CENTER FOR
PARALLEL OPTIMIZATION

A STRUCTURED INTERIOR POINT METHOD =
by

Gary L. Schultz and Robert R. Meyer

Computer Sciences Technical Report #934

May 1990

A Structured Interior Point Method

Gary L. Schultz Robert R. Meyer

Abstract

We develop a structured interior point method for block angular
optimization and describe the convergence properties of the method.
Excellent computational results are presented for a class of large-scale
linear programming models. These models are multicommodity flow
problems that arise from an Air Force MAC application and generate
problems as large as 100,000 rows and 300,000 columns.

This work was supported in part by NSF grant CCR-8709952 and AFOSR
grant 89-0410.

1 Block Angular Optimization

A block angular optimization problem is defined as the following:

Given a smooth, convex function ¢ : RY — IR,
find a minimizer z* of ¢ subject to

Al — bl
A |) = | b
g L2 A (1)
I Ax l = bk
TK
< d

| D |

and bounds £ < z < u.

The dimension of the kth block Ay is M x Ny and we define M := 5", My and
N :=3; Ni. The dimension of D is J x N. Note that linear multicommodity
problems are an important subclass of this class of problems.

We assume that solving a set of K linear subproblems:

minimize 6Tk :
subject to ~Ak:ck = bli fork=1,...,K (2)
b Sz < U

is easy relative to solving the entire original problem (1). This is quite
reasonable for most applications, since the problems (2) are independent
subproblems, and may, therefore, be solved in parallel. This is particularly
appropriate in a MIMD computational environment. Secondly, some types
of structure in the Ay may be exploited which could not be directly used
if (1) were solved with the entire set of constraints. An example of this is
the multicommodity flow problem, where each Ay is a node-arc-incidence
matrix. In this case (2) may be solved with a special purpose network code.
And thirdly, we note that the difficulty of solving most linear programs (in
some sense the easiest of optimization problems) in practice increases as a
quadratic or cubic function with the size of the problem, so that it is much
more efficient to solve a set of small problems than a single aggregate problem.

2 The Decomposition Scheme

In this section we describe a scheme that allows us to deal with the block
constraints explicitly and the coupling constraints implicitly via a barrier
function. Define the set of feasible points for the block constraints by

B:={z|Az = band { < z < u},
and the set of feasible points for the coupling constraints by
C :={z|Dz < d}.
The algorithm begins by finding z° as the solution of a relaxed problem

minimize &z subject to z € B. (3)

2

Here & could approximate the gradient of the original cost function V(%)
at some point #, but we require only that z° € B N dome. The case where
domec # IRM will not be considered further in this paper, as it produces
technical difficulties without being enlightening. In subsequent iterations,
the algorithm solves additional subproblems with block constraints, and then
does a smaller (typically K-dimensional) search to coordinate the solutions of
the subproblems, forming a new point in B. During this process information
about C is introduced into the objective function by using a barrier function.

We shall introduce the barrier function, discuss its fundamental properties
and show how to obtain feasible points in section 2.1. Section 2.2 will show
how to generate a sequence of feasible points that approximates the solution.
Section 2.3 then summarizes the decomposition method.

2.1 Shifting Barriers to Obtain Feasibility

Define the shifted logarithmic barrier function
p:]RNXIROOX]R'J'—’]RU—{-QQ
by
J
p(ﬂ),’]’,@) = _T;ln(gJ—_D]x) 1f0>D$
J...
+00 otherwise
and let .
o 8) e) + 2,70)

denote the original objective function augmented by the shifted logarithmic
barrier function. Also define the corresponding barrier problem as

P(r,0) : rniniwmizef(m,T, 6) subject to z € B,

i.e., P(r,0) represents the optimization problem with parameters 7 > 0 and
9 € R’. p was defined so that p(-,7,8) is a barrier function modeling the
constraints Dz < 0. Thus, for 8 = d, we have dom p(-,7,d) = intC. Allowing
0 # d has the property of “shifting” the barrier, hence the name.

Once an initial point z° € B has been found by solving the relaxed
problem (3), the parameters 6' and 7' are chosen so that 1 > 0 and
9! > Dz° This will have the effect of making z° € B an interior point

3

of dom f(-,7!,8'). We then compute z' by approximately minimizing the
barrier problem P(71,6"). In general, if Dz* < d, we have produced a feasi-
ble point. If not, then we choose 6*** as described below while maintaining
71 = 7 then set ¢ « i + 1 and do the process again. We will prove that if
a point z € BNintC exists, then such a point is generated in a finite number
of iterations, under appropriate assumptions given below.

Suppose first that our § are chosen so that

Dz' < 071 < ¢ and 0'>d (4)

This implies that 6% := lim;_, #' is well defined. We make one more as-
sumption on our choice of §:

cither 0°=d or 3jsuch that liminf (' — D;jz') =0. (5)

In order to develop expressions for derivatives of p needed in the conver-
gence proof, let

0) : . . 6
q(CL’,T,).=<01WD1£E7 ,OJ—DJHI) ()
and
r
— 0 0
(01 — D1$)2
0 T 0
Q(z,7,0) = (6; — Daz)?
’ ;
0 0 (0] — DJ:ZI)2

Provided Dz < 0, we have

Vep(z,T,0) q(z,7,0)D (7)
Veep(z,7,0) = D'Q(z,7,0)D (8)
Vop(z,7,0) = -¢(z,7,0), and (9)
Vegp(z,7,0) = Q(z,7,0). (10)

A function ¢ is said to be essentially smooth (see section 26 of Rockafel-

lar [10]) if dom ¢ # @, ¢ is differentiable on dom ¢, and lim |¢(z*)| = +oo for

4

all sequences {z'} C dom ¢ converging to a point T € bdy dom ¢. We shall
denote the restriction of a mapping ¢ to a set S by ¢|s and if S is a subspace
of T, the quotient space of S in T'is denoted by T/S. Where y is a point
and S is a set, we use y + S to denote {y + s|s € S}.

THEOREM 1. Let ¢ and @ denote the mappings
z 5 p(z,7,6) and 0 S p(z,,0),

respectively, where 7 > 0. Let y be any fixed vector in IRY and let S :=
y + kerD and 57 =y + (RN /ker D), so that S and 5% are translated
subspaces. Then the following are true:

(i) dom¢ = {z|Dz < 6}
(ii) ¢ is essentially smooth
(iii) ¢ is convex
(iv) @|s is constant
(v) ¢|s+ is strictly convex

(vi) domy = {f|Dz < 6}
(vii) 4 is essentially smooth
(viii) % is antitone

(ix) 1 is strictly convex

Proof: Clearly (i) and (vi) hold. Then (ii) and (vii) hold from the
definition. Since g(z,7,0) > 0 whenever Dz < 6§ and 7 > 0, (9) shows (viii)
to be true. Since Q(z,T,0) is positive definite whenever Dz < # and 7 > 0
we see from (8) and (10) that (iii) and (ix) are true. Notice that p is constant
on S =y + ker D, so that (iv) holds, and we have shown all but (v)

For z € S* N {z|Dz < 0} there is a 1-to-1 correspondence with {s|s < 0}
given by s = Dz. (The reader may prove this by showing that the linear
mapping z + Dz is a bijection from S+ to range D.) Therefore, it suffices
to show that the mapping

s —1 3 _In(0; — s;)
J

is strictly convex for s < 6. This is true because its Hessian is given by
Q(z,,0), which is positive definite. |

We let X (7,6) C B denote the set of minimizers of P(7,0) as a function of
7> 0and 0, Alsolet f*(r,0) := f(z,7,0) forz € X (r,0) be the optimal value
function. In the case where dom f(-,7,0) N B = @, we define X(7,8) = O
and f*(r,0) = +oo. The following shows that X is nonempty in the other
case.

THEOREM 2. Suppose 7 > 0 and 6 € IR’ are fixed. If there is some point
z € dom f(-,7,8) N B, then X(1,0) # @ and f*(1,0) < +oo0.

Proof: Since B is compact and the level set {z|f(z,7,0) < f(z,7,0)}
is closed, the intersection of these two sets is compact. Since f (-,7,0) is a
continuous function, it must attain its minimum on this compact intersection.
Clearly this minimum f*(7,8) is < +oo. I

The next result is quite easy to prove. It is stated as a lemma so that we
may refer to it later.

LEMMA 3. Suppose T > 0 and the sequences {z'} C RN and {6} C R’
satisfy 9;- > D;z‘ foreachi =0,1,...and j =1,...,J. Then the following
are equivalent:

(i) p(a',7,0") is bounded for all i = 0,1,...
(ii) |lg(z*,7,8%)| is bounded for all ¢ = 0,1,...
(iii) 0% — Dz’ is bounded away from 0

forall: =0,1,...and j=1,...,J

Proof: One may see from the definitions of p and ¢ that (iii) is equivalent

with both (i) and (ii). W

THEOREM 4. Suppose c(-) is bounded from below on B. Let §*+! be chosen
to satisfy (4) and (5). Let z* € B be computed so that

flat,,6) < f*(r,0°) + B (11)

for a constant 8 > 0. If a point z € B NintC exists, such a point will be
found in a finite number of steps. On the other hand, if no such z exists,
then f(z*,7,0") — +o0.

(Note that by using a procedure for convex programming that generates
lower bounds by solving linear programs, we may actually compute each '
in a finite number of steps.)

Proof: Assume such a z exists. Then

(1,0 < f(z,7,0) < f(z,7,d) < +oo Vi

where the second inequality follows from antitonicity in 6 (part (viii) of theo-
rem 1). Therefore, for all 4, f(z*, 7, 6") is bounded above by B+ f(z,7,d). By

6

lemma 3 and because ¢(z') is bounded from below, 8% — D;zt > v > 0Vi,j.
Therefore, for some finite i, d; — D;z* > 7/2 > 0 Vj, and a point with
Dzt < d has been found in a finite number of iterations. If no such z exists,
then (4) and (5) imply that 6% — D;z* — 0 for at least one j € {1,...,J}.
Lemma 3 then shows that f(ac 7,0) — +o0o.

Assume from now on that the z' are computed so that Dz’ < 6°. We
will now give a particular method for computing 6. This is a very simple
scheme and more complicated ones may be easily developed. After computing

z% € B, set
dj if Djxo < dj
9} — (12)
.Dj.’L‘O +60 if Dj.’lto > dj

where © > 0 is a constant. In general, after computing zt, set

. d]‘ if Dj.?)i < dj
0;7“ — (13)

)\()Dj:l)i -+ (l -)\9)9; if Dj(L‘i _>_ dj

where As € (0,1) is a constant.

THEOREM 5. Suppose the z* are computed so that Dz* < ¢*. If the 0 are
computed by the rules (12) and (13), then (4) and (5) are satisfled.

Proof: We show the result for each component j. If D;z* > d;, then
9itt = N\ Djz* + (1 —)\9)0’ Condition (4) follows from this since Djz* < 0:
2nd Ao € (0,1). If Djz* < dJ, then ¢} = d; for all? > 7 and again condltlon (4)
follows. If, for some finite 2, D;z* < dJ, then condition (5) follows. In the
other case, (D;z' > d; Vi) the 1imit

6 := lim ¢
1=+ 00

is well defined since the sequence is monotonic and bounded. Then (13)
shows that for any s3° € acc{D;z'} we have

0;0 =)\93(;-0 + (1 - /\9)9100
Therefore s&° = 65°, which shows that (5) holds. |

7

2.2 e-Optimal Solutions

In this section we assume that § = d and that we have found some point
in BNintC. We develop a method that converges to a feasible point whose
objective value is within a pre-specified optimality tolerance . As before,
we let X(7,d) denote the set of minimizers of P(7,d).

The following result (see Fiacco and McCormick [3] or page 341 of Mc-
Cormick [9] for related results) gives us a useful bound on the error of
z € X(r,d) as compared with an optimal solution of (1).

THEOREM 6. Suppose 7 > 0, z € X(7,d), and =" is an optimal solution of
the original problem (1). Then

c(z) —e < e(z™) < c(z),
for ¢ = 7J, where J is the number of rows of D.

Proof: The second inequality follows from the feasibility of z and the
optimality of z*. The KKT conditions show that solving the barrier problem
P(7,d) exactly gives

r = V.f(z,7,d)+ pA,

and complementary slackness
max{rk;”(mkyn - Ek'n), Tk,n((l:k,n - uk,n)} =0 \Vlk, n.

(The vector r is so named because it is the “reduced cost” vector.) Define
q" € R7 as in (6). We note that (z,p,q,r) is feasible for the Wolfe dual of
the original problem (1). The Wolfe dual may be stated

maximize c(z)+ p(Az —b) +¢(Dz —d) + ry(z —£) +r_(u—z)

TyPyqaT
subject to

Ve(z)+pA+qD =7
q20
max{ren(Tkn = k) Thn(Thn — Ukin)} = 0 Vk, 1.
It is well known that the objective value of the Wolfe dual is a lower bound

on ¢(z*). The feasibility of z and the complementarity of z and r show that
the objective function of the Wolfe dual is equal to
J

c(z) + ¢(Dz — d) = c(z) + Z I-(le-)—’f..l%ﬁl!_). =c(z)—71J

1=1 3 Jx

8

which completes the proof. 1
Instead of letting 7* | 0 we use a sequence {r'} generated by the recur-

rence

i+1

e max{/\TTi, Tinf}

where 7%, Tin¢ > 0 and A, € [0,1). Thus, doing an infinite number of steps
gives a sequence with acc{z'} C X(7ins, d). Using the theorem, we may choose
Tint @ priori so that ¢(z) differs from ¢(z*) by not more that a pre-specified
tolerance for € X(Tins, d). Since 7° = 7ine for ¢ sufficiently large, we give
a method that is able to generate a sequence of points whose accumulation
points are in X (Tins,d). Thus, for large 7, we need not worry about staying
close to the solution set X (7,d), which is a generalization of the central path
in interior point methods (in fact it reduces to the central path if I) is square
and invertible). Instead, we merely choose a parameter . that gives good
empirical performance. Note that the sequence 7 = Tine V2 will suffice in
theory. In practice we begin with 7! 3> 7is¢ because P(, d) is ill conditioned
for 7 2 0. This path following idea may be viewed as a heuristic method for
reducing the problems caused by ill-conditioning.

2.3 The Three Phase Method

The method we have been developing fits naturally into a three phase frame-
work. We assume that we are given the objective function ¢ and the con-
straint sets B and C. Also we are given constants ©, Ag, A;, Tinr, and Tl as
introduced above.

The algorithm we use is described in figure 1. Note that both the FEASI-
BILITY PHASE and the REFINE PHASE contain the procedure

Cenerate ' as an approzimate solution of P(7+,6%).

We shall now discuss how this is implemented.

Note that the sequences {0’} and {7'} generated by the REFINE PHASE
of this method have the properties that " = d and 7t = Tine for all 7 suf-
ficiently large. Thus, for the REFINE PHASE, we use only one step of some
iterative method for convex programming to generate z'*! from z. The
resulting sequence {z*'} will then have acc{z'} C X(ins,d). For the FEASI-
BILITY PHASE, one step may suffice, but the hypotheses of theorem 4 (finite
feasibility) would not necessarily hold.

9

RELAXED PHASE
10
Compute z° as the solution of the “relaxed” problem (3)
If we determine that B = @
Then terminate with the message
“‘the block constraints are infeasible’’
Set 6* as in (12)
If z° € intC go to the REFINE PHASE
Otherwise go to the FEASIBILITY PHASE
FEASIBILITY PHASE
t 1+ 1
Generate ' as an approzimate solution of P(7?,6°)
Set ¢! as in (13)
S R
If z' € BNintC
Then go to the REFINE PHASE
Otherwise repeat the FEASIBILITY PHASE
REFINE PHASE :
—1+1
Generate z' as an approzimate solution of P (7%, 6*)
Set 9! — d
71— max{A, T, Tins}
Repeat the REFINE PHASE

Figure 1: The three phase method.

10

3 Solving Barrier Problems

We assume in this section that 7 > 0 and 6 are given, and that at the current
iteration i we are given &' € B such that f(z!,7,0) is finite. Our method
consists of computing search directions separately for each block and then
coordinating them. The method we use is a generalization of the Frank-Wolfe
method that uses a trust region and takes advantage of the block structure of
the constraints by using a multi-dimensional search rather than a line search.

3.1 Search Directions

Suppose we are given a current point z* € B. Linearizing P(7,0) and adding
a trust region R(z') gives the following problem:

mini?/mizevzf(wi,T,B)y subject to y € BN R(z) (14)

which is of the form (2) with & = V,f(z%,7,0) and R(z') = {yf <y <
#}. Let y' denote the solution of (14) and define byt = y' — z'. Recall
our assumption that (14) is easy to solve and may be solved in parallel by
decomposing into K independent subproblems.

The purpose of the trust region is to take into account the poles of the
barrier function. We use the following choice for the trust region E(-). Recall
that the objective function is

f(z' + 6y,7,0) = c(z' + by) — TZln (9]- — D;(z* + 5y))

from which we immediately see that
o'+ 6y € domf <= (Vj) D;by < 8; — D;z’.
Suppose we were to let only one component (the (k,n) component, say) of éy

be nonzero. Then z' + 8y € dom f only if D;k.6yxn < 0; — D;z*. Therefore,
we use the “one-sided” trust region R defined by

R(z') := {:c = z' + 6y|D; k n6Yk,» < max {5,7(0]- - Dj.'l:i)} V7, k,n}
where 6 > 0 and ~ € (0, 1] are constants.

11

Figure 2: A typical trust region (B is represented by the solid polygon).

More generally, the trust region property that we require is the following:

ASSUMPTION 7. Let z € B and the sequence {z'} C B, and define
o = Orélféci{alm + a(z — z') € R(z")}.

Then lim inf;_,e o > 0.

If this assumption is satisfied, there is always some room to move in any
direction from &' without being constrained by the trust region. Assump-
tion 7 is clearly true for our choice of R above because § > 0 and B is
bounded.

3.2 Coordination

The Frank-Wolfe method would use a one-dimensional search along the ray
§y' from &' to y*. If we search over a larger region we may expect to do better.
The block structure of the original problem makes a multi-dimensional search
quite natural. More precisely, we will show that the block structure of A
means that we may solve a i dimensional optimization problem with simple
bounds in order to “coordinate” the subproblem solutions. In this section
F(-) and V£(-) are used in place of f(:,7,0) and V.f(-,7,0) since 7 and ¢

are fixed.

12

Let V' denote the N x K matrix of block search directions:

gy 0 --- 0
. 0 by .-+ O
v Y2 .

0 0 . 0

0 0 ... ébyk

so that the kth column of Y* corresponds to the kth block of the update éy".
The coordination problem that we consider generates w' as an approximate
solution of

miniﬂmizef(zi + Yiw) subject to £ < z* + Y'w < u. (15)

We will then choose zit! = zi+ Yiw' for our next iterate. Note that z**! € B
if 2 € B because Y is in the null-space of the equations defining B. Also, it
is easy to enforce z*! € dom f since z* € dom f. Our approximate solutions
of (15) will satisfy

f@*) — fa) S i _min f(@) - f() (16)
where p € (0,1) and where the minimization is taken over the line segment
from z* to y'. (We consider below computationally tractable methods for
guaranteeing satisfaction of (16) in a finite number of iterations.)

We now show that this method converges to solutions of P(7,8) where 7
and 0 are fixed. From (16) we may deduce that the algorithm is monotonic,
ie. f(z'*!) < f(z*). Consider a subsequence {z°®} C {2} that has () —
7 and y°@ — . This subsequence must exist because B is compact. Also
define 8y := § — % so that 6y’() — §y. Pick any A € (0,1]. Then

F@® 4 26°9) - fa) 2

[zérayg?(%vya(i)] flz) — f(mo(i))]
1 .
> ;[f(m 941) — f(a)]

Since f(-) is bounded from below on B, taking the limit as ¢ — oo gives
f(& + A6y) — f(z) > 0, and taking the limit of this as A | 0 gives

0 < Vf(@)by = VI(z) (5 - 7). (17)

13

Suppose now that z € B is an arbitrary point. Since R satisfies assump-
tion 7,

a = 22 {alxi +a(z -z € R(xi)}

has liminfo* > 0. Then
Vf(z)el(y’ - o) < Vf(e)a(z - o)

by the definition of y*. By taking the limit, and using (17) and the convexity
of f
0 < VF(@)(§—&) < VF(E)(—2) < f(z) - f2).

This shows that Z is a global minimizer of f over B and hence z € X(7,0).

Except in special cases, the minimum in condition (16) may not be com-
puted in a finite number of steps. We therefore substitute a computable
lower bound.

Let ¢(w) = f(z' + Y'w), so that the coordinator problem (15) may be
stated

miniﬂmizeqﬁ(w) subject tow < w < W (18)

for bounds w and W that correspond to the bounds of (15). (Note that w <0
and W > 1.) Since ¢ is convex,

$() + V()(w — b) < d(w)

for all w. Restricting the linearization on the left to w € ray[0,1] (which
corresponds to z € ray[z’,y'] in the original space) we will obtain a lower
bound on the minimum in (16). Clearly this linearization restricted to a line
segment will achieve its minimum at an endpoint. Therefore, defining

() 1= $() + min {V(®)(0 — ©), V() (1 —)},
we have shown

) < 1 = i .
(@) < min | plw) = min f(z)

Thus, instead of satisfying (16) directly, we instead require
B(w') — 9(0) < p [(w') - 4(0)] (19)

14

in order to accept w*. A w' satisfying (19) may, therefore, be computed in a
finite number of iterations for i < 1. Then setting z*! — z* + Yiw' implies
that (16) is satisfied.

In practice, we have found that it is better to choose w' to satisfy both (19)
and

“reduced gradient of gb(wi)ll < ' ||reduced gradient of $(0)]|

(in some norm ||-||) for some p' € (0,1). That is, we accept w' as a solution
to the coordinator problem if it has sufficient decrease to ensure convergence
(ie. (19) is satisfied) and the reduced gradient is sufficiently reduced in norm.

The coordinator problem may be enriched by utilizing one or more sets
of “prior” updates as well as the “current” updates Y. Since all updates
lie in the null space of the equality constraints of B, we need only take into
account the bounds £ < ¢ < u. We shall discuss the case where our prior
updates are merely the set of updates Y*~! from the previous iteration. Let
v be the vector of weights for the prior update Y*~!, analogous to the role of
w for the current update Y?. The coordination constraints are then

(< +Y" w4+ Yw<y, (20)

which no longer reduce to simple bounds on v and w. However, we may
easily compute sets of separate bounds on v and w that form an “inner
approximation” of (20) in the sense that any (v,w) feasible for the bounds
must also be feasible for (20). To do this, choose a constant { € (0,1) and
constrain w by fw < w < €w, where w and W are obtained exactly as above.
Having set these constraints, it is easy to compute v and ¥ such that

fw<w<twandv<v <D = (v, w) satisfies (20).

The convergence proof is extended in a straightforward manner to cover gen-
eralized coordination procedures of this type. This approach is related to the
PARTAN method of combining update information (see Himmelblau [6] and
Lee et al [8]), and also to restricted simplicial decomposition (see Lawphong-
panich and Hearn [7]).

4 Numerical Results for a Large-Scale Application

This section describes our test problems and documents the success we have
had using our decomposition algorithm. Section 4.1 describes our code and

15

the key parameters used. In section 4.2 we describe the problems that mo-
tivated this decomposition algorithm. Finally, section 4.3 shows the timing
results on the large-scale problems.

4.1 Description of the Code and Parameters

We ran our code on two machines: a DECstation 3100 running the ULTRIX
operating system, and a 20 processor Sequent Symmetry S81 running the
DYNIX operating system. Most of the code was written in C, with the
portion used to solve the network subproblems being written in FORTRAN
(see further discussion below). The C programming language was chosen
primarily because of its ability to work properly with modern data structures.
The code was compiled with the default code optimization (-01). Double
precision was used for all calculations.
The following parameter values were used in our runs:

o We ran the method for 50 iterations in all cases. The answers we
obtained matched known good approximations of optimal values to
between 5 and 7 digits. Moreover, improvement in ¢' z* tends to become
small after 50 iterations in our implementation.

e \g =09
We found that if this parameter is smaller, the method does not find
feasible solutions as quickly. Larger values of Ay don’t seem to cause
numerical problems for our test problems.

o A\, =05
Smaller values tend to introduce the problems of ill-conditioning ear-
lier, so that convergence is hampered. Larger values require too many
iterations until 7* is sufficiently small.

0

o 7° =10
We normalize the cost coefficients so that |||, = 1, making 7° ten
times the maximum absolute value of the cost coeflicients.

® £ = Tian =10"8
(See theorem 6.) Eight places of accuracy in the objective function is a
fairly ambitious goal for problems as large as our test problems. This
was not always achieved in 50 iterations.

16

The code takes full advantage of the network structure of the Ay, since
solving multicommodity networks was the initial goal of this work. The code
also takes advantage of the special structure of the matrix D. Typically
for multicommodity networks, a constraint D;z < d; represents a physical
situation where the flow of a given “topological arc” (an arc appearing at
most once in each commodity) can only handle a certain capacity of flow. In
this case Dj4n. € {0,1}, and for each j and k, there is at most one & such
that Dz = 1. Our code has a J x K array of pointers to this 7 (it stores
0 if no such # exists). This saves space because J and K are usually much
smaller than N.

To solve the network subproblems we use a modified version of RNET,
written in FORTRAN by Grigoriadis and Hsu [5]. RNET is an implementa-
tion of the network simplex method. This code was modified by the authors
to work in double precision rather than integer arithmetic, and to use pa-
rameters to specify input data. We begin RNET with an all artificial basis
at each iteration. The parameters given to RNET are mostly determined by
the suggestions in Grigoriadis and Hsu [5], except for the following:

BT (number of bits in one integer word)
This was removed because we deal with floating point data.

MXIT == 15M} (maximum number of iterations)
Some of the larger problems do a huge number of pivots toward the end

of the computation on some commodities. This indicates that some of
these networks are very difficult to solve.

For the trust region in subsection 3.1 we set v = 0.7 and 6 =10"8. We
found that v € [0.5,0.9] worked reasonably well. We also found, somewhat
to our surprise, that using smaller 6 seemed to make the algorithm perform
better. Using a smaller 6 means that we let the current point get closer to
the boundary of the trust region, possibly at the expense of being able to
move less within the null space of D. We found that 6 = 0 (in which case
our convergence proof fails) worked just fine in practice.

The coordinator algorithm uses an active set method in conjunction with
the steepest descent direction. We stop when both the function and the norm
of the projected gradient have been sufficiently decreased, as is explained at
the end of subsection 3.2. The code uses p = 0.4 and g’ = 0.03. If we stop
when the function values have been sufficiently decreased, but ignore the
projected gradient, then the method converges in theory, but in practice it

17

seems somewhat problematic. Using a larger p’ would allow the algorithm to
terminate, when in fact the coordinator could probably find a significantly
better point at low cost. We run the coordinator algorithm for at most 15
iterations within each major iteration.

As part of this coordinator method we need to use a one-dimensional line
search method. The one-dimensional line search algorithm we used is (2.6.4)
in Fletcher [4]. Special structure of the objective function allows us to use
Newton’s method in place of the usual minimization of a quadratic or cubic
interpolant. Parameters were set to attain a line search of medium accuracy.

4.2 Patient Distribution System Problems

The test problems we used were obtained from the CINCMAC analysis
group of the Military Airlift Command (MAC) at Scott Air Force Base
(Chmielewski [2]). The model is called the Patient Distribution System
(PDS) and is a logistics model designed to help make decisions about how
well MAC can evacuate patients from Europe. The PDS problems are a class
of problems; PDS-D denoting the problem that models a scenario lasting D
days. PDS-D well-defined for integers D € [1,85]. As D becomes larger,
the size of PDS-D grows quite large, as may be seen in table 1. The PDS
problems are linear multicommodity network flow problems, which are block
angular linear programs where each Ay is a node-arc-incidence matrix. (See
figure 3.)

These PDS problems have received considerable attention lately, partly
because they are a real-world application, and partly because they seem to be
quite challenging. For example, in Carolan et al [1] the KORBX system was
used at Scott AFB to solve numerous challenging problems, including some
of the smaller PDS problems. It took the KORBX system (using default
parameters) between 3.3 hours and 4.5 hours to solve PDS-10. The KORBX
system had a very difficult time, however, solving PDS-20. In fact, only one
out of the four KORBX codes finished within 24 hours on PDS-20.

4.3 Results of Numerical Experiments

We shall now present performance results of our codes on a subset of the
PDS problems. We were interested in two things when beginning these tests.
First we wanted to develop algorithms that compute approximate solutions

18

SN

PN
NN
SINN
TSN
ST I
TN
NN N O N N NN N NN N

Figure 3: Sparsity structure of the constraint matrix for PDS-01.

Problem max size of block coupling | dimension of A
Name max; M (k) | max; N(k) J M | N
PDS-01 126 339 87 1,386 3,729
PDS-02 252 685 181 2,772 7,535
PDS-03 390 1117 303 4,290 | 12,287
PDS-05 686 2,149 553 7,546 | 23,639
PDS-06 835 2,605 696 9,185 | 28,655
PDS-10 1,399 4,433 1,169 15,389 | 48,763
PDS-20 2,857 10,116 2,447 31,427 | 105,728
PDS-30 4,223 15,126 3,491 46,453 | 154,998
PDS-40 5,652 20,698 4,672 | 62,172 | 212,859
PDS-50 7,031 26,034 5,719 77,341 | 270,095
PDS-60 8,423 31,474 6,778 | 92,653 | 329,643
PDS-70 9,750 36,262 7,694 | 107,250 | 382,311

Table 1: Sizes of some of the PDS problems. We also remind the reader that
each PDS problem has eleven blocks (i.e. K =11).

19

to multicommodity network flow problems quickly. Second we want our
method to compute accurate solutions. Our method does not verify that
the solution is accurate. We compute duals on the network constraints and
the dual estimates ¢ (defined in (6)), and these will give lower bounds much
the same as in the proof of theorem 6. When we have checked these lower
bounds, however, they are not even as good as the lower bound given by
solving the relaxed problem (3).

The tables that follow contain timings and optimal objective function
values for the PDS problems we solved. The column of the table labeled
“relaxed” contains statistics for computing the solution to (3). The column
labeled “feasible” contains statistics for computing a feasible point. The col-
umn labeled “final” contains statistics for computing the final approximation
of the optimal solution. The row of the table labeled “iter” is the number
of iterations the method has taken to attain a given phase. The row la-
beled “obj x10-19” is the value of 107*%Tz* where z* is the current point
and c is the original cost vector (||c||,, is not necessarily 1). A row labeled
“DECstation” shows the performance on the DECstation 3100 . A row la-
beled “Sequent(p)” shows the performance on the Sequent Symmetry using
p processors. All times reported are wall clock time.

20

|

PDS-01

F phase H relaxed feasible | final |
total iterations 0 11 50
objective x107'0 || 2.9033 2.9096 2.9084
DECstation || 1.4sec 18sec lmin 30sec
Sequent(11) || 1.1sec 12sec lmin 4sec
|| PDS-02 I
l phase | relaxed | feasible I final J
total iterations 0 12 50
objective x1071 || 2.8758 2.8876 2.8858
DECstation || 2.9sec 42sec 3min 17sec
Sequent(11) || 1.5sec 22sec 2min 9sec
|| PDS.03]
[phase | relaxed | feasible | final]
total iterations 0 13 50
objective x10710 || 2.8442 2.8622 2.8597
DECstation || 4.7sec | lmin 20sec | 5min 47sec
Sequent(11) | 2sec 39sec 3min 38sec
u PDS.05 ||
r phase H relaxed feasible l final I
total iterations 0 16 50
objective x1071° || 2.7824 2.8125 2.8054
DECstation 15sec | 3min l4sec | 11lmin 28sec
Sequent(11) || 4.2sec | lmin 33sec | 6min 43sec
I PDS-06 I
| phase || relaxed | feasible | final |
total iterations 0 16 50
objective x1071° | 2.7526 2.7846 2.7761
DECstation || 17sec | 4min 17sec | 15min 4sec
Sequent(11) | 4.6sec | lmin 56sec | 8min 44sec

Table 2: Timing and objective value results for small PDS problems.

21

i PDS510 ||
| phase | relaxed | feasible | final |
total iterations 0 16 50
objective x1071° 2.6333 2.6857 2.6727
DECstation 30sec 8min 15sec | 28min 3J1lsec
Sequent(11) 9sec 3min H7sec | 16min 39sec
I PDS-20 |
| phase || relaxed | feasible | final l
total iterations 0 14 50
objective x101° 2.3342 2.4069 2.3822
DECstation | 2min 22sec | 33min 19sec 2hr 12min
Sequent(11) 40sec 9min 44sec | 50min 43sec
| PDS-30 |
[phase || relaxed ‘ feasible | final J
total iterations 0 12 50
objective x107*9 2.0284 2.1818 2.1390
DECstation [4min 38sec 1hr 9min 5hr 23min
Sequent(11) | lmin 40sec | 16min 43sec | lhr 48min
n PD5.40 n
[phase | relaxed | feasible I final |
total iterations 0 14 50
objective x 10719 1.7188 1.9452 1.8866
DECstation || 8min 53sec 2hr 39min 10hr 27min
Sequent(11) || 3min 45sec | 32min 32sec | 2hr 54min

Table 3: Timing and objective value results for large PDS problems.

22

PDS-50

| phase | relaxed | feasible | final i
total iterations 0 13 50
objective x10~1° 1.5002 1.7336 1.6625
DECstation || 13min 28sec | 3hr 50min | 16hr 46min
Sequent(11) || 4min 35sec | 54min 2sec | Shr 30min
I PDS-60 |
l phase H relaxed | feasible l final l
total iterations 0 13 50
objective x1071° 1.2159 1.5288 1.4462
DECstation || 18min 40sec | 5hr 27min | 24hr 6min
Sequent(11) || 5min 38sec | lhr 19min | 6hr 55min
|| PDS-10 ||
| phase | relaxed | feasible I final |
total iterations 0 16 50
objective x10~1° 0.9309 1.3191 1.2311
Sequent(11) || 8min 12sec 2hr 9min | 9br 24min

Table 4: Timing and objective value results for very large PDS problems.

23

5 Summary and Conclusions

We have developed a structured interior point method for block angular prob-
lems. This three-phase approach takes advantage of the constraint structure
by keeping the block-structured constraints explicitly and using barrier func-
tions to model the coupling constraints. This allows us to generate a starting
point for a shifted barrier problem and to obtain search directions quickly
and in parallel. We also discussed techniques for coordinating these search
directions to assure convergence to an £-optimal point. This algorithm is par-
ticularly well-suited to multicommodity flow problems, since the subproblems
are then linear single-commodity networks. Computational experience with a
class of real-world multicommodity problems arising from an Air Force MAC
application indicates that the method is very efficient, even for problems with
hundreds of thousands of variables.

References

[1] W.J. Carolan, J.E. Hill, J.L. Kennington, S. Niemi, and S.J. Wichmann.
An empirical evaluation of the KORBX algorithms for military airlift
applications. Operations Research, 38(2):240-248, March-April 1990.

[2] Major R. Chmielewski. Private Communication, March 1989.

[3] A.V. Fiacco and G.P. McCormick. Nonlinear Programming: Sequential
Unconstrained Minimization Techniques. John Wiley and Sons, 1968.

[4] R. Fletcher. Practical Methods of Optimization. John Wiley and Sons,
second edition, 1987.

[5] M.D. Grigoriadis and Tau Hsu. RNET, The Rutgers Minimum Cost Net-
work Flow Subroutines, Users Documentation. Department of Computer
Science, Hill Center for the Mathematical Sciences, Rutgers University—
Busch Campus, New Brunswick, New Jersey 08903, 3.6 edition, October
1979.

[6] D.M. Himmelblau. Applied Nonlinear Programming. McGraw-Hill, New
York, 1972.

24

[7] S. Lawphongpanich and D. W. Hearn. Restricted simplicial decomposi-
tion with application to the traffic assignment problem. Technical Re-
port 83-8, Industrial and Systems Engineering Department, University
of Florida, Gainesville, Fla. 32611, Sep. 1983.

[8] D.N. Lee, K.T. Medhi, J.L. Strand, R.G. Cox, and S. Chen. Solving
large telecommunications network loading problems. ATET Technical
Journal, 68(3):48-56, May-June 1989.

[9] G.P. McCormick. Nonlinear Programming, Theory, Algorithms, and
Applications. John Wiley and Sons, 1983.

[10] R.T. Rockafellar. Conver Analysis. Princeton University Press, 1970.

25

