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Abstract

RANK-1 SUPPORT FUNCTIONALS AND THE RANK-1
GENERALIZED JACOBIAN,

PIECEWISE LINEAR HOMEOMORPHISMS
Daniel Ralph

Under the supervision of Professor Stephen M. Robinson

This research consists of two main topics broadly related as studies of nondif-
ferentiable systems. The first, involving convex and nonsmooth analysis, is aimed
at extending the classical Jacobian to nondifferentiable vector functions. The sec-
ond is on a characterization of the homeomorphisms in a certain class of piecewise
linear mappings. This is useful eg. in approximating certain piecewise smooth
systems.

For the first, let X,Y be separated, locally convex topological vector spaces
over IR with Y semi-reflexive; X*, Y™ be the respective topological dual spaces of
X,Y; and CL(X,Y) be the space of continuous linear mappings from X to Y.
We introduce the rank-1 support functionals of sets I' C CL(X,Y)

of : X xY* = RU{o0}: (z,)) — sup Az
Aer
and characterize the extended real functions on X x Y* which are rank-1 support

functions. The proof uses Hérmander’s [Hor] characterization of classical support

ii




functions. As an immediate application we characterize the fans [Iof81, Iof82]
which are, up to closed values, spanned by their handles.

Now assume X,Y are normed spaces and let ¢ : X — Y be Lipschitz near
z« € X. The rank-1 generalized Jacobian of g, a set valued derivative for g at
points where the classical Jacobian may not exist, is studied. We show existence

(nonemptiness) of the rank-1 generalized Jacobian

8'g(z.) € {A € CL(X,Y) | ¥(u,)) € X x Y*, Mu < (Ag)°(z.;u)}

where (Ag)°(z.; -) is the Clarke generalized directional derivative [Cla] of the real
function Ag. We actually show that the mapping (u, A) ++ (Ag)°(z.; u) is a rank-1
support function of a nonempty set. Existence extends readily to more general
spaces. This is a considerable advance on the most general previous existence
result in this area, due to Thibault [Thi82]. Some basic properties of the rank-1
generalized Jacobian are explored.

In our second topic we study a class of piecewise linear maps from IR™ to
IR™ called pl-normal maps. These are the normal maps [Rob90] induced by lin-
ear mappings and polyhedral convex sets. Solving such systems is important in
many optimization and equilibrium problems. Robinson’s [Rob90] homeomor-
phism theorem characterizes the pl-normal maps that are homeomorphisms, i.e.
gives conditions for unique continuous solvability of such systems. We provide a

new and shorter proof of this result.
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Chapter 1

Introduction

This research consists of two main topics broadly related as studies of nondiffer-
entiable systems. The first, involving convex analysis and nonsmooth analysis of
vector valued functions, is aimed at extending the classical Jacobian to nondiffer-
entiable vector functions on general spaces. The second is on a characterization
of the homeomorphisms in a certain class of piecewise linear mappings. This is
of interest eg. in approximating certain piecewise smooth systems arising from
nonlinear programming and economic equilibria problems. Most of the mate-
rial presented will relate to the former topic (Chapters 1-3); the final chapter is
devoted to the latter.

In our first topic we are interested in vector valued functions which are not
smooth, i.e. may not have derivatives (Jacobians) at particular points. If we can
find a ‘reasonable’ substitute for the Jacobian when the Jacobian does not exist,
we will be in a position to try to emulate some of the successes of calculus and
smooth optimization. The primary concern for us is existence: does the substitute
Jacobian we define (a set of continuous linear maps called the rank-1 generalized
Jacobian) actually provide any maps for us to use in place of the (nonexistent)
Jacobian? If not, it will be of no use to us.

In finite dimensions, (existence of) the Clarke generalized Jacobian [Cla] has

been useful in nonsmooth calculus (eg. the implicit function theorem [Cla, §7.1])



and in nonsmooth optimization, notably in regularity (stability) of constraint sys-
tems [Roc85] and sensitivity in parametric programming [CL, Roc85]. Existence
alone of the (rank-1) generalized Jacobian in infinite dimensions, which we give
in Chapter 3, is the foundation needed before we can even begin to consistently
extend these applications of nonsmooth calculus to general spaces. To get exis-
tence we need some theory on the properties of sets of continuous linear maps.
This theory is set out in Chapter 2.

In Chapter 2, X,Y denote separated, locally convex topological vector spaces
over IR with Y semi-reflexive; X*,Y* are the respective topological dual spaces
of X,Y; and CL(X,Y) is the space of continuous linear mappings from X to Y.
Support functionals of nonempty sets C C X*

oc: X = RU{oo}:z+> supéz
¢ecC
are of fundamental importance in convex and nonsmooth analysis [Roc70, Roc74,
Cla]. The support functions on X have been characterized in [Hér] as the functions
on X taking values in IR U {oco} which are lower semicontinuous and sublinear.
We introduce the rank-1 support functionals of nonempty sets I' C CL(X,Y):
op : X xY* = RU{oo} : (z,)) — sup Mz
Ael

The main result of Chapter 2 characterizes the extended real valued functions on
X x Y™ which are rank-1 support functions: these too have properties relating
to lower semicontinuity and sublinearity. An immediate application is the char-
acterization of the set valued fans [Iof81, 10f82] which are, up to closed values,
‘spanned by their handles’. Of special importance is the fan associated with the
rank-1 generalized Jacobian described in Chapter 3.

In Chapter 3 we specialize to normed spaces: let X,Y be real normed spaces

with Y be reflexive; and g : X — Y be Lipschitz near z, € X. The space of




bounded linear mappings from X to Y, BL(X,Y), is then identical to CL(X,Y).
The main result of Chapter 3 is the existence (nonemptiness) of the so-called

rank-1 generalized Jacobian
8g(z.) ¥ {A € BL(X,Y) | V(u,\) € (X x Y*), AAu < (Ag)°(z4;u)}

where, for f : X — IR which is Lipschitz near z., f°(z.; -) is the Clarke gener-
alized directional derivative [Cla]. The rank-1 generalized Jacobian is kind of set
valued derivative for g at points where the classical Jacobian may not exist.

The existence proof relies on the characterization of rank-1 support functions
shown in Chapter 2. Existence extends readily to metric spaces and, in greatest
generality, to separated locally convex topological vector spaces. d'¢g(z.) is a rank-
1 (plenary) approximation to the Clarke generalized Jacobian when the latter
exists. This is a considerable advance on the most general previous existence
result, due to Thibault [Thi82], which required X and Y to be separable Banach
spaces with Y reflexive in order to use Haar null sets and Rademacher’s theorem
[Chr].

Many basic properties of the rank-1 generalized Jacobian are also covered, in-
cluding its relationship with the Clarke generalized Jacobian, classical derivatives,
Sweetser’s shields and Ioffe’s fans; and some calculus.

In our 4th and final chapter, we study piecewise linear functions from IR"™
to IR™ of a certain kind, namely the pl-normal maps. These are just the nor-
mal maps [Rob90] induced by linear mappings and polyhedral convex sets. Such
systems are important in many optimization and equilibrium problems. They
arise directly from variational inequalities, or equivalently generalized equations,
specified by linear maps and polyhedral sets; and indirectly as approximations to
such systems specified by smooth nonlinear functions over polyhedral sets. Robin-

son’s [Rob90] homeomorphism theorem characterizes the pl-normal maps that are



homeomorphisms, i.e. gives conditions for unique solvability of such systems. Here
we provide a new, shorter proof of this result.

The remainder of the introduction will consist of an outline of the background
and results of the related Chapters 2 and 3. We will present the main ideas in
familiar settings, i.e. in finite and infinite dimensional normed spaces, without
proofs. This is intended to highlight the main ideas of these chapters without
the notational and theoretical demands — necessary for a complete investigation
— that tend to obscure the development of the material. Section 1.1 will cover
material found in Chapter 2 and Section 1.2 will cover material found in Chapter 3.

The following notation will be employed throughout this chapter.

e Let X,Y be normed spaces over IR. Often we will use Euclidean spaces
X =R"and Y = IR™.

e A formon X is a linear mapping from X to IR; an operator from X to Y
is a linear mapping from X to Y. The space of all bounded (continuous)

operators from X to Y is written BL(X,Y). The dual space of X is the
space of all bounded forms on X, BL(X,IR), and will be denoted by X*.

In finite dimensions, we will use the Euclidean inner product (-,-) or the
transpose operation u? to consider vectors u € IR™ as forms on IR™: (u,) =

uT. Also, the space of m xn matrices IR™*" represents the space of operators

from IR™ to IR™.

e Let f: X — Rand g: X —» Y. Recall fis (Gateaux) differentiable at
z, € X if there is a bounded form V f(z.) such that for each u € X,
lim fle. +tw) - f(z.) = V f(z.)u

t—0 t

The derivative V f(z,) is also called the gradient of f at z,.




Similarly if ¢ is (Gateaux) differentiable at z., its derivative Vg(z.) is a

bounded operator from X to Y called the Jacobian of g at z,.

e The set operations of closure and convex hull will be denoted by cl and co

respectively.

e The class of all compact, convex, nonempty subsets of X will be denoted by

c(X).

e ‘a.e.’ will mean ‘almost everywhere with respect to Lebesgue measure’ (un-

less another measure is specified).

1.1 Support Functionals for Convex Sets

1.1.1 Convex Sets of Vectors

Convex sets of vectors are of interest in topology [Sch] and mathematical pro-
gramming [Roc70, Cla], just to mention two areas. The support functions of such

sets will provide an important tool for dealing with them.

Definition 1.1 Let § # C C IR™. The support functional of C, denoted o¢, is
given by

oc(u) L sup (z,u), YuelR"
zeC

Example 1.2 Letn =1 and C = [0,1]. Then foru e R

(u) = def | u ifu>0
golu) =ty = 0 otherwise

Example 1.3 Let C be the closed unit ball in R™ : C = {z € R"||z| < 1}. Since

we are using the 2-norm, oc(u) = |u| for each v € R". In general, o¢ is the dual

norm.



Example 1.4 [Roc70, Thm. 23.2] If f : R* — R is convez then it has a direc-

tional derivative at any z. in every direction u, with value
f'(@a;u) = 005z (u)

Recall that C' € C(IR") iff C is a compact, convex and nonempty subset of IR".
In the 3-dimensional case, the idea of the following result can be traced back to

the 1911 paper [Min|. The infinite dimensional result will be quoted later.

Theorem 1.5
a. C €C(R") = C={zeR"|Vue R" (z,u) < oc(u)}

and C s nonempty and bounded.
b. Let C,D € C(R"). Then

CCD <= o¢c<op
< VYuelR", (C,u) C(D,u)

where (C, u) W (c,u) |c € C} and similarly for (D,u). By symmetry, the
statement s true if equality holds throughout in place of the subsets and

inequality.

Remark. We know from above that sets in C(IR") can be distinguished from
each other by examining their respective actions on n-vectors. This effectively
reduces comparisons of sets in C(IR") to comparisons of real intervals.

We have defined the support functions of nonempty sets in IR", and seen that
sets in C(IR™) are characterized by their support functions. A related question is:
which functions are support functions of sets in C(IR™)? This was answered in the
generality of locally convex topological vector spaces, of which normed spaces are

an example, by [Hor]. We quote the finite dimensional version:




Theorem 1.6 Let p: IR" — IR. Then

1. p is the support function of a set C € C(IR™)

2a. p s convex
2b. p is positive homogeneous:

for each uw € R"™ and a > 0, p(au) = ap(u)
2¢c. p is bounded above: sup{p(u)|[u| <1} < oo

1.1.2 Convex Sets of Matrices

The inner product on IR™ allowed us to treat vectors as forms, and thereby to

define support functions of sets in IR". The matrix analogue of this follows.

Definition 1.7 Let A, B € R™*". Consider A as the column vector of length

m X n by adjoining the columns of A respectively into one long vector:
(A11, Asts ooy A, Aray oo oy An) T

and similarly for B. The inner product of A and B, denoted (A, B), is the standard
inner product of the vectors defined from A, B respectively.

Example 1.8 Let m =n =2 and
a b a b
a-[oa] -2
Then (A, B) = aa’ 4+ bb' + cc' + dd'.
Lemma 1.9 The inner product on R™*™ satisfies

(A, B) = trace(ATB)

where the trace of a (square) matriz is the sum of its diagonal entries.



So applying Theorem 1.5 in the matrix context gives

Corollary 1.10
a. ' e C(IR™") < T'={Ae€R™"|VBeR™", (A,B)<or(B)}

and I' is nonempty and bounded.

b. Let ')A € C(IR™). Then

'CA <<= or<oa
& VBeR™", (I',B) C(A,B)

where (I', B) uf {(A,B) | A € T'} and similarly for (A, B). By symmetry,
the statement is true if equality holds throughout in place of the subsets and

inequality.

This kind of result was pointed out in [H-U82, §2].
We will find it convenient to work with an outer approximation to a set I' €
C(IR™*™) which is given by considering the action of its support function only on

the rank-1 matrices. First we recall the matrices of rank 1.

Lemma 1.11 For B € R™*",
B has rank 1 <= B = vu® for some u € R",v € R™
In this case, (A, B) = vT Au for each A € R™*",

The general version of our next definition is given as Definition 1.24 (cf. Chap-

ter 2 Definition 2.15).



Definition 1.12 Let § # ' ¢ R™*",

1. The rank-1 support functional of T, o}, is given by

ot(u,v) = supv’ Au, VY(u,v) € R* x R™
Aer

2. The rank-1 representer (or closed rank-1 hull) of T is
I & {4 e R | V(u,v) € R* x R™, vTAu < ol(u,v)}
IfT' =T we say T is a rank-1 representer.

Example 1.18 Let T' = {A} for some A € R™ ", Clearly A € T'. Suppose
A €T? too; then for the unit vectors (e;), C IR™, (fi)7ey CIR™ we must have

Aij = f] Aei < of(ei, f) = [] Aej = Ay

By taking —f;’s instead of f;’s we get that —A;; < —Aij. Hence A = A; and
' =r.

Example 1.14 The interval Jacobian of a differentiable function ¢ at z, is an

m X n matriz of real intervals I;;,

Vg(2e) = [Lij] i

Each I;; contains the i-jth partial derivative of g, Vg(z.):; = dgi(z.)/dz;. There-
fore, Vg(z.) € Vg(z.). The interval Jacobian arises naturally when trying to
achieve correct error bounds of numerical processes computationally. See [Neu]

for ezample.

Also
[Vg(a)]" = Vg(a.)

by reasoning similar to that in the previous ezample.
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From the definition, it is clear that the rank-1 representer of a set of matrices
contains the original set. Equality does not hold in general, however, as the

following counterexample from [Swe77] demonstrates.

Example 1.15

e A A N |

The set T’ is in fact compact and convez. Note that the identity matriz I is not in
I' because trace(A) = 0 for each A € I', whereas trace(l) = 2.

Nevertheless, we have u € T'u for each u € R®. The case u = 0 is trivial, so
assume that u = (uy,uz)T # 0. If |[uy| > |ug| then

1 0 ,
A=[2u2/u1 _1l€I

with Au = u. If |ug| > |uy| then

_ -1 2u1/u2 .
MEER

with Au = u.
We conclude that I € T'\T'.

A summary of the basic properties of the rank-1 representers in C(IRmX")
follows in Theorem 1.16. Most of these can shown directly using Theorem 1.5,
without reference to the inner product on IR™*", as in [Swe79, Ch IV]. Without
boundedness of closed rank-1 representers, however, the situation is more difficult.

The general version is quoted later as Theorem 1.25.
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Theorem 1.16
a. IfT € C(R™™ thenT c T € C(R™*™) and (T')! =T1.
b. A =T" for some T € C(R™") iff A = A! and A is nonempty and bounded.

c. Let T,A € C(R™™,

MMc Al = VY(u,v) e R* xR™, oi(u,v) < oh(u,v)
<= V(u,v) € R* x R™, vITu CvTAu
& VYuelR", T'uC Au
<= Vv eR™, oIT cJoTA

The statement remains valid if equality holds throughout in place of the sub-

sets and the inequality.

Aside: [SweT79] has defined the plenary sets in IR™*™ as those sets A for which
A €A < Vu, Au € Au. Similarly we can define the rank-1 sets as those
sets A for which A € A <= Vu,v, vTAu € vTAu. The theorem above says
that the class of rank-1 sets in C(IR™*") coincides with the class of plenary sets
in C(IR™*™). We note in passing that, generally, a plenary set is rank-1 but not
vice versa. See Chapter 2 §2.5 for further details.

The virtue of (closed) rank-1 representers is that their dual description involves
only rank-1 matrices, i.e. n- and m-vectors u and v respectively, rather than all
matrices. The main theorem on rank-1 representers of C(IR™*") characterizes
the functionals which are the support functions of rank-1 representers. We will
not use this when dealing with the generalized Jacobian in IR™*"™, but will need

its infinite dimensional analogue for Banach spaces. The result is a corollary of

Chapter 2 Theorem 2.21.2.
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Theorem 1.17 Let P : R" x R™ — IR, and (u,v) denote a general point of
R™ x R™. Then

1. P is the rank-1 support function of a set in C(IR™*™)

2a. For each (u,v), P(u,v) = min{}>; P(u;,v;) |

V finite sums 3, viul = vul, (ug,v;); € IR™ x R™}
2b. For each (u,v) and a > 0, P(au,v) = P(u,av) = aP(u,v)
2c. P is bounded above: sup{P(u,v)||ul,|v] <1} < oo.

Compare the hypothesis of this result and Theorem 1.6: the condition 2a here is
a convexity requirement, condition 2b relates to positive homogeneity, while 2c is

just boundedness again.

1.1.3 Convex Sets of Forms

Here X and Y are considered general normed spaces over IR not necessarily having
inner products. Gradients of smooth real functions on X are forms on X so, in
anticipation of the generalized gradient, we will be working with support functions
of convex sets of forms. The results given here will exactly parallel the results
given in the Subsection 1.1.1.

More notation is needed.

e The dual norm on the dual space X* of X is

de :
[¢] = sup{|éu] | v € X, Ju] <1}
Under this topology the dual space of X* is denoted X**.
e Y is reflexive if it is (isomorphically) equal to its second dual Y**.

o When dealing with convex sets in the dual space X*, we endow X* with

the weak™* topology, also called the o(X™*, X) topology ([Sch]) i.e. the weak
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topology on X™* determined by X. (See Chapter 2 §2.2 for more on the
weak* topology.)

Then C(X™) is the class of all convex, weak™ compact, nonempty sets in X*.

Definition 1.18 Let § # C C X*. The support functional of C, denoted o¢, is
given by

oo(u) ¥ suptu, YueX

e

Example 1.19 Let C be the closed unit ball in X* : C = {£ € X*||¢] < 1}.
Then oc(u) = |ul, for each u € X.

The next two results, due in this generality to [Hor|, are the infinite dimensional

versions of Theorems 1.5 and 1.6.

Theorem 1.20
a. CeC(X*) < C={eX*|Vue X, tu<oc(u)}

1s nonempty and bounded.

b. Let C,D € C(X*). Then

CcD <= oc<op
= VYuelX, (C,u) C(D,u)

and, by symmetry, the statement is true if equality holds throughout in place
of the subsets and inequality.

Theorem 1.21 Letp: X — IR. Then

1. p is the support function of a set C € C(X™)

2a. p is convex
2b. p is positive homogeneous:

for each v € X and a > 0, p(ou) = ap(u)
2c. p is bounded above: sup{p(u)|[u]| <1} < oo
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1.1.4 Convex Sets of Operators

If g is smooth its Jacobian is a bounded operator from X to Y. To use the
results of the previous section on convex sets of operators, and eventually on the
generalized Jacobian, we will need a framework in which operators can be used
as bounded forms on some other space.

Consider the space of finite rank operators from Y to X.

o FL(Y,X) ¥ (T € BL(Y,X) | T has finite rank}. Of special interest are
the mappings of rank 1 or 0 in BL(Y, X) given, for (u,A) € X x Y*, by

ur Y — X 1y — u(Ay)
o The weak* topology on BL(X,Y) is defined as the o(BL(X,Y), FL(Y, X))
topology, which is also called the the weak-operator topology. (See Chapter 2

§2.2 for more on the weak* topology, and also Lemma 1.23 below for the

duality between FL(Y, X) and BL(X,Y).)

e C(BL(X,Y)) is the family of convex, weak*™ compact, nonempty sets in

BL(X,Y).
The next two lemmas are found in Chapter 2 §2.2.

Lemma 1.22

a. T € BL(Y,X) has finite rank <= T = Y ,;u;);, a finite sum where
(u,-,/\i)i CX xY*.

b. A norm on FL(Y,X) is given by

1T = inf{Z luilly:ll | V finite sums Zui)‘f =T, (ui, )i C X x Y™}

for each T € FL(Y, X).
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This space is usually considered (isomorphically) as the tensor product X @ Y*
under the tensor product or projective norm — see [Sch, Ch III §6]. To avoid extra

notation we shall not use the tensor product.

Lemma 1.23 Each operator A € BL(X,Y') may be treated as a bounded form on
FL(Y, X) which maps each Y ; u;\; € FL(Y, X) to 3_; \;Au;. WhenY is reflexive,
BL(X,Y) is (isomorphic to) the dual space of FL(Y, X).

The support function of a set in BL(X,Y) is then defined as in Definition 1.18.
Again we are especially interested in rank-1 representers of convex sets of operators

(cf. Chapter 2 Definition 2.15).
Definition 1.24 Let § # T C BL(X,Y).
1. The rank-1 support functional of T', o}, is given by

of(u, ) = sup Au, V(u,\) e X xY*
Aer

2. The rank-1 representer (or w*-closed rank-1 hull) of T is
I (A e BI(X,Y) | V(u,)) € X x Y™, Mu < ob(u, )}
IfT' =T we say I' is a rank-1 representer.

Just as we needed the weak* topology o(X*, X) on X* when dealing with
compact sets of bounded forms, here we need to endow BL(X,Y) with the weak*
(or weak-operator) topology, o(BL(X,Y), FL(Y, X)). Sets in C(BL(X,Y)) will
be weak* compact.

The next two results are infinite dimensional versions of Theorems 1.16 and

1.17 respectively. Theorem 1.17 is a corollary of Chapter 2 Theorem 2.21.2.
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a. IfT € C(BL(X,Y)) then T C I € C(BL(X,Y)) and (I*)* = I'",

b. A =T for someT € C(BL(X,Y)) iff A = A' and A is nonempty and

bounded.

¢c. Let T, A € C(X x Y*).

cA!' <
=
=
=

V(u, ) € X xY*, ol(u,A) < oh(u, )
V(u,\) € X xY*, Al'u C AAu

Vue X, Tu C Au

YaeY* A'CAA

The statement remains valid if equality holds throughout in place of the sub-

sets and the inequality.

Theorem 1.26 Let P: X xY* — IR, and (u, ) denote a general point of X xY*.

Then

1. P is the rank-1 support function of a set in C(BL(X,Y))

2a. For each (u,)), P(u,A) = min{}; P(us, A) |

Y finite sums 3 uih; = ul, (ui, A); € X x Y*}
2b.  For each (u,)) and o > 0, P(au, ) = P(u, ) = aP(u, ))
2c. P is bounded above: sup{P(u,\)||ul, |\ £1} < oo

1.2 Nonsmooth Analysis

1.2.1 The Clarke Generalized Gradient

We begin with extensions due to Clarke [Cla] of the classical gradient and Jacobian

of smooth functions, in the finite dimensional case: X = IR",Y = IR™. We assume

that the functions f and g are Lipschitz in a neighborhood of some z, € X.




17

The reader may refer to [Cla, Ch 2] for full details. We will, however, work in
reverse order to the presentation there (and the review in Chapter 3 §3.3) in which

the viewpoint of convex analysis comes first, and the measure theory formulation

second.

Definition 1.27 The generalized gradient of f : R* — IR at z, is

8f(z.) ¥ cleo {IimV f(z;) | z; = z., V f(z;) exists}

Similarly, the generalized Jacobian of ¢ : R* — R™ at z, is

0g(z.) L leo {limVyg(z;) | z; — z., Vg(z:) exists}

The significance of the Lipschitz condition on f and g becomes clear when we

have Rademacher’s theorem (see [Cla, §2.5]):

Theorem 1.28 If f (respectively g) is Lipschitz near z, then it is differentiable
a.e. MEAT Ty.

Since we assume f (g) is Lipschitz near z., the generalized gradient (Jacobian)
1s nonempty. It is also closed and convex by definition. Moreover it is bounded
because the function gradients (Jacobians) — when these exist — have norms
bounded above by the Lipschitz constant of f (g) near z,. In summary, the
generalized gradient (Jacobian) belongs to C(IR"™) (C(R™*")).

This definition relies on the theory of Lebesgue measure rather than only on
the topology of Euclidean space. Therefore it is not an analytic definition.

The main classes of functions motivating the above definition are the smooth

functions, and the convex functions.

Example 1.29 If f (g) is differentiable near z. and continuously differentiable

at z,. then

0f(z.) = {Vf(2.)}
(0g(z.) = {Vg(z.)})
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Example 1.30 [Cla, Thm. 2.5.1, Prop 2.3.6a ] If f is convez then it is Lipschitz
near any z. € R" and the its conver subdifferential at z. equals the generalized

gradient there:
{z e R" |Vz € R", (2,2 — z.) < f(2) — f(z.)} = Of(zx)

In optimization we can use the generalized gradient and generalized Jacobian
to extend, for example, optimality conditions from the class of smooth problems to
the class of problems with nonsmooth data. Nonsmoothness is sometimes inherent
in a problem, but often arises naturally from originally smooth problems.

Consider the constrained minimization problem:

(P) l‘rél)lél f(z) subject to g(z) <0

where the vector inequality g(z) < 0 means each component value g;(z) is non-
positive, j = 1,...,m. Other vector inequalities are similarly defined.

Our next two examples were pointed out in [H-U84].

Example 1.31 Suppose that f and g are C? functions.

Convert (P) to an unconstrained penalty problem: choose a > 0 and set
Fo & f 4 (a/2)|g()4 ]2, where l9(2)+); = lg;(2)], for each j. It is well known
(eg. [Mang, Thm. 2.8]) that if a, T 00, x, minimizes F,, for each n, and z. is a
limit point of the sequence (z,), then z. solves (P).

The first order condition for x to minimize F, is
0 = VFu(z) = Vf(z) + ag()1 Vg(z)

Although f,g are C?, F, is only C': VF, is not differentiable at any point where
any (g;)+ is not differentiable. Nevertheless VF, is Lipschitz in a neighborhood
of any point.
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Example 1.32 [Mor] Let f be conver. Recall from Ezample 1.30 that 0f(z)
coincides with the conver subdifferential of f at any xz € X.

Now consider the generalized gradient Of as a set valued mapping from IR
to R™. The resolvent (I + 0f)~'is also a set mapping on IR™ given by z € (I +
0f) N (z) <> =z € z+ 0f(z). Using the fact that (in the convex case) z.
minimizes f iff 0 € 0f(z.), it is easy to check that z. minimizes f iff z. is a
fized point of the resolvent. Fized point iteration based on the resolvent mapping

is called the proximal point method.
Moreaw [Mor] actually shows that (I + 0f)! is single valued and (globally)
Lipschitz, whether or not f is even differentiable. Therefore the resolvent is a

candidate for application of the generalized Jacobian.

Example 1.33 [Roc85, Thm. 8.5] Suppose z. solves (P), and J % {; | gi(z.) =
0}. If the constraint qualification

veR™v>0andvy#0 = 0¢ v dg(z,)
holds, then there exists a generalized Karush-Kuhn-Tucker point:
Jv > 0 such that 0 € 0f(z.) + v 0g(z,)

This is an tmmediate extension of the existence of KKT points in continuously
differentiable nonlinear programming.
It is of interest that the generalized Jacobian Og(z.) never appears indepen-

dently, but is always premultiplied by some v7T.

Example 1.34 Consider the nonlinear complementarity problem for a locally

Lipschitz (and often smooth) function F : IR"™ — IR": find z € IR™ such that

z2>0, F(z) >0, and (2, F(z)) = 0.
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An equivalent reformulation of the problem is to find a zero of the locally Lipschitz
function @ : R" — IR" : z — min{z, F'(2)}, where the meaning of the minimum
is that ®;(z) & min{z;, Fj(2)}. Another equivalent problem is to find a zero of
U:R" = R": 2+ F(z4)+ z — z4, which is also locally Lipschitz.

The functions ®, ¥ are both candidates for application of the generalized Ja-

cobian.

To move toward an analytic definition of 9f(z.), we need the Clarke general-

ized directional derivative.

Definition 1.35 The generalized directional derivative of f at z, in the direction

u € X is
def . flz +tu) — f(z)
0 . = |
t10

Note that the function f°(z.;-) is analytically defined, and resembles the usual
definition of a directional derivative. It is important because it turns out to be
the support function of the generalized gradient and hence, by Theorem 1.5a,

describes the generalized gradient analytically.

Theorem 1.36 [Cla, Thm 2.5.1] The generalized directional derivative of f at
z, is the support function of each of the following sets:

Gs < cleo{lim V f(z;) |z — 2., 7 € Q; U S}

where S is any set of zero Lebesgue measure, and (s is the set of points at which

f is not differentiable. Therefore
8f(5.) = Gs = {z € R™ | Vu € IR, (z,u) < f*(22; )}

for each measure zero set S.
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The theorem says that the generalized gradient is ‘blind’ to sets of measure zero.
For more general spaces than IR", where measure theory may not be available,
we are tempted to specify the generalized gradient in terms of the generalized

directional derivative as in the above theorem. First we need to demonstrate that

f(z«;-) is still a support function in the infinite dimensional case. Recall C(X*)

is the family of convex, weak* compact, nonempty sets in the dual space X*.

Proposition 1.37 [Cla, Prop. 2.1.1, Prop 2.1.2] Let X be a Banach space. Then

the generalized directional derivative of f at z. is convez, positive homogeneous

and bounded. Hence, by Theorem 1.21, it is the support function of a set in C(X*).

We now proceed with certainty to define the generalized gradient as a non-

empty convex and w*-compact set in X*:

Definition 1.38 When X is a Banach space, the generalized gradient of f at z,

is given by

Of(z.) € {€ € X* [Vu € X, €u < f(zu;u)}

The generalized gradient under this definition is relatively easy to deal with,
often regardless of the dimension of the space X. [Cla, Ch 2] demonstrates a
substantial calculus for the generalized gradient including sum and product rules,

the mean value theorem etc.

1.2.2 The Rank-1 Generalized Jacobian

We have already seen how to work with convex sets of matrices using support
functions. In this section we try to emulate the steps taken by Clarke for real

functions to analytically specify the generalized Jacobian of ¢ at z,. Initially, we

again take X = IR",Y = R™.



22

We note before proceeding that the calculus of the generalized Jacobian is well
developed; for example it includes inverse and implicit function theorems — see
[Cla, Ch 2, Ch 7].

First, as pointed out in [H-U82], we would like to find a vector analogue to
the generalized directional derivative of f. Unfortunately this difficult problem is
still unsolved. We have an easier problem if we settle for a ‘rank-1 generalized
derivative’, which maps (u,v) € R™ x R™ to (v'¢)°(z.; «) (in infinite dimensions,

(u,A) € X x Y* maps to (Ag)°(z«; u) — see Chapter 3 Definition 3.14).

Definition 1.39 In finite dimensions, the rank-1 generalized Jacobian of g at z.

18
Bg(z.) & {4 € R™" | V(u,v) € R* x R™, vTAu < (v7g)°(zy;u)}

In [SweT7] this is called the plenary generalized Jacobian.
The following result is well known ([Cla, H-U82, Swe77]) and relies on the exis-

tence of the generalized Jacobian, which, in turn, requires Rademacher’s theorem.

Theorem 1.40 In finite dimensions:

a. O'g(z.) = [0g(z.)]*.
b. For each v € R™, 8(vTg)(z.) = vTdg(z.)
= vTdlg(z.).

Example 1.15 showed that the rank-1 representer of a set of operators may
strictly contain the original set. Likewise we present a function whose rank-1
generalized Jacobian strictly contains its generalized Jacobian, at a given point,
showing that the rank-1 version of the generalized Jacobian is generally not equal

to the generalized Jacobian. This example is also due to [SweT7].
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Example 1.41 Let g : R* — IR? be the map on points (z,9)T given by

[1 0 ifz >0

0 -1
[_; ,*(1) ifz <0,y > |z|
[‘é'f ifz<0,0<y< |

{‘12 fz<0,0>y>az

1 0] .

[2 -1 | fr<0,y<z

It is easy to check that g is piecewise linear and continuous, hence Lipschitz; and
that 0g(0,0) is precisely the set T' given in Example 1.15. Since T strictly contains
[ we find that 8*g(0,0) strictly contains 0g(0,0).

In many instances this deficiency of the rank-1 generalized Jacobian goes unno-
ticed. Recall the constrained optimization problem (P) as in Example 1.33. From
Theorem 1.40b above we see that the constraint qualification and the resulting
optimality condition respectively remain unchanged when we replace 9g(z.) by
0'g(z.). In this case the rank-1 generalized Jacobian serves the same purpose as
the actual generalized Jacobian.

Following the mold set for the generalized gradient, we would like to show
that the rank-1 generalized Jacobian is still a nonempty convex set even in in-
finite dimensions. Now we consider X and Y as general normed spaces; recall
C(BL(X,Y)) is the family of convex, weak* compact, nonempty sets in BL(X,Y).
We quote from Chapter 3 Theorem 3.15.1:

Theorem 1.42 Let X,Y be normed spaces with Y reflexive, and (u, \) be a gen-
eral point in X xY*. Then the mapping of (u, A) to (A\g)°(z.; u) satisfies conditions



24

2a, b, and ¢ of Theorem 1.21. Hence it is the rank-1 support function of a set in
C(BL(X,Y)).

This result may seem surprising given the remark by Hiriart-Urruty [H-U82, §3]
that ‘the mere question of existence [of the rank-1 generalized Jacobian] is hopeless

for X and Y general Banach spaces’, even with the requirement of reflexivity on
Y.

The theorem also justifies our next, general, definition (see Chapter 3 Defini-

tion 3.14).

Definition 1.43 When X,Y are normed spaces with Y reflexive, the rank-1 gen-

eralized Jacobian of ¢ at z. is given by
8g(z.) & {A € BL(X,Y) |V(u,\) € X x Y™, Mu < (Ag)°(z+;u)}

Thibault [Thi82] has achieved considerable generality in extending the measure
theoretic generalized Jacobian to infinite dimensions. The main tool used is a
version of Rademacher’s theorem for separable Banach spaces, [Chr, Thm. 7.5],

where Haar null sets are substituted for sets of zero Lebesgue measure.

Theorem 1.44 Let X,Y be separable Banach spaces with Y reflexive. If g is
Lipschitz near z, then it is differentiable everywhere near z, except possibly on a

Haar null set.

Haar null sets retain an important property of sets in IR" of Lebesgue measure
zero: if a Haar null set is deleted from an open set U, the remaining set is dense

in U. With this and the previous theorem, we have:

Definition 1.45 If X,Y are separable Banach spaces with Y reflexive, the gen-

eralized Jacobian of g at z, is

89(z.) ¥ cleof{lim Vy(z;) : z; — z,Vg(z;) exists}
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This definition has the advantage over 9'¢g(z.) of representing ¢ more closely in
certain cases, but it is limited to less general spaces than the rank-1 version.

We conclude with [Thi82, Prop 2.3] which shows that when the generalized
Jacobian exists in infinite dimensions, its rank-1 representer is still equal to the

rank-1 generalized gradient.

Theorem 1.46 Let X,Y be separable Banach spaces with Y reflexive. Then

0'g(z.) = [0g(z.)]'
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Chapter 2

Rank-1 Support Functionals of
Sets of Operators

2.1 Introduction

Support functions play an important réle in convex and nonsmooth analysis
[Roc70, Roc74, Cla]. If X is, say, a real normed space with continuous dual
X*, the support function o¢ of a nonempty set C' in X* is the possibly infinite

valued function given by

def

oc(z) = supéz, Ve X.
£eC

So support functions on X are generated by sets of linear forms in X*. We
quote Hoérmander’s well known characterization [Hor] of the functions on X, with
values in IRU{oo}, which are support functions: they are the functions which are
sublinear and lower semicontinuous (see Theorem 2.13.2).

Now suppose Y is another real normed space and CL(X,Y) is the space of
continuous linear mappings from X to Y. We consider functions on X x Y* which
are generated by nonempty sets I' of CL(X,Y):

op(z, A) ' sup Mz
Ael
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We call this the rank-1 support function of I', as denoted by the superscript 1,
because the function domain is essentially restricted to continuous linear mappings
from Y to X of rank one or less, that is to mappings of the type zA : ¥ —
X :y — z(Xy). For reflexive Y the main result of this chapter, Theorem 2.21,

characterizes the extended real valued functions on X x Y* which are the rank-1

support functions of sets of continuous linear operators from X to Y.

We are motivated by the use of support functions including Hérmander’s above
result in nonsmooth analysis, particularly in the Clarke generalized gradient [Cla,
Ch. 2] of a locally Lipschitz real function on X. With the theory of rank-1 support
functions, namely Theorem 2.21, we can extend Clarke’s framework to find so-
called rank-1 generalized Jacobians of locally Lipschitz functions mapping X to
reflexive Y. Exactly this has been carried out in Chapter 3. More generally we
consider the fans of Ioffe [Iof81, Iof82] which are set valued analogs of sublinear
mappings. Again Theorem 2.21 is our main tool, providing a characterization
of the closed valued fans from X to reflexive Y which are generated by sets of
operators in CL(X,Y). See §2.4 for details.

We will work with separated locally convex topological vector spaces over IR, of
which real normed spaces are an example. Since technical considerations tend to
overwhelm the presentation, we will explain the ideas behind Theorem 2.21 here.
To begin, consider a function p : K — IRU{co}, where K is subset of X. Without
difficulty we see that p is the restriction to K of a lower semicontinuous, sublinear
function iff p = p|k, where § is the greatest lower semicontinuous, sublinear
function on X which lies underneath p. We construct § by examining the closed
convex hull of the epigraph of p. Together with Hérmander’s result, this allows us
to exactly specify the extended real functions on K which are restrictions to K of
support functions on X. A variant of this result is given later as Theorem 2.14.

To apply these ideas to rank-1 support functionals we will treat CL(X,Y)
as the dual of FL(Y, X), where FL(Y, X) consists of finite sums of operators in
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CL(Y, X) of rank one or less,
Z-’l’i)\i, ((:1:;,)\;)) CX x Yb*,

under an appropriate topology (Definition 2.6, Proposition 2.7). In this scheme,
an operator A € CL(X,Y) acts as a form on FL(Y, X) by mapping each ¥ z;);
to the scalar 3 A\;Az;. Hence the support function or on F'L(Y, X) of a nonempty
set I' C CL(X,Y) is given by

O'F(Z z;A;) def sup Z N Az;.

Ael

Observe that or(z)A) = of(z, ) for each (z,)). So we have, for p : X x Y* —
R U {eo},
p(z,X) = of(z, A), for some T and each (z, ))

<= p(z,A) = or(zA), for some I' and each (z, \)
<= the mapping z) — p(z,A) on K ¥ {z) € FL(Y, X)} is

the restriction to K of a support function on FL(Y, X).
In the previous discussion we therefore only need substitute FL(Y, X) for X and
CL(X,Y) for X*, in order to obtain a characterization of the functions p which
are rank-1 support functions on X x Y*.
The remainder of the chapter is organized as follows.
§2.2 Notation, and topologies on FL(Y, X) such that the dual of FL(Y,X) is
BL(X,Y) or CL(X,Y).

§2.3 Rank-1 support functions, including their characterization in Theorem 2.21,

and rank-1 representers of sets of operators in C’L(X,»Y).

§2.4 Application of Theorem 2.21 to characterize the fans that are, up to closed

values, spanned by their handles.

§2.5 Discussion of rank-1 and plenary sets.
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2.2 Notation and Topology

We formalize our basic notation for use throughout this chapter.

e By a convezr space we mean a locally convex topological vector space. Let
E be a convex space. A neighborhood of a point e in E is set whose interior
contains e; by a neighborhood (in E) we mean a neighborhood of 0 € E.
A convex space F has a base of convex neighborhoods (of zero) denoted by

N(E). The family of all bounded subsets of E is written B(E).

e Assume throughout that £, X,Y, Z denote separated, or Hausdorff, convex

spaces over IR; and Y is semi-reflexive (see discussion of the bidual, below).

e The linear spaces F;, £; (¢ = 1,2,3) and F, £ to be introduced later (Defi-

nition 2.8) will be used without reference in later sections.

e A formon E is a linear mapping from F to IR; an operator from X to Y
is a linear mapping from X to Y. The space of all operators A from X
to Y is written L(X,Y"). The respective spaces of continuous and bounded
operators from X to Y are denoted CL(X,Y ), and BL(X,Y’). The subspace
of finite rank operators in CL(X,Y) is FL(X,Y).

o The algebraic dual space of E is L(E,IR), denoted E'. The (topological)
dual space of E is CL(E,IR), denoted E*. Unless otherwise specified, E* is
endowed with the strong topology determined by E, or S(E*, E) topology;
and is, in this case, called the strong dual of £E. B(E*) and E(E*) are the

respective families of strongly bounded and equicontinuous sets in E*.

The weak topology on E determined by E*, or o(E, E*) topology, is denoted
by w-. The weak topology on E* determined by E, also called the weak™*
topology, is denoted by w*-.
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See the discussion of polar sets below for the standard bases of neighbor-

hoods of the strong and weak* topologies on E* and the weak topology on

E.

e The bidual of F is the dual E** of E*, which we endow with the strong
(B(E*, E*)) topology. Since E is separated, it has a natural embedding
into E** given by e : E* — IR : ¢ > ¢e for e € E. E is said to be semi-
reflexive if the natural embedding is surjective (maps onto the bidual), and
reflexive if the natural embedding is surjective, and is continuous given the

strong bidual topology.

e The polar of a nonempty set @ in E is given by

Q°E{peE | ge<1, Ve Q).

For example, the family {Q°| nonempty ¢ € B(FE)} is a strong base of
neighborhoods of 0 € E*, and {Q°] finite, nonempty @ € E} is a weak*

base of neighborhoods in E*.

The polar of a nonempty set ® in F* may be taken in E**:
®°={(eE"|(¢<1, Ve b}

orin F:

*={ecE|ge<1, Vpe o}

For example, the family of sets {®°] finite, nonempty ® € E*}, where polars

are taken in F, is a base of neighborhoods of the weak topology on E.

e Given (z,)) € X x Y*, define the operator zA € FL(Y, X) by

zh:Y = X 1y z(Ay).
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We may abuse notation by also considering zA to be a member of

FL(Y*, X), by z) : Y* — X : ( = z(()), where Y* & (Y*). This
will be clear from the context; in any case both definitions coincide on Y

since we consider Y to be a subspace of Y** C Y*.
For sets U C X and C C Y*, UC ¥ {z) | (z,)\) € U x C}.

e The set operations of closure and convex hull are denoted by cl and co

respectively.

Before proceeding to topologies on FL(Y, X)) we will quote two fundamental

results for reference in later sections.
Theorem 2.1

1. If V C E is a convexz set containing 0 then, taking second polars in E,

Ve =clV.

2. Suppose V,W are nonempty convex sets in E. The support function of V is

ov:FE* = RU({co}: ¢— sup e
ecV

and the support function ow is similarly defined. Then
cdV CcdlU <+ oy <ow

where the inequality is taken pointwise.

Proof The results are both corollaries of the separation of points from convex
sets via hyperplanes [Sch, Ch. II §9.2]. Part 1 is actually given as [Sch, Ch. IV

§1.5). -
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It is clear that operators in FL(Y, X) of the form zA have rank no greater
than 1. The span of {z) | (z,)) € X x Y*} in L(Y, X)) consists of finite rank
operators, and according to our first result, equals FL(Y, X).

Lemma 2.2
T e FL(Y,X) <= T =) z\

for some finite set {(z;, \:)} C X xY*. In particular, T is a rank-1 operator from
X toY iff T =z for some z # 0,1 # 0.

Proof Clearly 3" 2;\; € FL(Y, X) for each finite set {(z;, A;)} C X x Y™, so we

only need show that every member T of FL(Y, X) has the form of a finite sum.
Let m € IN be the rank of 7', and {z;}T* be a basis of {Ty|ly € Y'}. According

to [Sch, Ch. II §4.2 Cor.], there are &;,...,&, € X* such that {;z; equals 1ifs =

and 0 otherwise. Note each A; def &T is a member of Y*. We get T = 3" ;)\, as

promised. 0

It will be convenient to treat L(X,Y*), hence L(X,Y), as a space of forms on

FL(Y, X).

Definition 2.3 The natural embedding = of A € L(X,Y™) into FL(Y,X)" s
given by

A(Z :I),'/\i) (‘lg Z(AIE,))H

The first part of our next result shows that A is well defined, i.e. that A maps

different representations of T' to the same real number.




Lemma 2.4
1. Let "xihi, ZziN, € FL(Y,X). If A € L(X,Y™) and }_x;); agrees with
L ziA; on the range of A, then

In particular, if = x;); = 3z} A then (2.1) holds for each A € L(X,Y™).

2. The mapping ~ is an algebraic isomorphism of L(X,Y™*) onto FL(Y, X),
hence an algebraic isomorphism of L(X,Y) into FL(Y, X)'.

Proof

1. Suppose }_z;); and - x’A: agree on the AX, the range of A, where A €

L(X,Y™). Let {(s}a € Y* be a Hamel basis for AX and define forms &,
on X by

Az = Y Culbas), Vo€ X

(there are finitely many nonzero summands). Then

7 1

S(Az)hi = Z[};ca(sam] =2 [;m] .

- S6 [z xg-xg-] =Y [}: G| X

J

= Z(Axg)/\;

J

2. The mapping ~ is linear. It is also 1-1 for if A € L(X,Y*) and 4 = 0
then (Az)A = 0 for each z € X and A € Y*, hence Az = 0 for each z, i.e.
A = 0. To show surjectivity let ¢ € FL(Y, X)' and define A : X — Y™ by

Az : A+ @(z)). Then A is an operator with A = ¢.
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a

Example 2.5 Let X &f R", Y LR be spaces of column vectors under any

separated convez topologies. Then their duals (topological and algebraic) are the

spaces of row vectors of the same dimensions n, m respectively. Also
R™" = L(X,Y)=FL(X,Y)= BL(X,Y) =CL(X,Y).

Rank-1 operators xX are just outer products zv™ for column vectors = € R™,v €
R™ (here A =vT), and FL(Y, X) = R™™.
For B € FL(Y, X), we can represent B as the n x m column vector formed by

adjoining all its columns:
(Bi1, Bat, .- Bui, Bz, . .., Bam)T,
Then the canonical action of a matriz A € R™"™ on FL(X,Y) satisfies
AB = (AT, BY = trace(A” o B)

where (-,--) is the usual inner product on (n X m)-vectors, matriz multiplication

is denoted by o, and the trace of a matriz is the sum of its diagonal elements.

It is usual to work with the tensor product X ® Y™ instead of FIL(Y, X), and
the space of bilinear forms B:l(X x Y* IR) instead of L(X,Y). To explain, we
summarize from [Sch, Ch. III §6]. Bil(X x Y*,IR) consists of mappings H :
X xY* — R such that for (z,A) € X x Y*, H(z, -) and H(-,A) are forms on
Y™ and X respectively. Given (z,)) € X x Y*, z ® A is defined as the form on
Bil(X x Y*,IR) which maps each H to H(z,)). The tensor product of X and
Y*, X®Y~*, is the span of {z® A | (z,)) € X x Y*} in Bil(X x Y*,IR). Each

element of X ® Y* is a finite sum

Em‘,‘ ® /\,‘, {(:1:,‘,/\,‘)} cCXxY*
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though this representation is not unique in general.

The natural connection between FL(Y, X) and X ® Y* is the identification of
each 3"z \; with Y z; ® \;. This correspondence is an isomorphism because the
elements of X can be distinguished from one another by the forms in X*. There is

also a natural embedding " of L(X,Y) in Bil(X x Y*,IR): toeach A € L(X,Y),
the mapping A sends (z,)) € X x Y* to AAz. It is easily seen that the mapping

A A preserves the duality between spaces:

/-i(z :I},')\i) = (Z z; ® )‘i)/i;

and is an isomorphism of L(X,Y) into Bil(X x Y* R).

To avoid further notation we will not use the tensor product or bilinear forms.
Of course, in this chapter, X ® Y* may be used along exactly the same lines as
FL(Y, X) to the same effect.

We now consider convex topologies on F'L(Y, X) such that the corresponding
dual space is identified with CL(X,Y). We call the first topology on FL(Y, X)

projective because this is the name given to the corresponding topology of X ® Y™*

— see [Sch, Ch. III §6].

Definition 2.6

1. The projective topology on FL(Y, X) is defined by the base of neighborhoods
consisting of the sets co(UC®) where U € N(X) and C € B(Y).

The assoctated topological space is denoted FL(Y,X),, or Fy for short.

2. Consider the base of neighborhoods in FL(Y, X) consisting of the sets

cofJzC: u | vV

zeH VeN(Y)

where H is a Hamel basis for X, (Cz)oen C B(Y) and (Uy)veny) C N(X).
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The associated topological space is denoted FL(Y,X)s, or Fy for short.

3. Let Y be metrizable with a base of neighborhoods {V,, | n € IN}.

Consider the base of neighborhoods in FL(Y, X) consisting of the sets

co| U U, V2]

ne€lN

where (Up)nen C N(X).

The associated topological space is denoted FL(Y,X)s, or F3 for short.

Note that, in the above bases of neighborhoods, polars of bounded subsets of
Y can be replaced by strong neighborhoods in Y*. For example, the projective
neighborhoods could be expressed as co(UW) where U and W are neighborhoods
of X and Y™* respectively.

Proposition 2.7

1. F, is a separated convez space such that, under the natural embedding ~, F;

is algebraically isomorphic to BL(X,Y).

2. F, 1s a separated convex space such that, under the natural embedding =, F;

is algebraically isomorphic to CL(X,Y).

3. Let Y be metrizable.
F3 is a separated convex space such that, under the natural embedding ~, F3

is algebraically isomorphic to CL(X,Y).

Proof That each of Fy,F;, F3 is a convex space results immediately from [Sch,
Ch.181.2]. Separation follows if the elements of the dual separate distinct elements

of FL(Y, X). Suppose S,T are distinct members of FL(Y, X), i.e. Sy # Ty for
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some y € Y. Since X is separated, there is £ € X™* such that (Sy # (Ty. The

mapping A: X — Y : z — y(éz) is a bounded, hence continuous, operator from
X to Y such that AS = €Sy +# ¢Ty = AT. So A separates S and T and, from 1

and 2 below, A is a continuous form on each of Fy, Fy and Fs.

In view of Lemma 2.4.2, we will freely pass from forms ¢ € FL(Y, X) to

operators A € L(X,Y*) where ¢ = A. We will also use the fact that a linear
mapping on a topological vector space is continuous if (and only if) it is bounded
above on some neighborhood W of the space, for then it is bounded on W N —-W

which is also a neighborhood. Second polars of subsets of ¥ are taken in Y™**.

1. We will show that
Fr 2 ELX,Y™) (2.2)

where the latter is the space of all Equicontinuous operators from X to Y™**:

EL(X,Y*™)
' {Ae L(X,Y*) | AU C D for some U € N(X),D € E(Y*)}.

The result follows because, when Y is semi-reflexive, £(Y™**) is identified
with B(Y), hence EL(X,Y™*) is identified with BL(X,Y").

To prove (2.2), let ¢ € FL(Y,X) and A € L(X,Y*) be such that A = ¢.
Then
peFf
= IUeN(X), CeB(Y), $UC) = (AU)(C°) bounded above
<~ WeNX),CeB(Y), AUcCC®
> Ae EL(X,Y™).

2. Let ¢ € FL(Y,X) and A € L(X,Y*) satisfy ¢ = A. Then

¢€F;
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&> VY(zeH, VENY))IHCeBY), UecNKX))
#(zC°), $(UV°) bounded above

&= Y(zeX,VENY))ICeBY), UecN(X))
(Az)C®, (AU)V° bounded above

<= AeCL(X,Y)

where semi-reflexivity of Y is used to show the final equivalence.

3. From part 2, F5 = CL(X,Y). To relate F; and F3, consider the following
statements:
@) 7 =5
(b) If A € L(X,Y*) and I(Uv)vewny) C N(X) such that A is bounded
above on Uy UyV?°, then 3(Cy)renr C B(Y) such that A is bounded
above on . zC}.
(c) f A€ L(X,Y*) and YV € N(Y) U € N(X) with (AU)V° bounded
above, then A € L(X,Y™).

(d) If ( € Y* is bounded above on each D € £(Y*) then ( € Y**.

Clearly 3a <= 3b <= 3c <= 3d. (The converse of the last implication

is not hard to see, but is not needed for this proof.)

If Y is a metric space which is semi-reflexive, then it is also reflexive (use
[Sch, Ch. II §8.1, and remarks following Ch. IV 85.6 Cor. 2|). Therefore
E(Y*) = (B(Y) =)B(Y**). In this situation [Sch, Ch. IV §6.6] says that

statement 3d holds, hence 3a holds and we are done.
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Definition 2.8 Let Y be semi-reflexive. Let F,L be the respective spaces Fi,
BL(X,Y) or 72, CL(X,Y) or, assuming Y is metrizable, F5,CL(X,Y).

The strong (respectively weak) topology of L determined by F is called the
strong (w*-) topology of L.

The fact that £ is identified with F* explains the notation w*- for the weak
topology of £ determined by F.

Example 2.9 Suppose X andY normed spaces. Then Fi is also a normed space

(see [Sch, Ch. III §6.4]): for T in FL(Y,X), the projective norm is
171 = inf {3 JaliXil | T = 3 z:hi € FL(Y, X)}

The usual operator norm |T'|op E sup{|Ty||y € Y, |y| < 1} is no larger than

the projective norm though both agree on rank-1 operators:
lzAl = 1=l = [Tl op-

The operator norm topology on FL(Y, X) is, in general, strictly coarser than the
projective topology (so the dual of FL(Y,X) with respect to the operator norm
is generally a proper subspace of BL(X,Y), the dual taken with respect to the
projective norm).

However, as one can easily check, the dual norm of FL(Y, X) is ezactly the
operator norm on BL(X,Y):

|Al = |Alop, YA€ BL(X,Y).

Here all of the topologies on FL(Y,X) in Definition 2.6 are equivalent. In fact
these topologies are equivalent so long as Y is normable (though X may not be)

in which case we also have BL(X,Y) = CL(X,Y).
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Remarks on reflexivity of Y. In the proof of Proposition 2.7 we see that,
without the semi-reflexivity condition on Y, the duals of F; and F; consist of
operators from X to Y**, the dual of Y*. To force dual elements to map X to Y

there are two immediate possibilities. Suppose F is either F; or F.

1. Enlarge the neighborhoods of F so that if the mapping A € L(X,Y™)
belongs to F* then A € L(X,Y). This can be done using the original base
of neighborhoods for F given in Definition 2.6; denote this by A. The
following sets then form the required base of neighborhoods for FL(Y, X):

co[W U zA],

where W € N, z € X, and A is a w*-neighborhood in Y*.

Such a topology on FL(Y, X)) seems to be artificially restrictive in practice,
however. For example it may be difficult to verify that a sublinear function

on FL(Y,X) is (lower semi)continuous in the new topology.

2. If Y itself is the dual of another convex space Z, under some polar topology,
then reflexivity may be dropped. To make this precise, let Z be a separated
convex space and D be a subfamily of B(Z) such that {D°|D € D} defines
a base of neighborhoods making Z* a convex space (see [Sch, Ch. III §3]);
endow Z* with this topology. Let XZ be the span of {zz|(z,2z) € X x Z}
in L(Z*,X), where zz : Z* — R : {( — z(€z). For A € L(X,Z"), let
A: X7 - R: > @;z; +> 3 (Az;)z;. Finally, let H be a Hamel basis of X.
Without any more difficulty than the previous proof entails, we obtain the

following:
(a) Let XZ have the topology whose base of neighborhoods consists of sets

co[| ) zW, U UB’|
z€M
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where (W), C N(Z),U € N(X), B € B(Z*) and the polar B° is taken
in Z. Then the mapping ~ is an algebraic isomorphism of BL(X, Z*)
onto (X Z)*.

(b) Let X Z have the topology whose base of neighborhoods consists of sets

co| U W, U U UpD),
z€H DeD
where (W), C N (Z), and (Up)p C N(X). Then the mapping ~ is an
algebraic isomorphism of CL(X, Z*) onto (X Z)*.

(c) Suppose that the sets UyzW, are omitted in either of the above bases
of neighborhoods of XZ. The corresponding claim of isomorphism
still holds iff any convex subset of Z which absorbs each D € D is a
neighborhood in Z.

Suppose D = B(Z), so that Z* has the strong dual topology. If the convex
sets in Z have the property described in 2c above, then Z is said to be
bornological. 1t is not difficult to show [Sch, Ch. IT §8.1] that all metrizable
spaces are bornological — this is trivial for normed spaces — hence 2c applies

to metrizable Z when we let Z* be the strong dual.

Example 2.10 Suppose X and Y are normed spaces, with Y possibly non-
reflexive. We consider the situation of BL(X,Y™*) instead of BL(X,Y).
Here, of course, boundedness and continuity of linear mappings are equiva-

lent.

Now FL(Y,X)(= XY*) is normable with the unit ball co[Bx By|. Taking

z & Y™, then, according to 2c and the discussion above, the mapping ~ is

an algebraic isomorphism of BL(X,Y™*) onto FL(Y, X)*.



42

Example 2.11 Suppose X is metrizable. We consider CL(X, X*) as one
might do when dealing with gradients of real differentiable functions on X.
Endow FL(X*, X)(= XX) with the topology defined by the base of neigh-
borhoods consisting of all sets
co |J UpD, where (Up)p C N(X).
DeB(X)

Apply 2¢ with Z X and DY B(Z): the mapping ~ is an algebraic
isomorphism of CL(X, X*) onto FL(X*, X)*.

We will not be concerned any further with results at this level of abstraction.
The results to follow could, however, be presented in this more general

framework.

2.3 Rank-1 Support Functions, Rank-1 Repre-
senters

Support functions of closed convex sets are of great importance in functional

analysis. By convention, the supremum taken over an empty set is —oo.

Definition 2.12 Let ® C E*. The support functional of ®, 0 : E — IRU{z%o0},
is given by

os(e) f sup ge, Vee E.
$€®

o s called a support function on E.

We are not very interested in the value —oo or the support function of the empty
set, because op takes the value —oco at some point iff & = § and 0p = —o0.
In the 3-dimensional case, the ideas in part 1 of the next theorem can be traced

back to Minkowski’s 1911 paper [Min]. Part 2 of the theorem is essentially due to
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Hoérmander [H6r]. We should point out that an extended real valued function p on
E is said to be sublinear if it is positive homogeneous and subadditive (properties
2a and 2b in the theorem below). By convention, nonnegative multiples of infinity

are defined by

of | oo fa>0
ao0) = { 0 ifa=0.

For clarity we also state the definition of the limit inferior: given p: F — R U

{0}, e, € F,

liminfp(e) & sup inf p(e).
e—eo UeN (eo) ecU

Theorem 2.13 Let ® be a set in E*.

1. w*-clco® = {¢ € E* |Ve € E, de < og(e)}.

2. Letp: E — IR U {£oo}. Then p is the support function of a nonempty set
in E* iff p(0) # —co and p 1s
(a) positive homogeneous: p(ae) = ap(e) for each a > 0 and e € E;
(b) subadditive: p(e1 + e2) < p(e1) + p(ez) for each ey, e, € E;

(¢) lower semicontinuous: liminf._., p(e) = p(e,) for each e, € E.

If p is the support function of a nonempty set, there is a unique (nonempty)

w*-closed conver set & C E* such that p = o¢, and p never takes the value

—0Q0.

Proof

1. This well known result is a corollary of Theorem 2.1.2, by taking E* under

the w*-topology as the convex superspace.
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2. We begin by disposing of —co. If p = o¢ for some § # & C E* then p
never takes the value —oco. Suppose instead that p(0) # —oo and p satisfies
2a-2c. Then p never takes the value —oo, otherwise positive homogeneity
and lower semicontinuity at 0 would lead to the contradiction —co > p(0).

We may therefore assume without loss of generality that p: £ — IRU {oco}.

It turns out that p is positive homogeneous and subadditive iff p is positive
homogeneous and convex. Moreover a convex function on F is lower semi-
continuous iff it is weakly lower semicontinuous — this follows from [Sch,
Ch. IV §3.3] by examining the (convex) epigraph of the function. With these
facts, the dual statement of [Hor, Thm. 4] completes the result.

a

Theorem 2.14 Let 0 € K C E, and K be a cone: oK C K, Ya > 0. Let
p: K — RU {£oo}.

1. p is the restriction to K of a support function of a nonempty set in E* off
p(0) # —co and p is
(a) positive homogeneous (on K );

(b) lower semicontinuous and subadditive in k: Vk € K,
p(k) = liminf{)_ p(k:) | finite sums »_ ki — k, (ki) C K}

If p is the restriction to K of a support function of a nonempty set, there is
a largest (nonempty) w*-closed convezr set & C E* such that p = og|k, and

p never takes the value —oo.

2. Suppose W is a family of sets in K such that {coW |W € W} is a base of
neighborhoods in E.
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Then p is the restriction to K of a support function of a nonempty equicon-

tinuous set in E* iff p(0) # —oo and p is

(a) positive homogeneous (on K );

(b) subadditive in k: Vk € K,
p(k) <> p(k;) Vfinite sums > _ ki = k, (ki) C K;

(¢) bounded above on some W € W.

If p s the restriction to K of a support function of a nonempty equicontin-
uous set, there is a largest (nonempty) w*-compact conver set ® C E* such

that p = og|k, and p never takes the value —co.

Proof

1. One way is easy: if p = og|k, where § £ & C E, clearly p(0) # —oo and p
satisfies 1a and 1b.

Conversely, suppose p(0) # —oco and la and 1b hold. Define p by

otherwise.

Be) = { liminf{}" p(k;) | finite sums 3 k; — e,(k;) C K}, ife€clcoK

y

Since K is a cone, co K = {}_ k; | finite sums Y k;, (k;) C K} and pis a well
defined mapping from F to R U {£o0}.

By construction of p and property 1b we have p|xg = p; in particular
7(0) # —oo. It is not hard to show from the definition that p is both
positive homogeneous and subadditive. Finally we show that p is lower
semicontinuous. If e, & clco K then p takes the value co on a neighborhood

of e,, hence is lower semicontinuous there. So let e, € clco K and ¢ > 0.
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For U € N(e,) and each e € U N clco K there is, by definition of p, a finite
sum Y k; € U such that (k) C K and ¥ p(k;) < p(e) + €. Hence

inf{> _p(k;)| finite sums Y k; € U, (k;) C K}

< inf{p(e)le€ UNclcoK} +¢
So

inf{>_p(k:)| finite sums Y ki € U, (ki) C K} < inf{p(e)|e € U} +e.

aking the supremum over all neighborhoods U € N (e,) on both sides of
the inequality yields f(e,) < liminf._.., f(e)+e€. As €is an arbitrary positive
scalar, p is lower semicontinuous at e,. By Theorem 2.13.2, $ is the support

function of a nonempty set in E* as required.

The last statement is trivial: the largest such set is
oY (4 E*| ¢k < p(k), Vk € K}.

. We proceed in a similar fashion to the proof of part 1.
If p = og|g where @ is a nonempty equicontinuous set in E*, it is easy to
see p has the required properties.

Conversely, suppose p(0) # —oo and p satisfies 2a- 2c. Note that coK = E

since co K is a cone containing a neighborhood in E. Now define p on £ by

p(e) «f inf{> _ p(k;)|finite sums Y ki =, (k;) C K};

then p|x = p by 2b; in particular p(0) # —oo. Also, with properties 2a and
2b of p, it is easy to see that p is positive homogeneous and subadditive,

hence convex. Using 2c and convexity of p we see that p is bounded above on
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the neighborhood co W. This ensures, by convexity again, that p is actually
continuous (eg. [Roc74, Thm. 8]).

To sum up: p(0) # —oo and p is positive homogeneous, subadditive and
(lower semi)continuous. Hence, Theorem 2.13.2 says p is the support func-
tion of a nonempty set ® in E*. We know further that p is bounded above

on a neighborhood in E; consequently, ® must be equicontinuous.

The largest set ® with og|x = p,

® ¥ {4 € E*|ge < ple), Vee E}

is equicontinuous as well as w*-closed. By Alaoglu-Bourbaki [Sch, Ch. III

§4.3 Cor.] it is w*-compact.

a

In view of Theorem 2.7, we can apply Theorem 2.13 taking F as F and its dual
as L. This allows us to characterize the support functions of w*-closed, convex
sets of operators. In finite dimensions, where all separated convex topologies are
equivalent, this kind of result was noted in [H-U82, §2].

If we are prepared to forego ezact representation of w*-closed convex sets
of operators by support functions, we may use simpler support functionals by
restricting function domains to the rank-1 members of FL(Y, X). This involves

only pairs (z, A) in X x Y™* rather than operators }_ z;A; of any finite rank. To this
end we have developed Theorem 2.14, which we will apply to F o F , B* e
and K ¥ {z)|(z,)) € X x Y*}.

We could equally restrict our attention to any other cone in of FL(Y, X),

such as the set of operators of rank less than 3. In fact Theorem 2.14 is easily

generalized to the case of a non-cone K, so that restricting mappings to any given
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subset of FL(Y, X) is possible. The ‘natural’ applications, however, seem to fall
in the rank-1 category as we shall see in §2.4.
The next definition is motivated by the idea of support functions (Defini-

tion 2.12) and Theorem 2.13.1.
Definition 2.15 Let T be a set in L.

1. The rank-1 support functional of T', of : X x Y* — IR U {0}, is given by

ob(z,\) ¥ sup Adz, V(z,A)e X x Y™
Ael’

ot is called a rank-1 support function on X x Y*.
2. The (maximum) rank-1 representer of I' is
MY {AeL|V(z,)) e X xY*, \Mz < oi(z,\)}.
I’ is said to be a (maximum) rank-1 representer ¢f I' = I'%.

Note: Some immediate properties of rank-1 representers are

1. T' is the largest set whose rank-1 support function coincides with that of T'.

So I'! contains T'.

2. T? is the intersection w*-closed convex sets — those of the form {4 €
LIMAz < a}, where (z,)) € X x Y* and o € IR — hence is w*-closed and

convex. Therefore, since I'' O I', I'' contains the w*-closed convex hull of

I.
3. For Ae £: Mz e Mz, Y(z,\) e X xY* = AeTll.
4. (MY =T

5. Separation: A ¢ I'" iff there is (z, \) with Az > oi(z, \).
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Rank-1 representers have been discussed before as the plenary subsections of
[SweT9]. An alternative definition is given in terms of H-convezity by [KR]. Our
terminology emphasizes the rank-1 aspect of such sets because rank-1 representers
are the sets in £ which are dually described by the rank-1 operators of F. For
equivalent definitions, including one using properties 2 and 3 above, and also
details of rank-1 and plenary sets of operators, see the next section. For the

moment we are content with some examples:

Example 2.16 Let I' = {Ao}, for some Ag € L. Clearly Ag € . Now suppose
A €T?, then for each pair (z,A) € X x Y* we have

A(z)) = Mz < Moz = Ag(z)),
hence, by considering (—x, ) too,
A(z)) = Ag(z)).

Since the members of {A| A € L}, hence the members of L, can be distinguished
by the rank-1 mappings {zA|(z, ) € X x Y*}, we must have A = Ay, t.c.

M =r.

Example 2.17 Suppose g : R™ — IR™ is differentiable at z.. The interval Jaco-

bian of g at z. is an m x n matriz of real intervals, J;;,

J = [J;

]mxn

where each Ji; contains the ij-th partial derivative of g, Vg(z.)i; = dgi(z.)/dz;.
Therefore, Vg(z.) € J. The interval Jacobian can be used to compute guaranteed
error bounds for numerical processes. See [Neu] for ezample.

Also J' = J by reasoning similar to that in the previous ezample.
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The next example shows that convexity and (w*-)compactness of a set are not

sufficient to ensure it is a rank-1 representer.

Example 2.18 [Swe77, Ezample 6.2]

rean{[ 010 S R )

The set I' is compact and conver. Note that the identity matriz I is not in I'
because trace(A) = 0 for each A € T, whereas trace(l) = 2.

Nevertheless, we have u € Tu for each u € R®. The case u = 0 is trivial, so
assume that u = (uy,uz)T # 0. If 0 # |uy| > |uz| then

1 0
A_[Quz/ul —1]€P

with Au = u. Otherwise 0 # |ua| > |us| and

. —1 2U1/‘U,2
a=[ L ] e

with Au = u.
We conclude that I € T*\T.

We now examine sets in £ having one of the rather strong but very useful
properties of uniform boundedness, equicontinuity, uniform openness or uniform
invertibility. We will show that I' C L satisfies such a property iff its rank-
1 representer also satisfies this property in which case, roughly speaking, the
‘constants’ involved are the same. Thus in some important cases, dealing with
the rank-1 representer of I" is equivalent to dealing with I' itself.

We review the relevant properties of I'. For U C X, let ['U denote U4erAU.
Recall I is uniformly bounded if for some neighborhood U in X, I'U is bounded in
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Y; and T is equicontinuous, or uniformly continuous, if for each neighborhood V'
of Y there is a neighborhood U of X such that ’'U C V. Furthermore, an operator
A € CL(X,Y) is open if it maps open sets to open sets or, equivalently, if for
each neighborhood U in X there is a neighborhood V in Y such that AU D V.
(Such a map may also be called a topological homomorphism — see [Sch, Ch. III
§1].) A set of operators I' is uniformly open if for each neighborhood U there
is a neighborhood V such that AU D V for each A in I'. Likewise we say I is
uniformly (continuously) invertible if it is uniformly open and consists of injective,

or 1-1, mappings.

Proposition 2.19 Let T be a set in CL(X,Y). Let I' % {A]| A € T}, the canon-
ical embedding of T' in F3*. Likewise T'' is the embedding of T in Fy".

1. For each nonempty B C X, and each closed conver C' C Y containing 0,
I'c(BC°)Y <« TBCC <= T'BcC(C «= ' cC(BC°

where the polar of C is taken in Y™ and the polar of BC® in F3*.

If T' consists of bounded mappings we may substitute Fy for Fp. IfY s

metrizable we may substitute F3 for F;.
2. We have

' is uniformly bounded << T is equicontinuous in F;

<« T s uniformly bounded <= T is equicontinuous in F;.

In fact for each U € N(X), and each closed convez C' € B(Y') containing 0,

I'Cc(UC) <= TUCC < T'UCC « ' c(UCc".



52

3. We have

' is equicontinuous <= I is equicontinuous in F

<= I is equicontinuous <= I is equicontinuous in F;.

In fact for any neighborhood U in X and closed convex neighborhood V in
v
IUCV <« TI''U cV;
and for any N belonging to the neighborhood base of F in Definition 2.6,
FCN° < I*cNe.
If'Y is metrizable, F3 may be substituted for F,.
4. Let X be complete and metrizable and I' be convez.
I' is uniformly open iff ! is uniformly open; in this case, if U and V are
closed convezr neighborhoods in X and Y then
VAeT, AUDV <«= VAeTl', AUDV.

Moreover, T' is uniformly invertible iff I'! is.

Proof We note for use below firstly that we can take M (Y') consisting of closed
convex sets ([Sch, Ch. II §4]) hence, secondly, that a set is is bounded in Y iff (it
is contained in a closed, convex, bounded set in Y iff) it is contained in a closed,

convex, bounded set in Y containing 0.

1. Let B,C be as in the statement of the theorem. Firstly we deduce from
Theorem 2.1.1 that I'B ¢ C <= C°T'B C (-o0,1]. To finish, use this
and the following:

['c(BC°)Y <= C°TBC (-,]]
< CT'BC(-00,1] <= TI'c(BC°)
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where the second equivalence holds because o} = 01111.

. Given the opening remarks of the proof, this is an immediate corollary of

part 1.

. Part 1 yields, for U € AM(X) and closed convex V € N(Y), that TU C
V <= TW c V. This shows that I' is equicontinuous iff I'! is also
equicontinuous.

Let N be a member of the base of neighborhoods of F; in Definition 2.6.
Then N = co W for some nonempty W C {zA|(z,\) € X xY*}. We always
have (coW)° = W°, so

TCcN=W° <= ob(z,\)<1, VZAeW
= on(z,\) <1, Yede W
= Tlcwe°=N".

Finally,

I' equicontinuous
<= I equicontinuous, 'z bounded Vz € H
< VY(zeH, VeN ))ICeBY), UeNX))
I c (zC°)° U (UV°)

<= I equicontinuous in F;,

where the second equivalence holds by part 1 after again using the opening

remarks of the proof.

. Let U,V be closed convex neighborhoods in X,Y respectively. For A in £

we will use the fact that

cav 2oy < c(AU)DV < AUDV.
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The first equivalence is given by Theorem 2.1.2. The second, which is related
to the Open Mapping Theorem and for which a sufficient condition is that
X be complete and metrizable, is given by [Sch, Ch IV §8 Exa. 1, and §8.6].
Then

AUDV,VYAeT inf oay > oy

=
Ael’ »
= gien,\frau(f) >oy(A), Ve Y™

= inf oy(§) > ov(A), VAe Y™
¢eart

= inf o4y > ov
Aerl
= AUDV,VA€ It

The third implication follows from w*-lower semicontinuity of oy on X*
([Hér]) and Lemma 2.20, below, which says w*- cl(AI') = w*- cl(AT'"). So I

is uniformly open in the manner required.

To show the the final claim, suppose I' consists of injective operators and

let 0 # z € X. It only remains to be seen that 0 ¢ I'z.

Since X is separated there exists a convex neighborhood U in X containing

z such that py(z) > 0, where py is the Minkowski or gauge functional of U
py: X — [0,00) : u— inf{a > 0|z € aU}.

By uniform openness of T' there exists a convex neighborhood V in Y such

that AU DV for each A € T'. Fix A € T" and recall A is invertible.

Now consider the gauge functional of V' at Axz:

[=9
lla;

pv (Az) inf{a > 0| Az € aV'}
inf{a > 0|z € aA~'V}

inf{a > 0|z € aU}

IV

pu(z) > 0.
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But gy = ove — this is well known and can be shown without difficulty
using Theorem 2.1.2 — so we have 0 < py(z) < oyo(Ax). This is valid for

arbitrary elements of I', hence

0 < }iixégcrvo(Ax)
= Inf ove(y)

= inf ove(y),
yellz

where the final equality follows from lower semicontinuity of oyo ([Hor]) and

Lemma 2.20. Clearly then 0 ¢ I'z.

Lemma 2.20 Let T' C L be convex. For each z € X (respectively A € Y*),

c(Tz) = cl(T'z)
( resp. w*-cl(AT) = w*- cl(AT'?) ).

In particular if Tz (resp. AT') is closed (resp. w*-closed) then 'z = Tz (resp.
AT = AT,

Proof We assume without loss of generality that I' and its rank-1 representer are
both nonempty sets. We have ory(A) = of(z,A) = o (2, A) = op1,(A) for each
(z,A) € X xY™*. Sincel is assumed convex and I'! is always convex, Theorem 2.1.2

says that the closures of I'z and I''z are the same.
A similar argument, using Theorem 2.13.1 instead of Theorem 2.1.2, shows

that the w*-closures of A\I' and AI'! are also identical.
0

Our main result characterizes the rank-1 support functionals on £. It would

be reasonable to say that the properties characterizing rank-1 support functions
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of nonempty sets are “sublinearity and lower semicontinuity in zA”. Likewise
the properties characterizing rank-1 support functions of nonempty sets that are
equicontinuous in F* are “sublinearity, subadditivity and boundedness in zA”.

The boundedness condition needed is

Condition (A)

When F = F; and £ = BL(X,Y): P is bounded above on U x C° for some
neighborhood U in X and nonempty bounded set C' in Y.

or When F = F, and £ = CL(X,Y): For each z in X and neighborhood V in
Y, there are a nonempty bounded set C in Y and a neighborhood U in X
such that P is bounded above on both z x C° and U x V°.

or When Y is metrizable, F = F3 and £ = CL(X,Y): For each neighborhood
V in Y, there is a neighborhood U in X such that P is bounded above on
U xVe.

Theorem 2.21 Let P: X xY* — R U {£oo}.

1. P is the rank-1 support function of a nonempty set in L iff P(0,0) # —oo
and P is

(a) positive bithomogeneous:
P(az,A) = P(z,a)) = aP(z,)), YVa>0,(z,A) e X xY™,
(b) subadditive and lower semicontinuous in zA:
Pz, ) < lirninf{z P(z;, ) | F> Za:i/\i — A}

If P is the rank-1 support function of a nonempty set, there is a unique
(nonempty) rank-1 representer I' C L such that P = o}, and P never takes

the value —oo.
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2. P is the rank-1 support function of a nonempty set in L that is equicontin-

uous in F* iff P(0,0) # —oco and P is
(a) positive bihomogeneous;
(b) subadditive in zA:
P(z,)\) <3 P(z;, A;) when
(¢c) satisfies condition (A).

If P is the rank-1 support function of a nonempty set which is equicontinuous

in F*, then there is a unique (nonempty) w*-compact rank-1 representer
I' C L such that P = o}, and P is finite valued.
Proof

1. Observe that
a(zd) = (ax)) = z(ad), Y(z,\) e X xY",ac R, (2.3)

whence K & {zA]|(z,)) € X x Y*} is a cone in FL(Y, X) containing the

zero mapping. Moreover, for I' C L, we have
or(z, ) = or(zA), Y(z,\) € X x Y™,

where in the second support function, op, I' is identified with a subset of

F*. So we have
d nonempty I' C £, V(z,A) € X x Y*, P(z,\) = of(z, )
<> dnonempty I' C £, ¥Y(z,A) € X xY*, P(z,)) = or(z)

<> the mapping zA — P(z,)) on K is the restriction to K of a support

function of a nonempty set in £
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<= the mapping p: K — IR U {£oo} : zA — P(z,A) is well defined, has
p(0) # —o0, and satisfies Theorem 2.14 la and 1b

<= P(0,0) # —oco and P satisfies the properties 1a and 1b of the theorem.

The third equivalence is given by Theorem 2.14.1.

Uniqueness of I' in the final statement also follows from Theorem 2.14.1
since, as noted previously, a rank-1 representer of a set A is the largest set

having the same rank-1 support function as A.

2. As in part 1, but using Theorem 2.14.2 in place of Theorem 2.14.1.

a

Remark. When X and Y are both normed spaces, BL(X,Y) is a normed
space in the dual topology of F; hence the classes of equicontinuous (in F;*) and
w*-compact sets in BL(X,Y) are identical. In this case, part 2 of the theorem

characterizes rank-1 support functionals of w*-compact sets in BL(X,Y).

2.4 Application to Fans

We apply rank-1 support functions to Ioffe’s fans ([Iof81, [0f82]). A fan is a set

valued mapping which, in some important ways, generalizes a (sub)linear operator.
Definition 2.22 Let F be a set valued mapping from X to Y.

1. F is called a fan if it

(a) takes nonempty, convezr values: F(z) is nonempty and convez, for x €
X;
(b) is positive homogeneous: F(az) = aF(z) for a > 0,z € X; and

(¢c) is subadditive: F(z1 + z2) C cl(F(z1) + F(x2)) for z1,z, € X.
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2. The value closure of F' is the set mapping F' given by F(z) &ef cl[F(z)] for
each z € X.

3. The handle of F' is the set

hF) ¥ {Ae L(X,Y)| Mz < sup Ay, Y(z,\) € X x Y*}.
yEF ()

F' is said to be spanned by its handle if F'(z) = h(F)z, for z € X.

F is spanned by its handle up to closed values if F(z) = cl[h(F)z], for
relX.

The graph of a set valued mapping (or multifunction) F' from X to Y is {(z,y) |y €
F(z)}. We note in passing that the value closure of F' is not necessarily the same
as the multifunction whose graph is defined as the closure of the graph of F'
The property of a fan’s being spanned by its handle (up to closed values) is
of special interest because it means the fan is generated by a rank-1 representer,
namely its handle. The question of characterization of fans spanned by their
handles has been open since at least [AV]. Here we give a characterization of the
fans which are spanned by their handles up to closed values. In particular, of the
fans with w*-compact handles, we can characterize those which are spanned by

their handles.
We recall the terminology of Theorem 2.1: let the support function of a

nonempty set V in Y be given by

oy :Y" = RU{co}: A — supy.
vev

Theorem 2.23 Let F be a set mapping from X to Y with nonempty values.
Define P : X x Y* — R U {oo} for each (z,)) in X x Y* by

P(z,)) ¥ opm(N).
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1. F is spanned by its handle up to closed values iff F is a fan and P satisfies
the hypotheses la, 1b of Theorem 2.21.

2. The handle of F' is equicontinuous in F* and spans F iff F = F is a fan
and P satisfies the hypotheses 2a-2¢ of Theorem 2.21.

Proof

1. Recall Theorem 2.1.2 which states that nonempty convex sets V,W in Y

have the same closure iff their support functions are identical:
cddV=cdW <= oy =ow.

Also as h(F) is a rank-1 representer, (it and) its images h(F')z are convex.
So
F is spanned by its handle up to closed values
<> OF() = OnF)s for each z € X
<> P is the rank-1 support function of h(F')
<= P satisfies Theorem 2.21 la, 1b.

2. The proof follows as above using Theorem 2.21.2 instead of Theorem 2.21.1.

O

Corollary 2.24 Let F be a fan from X to Y and P be defined as in the theorem.

1. Suppose the handle of F' is w*-compact. Then F' is spanned by its handle iff
F = F and P satisfies the hypotheses 1a, 1b of Theorem 2.21.

2. Suppose the handle of F' is equicontinuous in F*. Then F is spanned by its
handle iff F = F' and P satisfies the hypotheses 2a-2¢ of Theorem 2.21.
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A prototype fan comes from the analysis of nondifferentiable vector functions.
We will sketch it here in the context of normed spaces X, Y with Y reflexive.

Let g : X — Y be Lipschitz in a neighborhood U of z. € X. Given any A in
Y* notice that the composition \g is a real function on X, Lipschitz in U. The

[Cla] generalized directional derivative of Ag at ., in the direction u € X is

(Ag)(z + tu) — (Ag)(2)
t

(Ag)° (zw;u) < Jimsup
&Lt T e

£10
It can be shown easily that for fixed u € X, the function on Y~
A (Ag)° (2 u)

is sublinear; hence, by the result dual to Theorem 2.13.2, it is the support function
of a nonempty set in Y. This leads to the definition of the set mapping F' from
X toY as

Fu) ¥ {y e Y|y < (\g)°(zs;u), VAE Y™}, Vue X. (2.4)

We know already that F' has nonempty convex values in Y. With more work in
a similar vein, we can show that F' is also subadditive and positive homogeneous,

hence that F'is a fan.

The handle of F in this special case is called the rank-1 generalized Jacobian
of g at z., denoted 8'g(z.). This set of continuous linear mappings from X to Y
is used as a kind of Jacobian for ¢ at z, even when the classical Jacobian for g
does not exist at z. (see Chapter 3).

Although F is a fan, it is not obvious that F is actually spanned by its handle
0'g(z.). From the Lipschitz property of g though we deduce that d'g(z.) is
at least equicontinuous, so that Theorem 2.23.2 can be brought to bear on this
question. Exactly this reasoning is used in Chapter 3 to obtain the following

positive result.
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Theorem 2.25 Let X, Y, g be as above and F be the set mapping defined by
(2.4). Then F is a fan spanned by its handle:

{y € Y| dy < (Ag)°(z4;u), VA€ Y™} = 8'g(zs)u, VueX.

Extensions of this result to separated locally convex spaces are given in Chap-

ter 3.

2.5 Rank-1 and Plenary sets

We begin by defining rank-1 and plenary sets. The former property is derived from
rank-1 representers, specifically the property 3 as listed after Definition 2.15. The
latter very similar idea is first found in [Swe77] and attributed to Hubert Halkin.
We will make frequent reference to [Swe79] in which a number of properties of

plenary sets are displayed. Plenary sets are the same as the solid sets of [Rub].

Definition 2.26 LetT' C L.

1. T is rank-1 if for each A € L
V(z,\) € X xY™, Mz € Mz = Acl.
The rank-1 hull of I' is

rank-1T' & {4 € £ |V(z,)) € X x Y*, Mz € \[z}.

2. T' is plenary if for each A € L
Vze X, Az€eTz = Ae€l.

The plenary hull of I' is

plenl’ ¥ {A € £ |Vz € X, Az € T'z}.
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It may be more appropriate to call a rank-1 sets I' dually rank-1, because such
sets are not usually composed of rank-1 operators in L(X,Y'), rather are dually
described by rank-1 operators in L(Y, X).

The rank-1 property depends not only on the set T', but also on the superspace
L of T and on the dual space FL(Y, X) of L. The definition could equally be given
with respect to a superspace of I other than £ or in fact to any subset of such a
space, and, likewise, using any subset of the space dual to £. A similar statement,
and a more general definition on these lines, can be made for the plenary property
— see [SweT9, Ch. 4].

The rank-1 and plenary properties coincide when applied to sets in the dual

of an ‘ordinary’ convex space: if ® is a subset of E*, it would be rank-1 if
(ge)a € (Pe)a, V(e,a) e ExIR = ¢€@

or, equivalently,

(ge) € Pe, Vee B = ¢$€®

which is the definition of plenary.
The following relationship between convex and rank-1 or plenary sets is given

by [SweT9, Prop. 4.03]:

Proposition 2.27 Let E* have its weak* topology. If ® is a closed set in E*,

then it is convez iff it is pathwise connected and either rank-1 or plenary.

It is easy to check that the rank-1 (respectively plenary) hull of a set is a
rank-1 (resp. plenary) set. Also

Proposition 2.28 Let I be a set in L.

1. IfT is rank-1 then it is also plenary. The converse holds if I' is w*-compact,

but not in general.
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2. plenl’ C rank-1T". Equality holds if T' is w*-compact, but not in general.

Proof

1. Suppose T is rank-1. If Az € I'z for each z, then AAz € AT'z for each (z, })
hence A € T, i.e. I is plenary. Following the proof is a counterexample to
the statement of the converse.

Now suppose I' is w*-compact, convex and plenary. Then, for each z, I'z is
w-closed and convex. If A\Az € AI'z for each (z, A), then, by Theorem 2.13.1,
Az € I'z for each z. Therefore, plenarity of ' implies A belongs to I', i.e. I’

is rank-1.

2. Similar to part 1.

O
Example 2.29 Let
G ¥ {(a,0)" € R?[(a4)® < b and (a,) # (0,0)},
where ay % max{a,0}. We have
0ev'G, Vov=(v,v:)T € R%. (2.5)

If either vy or vy is zero this is clear; otherwise take x = (—v1/ve, (v1/v2)?) € G

T

to obtain viz = 0.

Define T' as the set of matrices in IR**? whose columns lie in G. Clearly
0,00 ¢ G =T(1,0)F
so plenl’ does not contain the zero matriz. However using (2.5) we get
0e€vTy, VYu,veR?

so the zero matriz lies in rank-1T".

Thus plenl' # rank-1T'.
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We characterize rank-1 representers in terms of rank-1 and plenary sets in £,
and also using sets of operators in F of rank no greater than 1. We will take the

polars of nonempty sets ) € F in L:

Q¥ {AeL| AT <1,VT € Q}.
Proposition 2.30 Let I’ be a set in L.

1. T' = 7-cl rank-1coT', where T is any topology which is finer than the w*-

topology and makes L a topological vector space.

If T' has nonempty strong interior or is w*-compact, then the rank-1 hull

operation may be replaced by the plenary hull operation.
2. If0eTl, It = {zX | of(z, ) < 1}°.

Proof

1. Let A be the convex hull of I'. Since I'! contains I' and is w*-closed, rank-1
and convex, then I'! contains w*- clrank-1A. Moreover w*- clrank-1A D
7-cl rank-1A because the 7-topology is finer than the w*-topology. It is
only left to show that I'" C 7-cl rank-1A.

So choose A in T! and B in A. Then for any (z, )),

Mz € cl(ATz) C cl(AAz),
ABz € MAz.

Since AAxz is a real interval, it is easy to show that for 0 < a < 1
arAz + (1 — a)ABz € MAz.

This holds for each (z,A) so A+ (1 — a)B € rank-1A. Letting « T 1 yields

A € 7-cl A. Hence I'! C 7-cl rank-1A and we are done.
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The claim about taking plenary instead of rank-1 hulls is shown by [SweT79,
Prop. 4.24, 4.30]. The proof — in the setting of normed spaces — are still

valid here.

2. Suppose 0 € I''. Let @ be the set of zX such that of(z,)) < 1. Clearly
' c@e.
Now take A € I'!, so Az > af(z, \) for some (z,A). Since 0 € T (and the

rank-1 support functions of I' and I'* are equal) we may scale by a positive

number « such that
adAz > 1> ai(z,a)) (= 0),

ie. A& Q°. Thus I'" D Q° as needed.

0

Related to part 1 of the proposition is the open question of whether or not the
w*-closure of a plenary convex set is a rank-1 representer ([Swe79, Ch. IV, p. 53]).

The above proposition and many of its corollaries to follow may seem, at
first, to be operator analogs of important and difficult results in convex analysis.
For example, compare Proposition 2.30.1 with Theorem 2.13.1. However, let us
rewrite Proposition 2.30.1 in the special case that £ is the dual space E*, 7 is the

w*-topology, and I' = & C E:
w*-cl{¢ | de € (co®)e, Ve} = {4 | de < oa(e), Ve}. (2.6)

This result and the proposition are not nearly so important as Theorem 2.13.1.
Likewise, the proofs are trivial by comparison.
Nevertheless, the above proposition and its corollaries are of some interest. For

example, (2.6) still holds with any topology T making E* a topological vector space
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such that 7 is finer than the w*-topology. This observation and Theorem 2.13.1

gives

r-cl {¢ | e € (coP)e, Ve} = w*-cl co®

in which our freedom in choosing 7 is unusual. Also, as already noted, for this

choice of £ the rank-1 hull operation can be replaced with the plenary hull oper-

ation.

Corollary 2.31 The strong or w*- closure of a rank-1 convex set in L is still a

rank-1 (and convez) set.

Proof According to part 1 of the proposition, if I' is rank-1 and convex then its

strong or w*- closure is I'!. T'! is, of course, a rank-1 convex set. 0

Another open question is whether or not the strong or w*- closure of a convex

plenary set is also plenary ([Swe79, Ch. IV, p. 50]).
Corollary 2.32 Let T be a set in L.

1. T is a rank-1 representer iff it is strongly or w*- closed, rank-1 and convexz. If

[ has nonempty strong interior, or is w*-compact, then the rank-1 property

may be replaced by plenarity.

2. T is a rank-1 representer containing zero iff it is the polar of {z A | of(z,\) <

1} # O off it is the polar of a nonempty set in F which contains operators of

rank not greater than 1.

Proof The only possible question is in part 2, specifically the claim that ' = Q°

implies I' = I'!, where @ is a nonempty set in F containing operators of rank not

greater than 1. This follows from part 1 since QQ° is w*-closed, rank-1 and convex.
O
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From Corollary 2.32.2 we deduce that, in Definition 2.6, polars of sets in the bases
of neighborhoods in FL(Y, X) are rank-1 representers.

We come to separation of points and sets in L.

Corollary 2.33 Let ' be a set in L. IfT is a strongly or w*- closed, rank-1,

convex set in L then
A¢T < I(z,)), Mz > ai(z, \).

The rank-1 property may be replaced by plenarity if I' has nonempty strong interior

or is w*-compact.

To obtain separation of rank-1 sets I' and A via rank-1 operators z ), the difference
r-A%¥ {A— B|A € I',B € A} must also be rank-1. Unfortunately this need
not follow even if I' and A are also w*-compact and convex. [SweT9, App. A.05]

provides an example of (w*-)compact, convex, plenary sets ', A C IR? whose
difference is not plenary. Applying Lemma 2.28.1 we find that [' and A are also

rank-1 sets whose difference is not rank-1.

Here are some elementary properties of rank-1 sets.
Proposition 2.34
1. Intersections of rank-1 (respectively plenary) sets in L are rank-1 (plenary).

2. The rank-1 (respectively plenary) hull of a set in L is equal to the intersection
of all rank-1 (plenary) sets which contain it.

3. The rank-1 and plenary hulls of a convez (respectively w*-compact) set in L

are conver (w*-closed).

4. Compositions of invertible operators with w*-compact rank-1 sets yield rank-

1 sets: Let I" be a w*-compact rank-1 set in CL(X,Y), and Z be a separated
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conver space. If A is a continuously invertible operator in CL(Y,Z) then
AoT ¥ {A0G|G €T} is rank-1 in CL(X, Z). Likewise, T' o B is rank-1
in CL(Z,Y) if B is an invertible mapping in CL(Z, X).

Similarly, compositions of invertible operators with (not necessarily w*-com-

pact) plenary sets yield plenary sets.

5. Scaling and translation of rank-1 (plenary) sets yields rank-1 (plenary) sets.

Proof In the plenary case, most of these results are shown in [Swe79, Ch. VI
4.10, 4.13, 4.16, 4.20]. In the rank-1 case, proofs are nearly identical (and are not,

in any case, difficult). 0
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Chapter 3

The Rank-1 Generalized
Jacobian

3.1 Introduction

Let X,Y be real Banach spaces with respective continuous duals X*,Y™; and
BL(X,Y) be the space of bounded (continuous) linear mappings from X to Y.
Let f: X - IR and ¢g: X — Y be locally Lipschitz mappings.

Even when f is not differentiable, the Clarke generalized gradient [Cla| is
useful in specifying first order information for f. The generalized gradient of f at
z. € X is a convex set defined using the Clarke generalized directional derivative
fo(@a o)

0f(z.) = {6 € X" |Vu € X, bu < f(za;u)}

This definition and the proof of existence (nonemptiness) of 9f(z,) are given
analytically in [Cla], i.e. only with reference to topology, using the theory of
support functionals of convex sets ([Ho6r]). Rockafellar has investigated Clarke
calculus for non-Lipschitzian functions (eg. [Roc79, Roc80]); such generality in

terms of vector functions is, however, beyond the scope of this thesis.
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Analogously we consider the set
8'g(z,) ¥ {A e BL(X,Y) | V(u,\) € X x Y*, Mu < (\g)°(z.;u)},

as in [Swe77] in finite dimensions, to try to extend the classical notion of a Jacobian
to the nonsmooth function g at z.. Another candidate (see Proposition 3.8.2) is

the Clarke generalized Jacobian,

89(z.) ¥ cleo {lim Vg(z;) | i — z., Vg(z;) exists},

where the weak-operator, or weak*, topology of BL(X,Y) is used for infinite
dimensions. Existence for the latter requires Rademacher’s theorem [Chr}, a mea-
sure theoretic result which says that g is Gateaux differentiable almost everywhere
with respect to Haar measure if X and Y are separable and Y is reflexive.

Until now, existence of 3*g(z.) has relied entirely on existence of dg(z.), hence
has been limited to separable Banach spaces with Y reflexive ([Swe77, Thi82]).
The principal result of this chapter, Theorem 3.15.1, shows existence of 0'¢g(z.)
for arbitrary normed spaces so long as Y remains reflexive. The existence proof
is also novel in the context of the generalized Jacobian: it uses a characterization
from Chapter 2 of support functions of rank-1 representers in BL(X,Y) similar
to the characterization of support functions used for existence of the generalized
gradient. We do not require a partial ordering on Y to obtain vector support func-
tionals, as used in [Thi80]. Unlike the existence proof of the generalized gradient,
however, Theorem 3.15.1 still needs the finite dimensional (classical) version of
Rademacher’s theorem. This raises an important question: can Theorem 3.15.1
can be proven in an entirely analytic manner?

Sweetser [Swe77] shows in finite dimensions that 8'g(z.) is the plenary hull of
dg(z.) (see also [H-U82]); in infinite dimensions this is given by Thibault [Thi82].
It happens that the plenary and rank-1 hulls of dg(z.) coincide, so d'g(z.) is
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also the rank-1 hull of dg(z.), when the latter exists. We call 8'g(z,) the rank-
1 generalized Jacobian rather than the plenary generalized Jacobian because its
existence, independent of dg(z.), depends on rank-1 support functions.

Nonemptiness of the rank-1 generalized Jacobian is of some interest, even with
the proviso that ¥ be reflexive, given the statement of [H-U82, §3] (also [Thi82, §4])
that ‘the mere question of existence [of the rank-1 generalized Jacobian] is hopeless
for X and Y general Banach spaces’.

When Y is not reflexive, if we are prepared to consider ¢ as a mapping from
X to Y** by embedding Y in its second dual, existence of a rank-1 generalized
Jacobian is still assured. Moreover, our existence result still goes through when we
use metric spaces instead of normed spaces. In fact if we posit an extra Lipschitz-
like condition on g, which is superfluous when Y is metrizable, we can even extend
existence to the setting of separable, locally convex topological vector spaces with
semi-reflexive Y. (See §3.7.)

Other notable approaches to getting first order information on nonsmooth vec-
tor functions, mainly in finite dimensions, include Halkin’s screens [Hal], Warga’s
derivate containers [War], Sweetser’s shields [SweT7, SweT9], the generalized Ja-
cobian of Pourciau [Por], and Ioffe’s fans [lof81, I0f82]. The first three of these
deal with specifications of families of linear mappings related to a general (non-
smooth) function, and properties of these families which guarantee extensions
of well known results in smooth functional analysis such as the inverse function
theorem. For more on Pourciau’s contribution see the discussion after Proposi-
tion 3.11. Regarding fans, the prototype seems to be the set mapping from X
toY, F:um {y| Ay < (Ag)°(zs;u), VA € Y*} which we discuss in §3.5. It
turns out that this fan is always generated by the rank-1 generalized Jacobian:
F(u) = 8'g(z.)u (Proposition 3.25).

The remainder of the chapter is organized as follows.
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Notation and preliminary results, mostly dealing with topology and (rank-1)

support functionals of convex sets.

Review of the Clarke generalized gradient and generalized Jacobian. The
only result crucial to later material will be (the finite dimensional version
of) Proposition 3.11, which justifies the generalized Jacobian. Other results

are presented primarily for comparison with new results, to follow.
The rank-1 generalized Jacobian: existence and basic properties.

Relationships between the rank-1 generalized Jacobian and the general-
ized gradient (when Y = IR), the generalized Jacobian (when it exists),

Sweetser’s shields ([SweT7], [SweT9]), classical derivatives, and Ioffe’s fans

([Iof81], [10£82]).

Some calculus for the rank-1 generalized Jacobian, including a chain rule

and a mean value theorem.

Discussion of extensions to include the cases when Y is not reflexive, and

when X', Y are spaces more general than normed spaces.

We note that, apart from the existence proof Theorem 3.15.1 and related material,

the ideas behind many of the results given here are well known in less generality.

In particular, we recommend Hiriart-Urruty’s account [H-U82] in finite dimensions

of the (rank-1) generalized Jacobian. Also, to a certain extent, the results and

some proofs presented in sections 3.4-3.6 are modeled after the early part of [Cla,

Ch. 2).

3.2 Notation and Preliminary Results

We present the notation we will assume throughout this chapter.
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e Let X,Y be normed spaces over IR with open unit balls By, By respectively.

Y is assumed to be reflexive.

e A formon X is a linear mapping from X to IR; an operator from X to Y
is a linear mapping from X to Y. The space of all bounded operators A

from X to Y is written BL(X,Y), and is endowed with the operator norm
|A] & sup{|Az|| ¢ € Bx}. The dual space of X is BL(X,IR) — where

IR has the usual Euclidean topology — the normed space of all continuous

forms on X. This is denoted by X*, and its open unit ball by B%.

e The space of bounded finite rank operators from Y to X is denoted
FL(Y,X); of special interest will be operators of rank one or less, given
by

ud Y — X 1y — u(Ay)

for (u,A) € X x Y*. FL(Y, X) is endowed with a norm (different from the
operator norm) under which its dual will be BL(X,Y) — see Proposition 3.1,
parts 3 and 4, below.

e The weak topology of Y determined by Y*, or (Y, Y™) topology, will be
denoted by w-. The weak*, or o(X™*; X), topology of X* will be denoted by
w*-. (See [Sch].)

Likewise the weak operator, or o(BL(X,Y),FL(Y, X)), topology on
BL(X,Y) will be denoted by w*- (see Proposition 3.1.4 below).

e The set operations of closure and convex hull will be denoted by cl and co

respectively.
e Let f: X —-Randg: X Y.

We quote from Chapter 2 §2.2.
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Proposition 3.1
1. Given (u,A) € X x Y*, define ur: Y — X 1y — u(Ay). Then
Fe FLY,X) & F=) uh

for some finite sequence ((u;, A;)) C X x Y*. In particular, F' 1s a bounded
rank-1 operator from'Y to X iff F = ulA for some u # 0, # 0.

2. Let (u,N), (w1, M)y-eey (Um, Am) € X xX Y*, where m € 1IN, and
A€ BL(X,Y). If uk agrees with 3" u;\; on the range of A, i.e.

Vze X, u(Mz)=>) ui(MAz),

then
Mu = Z A Au;.

3. A norm on FL(Y, X) is given by

|F] = inf {3~ Juilly:l |V finite sums > uidi = F, ((us, A:))i € X x ¥}
for each F € FL(Y, X). In particular, |ul| = [ul|A].

4. Consider each operator A € BL(X,Y) as a form on FL(Y, X) by
A: Z“i)\i — Z)\iAui.

Then BL(X,Y) is the dual of FL(Y,X) such that the dual norm and the

operator norm coincide.

The typical setting for these results is in terms of the tensor product X @Y™ rather
than (the isomorphic space) F'L(Y, X); in fact the norm on X ® Y™ corresponding

to the above norm on FL(Y, X) arises from the well known projective topology
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on the tensor product ([Sch, Ch. 3 §6]). We will avoid the tensor product and the
extra notation this requires.

Support functions corresponding to w*-closed, convex sets in X* are of great
importance in functional analysis. When using a support function of a w*-closed
convex set in BL(X,Y'), we will find it convenient to restrict the function domain
to the rank-1 members of F'L(Y, X). By convention the supremum over an empty

set will be taken as —oo.
Definition 3.2

1. Let C C X*. The support functional of C, o¢ : X — IR U {00, —00}, is
given by

oc(u) 3 sup fu, Yue X.

¢ec

2. Let I' ¢ BL(X,Y). The rank-1 support functional of T', of : X x Y* —
"R U {co0, —0c0}, is given by

ol(u, ) & sup Adu, V(u,\)e X x Y™
Ael’

In the 3-dimensional case, the ideas in part 1 of the next result can be traced
back to Minkowski’s 1911 paper [Min]. Part 2 is due to Hérmander [Ho6r] who
considers support functions in the general setting of locally convex vector spaces.

Function inequalities such as o¢ < op, for subsets C, D of X*, are taken

pointwise. By C'u we mean the set {{u|¢ € C}, for C C X* and u € X.
Theorem 3.3 Let C, D be w*-closed, convex sets in X*.

1. CCD <= oc<op < Yue X, CuC Du.
By symmetry, the statement is true if equality holds in place of the subsets

and inequality.




77

2. Letp: X — IR. Then p is the support function of a nonempty, w*-compact,
convex set C in X* iff p is
(a) positive homogeneous: p(au) = ap(u) for each a >0 and v € X;

(b) subadditive: p(uy + ua) < p(u1) + p(uz) for each uy,uy € X;

(¢) bounded above on Bx.

Such a set C' is unique.

We deduce from Theorem 3.3.1 that the w*-closed convex sets C in X* are

characterized by their support functions:
C={te X" |u <oc(u), Vue X}

This useful property motivates us to define the rank-1 representers in BL(X,Y") as
those sets of bounded operators which are characterized by their rank-1 support

functions. Also relevant are the rank-1 sets (from Chapter 2 §2.5) and Sweetser’s

plenary sets [SweT7, Swe79].
Definition 3.4 LetT' C BL(X,Y).
1. The rank-1 representer of I' is
I {4 e BL(X,Y) | Mu < ol(u, A), V(u,A) € X x Y*}.
I’ is said to be a rank-1 representer if ' = ',
2. T is rank-1 if for each A € BL(X,Y),
V(u,\) € X x Y™, Mu e A\[lu = AecT.

The rank-1 hull of T' s

rank-1T" & {4 € BL(X,Y) | Mu € ATu,V(u,A) € X x Y*}.
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3. T’ is plenary if for each A € BL(X,Y),
Vue X, AueTu = A€l.

The plenary hull of T' is
plenl' ¥ {A € BL(X,Y) | Au € I'u,Vu € X}.

Note I'! is a rank-1 set. We quote several other properties of rank-1 sets from
Chapter 2, of which the most important is the characterization of rank-1 repre-

senters in terms of rank-1 hulls.

Proposition 3.5 Let I be a set in BL(X,Y).

1. T' = w*-cl rank-1col.

2. IfT is w*-compact and convez, then I'v = [''u foru € X and A\’ = AI'* for
AeYr.

3. IfT is rank-1 then it is also plenary. The converse holds if I' is w*-compact,

but not in general.
Proof
1. Chapter 2 Proposition 2.30.1.
2. Corollary of Chapter 2 Lemma 2.20.
3. Chapter 2 Proposition 2.28.1.
a

Recall from Chapter 2 Theorem 2.21.2 the following rank-1 version of Theo-

rem 3.3.
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Theorem 3.6 Let P: X xY* — IR. Then P is the rank-1 support function of a
nonempty, w*-compact, rank-1 representer I' in BL(X,Y) iff P is

1. positive bihomogeneous: P(au,)) = P(u,a)) = aP(u,)) for each o« > 0
and (u,A) € X xY*;

2. subadditive in uA: P(u,A) <3 P(ui, Ai) for all finite sums 3 uid; = ul;
3. bounded above on Bx x By.

Such a set T' is unique.

3.3 Review: Basics of the Clarke Calculus

We will recall, in infinite dimensions, Clarke’s extension of the classical gradient
of real functions, and the extension of the classical Jacobian of vector functions
due (in greatest generality) to Thibault. Most of the following results involving
measure were first shown, in finite dimensions using Lebesgue measure instead of
Haar measure, by Clarke. When derivatives are used here, they will be Gateaux

derivatives.

Definition 3.7 (Clarke)

The generalized directional derivative of f at z. in the direction u € X is

f(z + tu) - f(z)
p :

oz u) ¥ limsup
L—Tx

ti0

The generalized gradient of f at z. is the set

0f(v.) {6 € X" |Vue X, tu< f(znu)}
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The following theorem justifies the generalized gradient and shows it relation
to gradients of f, when these exist. Part 1 relies on the characterization of support
functions given by Theorem 3.3.2, whereas part 2 uses integration with respect to
Haar measure. A fact of interest noted in [Thi82] is that a finite dimensional set

is Haar-null iff it has Lebesgue measure zero.
Proposition 3.8 Let X be a Banach space, z. € X, and f be Lipschitz near z.,.

1. (Clarke) The generalized directional derivative f°(z.; -) is finite valued, pos-
itive homogeneous, subadditive and bounded; hence is the support function

of the nonempty, w*-compact, convez set 0f(z.).

2. (Thibault) If X is also separable, then f°(z.;-) is the support function of

each of the following sets:
Gs & w*- cleo {w*- lim V f(z;)|z; — v, z: € Q5 U S}

where S is any Haar-null subset of X, and §y is the set of points at which
f s not differentiable. Therefore

0f(z.) = Gs
for each Haar-null set S.
Proof
1. [Cla, Prop. 2.1.1] and either Theorem 3.3.1 or [Cla, Prop. 2.1.2].
2. [Thi82, Prop. 2.2].
t

Part 2 of the theorem says that the generalized gradient is ‘blind’ to Haar-null
sets. We point out the obvious: this characterization of the generalized gradient

is measure theoretic whereas the original definition is analytic.
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A useful result is the mean value theorem for generalized gradients, [Cla,

Thm. 2.3.7].

Proposition 3.9 (mean value)
Let f be Lipschitz in a neighborhood U in X. If z,,z, are points of U then

there exists a scalar s in (0,1) such that

f(z1) — f(z2) € Of(sz1 + (1 = s)z2) (21 — 72).-

Proposition 3.8.2 motivates a (measure theoretic) definition of the generalized

Jacobian.

Definition 3.10 (Clarke) The generalized Jacobian of g at z. € X is

8g(z.) & w*-cleo {w*-im Vg(z:) | &i — z., Vg(z;) exists}

The significance of the Lipschitz condition on ¢ becomes clear when we are
aware of two facts. Firstly, the extension by Christensen ([Chr, Thm. 7.5]) of
Rademacher’s theorem — to the case of separable Banach spaces X,Y with V'

reflexive — says

g is Lipschitz in a neighborhood U of .

= ¢ is differentiable everywhere in U except possibly in a Haar-null subset.

Secondly, the Haar measure inherits a property of Lebesgue measure: if a Haar-
null set is deleted from the neighborhood U, the remaining set is dense in U
([Thi75]).

Therefore there is a sequence (z;) converging to z. such that the Jacobians
Vg(z;) exist and are bounded (by the Lipschitz constant of g). Sequential w*-
compactness of bounded sequences ensures existence of a w*-limit point of
(Vg(z;)), whence dg(z.) # 0. Clearly 0g(z.) is bounded by the Lipschitz con-
stant of ¢ and is, by definition, w*-closed and convex. This constitutes a proof of

the first part of our final result.
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Proposition 3.11 Let X,Y be separable Banach spaces, with Y reflexive. Sup-
pose g is Lipschitz in a neighborhood U of z. € X.

1. (Thibault) The generalized Jacobian of g at z. is a nonempty, w*-compact,

convez set in BL(X,Y).
2. (Thibault) For each set S in X, let
Js & wx clco {w*- lim Vg(z;)|z; — ., z: & Qg U S}

where (1, is the set of points at which g is not differentiable. Then for each
Haar-null set S and A € Y™,

I(Ag)(zx) = A0g(zs) = AJs.

3. (mean value)

If z1, 25 are points of U, and \ € Y*, then there is a scalar s in (0,1) such

that
Ag(z1) — Ag(zz) € O(Ag)(sz1+ (1 — 5)z2) (71 — 22)
= Mg(sz1 + (1 — 8)z2)(1 — 2)-
Proof
1. [Thi82].

2. [Thi82, Prop. 2.4].
3. By the mean value result Proposition 3.9 there is s € (0, 1) such that
Ag(z1) — Ag(z2) € O(Ag)(sz1 + (1 — 8)z2)(z1 — T2).

Now use part 2.
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a

In finite dimensions, Pourciau [Por] slightly modifies Clarke’s definition of the

generalized Jacobian to obtain a definition which is blind to sets of zero Lebesgue
measure.

The main classes of functions motivating the above definition are the smooth

functions, and the convex functions.

Example 3.12 If f (g) is continuously differentiable near z. € X then
Of(z.) ={Vf(z.)}
(99(z.) = {Vg(z.)}).

Example 3.13 [Cla, Thm 2.5.1, Prop 2.8.6a ] If f is convex then it is Lipschitz
near any z, € X and the its convexr subdifferential at z. equals the generalized

gradient there:

{¢e X" |Vz e X, {(z —z.) < f(z) — f=z.)} = Of(z.).

There is a substantial calculus for the generalized gradient and, in finite di-

mensions, the generalized Jacobian, including chain rules, mean value theorems,

and the implicit function theorem — see [Cla, Ch. 2 and 7].

3.4 Rank-1 Generalized Jacobians

Definition 3.14 The rank-1 generalized Jacobian of g at z. € U is given by
g(z) & {A € BLIX,Y) |V(u,)\) € X x Y™, Mu < (Ag)°(zu;u)}

In finite dimensions [Swe77] showed that 0'g(z.) is the plenary hull of the Clarke
generalized Jacobian Og(z.). This was extended [Thi82] to separable Banach

spaces. We prefer to emphasize the terminology rank-1 simply because — as we
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will see — the existence of this object in infinite dimensions relies on the theory of
rank-1 support functionals and is independent of the existence of the generalized

Jacobian.

Theorem 3.15 Let g be Lipschitz of modulus K in a neighborhood U C X. Then

for each z, in U:

1. The function (u, ) — (Ag)°(z.;u) is finite valued, positive bithomogeneous,
subadditive in ul, and bounded on Bx X By ; hence is the rank-1 support

function of the nonempty, w*-compact, rank-1 representer 9*g(z.).

2. (Ag)°(z4;u) is finite valued, positive homogeneous, subadditive, and bounded

as a function of u (A respectively) alone.

3. (Ag)°(z«;u) is upper semicontinuous in (z.,u,); Lipschitz of modulus K |u|
as a function of X alone; and Lipschitz of modulus K||A| as a function of u

alone.

Also, (Ag)°(zw;u) < Klul|A] and (—Ag)*(z4;u) = (A9)°(+; —u).

Proof

1. It is easy to show finiteness, positive bihomogeneity, and boundedness by
considering the real function A\g — most of this is given by [Cla, Prop. 2.1.1].
If subadditivity in uA also holds, Theorem 3.6 gives the result.

The subadditivity property is difficult to prove and relies on the finite di-

mensional version of Proposition 3.11.3.

Let uo & u, Ao % X and, for some m € IN, ((ui, X)), be a sequence in

X X Y™ such that

uO/\Q = Z u,-/\i.

1=1

Let € > 0. Then there is § > 0 such that
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(a) for some & € z. + 6Bx and 0 < t < 6,

Nog(é + tuo) = dog(8) | ¢

(Mog)°(z4; uo) < " 5

(b) for each z € 6(1 + |uo|)Bx and 1 = 1,...,m,

()‘ig)o(m;uz') S (/\ig)o(:[:*;ui) -+ __6_

2m

Only the final statement is possibly in question. This follows from from the
upper semicontinuity of (A;g)°(- ;u;), for each ¢ = 1,...,m, as given in [Cla,
Prop. 2.1.1] or in part 3 to be proven.

Choose Z, t as in (a). We proceed, noting that Lemma 3.16 will be used in

advance of its appearance: let G : X — IRM be the function produced by

the lemma, where

£ .
= span{ug,...,Um, 2}

A span{Ag,..., Am}

and M is the dimension of A. As in the lemma, ¥ is an isometry from
A to RM. Let |; = U(X;)" for z = 0,...,m. By Lemma 3.16, for each i,
\ig coincides with ;G on X. Consequently ugly coincides with 37, u;l; on
the span of G(X), because ugho = 3.7, u;);. Therefore for each z in X and

matrix A in the generalized Jacobian 9G(z), uglo coincides with Y %, u;l;

on the range of A. So

(Aog)°(zw;u0) < Qog(# + tu;) — dog(8) + g— by (a) above
loG(:& + t'[to) — loG(i‘)

[S R
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= loAuo+ % for some A € 0G(z) and some z in the

interval from & to & + tug, by Proposition 3.11.3

= > LAu; + —;— by Proposition 3.1.2

i=1

m

< Y (LG (ww) +§ since ;A € L,0G(z) = d(1;G)(z)
1=1
by Proposition 3.11.2

< Z(/\ig)°(x; u;) + —;— by Lemma 3.16
=1

IA
(7
—~

kg

@
~
/—\

8

I.

8
N
-+

(2}

given (b) above.

Since € can be chosen arbitrarily close to zero, the required subadditivity

must follow.

. Subadditivity of (Ag)°(z.;u) in uX implies subadditivity in v for fixed A
and subadditivity in A for fixed u (though not conversely). Similarly, pos-
itive bihomogeneity implies positive homogeneity in each variable v and A

separately. These properties can also be shown directly.

. The required properties can be shown without difficulty along the lines of

the proof of [Cla, Prop. 2.1.1]. We will only show upper semicontinuity of
(Ag)°(z;u) in (zu, u, A).

Let (z;,ui, A;) — (24, u,A). Then, for each ¢, there exist =} € z; + (1/1)Bx
and t; € (0,1/2) such that

Aig(z) + tiug) — Mig(z)
t;

()‘zg) ('EH ) - % S
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- o /\)g(ivﬁ + tiw) — g(2i)
t .
g9(@i + tiwi) — g(@} + tiu)
t;

+ A

Ag(zi + tiu) — Ag(?)
i

Note that for sufficiently large ¢, the Lipschitz condition on g ensures that the
first term is bounded by |A; — A K |u;]| and the second term by |A| K fu; — .

Taking upper limits as ¢ — 0o we obtain

lim sup(Aig)° (5 us) < (Ag)° (i ).

1—+00

Lemma 3.16 Assume the hypothesis of Theorem 3.15.
Suppose (U0, o)y« -y (Um, Am) € X x Y* and & € U. Let

O def A
X = span{uo,...,uUm,2},

A span{Ao, ..., Am},
and M be the dimension of A.
Let U be an algebraic isomorphism from A to RM; and RM have the norm of

the dual of A, that is

lel & max{T(M)Te| A€ A, A <1}, Vee RM.
Denote the ith unit vector of RM — consisting of 0’s except for the entry 1 at the

ith position — by e;. Define G: X — IRM atz € X by

def M
G(z) = 3 (T (ex)g(z))es.

1=1



88

The mapping G has the following properties:
1. For each (z,)) in X x A, \g(z) = U (V)T G(z).
2. G is Lipschitz of modulus K in the neighborhood UO¥unX of Z.
8. For each z in U, (u, ) in X x A,
(TNTG)°(z;u) < (M\g)°(z;u).
Proof

1. Let € X and A € A. Then A = =M, o, U~ (e;) for some scalars a, . . ., au.
So ¥(A) = ¥; ae; and

M M M
(o) = Dt eo(e) = <zajej,z(\p~1<e,.>g<m)>e,.>

= \II(A)TG(:U)
2. Let 1,25 € U.
G(z1) = G(z2)] = max{¥(A\)T(G(z1) — G(z2)) | A € A, A < 1}

max{A(g(z1) —g(z2)) | A € A, A £ 1} from 1

lg(z1) — g(z2)]
K|zy — z2|.

IN N

3. LetzeU,ue X,and A € A. Then

Ag(z + tu) — Ag(2)
¢

(TNTG)°(z;u) = limsup
ze}’(\,z-v:c
t10

Ag(z + tu) — Ag(z)
t

< limsup
2=

t10

= (Ag)°(z;u).
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a

We note that Theorem 3.15.1 requires set theoretic tools in finite dimensions,
namely Rademacher’s theorem. The existence of the generalized gradient, how-
ever, can be shown in an entirely analytic fashion ([Cla, Ch. 2]). An open question,
important for the completeness of the theory, is whether or not Theorem 3.15.1

also has an analytic proof.

Proposition 3.17 Let g be Lipschitz of modulus K in a neighborhood U C X.
Forz, e U:

1. d'g(z.) is a nonempty, w*-compact, rank-1 (plenary), conver subset of

BL(X,Y) and |A| < K for each A € 3'g(z.).

2. The set function 0'g is w*-closed and is w*-upper semicontinuous in U;

hence closed and upper semicontinuous in finite dimensions.
8. For each u in X, A in Y™,
(Ag)°(zx;u) = max{MAu| A € 0'g(z.)},
0(Ag)(z.) = Ad'g(z.),

Fu) = gz
where F(u) & {y € Y | (YN € Y*) Ny < (Ng)°(zau)}
d'g(z.) = [} U d9(a)
§>0 z€xx+6Bx
= Q{A | AA € O(Ag)(z.)}

= [{A]| Au € F(u)}
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where F'(u) is defined as above.

Proof

1. Excepting the norm bound of K, the stated properties of 9*g(z.) are given
by Proposition 3.5.1 after noting Theorem 3.15.1. Now suppose A € 9*g(z.).
For each (u,A) in X x Y*, Theorem 3.15.3 shows

AMu < (Ag)°(z;u) < K [u]|A]-

By the Hahn-Banach theorem, we may choose A of unit norm such that

AAu = |Au|. Hence A is bounded above in norm by K.

2. We must first show that the graph of d'g|y, i.e. the set

Ty ¥ {(z,4) € U x BL(X,Y) | A € d'g(z)},

is closed relative to U x BL(X,Y), where BL(X,Y) is endowed with the
w*-topology. To this end, let ((z, Ax)) be a sequence in I'y which converges
to a point (z,A) in U x BL(X,Y). Since Ay € 0*g(zx) for each k, we have
for (u,A) € X x Y™ that

AAu :111511)\Aku < limsup(Ag)°(zk;u)
k
< (A9)°(z5u)

where the last inequality follows from the upper semicontinuity of
(Ag)°(-;u), as given by Theorem 3.15.3. Therefore A € 9'¢(z), and (z, A) €

'y as required.

The operator d'g cannot be w*-closed without being w*-upper semicontinu-

ous. For suppose W is a w*-open set containing 9*g(z), and (zx) converges
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to z in U such that for each k there exists Ay in 9'g(zx)\W. The se-
quence (A) is norm bounded, from the first part of the theorem, hence has
a w*-limit point A in BL(X,Y)\W. So ((z, Ax)) has a subsequence in I'y
converging to (z,A) € [U x BL(X,Y)]\I'v — this contradicts the fact that
I'y is closed relative to U x BL(X,Y).

. The first equality is given by Theorem 3.15. We will use this to show the
second equality; the third follows similar lines.

As a function of u only, (Ag)°(z.; u) is the support function of both d(Ag)(z.)
and A@'g(z.). The former set is, by Proposition 3.8.1, nonempty, w*-closed
and convex. The latter set also has these properties since 9'g(z.) is a
nonempty, w*-closed, convex set in BL(X,Y), by part 1 above. Appealing
to Theorem 3.3.1, the sets d(Ag)(z.) and A3 g(z.) must be the same.

. For the first equality observe that

dgz)c (N U  9'g(a)

6>0 z€xx+6Bx

Conversely, if A is a member of the set on the right then there is a sequence
(zk) converging to z. such that each 9'¢(z;) contains A. Weak-operator-

closedness of dg, above, yields A € 0'g(z.). Thus equality holds.
The remaining equalities are made clear by the following equivalences for
any Ain BL(X,Y):
VA A € d(Ag)(zs)
= Yu,d Mu < (\g)°(zgu) (<= A€ dly(z.))

< VYu Aue F(u)
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3.5 Other Derivatives, Shields and Fans

We first point out that the ‘rank-1 generalized gradient’ coincides with the gen-

eralized gradient.

Lemma 3.18 Let g be Lipschitz near z,. € X. IfY = R,
9'g(z.) = Og(z.).
Hence 0g(z.) has all the properties of 8'g(z.) listed in Proposition 3.17.
Proof From Theorem 3.15, for each u in X and scalar «
(ag)°(zs;u) = |alg® (2. sgn(a)u) = ¢°(z.; au).

Hence

V(u,a), ofu < (ag)*(z.;u) = Vu, {u < g°(zu)

a

To compare the rank-1 generalized Jacobian with the generalized Jacobian,
when the latter exists, we quote from [Thi82, Prop. 2.3]. This says, in part,
that the rank-1 generalized Jacobian is equal to the rank-1 representer of the
generalized Jacobian; and, in fact, the rank-1 version is ‘blind’ to Haar-null sets,

as is the generalized gradient.

Proposition 3.19 Let X and Y be separable Banach spaces, with Y reflexive.
Let g be Lipschitz near z, € X.

1. The mapping (u, ) — (Ag)°(z«;u) is the rank-1 support function of 8 g(z.)
and of (the rank-1 representers of) each of the sets:

Jg & . cleo{w*-limVg(z;) | z; = Tu,z: € QU S}
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where S is a Haar-null set in X and Q, is the set of points of X at which g
is not differentiable. Then, for each Haar-null set S in X,

0'g(z.) = (Js)".
For S =0, this gives
0'g(z.) = [9g(z.)]"
Hence 9'g(z.) D 0g(z.); this inclusion s, in general, strict.

2. For each A € Y*, 0(Ag)(z.) = Ag(z.)
= A'g(z.)

Similarly, for each u in X, Og(z.)u = 0'g(z.)u.

Proof

1. Excepting the last statement, this result is given by [Thi82, Prop. 2.3]. For
the remainder, first recall that a rank-1 representer always contains the orig-
inal set, hence 9'g(z.) D dg(z.). The piecewise linear mapping in [Swe77,
Example 6.4], quoted in Chapter 1 as Example 1.41, is a counterexample to

equality between the rank-1 and the original generalized Jacobian.

2. This is given by [Thi82, Prop. 2.3], except the final statement which can
be shown by reasoning similar to that used by Thibault in the proof of his
proposition.

0J
Now we introduce Sweetser’s shields [Swe77, Swe79]. A (w*-)shield for ¢ at z.

is a set I'in BL(X,Y) such that
V (w*-)neighborhoods W of T

d a positive radius é (of a ball about z.)
Y T1,Te € Tx + 6BX
we have

g(z1) — g(z2) € W(z1 — 22).
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In finite dimensions, [Swe77] shows that the ‘plenary hull’ of the generalized
Jacobian (= the rank-1 generalized Jacobian) is the minimum closed, plenary,

convex shield for g at z.. We extend this to infinite dimensions.

Proposition 3.20 Let g be Lipschitz near z, € X.
The rank-1 generalized Jacobian 3*g(z.) is the minimum rank-1 representer
which is a w*-shield for g at z.. Equivalently, 0'g(z.) is the minimum w*-closed,

rank-1 (plenary), convexr w*-shield for g at z..

Proof First recall, from Theorem 3.15.1, that d'¢(z.) is a w*-compact, rank-1
representer. Now we show that 0'¢(z.) is a w*-shield for ¢ at z,. Let W be
a w*-neighborhood of 9'¢(z,) which we assume, without loss of generality, is
convex and w*-closed. By w*-upper semicontinuity of d'¢ (Proposition 3.17.2)

there exists § > 0 such that 0'g(z. + § Bx) C W. Therefore

I % w. cleo[d'g(z. + 6Bx)] C wh-cleo W = W.

By the mean value theorem for rank-1 generalized Jacobians, given later as Propo-

sition 3.27, we have for z;,z; € z, + 6 Bx that
g(z1) — g(z2) € T(z1 — 22) C W(z1 — 22).

So d'g(z.) is a w*-shield as claimed.

We have seen that 8'g(z.) is a rank-1 representer which is a w*-shield for g at
z.. To show that 8'g(z.) is the minimum such set, let I' be a rank-1 representer
which is a strict subset of d'g(z.). Hence there exists (u,A) € X x Y™* and ¢ > 0

such that

op(Mu)+e< max Au —e = (Ag)°(zs;u) — ¢, (3.7)
Aedlg(zx)

where the equality is given by Proposition 3.17.3.
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Now consider the w*-neighborhood
W {A € BL(X,Y) | Mu < o}(u,)) + €}
of I'. We choose z; — ., t; | 0 such that

Ag(zi + tiu) — Ag(z;)

(Ag)°(2esu) — € < .

for each 1. We deduce from equation (3.7) that for each ¢

Ag(zi + tiu) — Ag(z:)

ow(Au) <or(Au)+e< -

Therefore

Ag(z; + tiw) — Ag(z;) € tAWu =AW (z; + tiv — ;)
= glzi +tiw) —g(zi)) & Wz + tiu — ).

It is clear that, as the sequences (z; + t;u), (z;) both converge to z., every neigh-

borhood U of z, contains points z,z’ for which

g(z) — g(=') ¢ W(z — '),

i.e. I' is not a w*-shield for ¢ at z,.

We have shown there exists no proper subset of 8 ¢(x.,) which is both a rank-1
representer and a shield for g. Proposition 3.5.1 provides the alternative charac-
terization of 9'g(z.) as the minimum w*-closed, rank-1, convex shield for g at z..
Proposition 3.5.3 says the rank-1 condition can be replaced by plenarity, because
we know 9'g(z.) is w*-compact.

a

More notation is required in order to discuss relationships between the rank-1

generalized Jacobian, derivatives of a more classical nature, and shields.
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We consider X and the dual space Y* only under their norm topologies. We
will consider Y, however, under its two standard topologies, namely the norm
topology and the weak (w-) topology. Unless the weak topology is specified, Y is
assumed to be a normed space.

The derivatives of interest will be the Gateaux- (denoted G-), the Hadamard-
(H-), and the Fréchet- (F-) derivatives respectively. The following discussion on
differentiability should be compared to [Cla, Ch. 2.2] in which strict differentia-
bility corresponds to notion, below, of strict H-differentiability.

The function g is said to be (w-)G- or (w-)H- or (w-)F- differentiable at z.,
respectively, if there is a map Vg¢(z.) € BL(X,Y) such that

. $*+tu - T«
) 1ggp( t) 92) _ Gty

and convergence is uniform for v in finite or compact or bounded sets, respectively.
Vg(z,) is called the derivative of g at z..

Strict differentiability is stronger than ordinary differentiability. The function
g is said to be strictly (w-)G- or strictly (w-)H- or strictly (w-)F-differentiable at
., respectively, if there is a map Vy(z.) € BL(X,Y) such that

(w-) lim glz+tu) - 9(2) = Vg(z.)u,

oot 1123 t
tlo

where convergence is uniform with respect to u in finite or compact or bounded
sets, respectively. Here Vg(z.) is called the strict derivative of g at ..
It is clear that the weakest of these smoothness properties is w-G-differentia-

bility, while the strongest is strict F-differentiability.

Proposition 3.21 Suppose g is Lipschitz near z, € X. If g is differentiable at
Z. tn any of the ways defined above, then

Vy(z.) € 8'g(z.).
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Proof C(lear from definitions. 0

Proposition 3.22 Let z, € X and A be an operator in BL(X,Y). The following

statements are equivalent:
1. g is strictly w-H-differentiable at z. with Vg(z.) = A.

2.
i (2 +tu) — Ag(z)

T—+Tx t
t10

= \u, (3.8)

where convergence is uniform for u, A in compact sets of X, Y™ respectively.
3. g is Lipschitz near ., and for each (u,A) in X x Y™, the limit (3.8) holds.
{. g is Lipschitz near z., and 0'g(z.) = {A}.

5. {A} is a w*-shield for g at z..

Proof (1 = 2) Suppose A is the strict derivative of g at z.. Let C, A be compact

sets in X, Y™* respectively, and € be a positive constant. We will find § > 0 such
that
V(z € z. +8Bx,0 <t < §,(u,A) € C x A) |\d(=z,t,u)| <e. (3.9)

where d(z,t,u) & (1/t)(g(z + tu) — g(z)) — Au
Now the differences d(z,t,u) weakly converge to 0 € Y as ¢ — z, and ¢t | 0,

uniformly for u in C; thus for some 69 > 0 the set

g % {d(z,t,u) |z € 2, + 60Bx,0 < t < bo,u € C}

is w-bounded. By [Sch, Ch. IV §3.2 Cor. 2], § is norm bounded; let this bound
be D > 0.
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A different view of statement 1 is that the limit (3.8) holds, where convergence
is uniform for u in compact sets of X and each X in Y*. So for each A there

exists § € (0,68) such that for ¢ € z. + éBx, 0 < t < 6 and u € C, we have

|Ad(z,t,u)| < ¢/2. Hence, for § & min{§,¢/(2D)},
V(z € 2, +8§Bx,0 <t <& ,ue C,N € \+8By) |Nd(z,t,u)]<e  (3.10)

We can cover A with such open sets A + 6§ B}. By compactness of A, finitely many
of these sets cover it, i.e. finitely many A; € Y* with corresponding radii é; such

that (3.10) holds for A = A; and ¢’ = ¢ and

A Ui+ 6:B3).

Let § %' min; §; > 0. Then (3.9) holds and we are done.

(2 = 3) We only need show that g is Lipschitz near .. Assume not; then for
each 7 € IN there are z;,z' € z. + (1/1)Bx such that

lg(z:) - g(2")] = ilz; — 7).

Hence, by the Hahn-Banach theorem, there is a sequence of norm-1 forms (J;) in
Y™ such that
hig(zi) — Ag(z') 2 ile; — <))

~1/3.

For each i, let u; € X and t; > 0 satisfy ' = z; + t;u; where |u;| = ¢~'/°; and

pi = Mi~/3, Then t; | 0, {u;} U{0} is compact, and {u;} U {0} is compact. Also

pig(e: + taws) — pig(®)  _ 1 hig(@) — hig(@i)
i; t;

P
i2/3 ":l: - :II,” — iz/Sllui” - ?:1/3
1

v
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1/3

This contradicts statement 2 because ¢'/° T 0o as ¢ | oo.

(3 = 4) Clearly, for each u and A, Mu = (A\g)°(z.;u). So A is a member of
d'g(z.).

Let A € BL(X,Y)\{A}. Then for some u in X, Au # Au. By the Hahn-
Banach theorem there exists A in Y* such that AMAu > Au = (\g)°(z.;u), ie.

A& 0g(z.).
(4 = 5) This is a corollary of Proposition 3.20.

(5 = 1) By contraposition. Assume statement 1 is false: A is not the w-H-
derivative of g at z,. Hence there are a set A in Y™* of finite cardinality (which
defines a w-neighborhood of 0 € Y') and a compact set C in X, for which we have
the following: there exist sequences (z;) — z. in X, () | 0, (w;) in C, and (\;)
in A such that such that for each ¢

)\_g(fci + tu;) — g(xi)

T

> M Au; + 1. (3.11)

By compactness of C we may assume without loss of generality that (u;) converges
to some u in C. Similarly, by the finite cardinality of A, we assume without loss
that ()\;) is a constant sequence with value always equal to A.

Using the Lipschitz modulus K of g near z., we find for all sufficiently large ¢
that

g(z; + tiu;) — g(z:)

\ (@i +tiu) — g(ai)

> J _ W
y > A y MK u — i
> \ 9z +tﬂt¢z') —g(z:) _%
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Hence, for sufficiently large ¢, we use this and equation (3.11) to get

)\9(561' + ii?) - g(zi) > A\u + % (3.12)

Now consider the w*-neighborhood
def T 1
W {Al‘v’/\eA, /\Au</\Au+~2—}

of {A}. For any positive radius § we may choose i large enough so that both z;
and z; + t;u are within distance § of z., and equation (3.12) holds. From this

equation, however, we get
g(:l:,' -+ t,-u) — g(:l:i) ¢ tiWu = W(:l:,' + tiu — .’E,‘).

Therefore {A} is not a w*-shield for g at ..
O

Corollary 3.23 Suppose g is differentiable near z. € X in any of the ways de-
fined above, and its derivative Vg is continuous at z.. Then all the statements

1-5 of Proposition 3.22 are valid.

Proof We will prove statement 3 of Proposition 3.22. Note that for any A in Y™

and z1,z; near z, the classical mean value theorem for \g yields
Ag(z1) — Ag(ze) = AVyg(sz1 + (1 — 8)z2)(z1 — z2)

for some s € (0,1).
The limit (3.8) holds:

Ag(z + tu) — Ag(z)
t

= AVg(z + su)u for some s € (0,1)

— AVg(z.)u asz — 0,t | 0,
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where convergence follows from continuity of Vg at z..
Now use continuity of Vg to find positive constants §, D such that for =z €
IVg(z) — Vg(z.)] < é.
Then for 21,z € z.4 By, there exists a form A € Y* of norm 1 (by Hahn-Banach),

and s € (0,1) such that

lg(z1) —g(z2)| = Ag(z1) — Ag(a2)
AVg(sz1 + (1 — 8)za)(z1 — z9)

IN

[Vg(sey + (1 = s)zs) |21 — o
< (IVg(z)l + D)|z1 — z2].

Hence g is Lipschitz near z. of modulus |[Vg(z.)| + D.
O

Finally we move to Ioffe’s fans ([Iof81, Iof82]). A fan is a set valued mapping

which, in some important ways, generalizes a (sub)linear operator.
Definition 3.24 Let F' be a set valued mapping from X to Y.

1. F is called a fan if it

(a) takes nonempty, conver values: F(u) is nonempty and convez, for u €

X;
(b) is positive homogeneous: F(au) = aF(u) fora > 0,u € X, and

(c) is subadditive: F(uy + ua) C cl(F(uy) + F(uz)) for uy,uqs € X.

2. A fan F is called odd if F(~u) = —F(u), forue X.
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3. Let F be a fan. The handle of F' is the set

WF) % (A€ BL(X,Y) | Mu < sup Ay, V(u,\) € X x Y*}.
yEF(u)

F' is said to be spanned by its handle if F(u) = h(F)u, foru € X.

4. The adjoint of F', when it exists (i.e. has nonempty values), is the fan F*
from Y* to X* defined by

F*O) € {ee X" | (Vue X)&u< sup Myl
yEF(u)

The property of a fan’s being spanned by its handle is of special interest, because
it means the fan is generated by a rank-1 representer (its handle). The open
question of characterizing fans which are spanned by their handles is partially
answered in Chapter 2, where a characterization of closed valued fans which are

generated by their handles as
F(u) = cl[h(F)u], (3.13)

is given. In particular when h(F') is w*-compact, F' is generated as in (3.13) iff it
is spanned by its handle.
We recall the adjoint A* of an operator A € BL(X,Y) which is defined on Y™~

by A*(A) 4f XA € X*. In fact A* is a member of BL(Y*, X*) where both X* and

Y* are endowed with their dual norm topology.

Proposition 3.25 Let g be Lipschitz near z, € X. Define a set valued mapping
F from X to Y by

Fu) ¥ {ye Y|y < (M) (z4u), VAEY™}, Yue X.
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Then F is a fan which is spanned by its handle, hence is odd; and the handle of

F is 9*g(z.). An alternative description of F is
F(u) = 0'¢(z)u, Yue X.
Moreover, the adjoint F* of F exists and has the following properties:
F*(\) = Ad'g(z.), VAeY™
F* is spanned by its handle, hence is odd; and the handle of F* is {A* | A €

d'g(z.)}.

Proof F'(u) is convex and nonempty by Proposition 3.17.3. Moreover, by Propo-
sition 3.15.2, the mapping u — (Ag)°(z.; u) is positive homogeneous and sublinear;
hence F is positive homogeneous and sublinear. That A(F) = §'¢(z.) is clear from

definitions. That F' is spanned by its handle is given by Proposition 3.17.3.

The properties of F* are easily shown along similar lines. 0

The result that the fan F' in the theorem is spanned by its handle is quite unex-
pected given the negative comment of Hiriart-Urruty [H-U82, §3] (see also [Thi82,
§4]) that ‘the mere question of existence [of the rank-1 generalized Jacobian] is
hopeless for X and Y general Banach spaces’, even with the requirement of re-

flexivity on Y.

3.6 Basic Calculus

We begin with the scalar multiplication and sum rules for rank-1 generalized

Jacobians.
Lemma 3.26 Let z, € X.

1. If g is Lipschitz near z. and s is any scalar, then 90*(sg)(z«) = s0'g(z..).
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2. If each function g; : X —Y (j =1,...,m) is Lipschitz near z, then

o' (i}w) (z.) C [ialgj(w*)] :

Proof

1. The result is not hard to prove given Theorem 3.15: use positive homogene-
ity of A — (Ag)°(z4;u) for s > 0, and also the fact that (—Ag)°(z.u) =

(Ag)°(z+; —u) when s < 0.

2. It is easy to see that

’\ZgJ m*7u)<24(/\g.7 (Zysu),

from which Theorem 3.3 gives

(/\Zgj (z4;u) < max{ABu | B € }:5 gi(z.)}

The inclusion follows.

O

Remark. Part 2 of the above lemma was given [Cla, Prop. 2.3.3] for sums

of real locally Lipschitz functions on X, 3°70, f;, using the generalized gradi-

ent in place of the rank-1 generalized Jacobian. Equality is shown to hold [Cla,
Prop 2.3.3 Cor. 3] when each of the functions f; is regular at z,, i.e. the di-

rectional derivative f}(z.;-) exists and coincides with the generalized directional
derivative f7(z.;-). The class of regular locally Lipschitz functions is ‘large’, at

least from the point of view of optimization, since it includes all (finite valued)
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convex functions [Cla, Prop. 2.3.6] and the functions defined as the pointwise max-
ima of suitable (eg. finite [Cla, Prop. 2.3.12]) families of real smooth functions.
For the locally Lipschitz function ¢ : X — Y, we too can define regularity: g¢
is rank-1 regular at z, if, for each A € Y™, the directional derivative (Ag)’(z;-)
exists and coincides with the generalized directional derivative (Ag)°(z.;-). It is
not hard to see that equality holds in part 2 of the lemma above if each of the
functions g; is rank-1 regular at z,. However the class of rank-1 regular functions
does not seem to be very rich, a deficiency which we try to explain as follows. If

g is rank-1 regular and directionally differentiable at z., then it satisfies
—g'(ze;u) = ¢ (T4 —u), Vue€ X,

i.e. for each u € X, the mapping of scalars: t — g(z.+tu) is differentiableat ¢ = 0.
This seems to exclude many ‘reasonable’ nonsmooth functions from consideration
(and also exposes a major difference between the rank-1 regular real functions and

the regular (real) functions).

Next we have a mean value theorem for the rank-1 generalized Jacobian. This

should be compared to [Cla, Prop. 2.6.5] and [Thi82, Prop. 4.3].

Proposition 3.27 (mean value)
Let g be Lipschitz in a neighborhood U of z. € X. For any points z1,z, in U

we have

9(@1) —g(z2) € [w* cleodg(lzr, za])] (21 — 22)
= w-clco [alg(]ml,xg[)(zl — :cg)]

= [9'g(er,22D)] (21— w2),

where 8'g(Je1,2]) E Uncocs 0 g(sz1 + (1 — 5)22).
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Proof Let I'% 9'g(]z1,z2[), and C L [w*- clco I')(z1 — z2). Note from Propo-
sition 3.17.1 that I' is bounded, hence w*- clcoI' is w*-compact. Consequently C

is w-closed, and we have
C C w-cleo[['(z1 — z3)] Cw-clC = C,

i.e. C = w-clco[['(z; — z32)]. Proposition 3.5.2 shows C' = I''(z; — z), so it only
remains to be seen that g(z;) — g(z2) € C(z1 ~ z3).
For each A € Y*, the mean value theorem Proposition 3.9 provides s € (0, 1)

such that
Mg(z1) — g(z2)] € O(Ag)(sz1+ (1 — s)z2)(z1 — 2)
= M\d'g(sz; + (1 — s)zz)(zg — z2),
where equality is given by Proposition 3.17.3. Therefore, for each A

AMg(z1) — g(=z2)] € AC.

Since C is w-closed and convex, the primal version [Sch, Ch. IT §9.1 Cor. 1] of

Theorem 3.3.1 assures us that g(z;) — g(z2) is a member of C.

Now we come to a chain rule for composite vector functions.

Proposition 3.28 Consider functions F : X — IR" and G : R" — Y, where F
is Lipschitz near z, € X and G is Lipschitz near z, = F(z.).
The composition Go F : X — Y is Lipschitz near z,. Also
1. IfY = IR then both G and Go F are real functions with generalized gradients
satisfying
(G o F)(z.) C w*- clco[0G(z,) 0 8" F(z.)]. (3.14)
If 0G(z.) is a singleton, equality holds (and the operation w*-cl co is super-
fluous).
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2. 0Y(G o F)(z.) C [0'G(z) o 'F(z,)]'. If 0"G(2«) 1s a singleton,
equality holds.

Proof F o is clearly Lipschitz near z,.

1. Let u be an arbitrary point of X and

o, ¥ max{CAu|( € 8G(z.), A€ 0'F(z.)}
= max{fu|( € 0G(z.), £ € O(CF)(z«)} by Proposition 3.17.3
= max{((F)°(z.;u) | ¢ € 9G(2)}-

By Theorem 3.3.1, the inclusion (3.14) will hold if
(Go F)°(zs;u) < ay.
So choose z; — z, and t; | 0 be such that

m Go F(z; + tiu) — G o F(x;)
; t

li

= (Go F)*(z.;u),

and consider the quotients (G o F(z; + t;u) — G o F(x;))/t;. By the mean
value theorem Proposition 3.9 there is a point z; on the line segment from

F(z;) to F(z; + tu;) and a generalized subgradient (; € 0G(z;) such that

Go F(z; + tiu) — G o F(z;)
t;

F(:I), -+ t,-u) — F(:L',) .

=( . (3.15)

Since the sequence ((;) is bounded (apply Proposition 3.18) and lies in an
n-dimensional space, we may assume without loss of generality that it con-
verges in norm to some (. In fact { € 0G(z.), because 0G is a closed set

valued mapping (Proposition 3.18) and z; — z..
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Similarly, 7, is the projection of BL(X x Z,Y) onto BL(Z,Y).
Proposition 3.29 Let G and Z be as above.

1. Let G, G(+,2.). Then *Gy(z.) C 021G (Zx, 24).

2. OLG(zx, 2.) = [7:0'G(z., 2.)]
Proof

1. This follows from the fact that

(AG2)° (2w, 25 1) < (AG)° (T, 2454, 0).

2. From Theorem 3.17.3

(AG)°(2x, z4;1,0) = max{\(Au+ B0) | (A, B) € 8'G(z.,2.)}
= max{\u | A € 1,0'G(z.,2)},

i.e. (AG)°(z«, z.; u,0), as a function of of (u, A), is the rank-1 support func-

tion of 7,0'G(z., z.). By definition of 9.G(z., 2.) we must have

0 G(zy, 2.) = [1,0'G(z., 2.)]".

3.7 Extensions

The essential requirement on Y is not really reflexivity, but rather that ¥ be the
dual, under an appropriate polar topology such as the strong topology, of another
convex space. Below we discuss the special case of replacing Y by its strong bidual
Y** i.e. the strong dual of Y*. Using a strong dual also applies in the context of

the generalized Jacobian, as seen by the concluding remarks of [Thi82, §3].
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We outline a possibility when Y, though normed, is not such a dual space (in

particular, Y is not reflexive). Embed each point y of Y in its strong bidual ¥**

s

as § : A+ Ay. Define §: X — Y™ : z — g(z); then § is locally Lipschitz iff g is
locally Lipschitz. If we omit the reflexivity condition on Y and replace Y by Y**,
the latter being a strong dual space, many of our previous results go through. For

example, the rank-1 generalized Jacobian would become

0'5(z.) B {A € L(X,Y™) |V(1,)) € X x Y*, (Au)A < (Ag)°(zu;u)},

and Theorem 3.15.1 would be stated:

If g is Lipschitz near z. € X, then the mapping (u, A) = (A\g)°(z.; 1) is
... the rank-1 support function of the nonempty, w*-compact, rank-1

representer 0'§(z.).

We now consider the possibility of X and Y being separated (Hausdorff ) locally
convex topological vector spaces, not necessarily normable, with ¥ semi-reflexive.
Semi-reflexivity can be dropped as above if we are prepared to consider g as a
mapping from X to the bidual Y** under the natural topology such that ¥ is
isomorphically embedded into Y**. CL(X,Y), the space of continuous linear
mappings from X to Y, may be strictly larger than the corresponding space of
bounded linear mappings. For further details, especially on topology and rank-1
support functionals, see Chapter 2 §3.2.

Let U be a neighborhood in X. The local Lipschitz condition on g generalizes
as follows:

g is Lipschitz in U if for each continuous seminorm ¢ on Y there exists
a continuous seminorm p on X such that

(3.16)
Q[g(v’cl) ~g(zq)] < plzy — Ta], V1,20 € U.
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Equivalently we could replace ¢ (p) by the gauge or Minkowski functional puv (uv)
of a convex neighborhood V of 0 € Y (U of 0 € X) with V = -V (U = -U).

We also need a strong Lipschitz property of ¢ in each direction. In terms of
gauge functions:

g is strongly Lipschitz with respect to U in every direction if for each
direction u € X there exists a nonempty bounded set C' in Y’

(3.17)
pclg(z + tu) — g(z)] < t, Y,z +tue U, 0 <t sufficiently small.

These conditions are sufficient for obtaining the rank-1 generalized Jacobian, but
not always necessary. More subtle conditions specify weak Lipschitz properties,
i.e. Lipschitz properties of Ag depending on A € Y.

Our characterization of rank-1 support functions likewise becomes more com-

plex. Theorem 3.6 is modified as follows.

Let X and Y be separated, locally convex topological vector spaces

with Y semi-reflexive, and P: X xY* — RR.
P is the rank-1 support function of a nonempty, equicontinuous, rank-1
representer [' in L(X,Y) iff

(a) P is positive bihomogeneous;

(b) P is subadditive in uA;

(c) for each equicontinuous A C Y*, there is a neighborhood U of X
such that P is bounded above on U x A; and

(d) for each z € X, there is a strong neighborhood W in Y™ such
that P is bounded above on z x W.

Such a set I' is unique and w*-compact. Furthermore, if Y is a metric

space then the condition (d) is superfluous.
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Theorem 3.15.1 is restated as follows.

Let X and Y be a separated, locally convex topological vector spaces,
with Y semi-reflexive. If ¢ satisfies the Lipschitz conditions (3.16) and
(3.17) in a neighborhood U of z. € X then the function (u,A)
(Ag)°(z4;u) is finite valued and satisfies (a)-(d) above; hence is the
rank-1 support function of the nonempty, w*-closed, equicontinuous,

rank-1 representer 9'g(z.).

The rank-1 generalized Jacobian is a w*-compact set. If Y is also a

metric space, the second Lipschitz condition on g may be omitted.

We sketch the proof, using the original proof of Theorem 3.15.1 as a guide. The
boundedness conditions (c) and (d) of the mapping (u, A) — (Ag)°(z.;u) follow
from the first and second Lipschitz conditions on g, respectively. Positive biho-
mogeneity is clear and, with either (c) or (d), yields finiteness everywhere. We

need subadditivity in uA which is shown by the the original proof because
® (XA9)°(-;us) is still upper semicontinuous ([Leb]);

e Lemma 3.16 and Proposition 3.11.3 still apply (since, in finite dimensions, all

separated, locally convex topologies are equivalent, including norm topolo-

gies).

The proof is concluded by applying the modified Theorem 3.6, above.

To finish we give an example combining both of the main ideas above, namely

omitting (semi-)reflexivity of ¥ and going beyond normed spaces.

Example 3.30 Let f: X — IR be a differentiable function on a metric space X,
and let X* have the strong dual topology. Suppose that the gradient Vf : X — X*
of f is Lipschitz, as in (3.16), on a neighborhood U of z, € X .
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Then the rank-1 generalized Jacobian of V f ezists at each point of U as a

nonempty, convez, equicontinuous hence w*-compact subset of CL(X, X*).

This follows from the above extension of Theorem 3.15.1 for ¥ = X*, in which

the semi-reflexivity requirement on Y can be dropped because Y is a strong dual

space.
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Chapter 4

A Proof of Robinson’s
Homeomorphism Theorem for

Piecewise Linear Maps

4.1 Introduction

We study a certain class of piecewise linear functions from IR™ to IR", called, in
the terminology of [Rob90], normal maps induced by linear mappings and polyhe-
dral convex sets. We will call these pl-normal maps for brevity. Such systems are
important in many optimization and equilibrium problems. They arise directly
from variational inequalities, or equivalently generalized equations, specified by
linear maps and polyhedral convex sets; and indirectly as approximations to such
systems specified by smooth nonlinear functions over polyhedral convex sets. Per-
haps the best known of these is the linear complementarity problem. See [Rob90]
for further details.

Robinson’s homeomorphism theorem [Rob90, Thm. 4.3] characterizes the pl-
normal maps which are homeomorphisms, i.e. gives conditions for unique solvabil-
ity of such systems. Here we provide a new, shorter proof of this result. Some
other work on necessary and sufficient conditions for piecewise linear maps to be

homeomorphic is found in [FK], [RV], [KS], [Schr] and [KL], of which we will find
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[KL] particularly useful.
In this section we will specify our basic notation and quote the characterization
theorem for pl-normal maps. Also some minor results will be listed for later

application. Later sections are
§4.2 Piecewise Linear Homeomorphism Results

§4.3 When C is a Convex Cone, dealing with the special case of pl-normal maps

when the underlying polyhedral convex set C is a cone.
§4.4 The Proof of the Theorem.

Throughout this chapter we will assume that A is a given real n x n matrix,
and C' is a nonempty polyhedral convex set in IR™. The projection mapping which

sends a point of IR™ to its nearest point in C' is denoted 7.

Definition 4.1 The normal map induced by (A,C) is the mapping from IR" to
R™ given by

A def Are + 1 — 7o

where I is the n xn identity matriz. Such normal maps are called pl-normal maps.

Proposition 4.5.1 shows that pl-normal maps are indeed piecewise linear.
As mentioned above, questions about solvability of Ac(z) = y can be cast in

terms of variational inequalities or generalized equations: let y € IR", then

Jz € R", y= Ac(z)
< depeC, Vee(C, 0< {¢c—co,Aco—y)
< 3depeC, y€ Aco+ No(co)

where the normal cone Ng(cp) is defined below.

For clarity we specify the following terminology.
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Definition 4.2 Let F': IR™ — IR".

1. A convez set in IR™ is called polyhedral if it is the convez hull of finitely

many points. An n-cell is a polyhedral convezr set with nonempty interior.

2. F is piecewise linear if there are finitely many n-cells (C;); covering R™ such

that for each i there exist A; € R™", b; € IR™ satisfying

Yy e i, Fly)=Aiy+b

3. Suppose F is piecewise linear, and the matrices A; are as above. The deter-

minants of F' are the determinants of the matrices A;.

F is coherently oriented if its determinants all have the same (nonzero)

sign.

4. F is a Lipschitzian homeomorphism if it is bijective, and both it and its
inverse F~' are Lipschitz mappings. F is a Lipschitzian homeomorphism
from X CR"toY CIRR" if F(X)CY and F|x : X — Y is a Lipschitzian

homeomorphism.

Since a piecewise linear map F' is continuous on each of finitely many sets covering
its domain, each of which is closed, it is easy to see that ' must be continuous.

We can now state Robinson’s characterization theorem.

Theorem 4.3 The piecewise linear mapping Ac is a Lipschitzian homeomor-

phism iff Ac is coherently oriented.

The result will be demonstrated in §4.4. [KL, Thm. 5.3] gives a similar result for
another class of piecewise linear mappings, namely those with branching number
less than or equal to 4. The branching number of a piecewise linear map is the
least natural number b such that every face of the n-cells C; (as in the above

definition) which has codimension two is contained in at most b n-cells. The
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relationship between this class of mappings and the class of pl-normal maps is not

known.

In fact for bijective piecewise linear mappings, (Lipschitz) continuity of the

mapping and its inverse is automatic:

Lemma 4.4 [FK, §2 and Lemma 2] A bijective piecewise linear mapping from

IR™ to IR™ is a Lipschitzian homeomorphism.

Further notation:

o Let § £ K C IR". K is a cone if K C K for each a > 0. The polar cone
of K is
K ¥ {zeR"| (x,k) <0, Vk € K}

e The normal cone to C at c € C is
Ne(z) ¥ {z e R*| (z,c—2) <0, Ve e C}

and the tangent cone to C at cis To(z) & No(z)°.

e A face of C is a set § # F C C such that for 2,2 € C and 0 < ¢t < 1, if
tzy + (1 — t)z2 belongs to F then z1,z; belong to F.

o N¢ is the family of sets F' + Ng, where F' is a face of C and Nr is the set
Ne¢(f) for any relative interior point f of F' (see Proposition 4.5.1 below).

e The critical cone to C at z € IR™ is
Co & To(no(z)) N [z — mo(z)]*.

e The lineality space of C, linC, is the largest subspace L in IR™ such that
L+CcC.
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The results below, though not too hard to prove, give a lot of insight into the

structure of pl-normal maps.

Proposition 4.5 [Rob90, Prop. 2.1, 2.2, 2.3]

1. For each face F' of C, and each point f in the relative interior of F, the

normal cone to C at f is the same (nonempty) set. Denote this by Np.

2. N¢ consists of finitely many n-cells whose union covers IR®. On each such

n-cell F' 4+ Ng where F is face of C, Ac acts as an affine mapping
Ac(f+ ") =Af+J", VfeF j"e€Nr
Part 2 of the proposition is also given as [BM, Thm. 2.3].
Lemma 4.6 For each z € IR™ there exists a neighborhood U of 0 € IR" such that
Ac(z +d) = Ac(z) + Acy(d), VdeU
Proof By [Rob89, Cor. 4.5], there is a neighborhood U of z such that
role + d) = 7(z) + 7oy (d)

for each d in U. The result is obtained by substituting the expression on the right
into the definition of Ac. 0

From Lemma 4.6 we see that A¢ is one-to-one near z iff Ag, is one-to-one
(near 0); and further that the determinants of A¢, are given by the determinants

of Ac near z.
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4.2 Piecewise Linear Homeomorphism Results

We review some standard definitions.

Definition 4.7

1. A topological space Y is simply connected if it is path-connected and any
continuous paths p : [0,1] — Y, ¢ : [0,1] -+ Y with the same endpoints are
homotopic, i.e. there exists a continuous mapping H : [0,1] x [0,1] —» YV

such that H(0,-) = p and H(1,-) = q.

2. Let F: X — Y where X, Y are topological spaces. Let Y CY. F is proper

with respect to Y if for any set C C Y which is compact, F~1(C) def {z €
X | F(z) € C} is compact in X.

It is well known [Arm] that IR*\{0} is simply connected for n > 3. We also note

that, in the second definition, a set in Y is compact in the subspace topology iff
it is compact in Y'; so we will use whichever compactness condition is convenient.

Our first result lays the foundation for this chapter. Its proof is built almost
entirely from [KL], which gives a nice introduction to covering maps (KL, §4]. Re-
call that amap F' : U — Y, where U and Y are sets in IR", is positive homogeneous

if for a > 0 and u € U, au € U implies F'(au) = aF(u).

Theorem 4.8 Let F : IR® — IR™ be a piecewise linear mapping and ¥ C IR™ be

an open, simply connected set such that X o F~Y(Y) is connected. Then F is a

Lipschitzian homeomorphism from X onto Y iff F' is locally one-to-one on X.

Proof Clearly if F maps X homeomorphically to Y then it is locally one-to-one

on X. We set the converse out in stages.
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1. Invariance of Domain: Let zo € X. X is open because Y is open and F
is continuous. By piecewise linearity of F', in a small enough neighborhood
Uof0, 20+ U C X and the mapping F(zo + u) — F(zo) for u € U is
positive homogeneous and one-to-one. This mapping on U has a (unique)
piecewise linear extension Fp : IR™ — Y which is positive homogeneous and
one-to-one. Now apply [KL, Lem. 2.2] and [KL, Thm. 5.1] in succession to
see that Fj is actually an open mapping, hence that F' is a homeomorphism

from U to a neighborhood of F(zy).

2. F'is proper with respect to Y: Let C be compact set in Y, then C is closed
and bounded. So F~!(C) is closed by continuity of F. Also F' is piecewise
linear and locally one-to-one, therefore it can be decomposed into finitely
many one-to-one affine maps. It is easy to see that for such a map F~1(C)

is bounded so F~1(C') is compact as needed.

3. F is a covering: By [KL, §4.2], originally [Bro], F maps X onto Y and X
is the disjoint union of countably many open sets, each of which is mapped

homeomorphically by F' onto Y.

4. F'is a Lipschitzian homeomorphism from X onto Y: We use the well known
result [Arm] that every covering of a locally and simply connected space is
a homeomorphism. Now Lemma 4.4 says that F' is actually a Lipschitzian

homeomorphism from X onto Y.

O

This kind of result can also be derived from more general results. For example

it is a corollary of the next theorem.
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Theorem 4.9

1. Let F : X — Y where X,Y are topological spaces. Let Y be an open set in
Y that is locally and simply path-connected, and define X et F“l(f/). Then
F is a homeomorphism of each path-connected component of X onto Y if F

is a local homeomorphism on X and is proper with respect to Y.

2. (Invariance of Domain) Let F': X — Y be a continuous mapping, where
X and Y are open sets in R™. Then F is a local homeomorphism iff F' is

locally one-to-one.

Proof

1. We only need show that F' restricted to X has the continuation property
for continuous paths in Y. For suppose this holds. We observe that F' (X )
is open in Y, hence in Y, because F is a local homeomorphism on X where
the set X = F~1(Y) is open by continuity of F' and openness of Y. AsY
is also path connected we deduce [Rhei, Thm 2.11] that F(X) = V. The
result is then given by [Rhei, Thm 3.7] applied to the mapping of F' from X
to Y.

For the continuation property, let p : [0,1] — Y be continuous, 0 < t, <1,

and ¢ : [0,t,) — X be continuous path such that

F(q(t)) = p(t), Vte[0,t.).
We must show there is a sequence (t,) T t. such that ¢(¢,) converges to a
point ¢, € X with F(q.) = p(t.).
Since p|0,t.] is a compact set in Y, then ¢[0,%.) C F~'(p[0,¢.]) has compact

closure in X, thus for some sequence (t,) C [0,4),¢n T t., we know there
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exists limq(¢,) = ¢. € X. By continuity of F and p we must have F(q.) =
p(t.), as required.

2. [Dold, Ch. TV.§]

O

[Rhei] provides self contained and even elementary arguments relating to part 1
of Theorem 4.9. Part 2, a variant of the classical Invariance of Domain theorem,

is however much deeper and more difficult.

Corollary 4.10 Let F': IR" — IR" be a piecewise linear mapping. Then F' is a

Lipschitzian homeomorphism iff F' is locally one-to-one.
Proof Take Y = IR™ in Theorem 4.8. 0O

Corollary 4.11 Letn > 3 and F' : IR® — IR"™ be a positive homogeneous piecewise
linear mapping. Then F is a Lipschitzian homeomorphism iff it s locally one-to-

one ezcept perhaps at 0.

Proof Necessity of local injectivity is clear. For sufficiency suppose F' is locally
one-to-one except perhaps at 0. Note that continuity and positive homogeneity

of F yield that F(0) = 0.
Since n > 3, Y ¥ R"\{0} is simply connected (and open).  Let

X ¥ F-1(Y) and note that X = Y. Otherwise some nonzero point z of IR™
is mapped to zero by F hence, by positive homogeneity of F', every neighborhood
of = contains distinct points (eg. on the line segment [0, z]) with the same (zero)
function value — this contradicts the fact that F' is locally one-to-one on IR™\{0}.

Hence F' is locally one-to-one on the connected set X. We apply Theorem 4.8 to
show that F' is a homeomorphism from IR™\{0} onto IR™\{0}.
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In fact F' is one-to-one since no distinct points of IR*\{0} have the same image
under F' and the zero vector is the only point whose image is zero. Corollary 4.10

completes the proof.

4.3 When C is a Convex Cone

Throughout this section assume K is a nonempty polyhedral convex cone in IR".
We say that K is pointed if lin K = {0}. We will use Proposition 4.5 without
reference, especially the facts that Mk consists of n-cells covering IR", and Ay is
a piecewise linear mapping which is affine on each of the n-cells of V.

The eventual proof that Ag is homeomorphic if it is coherently oriented will

rely on an induction argument for n > 3, the hypothesis for which is

Let 1 <m <n-—1, B e R™™, and D be a nonempty
polyhedral convex cone in IR™. If Bp is coherently ori- (4.18)

ented then Bp is a Lipschitzian homeomorphism.
We need to start the induction process.

Lemma 4.12 Ifn is 1 or 2 and Ak is coherently oriented then Ak is a Lips-

chitzian homeomorphism.

Proof The case n=1 is trivial. For n = 2 we appeal to the argument at the be-
ginning of [KL, proof of Thm. 5.3] which shows that for a positive homogeneous
piecewise linear map F' : IR* — IR? which has no more than 4 affine pieces, F' is a
homeomorphism iff it is proper and coherently oriented. Of course if F' is coher-
ently oriented it is proper too (eg. see proof of Theorem 4.8), so the requirement
that F' be proper is superfluous. Since for n = 2 the positive homogeneous map
Ak has no more than 4 affine pieces — Mg contains 1 n-cell if K is 0 or IR, 2 if

K is a ray or a halfspace, and 4 otherwise — we are done.




Proposition 4.13 Suppose (4.18) holds. If Ak is coherently oriented and either

K or K° is not pointed then Ay is one-to-one.

Proof Suppose that K is not pointed, so the dimension of L f 1in K is at least
1. The result is given by a straightforward argument in the proof of [Rob90,
Thm. 4.3] (with K replacing C). [Rob90, Prop. 4.1] is used to factor out the
lineality space of K, then the induction hypothesis (4.18) to find that the reduced
mapping (on a space of lower dimension) is one-to-one. From this it follows that

Ak 1s one-to-one as needed.

Now suppose K° is not pointed and recall that K + Ng is an n-cell of Ng.
Let the restriction of Ax to K + N be represented by A € IR™*™. As detA # 0

we can define

PE (A7)

Since 7 = I — wgo we have

P = Alrgo+ I —7go =AY —ng)+ 7K

where the last equality follows because Argx = Amg. As detA™! # 0 and the
determinants of A all have the same sign, we see that the determinants of P all
have the same sign. By the above P must be one-to-one on IR™, hence Ax = AP

is one-to-one also.
0

Proposition 4.14 If Ak is coherently oriented then it is a Lipschitzian homeo-

morphism.



126

Proof The result is valid for dimension n = 1,2 by Lemma 4.12. Now suppose it
is valid for dimension n — 1, i.e. (4.18) holds, where n > 3. We will show it holds
for dimension n, whence by induction it holds for all natural numbers n.

Suppose 0 # z € IR™ and recall the critical cone to K at z,

K, Tx(rx(z)) N [z — 7 (z)]*

We will show that Ay, is one-to-one hence, by Lemma 4.6, Ag is locally one-
to-one at z. If ¢ ¢ K° then 7x(z) # 0 and the (nontrivial) subspace spanned
by mx(z) is contained in K,. So K, is not pointed. By Proposition 4.13 Ak,
is one-to-one, hence Ag is one-to-one near z. On the other hand if z € K°
then [z — 7x(z)] = 2 # 0, so (K.)° contains the line spanned by z. Applying
Proposition 4.13 again, we can see that Ak is one-to-one near z.

Therefore the only point at which Ag is perhaps not locally one-to-one is 0.

Corollary 4.11 completes the proof.

4.4 The Proof of the Theorem

We restate Theorem 4.3:
Theorem The piecewise linear map Ac is a homeomorphism iff it is coherently

oriented.

Proof To start with, recall that A¢ is a piecewise linear mapping (Proposi-
tion 4.5.2).

(if) This is not hard to show and in fact holds for general piecewise linear
maps [KL, Lemma 2.2].

(only if) Given Corollary 4.10 it is sufficient to show that A¢ is locally one-

to-one. So let £ € IR™ and consider the critical cone to C at z:

K% To(me(z)) N[z — mo(z)]*t.
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First, from Lemma 4.6, Ag inherits coherent orientation from Ac. Then, by
Proposition 4.14, Ak is one-to-one. Using Lemma 4.6 again says Ac¢ is one-to-one

near z and we are done.
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