * * Sk1, Sk, = 0...01, the vertices kg, (k+1),, .., n; are switch-
able, and none of the vertices 1, ..., k-1 is switchable, the next 3(2"**1-1) switches of the improvement
policy iteration algorithm are made on the vertices numbered n, n—1, ..., k, to reach the stable strategy
where S, =« * Sg1 Sk = Sn, *** Ska1,5k, = Sn, * * Sk41,5k, = 0...00, and none of these vertices is switchable.
= IE 8y =+ Spa1 Sk = Sp, " " Sk1,8k, = Sn, ** * Ska1,5k, = 0...00, the vertices ky, (k+1), .., n; are switch-
able, and none of the vertices 1, ..., k-1 is switchable, the next 3(2"**!-1) switches of the improvement
policy iteration algorithm are made on the vertices numbered n, n—1, ..., k, to reach the stable strategy

where Sy, * ** Sga1 Sk =S, ** Ska1, Sk, = Sn, Sk, Sk, = 0...01, and none of these vertices is switchable.

Proof: The lemma will be proved by induction on k.

Basis Case: The basis case of the first statement can be proved as follows (the basis case of the second
statement can be proved in the same way). If k is equal to n, vertex nq is switchable, and therefore, vertices
n, ny are not (Corollary 5.4). Vertex n is switched (by Lemma 5.7) from 1 to 0. By Corollary 5.4, vertex

n is now switchable, and it is switched next (by Lemma 5.7) from 1 to 0, which results in vertex n,



-925-

becoming switchable from 1 to 0. By Lemma 5.7 it is switched too, before any other switch. If the initial
strategy were stable, the current one is too. The total is 3 switches.

Induction Hypothesis: The statements hold for every & = m.

Induction Step: We will prove that the statements hold for & equal to m—1. We prove the first one (the
second one can be proved in the same way).

Since vertex (m—1) is switchable, by Corollary 5.4, the vertices m—1 and (m~-1); are not switchable.
Therefore all the conditions of the second statement for £ equal to m hold. The algorithm will make the
next 3(2"™*'-1) switches on the vertices numbered n, n—1, ..., m, to reach the stable strategy where
St Sma1Sm=Sn, " " Sma1,5m, = Sn, * * * Sma1,5m, = 0...01, and none of these vertices is switchable. Ver-
tex (m—1), is still switchable (by Corollary 5.5), and it is switched next from 1 to 0 (Lemma 5.7). Now ver-
tex m~1 is switchable from 1 to 0 (Corollary 5.4), and it is switched (Lemma 5.7). By Lemma 5.6, the ver-
tices mg, (m-+1)y, ..., n; are switchable now. All the conditions of the first statement for k equal to m hold
(note that the strategy is stable), so the next 3(2" ™+ 1) switches of the algorithm are made on the vertices
numbered n, n~1, .., m, to reach the stable strategy where S, SpSn = Sn, " Sma1,5m, =
Sn, " * Sm41,8m, = 0...00, and none of these vertices is switchable. After the switch of vertex m -1, vertex
(m~1); became switchable from 1 to 0 (Corollary 5.4), and it is still switchable (Corollary 5.5), so it is
switched (Lemma 5.7). The strategy reached is stable, and S,, - - * Sy =S, == S(mory, =Sa, *** S(m-1y, =
0...00. The total number of switches made is 3(2"™*2 — 1). Note also that the leftmost 3(n—m +2) vertices

are not switchable. [1
We can now present the main result of the section.

Lemma 5.9. The improvement policy iteration algorithm requires exponential time in the worst case. For
every positive n, the algorithm makes 3(2"-1) switches, on the graph G,, of the structure described, to find
the best strategy (vector 00...01) if the initial strategy is the 0-vector.

Proof: It follows from the previous results, and particularly from the second statement of Lemma 5.8 (for &
equal to 1), since the initial strategy is the 0-vector, which is stable. Also, a (k) is negative for every k, so
the vertices 1; , ..., n; are all initially switchable (by Corollary 5.4). O

6. Conclusion and Open Problems

We have studied the complexity of the policy iteration algorithm for simple stochastic games and
have shown that many natural variations of this algorithm require exponential time in the worst case. The
results of this paper indicate that it is unlikely that an approach based on the policy iteration algorithm will
yield a polynomial time algorithm for the SSG value problem. Thus, it is still unresolved whether the SSG

value problem is in P.

Apparently, no probabilistic analysis of the policy iteration algorithm has been undertaken, motivat-
ing the following questions. Suppose we define a new algorithm, the Randomized Policy Iteration




- 26 -

Algorithm, by defining the select procedure to choose a switchable vertex randomly and uniformly from
the set of switchable vertices. Does the randomized policy iteration algorithm run in expected polynomial
time on all inputs? A positive answer to this question would imply that the- SSG value problem is in the
complexity class ZPP, that is, it has an errorless, polynomial time algorithm. (See Gill, [3], for a formal
definition of the class ZPP.) A negative answer would shed more insight on the limitations of policy itera-
tion algorithms in general. For all of the constructions in this paper, the randomized poiicy iteration algo-

rithm requires only polynomial expected time (we leave it to the reader to verify that this is the case).

It would also be interesting to obtain results on the average case performance of the policy iteration
algorithm, on reasonable distributions of instances of the SSG problem. The work of Tovey, [12], may be a
useful start in this direction.

There are other algorithms for the SSG value problem, whose performance has not been analyzed.
One such algorithm is derived from the fact, mentioned in Section 1, that if a SSG has only min and aver-
age, or max and average, vertices, a locally optimal strategy can be found in polynomial time using linear
programming. In the same way, suppose that in a SSG with min, max and average vertices, the strategy of
one player is fixed, say strategy S, of player 1. Then a strategy S of player O that is locally optimal with
respect to §; can be found in polynomial time. That is, for each min vertex i, the value of vertex i, with

respect to strategies S and S, is the minimum of the values of its children.

Thus the following algorithm is guaranteed to find a locally optimal pair of strategies. Initially,
choose an arbitrary strategy S, for player 1. Then repeatedly do the following: find a locally optimal stra-
tegy, So for player O with respect to §,. Now, find a new strategy §’; for player 1, such that §’; is locally
optimal with respect to S,. Halt if the current pair of strategies §";, S is a locally optimal pair of strategies;
otherwise repeat, letting the new value of §; equal the current value of §°y. In the worst case, how many

iterations of this procedure are necessary to reach a locally optimal pair of strategies?

A new framework for the study of local search problems has been proposed by Johnson, Papadimi-
triou and Yannakakis, [6]. They define a new complexity class called PLS, for polynomial local search.
This complexity class contains optimization problems with finitely many solutions, where the goal is to find
a locally optimal solution. The problem of finding a locally optimal pair of strategies for a SSG is in the
class PLS. PLS-complete problems include a number of local search versions of NP-complete problems,
such as finding a locally optimal tour for the traveling salesman problem, under the Lin-Kernighan heuris-
tic (Papadimitriou, Schéffer and Yannakakis, [9]). Is the problem of finding a locally optimal pair of stra-
tegies for a SSG PLS-complete?

References
[1] A. Condon. The Complexity of Stochastic Games. Information and Computation, to appear, 1990.
Also available as Technical Report Number 863, Computer Sciences Department, University of

Wisconsin-Madison.



-27-

[2] C. Derman. Finite State Markov Decision Processes. Academic Press, 1972.

[31]. Gill. The Computational Complexity of Probabilistic Turing Machines. SIAM Journal on Comput-
ing, 6:675-695, 1977.

[4] Howard. Dynamic Programming and Markov Processes. M.LT. Press, 1960.

[SIR. L Jeroslow.‘ The Simplex Algorithm with the Pivot Rule of Maximizing Criterion Improvement.
Discrete Math., 4:367-378, 1973.

[6] D. S. Johnson, C. H. Papadimitriou and M. Yannakakis. How Easy is Local Search? Journal on Com-
puter and System Sciences, 37:79-100, 1988.

[71 L. G. Khachiyan. A Polynomial algorithm in linear programming. Soviet Math Dokl., 20:191-194,
1979.

[8] V. Klee and G. Minty. How Good is the Simplex Algorithm? Inequalities III, O. Shisha, Academic
Press, New York, 159-175, 1979.

(9] C. H. Papadimitriou, A. A. Schiffer and M. Yannakakis. On the Complexity of Local Search.
Proceedings of the 22nd Annual Symposium on the Theory of Computing (STOC), 438-445, 1990.

[10] H. J. M. Peters and O. I. Vrieze. Surveys in game theory and related topics, CWI Tract 39. Centrum
voor Wiskunde en Informatica, Amsterdam, 1987.

[11] L. S. Shapley. Stochastic Games. Proceedings of the National Academy of Sciences, U.S.A, 39:
1095-1100, 1953.

[12] C. A. Tovey. Low Order Polynomial Bounds on the Expected Performance of Local Improvement
Algorithms. Mathematical Programming, 35(2): 193-224, 1986.




