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Abstract

This paper explains a new technique for estimating and understanding the
speed improvement that results when programs execute on a parallel com-
puter. This approach traces a sequential program to record a small set of
significant events. From this compact trace, a parallelism analyzer (11lpp)
regenerates a full address trace that also identifies events such as loop ini-
tiation and termination. The analyzer uses this information to simulate
parallel execution of the program’s loops.

In addition to predicting a program’s parallel performance, 11pp mea-
sures many aspects of the program’s dynamic behavior. This paper presents
measurements of six substantial C programs. These results indicate that
the three symbolic (non-numeric) programs differ substantially from the nu-
meric programs and, as a consequence, cannot be parallelized automatically
with the same compilation techniques.
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1 Introduction

Programmers often want to know whether a program would benefit from
parallel execution. One way to answer this question is to write a parallel
version of the program and run it on a parallel computer. This approach has
several disadvantages. First, it requires a parallel program. Writing such a
program, or even modifying a sequential program to run concurrently, may
require considerable effort. Similarly, compiler writers need to know whether
a large class of programs (e.g., Fortran or C programs) could benefit from
parallel execution—before they write a restructuring compiler. Again, this
information is difficult to collect without actually writing the compiler.

Another disadvantage of the traditional approach is that the speed of
a program on a parallel computer says little about the program’s inherent
parallelism. Implementation details may hobble the program’s performance.
Errors of this kind are difficult to detect and correct because the program
functions correctly. A programmer needs detailed information about loop
speedups and data dependences to identify portions of the program that fail
to take proper advantage of parallelism. Few tools provide this information.

This paper presents a simple, mechanizable technique for estimating a
program’s speed improvement on a parallel computer and for understanding
limits on its performance. The technique requires no additional program-
ming and minimal effort by a programmer. A modified compiler adds tracing
code to the sequential program to record a small set of significant events.
When the program runs, it produces a compact trace file that serves as input
to an analyzer (11pp), which determines the potential speedup of the pro-
gram. The process uses an innovative technique to reduce the cost of tracing
and the size of the trace file, which permits long executions to be economi-
cally measured. 11pp also measures and reports many characteristics of the
program—for example, the dynamic size of loop bodies, number of loop it-
erations, and number and type of loop-carried data dependences-—that form
a basis for improving parallel execution.

This paper contains measurements of six substantial C programs. Three
are symbolic applications and two are array-manipulating (numeric) pro-
grams. The sixth is an optimization program that performs many floating
point operations, but uses graph data structures and could be classified as
numeric or symbolic, although its behavior is similar to the symbolic pro-
grams. The measurements clearly demonstrate that the array-manipulating
programs are very different from the other programs in two ways: the num-
ber and size of loop iterations and the quantity of loop-carried data de-




pendences. The differences make the compilation techniques developed for
FORTRAN programs difficult to apply to produce parallel versions of the
symbolic programs.

Needless to say, the technique has limitations. Since the analysis is
driven by a program trace, it reflects a particular execution of the program
and does not necessarily predict the program’s performance with other in-
put data. Of course, empirical speedup measurements share this problem.
Also, the analysis currently looks for parallelism between loop iterations and
assumes an idealized parallel computer with an unbounded number of pro-
cessors and no-cost synchronization. If desirable, the analyzer easily could
be modified to make the execution model more realistic. However, the cur-
rent assumptions ensure that the estimated parallelism is an upper bound on
the program’s performance on a real computer. Finally, and perhaps most
significantly, the analysis currently does not account for the potential bene-
fits of optimizations that a compiler or a programmer could use to increase
the program’s parallelism. However, 11pp could estimate these benefits by
ignoring some of the data dependences in the program under the assumption
that an optimization eliminated them.

This paper contains four sections. The next section briefly discusses
related work. Section 3 describes the model of parallel execution. Section 4
shows how 11pp analyzes a program’s parallelism. Finally, Section 5 presents
some measurements of C programs. The appendix explains the technique
for tracing a program.

2 Related Work

Several lines of research are related to this work. Sarkar directly measured
the execution frequency of basic blocks and used the results to estimate the
execution cost of portions of a program. The PTRAN parallel compiler uses
this information to partition the program for parallel execution [8]. Unlike
PTRAN, 1lpp does not estimate a program’s execution cost or produce
a parallel program. Instead, it measures the program’s actual cost—and
other features such as its memory reference pattern—and uses this data to
estimate how the program would execute on a parallel computer.

Several groups have built tools for tracing parallel programs. TRAPEDS
is a system that traces the memory reference pattern of programs funning
on a parallel computer [11]. MPTrace produces address traces of programs
running on shared-memory multiprocessors [3]. Both systems capture the



memory reference behavior of an existing parallel program. Unlike 11pp,
they do not record program structures (such as loops) that would permit
them to simulate a program’s behavior on other computers. Also, 11pp’s
tracing mechanism is much more efficient than either system’s, which per-
mits tracing of longer program executions.

The Rice Parallel Processing Testbed (RPPT) has goals similar to 11pp’s
[1]. That system measures a parallel program and uses the resulting trace to
drive a parallel computer simulator. The major difference is that RPPT re-
quires the original program to be written for a parallel machine and permits
a programmer to investigate changes to the architecture of the computer
and the assignment of processes and data to processors. 1lpp has a more
static model of the target computer but captures more information about
the program and is more efficient. It also does not require a parallel source
program.

Kumar and So used address traces from a parallel program running on
an uniprocessor to simulate the memory reference behavior of the program
running on a parallel computer [5]. They used the memory references to
model the parallel computer’s memory system. Unlike 11pp, their system
requires a parallel source program and simulates the underlying hardware
rather than measuring the characteristics of programs.

3 Parallel Execution Model

This paper concentrates exclusively on parallel loop execution and ignores
other opportunities for parallelism.! The idealized execution model used by
11pp assumes an unbounded number of parallel processors that communicate
and synchronize at no cost through a shared memory. Each loop iteration
runs on a separate processor. A loop’s iterations begin simultaneously when
the loop starts executing. Synchronization introduces delays to serialize
loop-carried data dependences. If statement Sy conflicts with statement S5
in a later iteration, then synchronization delays the memory reference in S
until $; reads or writes the common memory location. A loop terminates
when all iterations complete, so its parallel speedup is the ratio of the time
spent in the iteration with the longest combined delay and execution time

'However, the framework described below can accommodate other parallel execution
strategies—for example, fine-grained data flow—by modifying the analyzer described in
Section 4.
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Figure 1: Doacross scheduling of parallel loop execution. All iterations of a loop begin
execution simultaneously. Loop-carried data dependences are synchronized by delaying
a conflicting statement in a later iteration until an earlier statement accesses a common
memory location. The loop finishes when the iteration with the longest combined delay

and execution time completes.

to the time required to execute the loop sequentially. Figure 1 illustrates
this model, which is Cytron’s doacross scheduling [2].

4 Analyzing Parallelism

AE is a system that economically collects detailed traces of a program’s
execution (see Appendix A). We can use the traces collected by AE to sim-
ulate a program’s execution on a parallel machine. The parallelism analyzer
(11pp) receives a stream of events from the trace regeneration program.
These events indicate: an instruction execution (with its address); a read or
write of a memory location (with its address); the initiation, iteration, and
termination of a loop (with an unique loop identifier); or entry and exit of
a function (with its address).

11pp simulates the parallel execution of a program’s loops with the aid of
two data structures: the loop nest and conflict table. The loop nest is a stack
of loop descriptors (top half of Figure 2). This stack contains a descriptor
for every uncompleted loop. When a loop begins, a new descriptor is pushed
on the nest. When a loop terminates, its descriptor is popped. Each loop
descriptor points to a stack of iteration descriptors. When the top loop
begins a new iteration, a new iteration descriptor is pushed on its stack.
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Figure 2: 11pp’s loop nest and conflict table data structures. The loop nest keeps track
of loop nesting and iterations. The table maps a memory address to a conflict descriptor,

which records when the address was last read and written.

When the loop terminates, its iteration descriptors may not be deallocated
since the conflict table can contain references to them. Iteration descriptors
record the nesting of loops by maintaining a pointer to the iteration of the
surrounding loop.

11lpp’s other data structure is the conflict table, which is a hash table that
maps a memory address into a conflict descriptor (bottom half of Figure 2).
These descriptors record when a memory location was last read and written.
They contain both the time of the access and the iteration descriptor of the
innermost loop surrounding the statement that referenced the location. On
each access to a memory location, 11pp compares the values stored in the
location’s descriptor against the current time and loop to detect loop-carried
data dependences.?

For example, consider detecting loop-carried flow dependences. On a
read of a memory location, 11pp examines the loop iterations in which the
location was last modified. If the location was written in a different iteration
than the one currently executing, the loop containing both iterations has a

2The idea is analogous to the abstract interpretation used by Horwitz, Pfieffer, and
Reps to detect data dependences in pointer-manipulating programs [4]. However, their
technique is applied by a compiler to the static text of the program to determine
potential—not actual-—dependences.
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Figure 3: Example of detecting a loop-carried flow dependence.

loop-carried flow dependence. When a conflict occurs, 11pp uses the access
times to calculate the delay necessary to ensure that the location is not read
until after it is written.

The algorithm for finding loop-carried data dependences is:

On a read of memory location M:
1. Record read time and iteration.
2. Find the loop in the nest, L, that is the least-common ancestor
of the current iteration and the last write iteration.
3. If the read and write occur in different iterations of L,
then record a Flow Dependence.

On a write to memory location M:

1. Record write time and iteration.

2. Find the loop, L, that is the least-common ancestor of
current iteration and last read iteration.

3. If the read and write occur in different iterations of L,
then record an Anti-Dependence.

4. Find the loop, L, that is the least-common ancestor of
current iteration and last write iteration.

5. If the writes occur in different iterations of L,
then record an Output Dependence.

6. Remove record of read of location.




sgefa Number of Dependences (% of Memory References)

Flow I Anti PAnti | Output
regs 1,012,253 (28.7%) 23,803 (0.7%) | 688,341 (19.5%) | 957,253 (27.1%)
no regs | 3,756,769  (31.0%) | 1,079,983 (8.9%) | 2,906,008 (23.8%) | 3,283,637 (27.1%)

Table 1: Frequency of loop-carried data dependences with and without registers.

To make this discussion more concrete, consider the loops:

for (i =0; 1< 100; i =1 + 1)
for (j = 0; j < 100; j =3 + 1)
ali+11[j+1] = alil[j];

Both have loop-carried flow dependences. For example, when ¢ = j = 1,
the location read (a[1][1]) was written in the previous iteration of the
outer loop. The iteration descriptor for this loop is still in the loop nest
(see Figure 3). The iteration descriptor for the j loop is not on the stack
since the first invocation of that loop has finished. However, the descriptor
persists since it is referenced by the conflict descriptor for the array location.
Since the outer loop is the least-common ancestor of both accesses and the
read and write occur in different iterations, the loop has a loop-carried flow
dependence.

This technique detects all loop-carried flow and output data depen-
dences, but only a subset of the anti-dependences. Conflict descriptors
record only the last read of a location, not all reads since the last modifi-
cation. Therefore, they cannot detect anti-dependences between the earlier
reads and a write. However, by counting reads since the previous write
to a location, we can compute an upper bound to the number of anti-
dependences—called panti-dependences for potential anti-dependences. This
bound may be conservative since some of the reads may have occurred out-
side of a loop currently executing and therefore not cause a loop-carried
anti-dependence. In computing the delays, 11pp uses anti-, not panti-, de-
pendences.

Another problem is that 11pp does not detect dependences carried by
variables stored in registers since references to them do not appear in the
address trace. This problem is less important for anti- and output depen-
dences, which can be eliminated by renaming variables. As an experiment,
the program sgefa (see Section 5) was compiled without registers, but with




optimization still enabled. Table 1 shows the number of dependences and
the proportion of memory references that cause a dependence. Allocating
variables on the program stack greatly increased the number of memory ref-
erences and dependences. The proportion of flow and output dependences
did not change appreciably, although anti-dependences increased ten times.
It is a hypothesis that most additional conflicts involved loop indices. In the
measurements below, variables are register-allocated because the speedup
is extremely limited by variable conflicts. A compiler for a parallel ma-
chine can precisely analyze variable-carried dependences and eliminate most
conflicts—in particular, those involving loop indices—without much effort.

11lpp does not find spurious dependences caused by reuse of locations
on the program stack. This problem arises when a loop repeatedly invokes
a function. Stack locations referenced in the first invocation will likely be
used by subsequent invocations and will cause dependences that would not
occur if the calls used separate stacks—as they would if executed concur-
rently. 11lpp avoids this problem by removing all stack locations accessed
by a function from the conflict table when the function terminates.

1lpp uses the cycle count of the executed instructions as a measure of
time. Most instruction take 1 tick, except loads, which require 2 ticks, and
some floating point operations, which require up to 20 ticks. The times are
from the MIPS R2000 and are similar to most RISC computers. However,
these numbers ignore the effect of cache misses on loads and stores.

When a loop terminates, 11pp examines each iteration descriptor to
find the iteration that finished last. In addition, 11pp records a wealth of
information about the loop, such as how many times it executed, the cost of
each iteration, and the number and distance of the loop-carried dependences.

A loop’s speedup is the ratio of its parallel to sequential execution time.
This definition has an unusual aspect. If an inner loop has a large speedup, it
will reduce the parallel execution time of every iteration of the surrounding
loop, thereby permitting that loop’s speedup to exceed the number of its
iterations. A program’s speedup can be estimated from its loop speedups.
Since loops nest, 11pp cannot simply add the parallel execution times to
compute the program’s cost. This cost is the sum of the cost of the top-level
(non-nested) loops and the top-level non-looping code.

This analysis is not particularly expensive. On a DECstation 3100 (a
14 MIPS computer), 11pp analyzes about 80,000 simulated ticks per second
of DECstation time (175 times slower). A slightly more serious problem is
the memory cost of 11pp’s data structures. Their size is proportional to the
number of referenced locations and the number of iterations in loops. With



Program | Purpose [ Size (lines) | Time (ticks) | # Loops |

gce C compiler 87,838 24,522,714 1139
zlisp Lisp interpreter 7,741 20,220,999 126
espresso | PLA minimization 14,838 30,794,533 750
sgefa Gaussian elimination 1,219 18,255,659 73
dege Conjugate gradient 1,060 19,295,194 55
costScale | Feasible flows in networks 2,128 79,998,720 50

Table 2: Characteristics of the test programs.

virtual memory and large physical memories, this overhead is not exorbitant,
although it clearly limits 11pp’s ability to analyze extremely large programs.

Several schemes could reduce both costs. First, many memory refer-
ences are irrelevant to parallelism analysis since they correspond to memory
accesses that cannot cause loop-carried dependences. These references can
be eliminated from the schema file. Another possibility is to group together
several locations (e.g., by truncating the low-order bits of the address). How-
ever, neither technique has yet proven necessary.

5 Measurements of C Programs

This section presents measurements of six C programs. Three are sym-
bolic applications that perform few floating-point operations: gcc, zlisp, and
espresso. gec is the GNU C compiler optimizing and compiling a 775-line
file. zlisp is a lisp interpreter running a program that solves the 5-queens
problem. espresso is a PLA minimization program running on a 7-input, 10-
output PLA. These programs form most of the integer portion of the SPEC
benchmark suite [9]. The other three programs perform arithmetic com-
putations: sgefa, dcgc, costScale. sgefa is a gaussian elimination program
running a variety of test cases. dcgc is a preconditioned conjugate gradient
package running a variety of test cases. costScale finds a feasible flow in a
network that minimizes a linear cost function. Although it performs many
floating-point operations, it uses data structures similar to those used in the
symbolic programs. The programs range in size from a thousand to a hun-
dred thousand lines. Table 2 describes the characteristics of the programs
in more detail.

Table 3 contains the ratio of the programs’ parallel to sequential exe-
cution times—the speedup—calculated by 11pp. Although 11lpp’s parallel




Program | Parallel/Sequential Time
(Speedup)
gee 2.5
zhisp 1.4
€Spresso 4.5
sgefa 106.3
dege 259.4
costScale 5.0

Table 3: Calculated speedup for the test programs.

execution model is optimistic, only the two numeric programs that manip-
ulated arrays (sgefa and dege) significantly benefited from parallelism. The
discussion below shows that this difference is due not only to differences
in programs’ data structures and data dependences, but also because of
differences in programs’ use of loops. .

Figure 4 shows the distribution of loop speedups in the programs. As can
be seen, most loop invocations in the two numeric programs have a speedup
of 50 or more. Almost all symbolic loops (90-95%) have a speedup of 10 or
less and almost no invocations (< 0.25%) have a speedup of 100 or more.
In addition, in numeric programs, the large speed improvements occurred
in fairly expensive loops and consequently caused a large reduction in total
time. In symbolic programs, the large speedups occurred in less expensive
loops, which did not reduce the programs’ total costs as much.

Two factors limit a loop’s speedup: the number of iterations and the
frequency and distance of loop-carried data dependences. Figure 5 shows
the number of iterations per loop invocation. The figure again illustrates a
difference between numeric and symbolic programs. Numeric loops iterate
many times. Symbolic loops generally iterate 10 or fewer times, which limits
their potential speedup in a doacross model.®> A possible objection to these
measurements is that the number of iterations is proportional to the size
of the input and that with larger input, symbolic programs would iterate
more. However, the inputs were chosen so that all programs executed for
roughly the same time. Increasing the input size would also benefit numeric
programs. In addition, increasing the length of the input to programs such

®These measurements confirm the compiler folklore that loops iterate 10 times.
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Figure 6: Sequential execution cost of loops.

as gec and 2lisp would not cause most loops to iterate more times, unless
the input also changed qualitatively to include larger functions.

Another way to compare loops is to examine their sequential execution
cost. Loops that execute few instructions—even if they iterate many times—
have little potential for parallel execution, particularly on real computers in
which initiating a parallel task has non-trivial overhead. Figure 6 shows
the sequential time per loop invocation. Most loops in symbolic programs
(70-90%) require fewer than 100 ticks to execute. By contrast, only 1-3%
of the loops in numeric programs (including costScale) executed in fewer
than 100 ticks. Most loops in these programs execute in 500-10000 ticks.
However, the situation changes when we examine the cost per iteration (not
invocation). Figure 6 shows that iterations in both symbolic and numeric
programs typically execute in 100 or fewer ticks. dgcg and sgefa appear
to have particularly short iterations. The difference in invocation costs is
primarily due to the number of iterations per loop invocation. However,
the symbolic programs also have a significant number of iterations that
execute only a few instructions. The long tails on the distributions are due
to programs’ top-level loops, which encompass most of their computation.
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Sum of Per-Loop Coefficient of Variances

Program Unweighted | Weighted
gee Time 274.8 0.9
Iterations 183.0 1.1

zlisp Time 16.8 1.3
Iterations 19.2 323.8

espresso  Time 111.7 0.9
Iterations 101.7 1.8

sgefa Time 134 0.5
Iterations 18.9 1.6

dege Time 14.1 0.2
Iterations 17.0 1.2

costScale Time 2.3 0.4
Iterations 2.7 0.8

Table 4: Variance in execution time

L-C Flow Dependences per Iteration
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Another difference is the variance in both the cost and number of loop
iterations. Table 4 shows the variance in the time and number of iterations
per loop invocation. The first column is the sum of the coefficient of vari-
ation for each loop. The second column contains the sum weighted by the
loop’s contribution to the program’s execution time. Unweighted variance
is a better metric since the weighted numbers can be dominated by an outer
loop, which may be invoked only once and have no variance. The unweighted
variances of symbolic programs (except zlisp) are much larger than those
of the numeric programs. In addition, in the symbolic (but not numeric)
programs, the time variance is larger than the variance in the number of it-
erations. Hence, these programs are performing different actions in different
iterations. Symbolic programs execute their loops less systematically than
numeric programs: they have more variance in both the number of times
that a loop iterates as well as the amount and type of work done in each
iteration.

The other constraint on a program’s speedup is the data dependences
that inhibit concurrent execution of loops. Figure 7 illustrates the num-
ber of loop-carried flow dependences per loop iteration. In numeric pro-
grams, 97% of loop iterations have no loop-carried flow dependences and
most other iterations have only one dependence. In symbolic programs,
more iterations have one flow dependence, although few have more than 10
such dependences. The distance of loop-carried dependences also limits a
loop’s speedup. Figure 7 also illustrates the distances of the loop-carried
flow dependences. The difference between numeric and symbolic programs
is not as clear for this measure. Numeric programs have a higher percentage
of flow dependences of distance one (for example, all of dege’s dependences).
However, sgefa has more dependences of distance ten or more than any
program except espresso.

The data dependences in espresso are very different from those in other
programs. This program has more dependences of all types and these depen-
dences extend over many loop iterations. Most of espresso’s time is spent
sorting arrays with a quicksort algorithm. The conflicts arise as values are
moved between array locations in a data-dependent pattern.

Figure 8 illustrates that anti-dependences are less common than flow
dependences and are extremely uncommon in numeric programs. They also
extend over a smaller number of iterations. Both differences may be artifacts
of recording only the last read of a location. Figure 9 shows that output
dependences are almost as frequent as flow dependences. However, unlike
flow dependences, output dependences almost always have a distance of one.

14
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Figure 8: Anti-dependences.
Program Number of Dependences (% of Memory References)
Flow | Anti | PAnti | Output
gec 822,508 (11.4%) | 124,202 (1.7%) | 1,245,036 (17.3%) | 460,732  (6.4%)
zlisp 461,156  (6.5%) | 17,987 (0.3%) 181,166  (2.6%) 299,282  (4.2%)
espresso 544,205 (7.4%) | 99,151 (1.4%) 515,655 (7.0%) 519,029  (7.1%)
sgefa 1,012,253 (28.7%) | 23,803 (0.7%) | 688,341 (19.5%) | 957,253 (27.1%)
dege 1,148,072 (17.8%) | 22,550 (0.3%) 45,102 (0.7%) | 774,227 (12.0%)
costScale | 5,658,096 (23.1%) | 129,727 (0.5%) 204,531  (0.8%) | 2,341,341  (9.6%)

Table 5: Frequency of loop-carried data dependences.
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L-C Output Dependences per lteration
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Figure 9: Output dependences.
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| | gec | zlisp | espresso | sgefa | dege | costScale |

Flow
Heap Static | 10.5% | 33.1% 0.5% 0.0% 0.0% 0.0%
Heap Dynamic | 78.0% | 50.8% 98.1% | 100.0% | 100.0% 99.8%
Stack | 11.5% | 16.1% 1.4% 0.0% 0.0% 0.2%
Heap Struct | 77.5% | 50.8% 60.4% 5.7% 0.0% 99.8% |
Heap Pointer | 10.9% | 33.1% 38.3% 94.3% | 100.0% 0.0%
Stack Struct | 9.0% | 10.5% 0.3% 0.0% 0.0% 0.0%
Stack Pointer 2.6% 5.5% 1.1% 0.0% 0.0% 0.2%
Anti
Heap Static | 51.2% | 89.5% 97.1% | 99.6% | 99.7% 100.0%
Heap Dynamic | 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Stack | 48.8% | 10.5% 2.9% 0.4% 0.3% 0.0%
Heap Struct | 38.1% | 89.1% 76.3% 0.0% 0.0% 100.0%
Heap Pointer | 13.2% 0.4% 20.9% 99.6% 99.7% 0.0%
Stack Struct | 18.1% 0.9% 0.0% 0.3% 0.0% 0.0%
Stack Pointer | 30.6% 9.6% 2.8% 0.0% 0.3% 0.0%
Output
Heap Static | 50.1% | 74.3% 98.4% | 100.0% | 100.0% 99.8%
Heap Dynamic 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Stack | 49.9% | 25.7% 1.6% 0.0% 0.0% 0.2%
Heap Struct | 35.8% | 28.2% 73.3% 5.0% 0.0% 99.8%
Heap Pointer | 14.4% | 46.0% 25.0% 95.0% | 100.0% 0.0%
Stack Struct | 28.7% | 17.3% 0.3% 0.0% 0.0% 0.0%
Stack Pointer | 21.2% 8.4% 1.3% 0.0% 0.0% 0.2%

Table 6: Breakdown of loop-carried data dependences.

Data dependences, although they occur in few loop iterations, occur on a
high percentage of memory references. Table 5 shows the frequency of loop-
carried dependences and the percentage of memory references that result in
a loop-carried dependence. Flow dependences are the most common, fol-
lowed by output dependences, and by anti-dependences. Anti-dependences
relatively are more common in symbolic programs. degc and costScale ex-
ecute almost no anti-dependences. The table also illustrates that memory
references that cause dependences are not evenly distributed among loop it-
erations, but tend to cluster so a few iterations account for most conflicting
references.

Table 6 categorizes loop-carried dependences by the referenced object’s
type and the form of the reference. The first three entries for each depen-
dence identify the referenced object. Heap static objects are global data
whose size is known to the compiler. Heap dynamic objects are allocated by
malloc. Stack objects are variables, structures, and arrays that are local to
a procedure. The next four entries classify the type of memory reference in
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the second-executed statement in a conflict. Heap struct are references to
structures or arrays that residing in the heap (both dynamically and stati-
cally allocated). Heap pointer are references to scalar variables or references
through a C pointer. Note that the first category may not include all array
references, since gec does not try to determine that a pointer references an
array. Stack struct and stack pointer are similar, except that the objects
reside on the program stack.

Different programming styles cause conflicts to appear in different places
in the programs. Typically, flow dependences are centered in dynamically
allocated objects, which, curiously, never cause anti- or output dependences.
Unfortunately, data dependence analysis for dynamically allocated objects
(in particular, structures) is more complex and less precise than array anal-
ysis [6]. In symbolic programs (except espresso), the anti- and output de-
pendences are divided between static and stack objects. In the numeric
programs and espresso, almost all of these dependences are due to static ob-
jects. This difference is the product of different programming styles. How-
ever, it is worth noting that conflicts over static objects may be easier to
analyze since the compiler knows the size of the underlying object.

The program statements causing conflicts also vary among the programs.
In numeric programs (except costScale), most conflicting references are heap
pointer, which implies that gce’s simple analysis could not determine that
the reference object was an array. In the symbolic programs, a wider range
of statements cause the conflicts. However, the high percentage of pointer
references implies that analysis of these programs would be difficult.

6 Conclusion

This paper has shown how to estimate the parallel speedup of a program
without creating and running a parallel version of the program. The system
currently computes an optimistic upper bound to the speedup. However, it
could use a more realistic execution model and produce accurate estimates.
The current measurements not only provide a basis for predicting the perfor-
mance of the program on a parallel computer—and hence a baseline against
which the program’s actual performance can be compared—but they also
provide a wealth of detail about the program’s dynamic behavior. This in-
formation is valuable to compiler writers as well as people who construct
languages and systems for parallel programming.

Because of the AE profiling system, these measurements require little
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effort on a programmer’s part and do not consume much time during exe-
cution or require large amounts of disk space. By adapting techniques from
AE to other compilers, it would be possible to analyze the parallelism in
programs written in other languages, for example Fortran or Lisp.

The measurements of these C programs demonstrate a profound differ-
ence between the two array-manipulating numeric programs and the other
programs. This difference has two components. First, the symbolic pro-
grams have smaller loops that execute fewer iterations. Second, the symbolic
programs have many more loop-carried data dependences. Many existing
compilation techniques (including the doacross model) were developed for
programs similar to the array-manipulating programs and do not perform
well for the symbolic programs. New compilation techniques, execution
models, and even programming languages, are likely to prove necessary to
compile symbolic programs for parallel machines.
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Figure 10: Overview of the AE program measurement system. The -AE flag to the
GNU C compiler (gcc) causes it to add tracing code to the compiled program and to
produce a schema file (foo.sma). The schema file describes how to interpret the trace
file (ae.out) produced by running the program. The schema compiler (aec) translates
a schema into a C program (foo.sma.c) that reads the trace file and generates a full
program trace. This program is linked with the parallelism analyzer (11pp.c), which uses

the trace to estimate the program’s speedup.

Appendix
A Tracing Programs

The parallelism analyzer (11pp) depends on the program measurement sys-
tem AE [7] to record the events during a program’s execution that are nec-
essary to predict parallel behavior. 1lpp needs two kinds of information.
The first is details of a loop invocation—how many times the loop iterates
and which instructions execute in each iteration. The other information
is a complete record of the memory locations referenced by the program.
This information is voluminous and could be expensive to collect and store.
However, AE uses a new technique that greatly reduces the size of traces.
Below is a brief description of AE. *
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AE is composed of two pieces. The first is a modified version of the GNU
C compiler gce [10]. This compiler performs two tasks beyond compiling a
program. First, it adds a small amount of code to the compiled program to
record significant events in a trace file. As illustrated by the example below,
these events form a basis for reconstructing the program’s control flow and
its memory accesses. Not all branches and address calculations need to be
recorded. Most can be recalculated later when producing the full trace. gcc
also produces a condensed version of the program, called a schema, that
describes how to interpret the trace file to regenerate a full program trace.
Regeneration is carried out by a C program produced from the schema by
the schema compiler aec. Figure 10 shows the pieces of the system.

An execution of the traced program produces a file (ae.out) contain-
ing the significant events that fully characterize the execution. These files
can be interpreted only with the aid of the program’s schema since they
are highly compressed and omit information that can be recalculated. aec
translates schema files into a C program that regenerates a full trace from
the significant event trace. A simple example demonstrates this process.
Consider the program:

main ()
{
int i;
int *a = (int *) malloc (sizeof (int) * 100);
for (1 = 0; 1 <100; i =i+ 1) alil =41 * i;
}

gcc will produce machine code for the loop similar to:

move R4, 100

call malloc

move R5, R2 # R2 is result

move R3, O

branch gt, R3, 100, end
loop: shift-left-logical R2, R3, 2

add R2, R5, R2

mult R6, R3, R3

store R6, 0(R2)

add R3, R3, 1
test: branch 1t, R3, 100, loop
end:
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In the program above, AE records only two types of significant events.
First, to reproduce the program’s control flow, AE adds tracing code at the
beginning of basic blocks that are the target of a conditional branch. Each
time such a block executes, this code records the block’s number. These
numbers permit the regeneration program to follow a conditional branch.
Unconditional control flow is fully described by the schema and does not
require significant events. AE also records the address of array a since its
location cannot be determined by the regeneration program. The schema
describes both the instructions produced by gcc and the significant events.

start_block 0
uneventful _inst 2 4
call_inst malloc
record_defn R2
compute_defn_O0 R5 R2
compute_defn_0 R3 0
uneventful_inst 2 4
end_block_cjump 0 1 3

start_block_target 1
uneventful_inst 1 4
end_block_next_target 1 %loop_entry(2 0)

start_block_target 2

compute_defn 2 R2 R3 << 2

compute_defn_2 R2 R5 + R2

uneventful_inst 1 4

store_inst R2 + 0

compute_defn_2 R3 R3 + 1

end_block_cjump 2 3 2 Y%loop_exit(3 0) %loop_back(2 0)

The schema omits details of the portions of the program that produce
values, as opposed to addresses. It describes instructions that compute
memory addresses, reference memory, or affect control flow. The operation
record.defn means that a value used in an address calculation (such as
the result of malloc) cannot be regenerated. The value is recorded in the
trace file. By contrast, the regeneration program can recalculate the expres-
sions in compute_defn’s, so they do not record anything during execution.
uneventful_inst are placeholders for instructions that do not contribute
to memory references or control flow—in general, instructions that produce
and consume values. The schema also indicates which arcs between basic
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blocks enter and leave loops and which begin new iterations.
The trace file for this program contains 103 items:

Stack Pointer Upon Entry 4 bytes

Result from malloc 4 bytes
Block 1 1 byte
Block 1 1 byte
Block 3 1 byte

This file contains 109 bytes. The full address trace contains 3610 bytes (618
instructions and 104 memory references at 5 bytes each), so AE reduces the
size of the trace by a factor of 33.4

“This ratio can be increased to 106 times by compressing ae.out to 34 bytes with the
Unix utility compress.

24






