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A Model of Learning Geometric Reasoning

ABSTRACT

Skilled performance in geometry relies on knowledge of fundamental properties of figures, such as
parallelism and congruency. However, research in mathematics education suggests that children’s
acquisition of this knowledge is often incomplete or underdeveloped. A stage model of the acquisition
of this knowledge was suggested by the van Hieles. Unfortunately, the van Hiele model fails to specify
mechanisms of stage transition, and more generally, provides snapshots of learning rather than a
model of learning. In this paper we propose a model of the development of geometric reasoning
that is explicitly a learning model. The model begins with an understanding of geometry similar to
that of preschool children. Through the presentation of a series of examples, the model is shown to

develop a more sophisticated understanding of geometry. Analysis of what the model learned from
the examples is shown to make concrete pedagogical suggestions.

INTRODUCTION
Recent research about the development of skilled performance in geometry suggests that knowl-
edge of fundamental spatial schemes is essential to the efficient construction of proofs [Koedinger
and Anderson, 1990]. This view suggests the need for spatial spadework prior to deduction, in
which students have opportunities to develop adequate descriptions of spatial properties and their
relationships. An understanding of how this development takes place can serve to guide instruction,

thereby maximizing the effectiveness of instruction during this period.

One model of the development of spatial properties and their relationships was suggested over
30 years ago by D. van Hiele-Geldof [1957] and subsequently elaborated by a variety of researchers
[Fuys et al., 1988; van Hiele, 1986]. Briefly stated, the van Hiele model proposes a series of
levels of understanding that evolve as children engage in geometry. At the first level (level 0 in
most accounts), children develop constructions about space that are closely tied to their informal
knowledge. For example, they may sort shapes on the basis of contour. As a result, their thought
is often characterized as “visual.” Thus, squares that are similar in appearance to prototypical
squares in the child’s experience are identified as squares, but squares that depart significantly

from the prototype’s size or orientation are not classified appropriately.

At the second level (level 1) of the van Hiele model, thinking about space becomes more sym-
bolic. Just as children’s use of numeric symbols extends the range of their thought in addition

and subtraction problems, so too does the use of symbolic properties extend their ability to reason
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about objects in space. Thus, “it looks like” is gradually replaced with “it has all right angles”,
and the like. Practically, this means that children can describe commonalities and differences
among objects that may not “look” alike. For example, squares may be characterized as figures
with congruent sides and right angles. Recognition of these characteristics leads to an increase in

classification accuracy even for squares that are markedly different from prototypical examples.

At the third level (level 2), children construct relationships among symbolic descriptions (prop-
erties). For example, they recognize that if the opposite sides of a quadrilateral are parallel, then
the opposite sides must be congruent. Similarly, children develop ideas about relationships among
figures; a square is a rthombus because it has the properties of a rhombus. The model from here

progresses to describe two higher levels of axiomatic reasoning and deduction.

Although the van Hiele model has generated much research and continues to attract many ad-
herents, there is good reason to question its adequacy as an explanation of the transitions observed
in children’s reasoning about geometry. First, the van Hiele model describes general benchmarks
of thought. Although this type of benchmark can be useful to teachers in their design of class-
room instruction and for assessment, it suffers from too much generality. To say that a student’s

understanding is limited to a “visual” analysis tells little about how such an analysis is conducted.

Second, the van Hiele model fails to specify any mechanisms for transition between levels
(stages). For instance, there is not any principled account of why some types or contrasts among

examples may be more conducive to learning than others.

Third, there is little empirical evidence to substantiate the demarcations of children’s thinking

into discrete and nonoverlapping levels, even by adherents of the theory.

Lastly, a series of studies conducted with stimuli such as those displayed in Figure 1 questioned
second, fourth, and fifth grade children about similarities and differences among these shapes [Lehrer
et al., 1989]. These studies suggested that children’s descriptions of space use many of the same
constructs used by experts, but that they also include features without diagnostic significance. For
example, the majority of children at each of these grades report that shapes B and C are most
similar, either because “they are both pointy”, or because “you can move this line down here [the
lower segments of B] and then they [B and C] would look alike.” When questioned further, many
children will assert that the shape C is a triangle and shape B “isn’t really a triangle.” Nevertheless,
children go on to reassert their similarity. Thus, shape names do not imply a necessary set of

properties for children the way they do for adults.
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A /\

Figure 1: Sample triad.

We suggest that a model of the development of spatial features and their relationships should
have the properties listed in Table 1. The following section describes the model we are developing
and provides an initial suggestion that our model has these properties. Subsequent sections describe
a test of this model and the implications of this test on instruction. The paper concludes with a

description of current research issues for the model.

(1) Show “mixture” between von Hiele levels.
(2) Have a mechanism for skill development via incremental learning.

(3) Allow for a combination of “visual” and ordinary features.
(4) Treat shape names initially as features and later have them acquire diagnostic significance.

(5) Combine explanation (rules) and pattern recognition/identification.

Table 1: Necessary properties of a model.

THE MODEL

The model we propose develops geometric reasoning by learning to identify the most similar
pair of shapes in triads akin to Figure 1. It is based upon the KBANN (Knowledge-Based Artificial
Neural Networks) computer system being developed at the University of Wisconsin [Shavlik and
Towell, 1989; Towell et al., 1990]. Briefly, KBANN uses a knowledge base of hierarchically structured
rules, which may be both incomplete and incorrect, to form an artificial neural network (ANN)
[Rumelhart et al., 1986]. We do not mean this to be a model at the neurophysiological level.
Rather, we intend it to be a model of how preconceived notions are incrementally adjusted through

experience.

KBANN  KBANN translates knowledge bases into ANNs for which the core layout is isomorphic
to the knowledge bases; the correspondences are listed in Table 2. Values for the inter-unit weights
and the thresholds of the units are set such that the ANN initially responds in the same manner

as the knowledge base of inference rules.

As an example of the translation process in KBANN, consider the knowledge base presented

in Figure 2a; PROLOG notation is used.! Figure 2b illustrates the hierarchical structure of these

YThe top rule in Figure 2a reads “A is true if both B and C are true.”
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Knowledge Base Neural Network
Final Conclusions Output Units
Supporting Facts Input Units
Intermediate Conclusions Hidden Units
Dependencies Weighted Connections

Table 2: Correspondences between knowledge-bases and neural networks.

A:-B,C. /A\
B :-not H. B C
B :-notF, G.
C:-L1J. ...v' :
F G H I J K
(a) (b)

Figure 2: Translation of a knowledge-base into a network.

rules, with solid and dotted lines representing, respectively, antecedents which must and must
not be present. Figure 2c represents the network that results from the translation into a neural
network of this knowledge base. Thick lines in Figure 2c represent links in the neural network that
correspond to dependencies in the explanation. Thin lines represent links added to the network
to allow refinement of the domain theory; all these links initially have weights near zero. Units X
and Y in Figure 2c were added to handle the disjunction involving predicate B. (See [Towell et al.,

1990] for details of the translation process.)

Level 0 Geometric Theory The model is initialized with a set of rules that roughly
correspond to the theory of geometry held by children at level 0 on the von Hiele scale. This
set of rules, designated L@, implements a feature counting strategy in which similarity is judged
according to the number of visual features shared by a pair of shapes. 7 visual features are counted
by L@: tilted (rotation from a standard orientation) slanty-lines (presence of lines other than
vertical and horizontal), physical description, pointy (the figure appears to point in some direction)

point direction, area, and two long and two short sides (typical of rectangles).

A subset of LQ appears in Table 3A.2 The first rule in this table, rule 3.1, says that if the area
of a shape (?0BJ1)? has some value (e.g., large) and the area of another shape (?0BJ2) has the same

“Tables 5 — 9 in the Appendix contain a complete listing of LD.

32X denotes a variable.
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(1) same-area(?0BJl1, 70BJ2) :- area(?0BJ1, PAREA), area(?70OBJ2, TAREA).
(2) same-pdir(?0BJ1, TOBJ2) :- point-direction(?0BJ1, ?PD), point-direction(?OBJ2, 7PD).
(8) same-pointy(?0BJ1, 70BJ2) :- pointy(?OBJ1, 7PTY), pointy(?0BJ2, ?PTY).

(4) very-similar(?OBJ1, 70BJ2) :- same-pdir(?0BJ1, 70BJ2), same-pointy(?0BJ1, ?0BJ2),
same-area(?0BJ1, 70BJ2).

(5) similar(?0BJ1, 70BJ2) .- same-pdir(?0BJ1, 70BJ2), same-pointy(?OBJ1, 7OBJ2).
(6) similar(?0BJ1, 7OBJ2) :- same-pdir(?OBJ1, 70BJ2), same-area(?0OBJ1, 70BJ2).
(7) similar(?0BJ1, 70BJ2) :- same-pointy(?OBJ1, 70BJ2), same-area(?OBJ1, 70BJ2).

(8) less-similar(?OBJ1, 70BJ2) :- same-pdir(?OBJ1, 70BJ2).
(9) less-similar(?0BJ1, 70BJ2) :- same-area(?0BJ1, 70BJ2).
(10) less-similar(?0BJ1, 70BJ2) :- same-pointy(?0BJ1, ?0BJ2).

A: A small, feature-counting theory of geometry.

(11) triangle(?0BJ) :- area(?0BJ, medium), pointiness(?0OBJ, very), point-direction(?OBJ, up).
(12) triangle(?0BJ) :- number-of-sides(?OBJ1, 3).

B: Rules to recognize triangles.

(13) most-similar(?0BJ1, TOBJ2) :- very-similar(?0BJ1, 7OBJ2), not very-similar(?OBJ1, 70BJ3),
not very-similar(?0OBJ2, 70BJ3).

(14) most-similar(?0BJ1, 70BJ2) :- similar(?0BJ1, 70BJ2), not similar(?0BI1, 70BJ3),
not similar(?0BJ2, 70BJ3).

(15) most-similar(?0BJ1, 7OBJ2) :- less-similar(?0OBJ1, 70BJ2), not less-similar(?0BJ1, 7OBJ3),
not less-similar(?0BJ2, 70BJ3).

C: Rules for combining similarity judgments.

Table 3: Sample rules in L.

value, then the two shapes have the same area. Rule 3.4 is an example of a feature counting rule.*
Using the rules in Table 3A, shapes B and C of Figure 1 are very-similar since they are the same in
terms of pointiness, point-direction, and area. On the other hand, shapes A and C are less-similar

as they only have the same area.

In addition to the rules characterized in Table 3A, LO includes shape naming rules (Table 3B).
These rules match shapes against one or more prototypical instances for a shape name, rather than
against symbolic descriptions of the shape names. Thus, a rule to recognize a triangle would look
more like rule 3.11 than the more commonly accepted rule 3.12. As suggested by property (3) of

Table 1, the shape naming rules participate in similarity judgments in L@ in the same manner as

*Feature counting rules are actually expressed in the form “A is true if N out of these M antecedents are true.”
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the visual features. So, the recognition that shapes A and B in Figure 1 are both quadrilaterals

would count no more than shapes B and C having the same area.

To make explicit the relation between pairs and between levels of similarity as determined by
the feature counting rules, LY must also have rules similar to those in Table 3C. Using the Tules
in Table 3 it would be possible to conclude that, for Figure 1, the pair BC is the most similar as

BC is very similar while neither AB nor AC is very similar.

Details of the implementation  The rules presented in Table 3 have been expressed using
variables for the sake of brevity. However, KBANN currently cannot handle variables. This has two
effects. First, rules must be explicitly repeated for each pair of shapes. Hence, L@ contains about
250 rules. Second, it is possible for an ANN to learn to treat each pair of shapes differently. To
prevent this, ANNs are given explicit instructions that all pairs are to be looked at in the same

way. Within an ANN, this forces corresponding links to have equal weights.

In addition to the instruction to treat all pairs equally, the model is instructed to only make
changes to the ANN in places that correspond to rules that consider the shapes. That is, the ANN
can change neither the feature counting nor combining rules of Table 3. These two instructions
constrain the problem and, we argue, make the learning problem for the model very similar to the

problem faced by school children.

In addition to the 7 visual features, the model uses 13 symbolic features from proof geometry
such as number of sides, number of right angles. The 20 features have an average of 4.2 possible

values. (See Table 10 in the Appendix for a listing of all features and values.)

EXPERIMENT USING THE MODEL
As an initial experiment designed to test our model, we chose to train the model using two
different sets of training materials. This experiment was chosen to highlight the differences be-
tween our model and the van Hiele model. Specifically, the van Hiele model provides no basis for
distinguishing the effectiveness of two instructional sequences. By contrast, our model can test the

effectiveness of multiple instructional sequences through the independent presentation and testing

of each sequence.

For this experiment, we developed two sets of training shapes from which triads were selected.
On each learning trial, the model was freshly restarted so that learning based upon one training
set did not bias the other. The effectiveness of each training set was tested using a set of triads

drawn from a third collection of shapes.
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Figure 3: Representative textbook shapes.
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Figure 4: Representative shapes encountered using a modified version of LOGO.

Training Data  The first set of shapes, consisting of 36 items, was derived from the geometry
section of a fifth-grade textbook [Sobel, 1987]. The shapes (some of which appear in Figure 3) are
almost all oriented so that one side is horizontal. Following the presentation format of the textbook,
shapes with different number of sides were never presented in the same triads. The second set of
shapes (some of which appear in Figure 4) consists of 81 items which might be produced by a child
using a modified version of LoGgo. This “LoG0” set lacks the orientation bias of the “textbook” set

and allows for a free mixture of shapes in triads.

A collection of 33 triads were selected from each set to train the model. Using an equal number of
triads in the LoGO and textbook sets is probably unfair since LoGo affords students the opportunity
to see not only a more diverse set of shapes, but also to make more comparisons between shapes.
However, holding the number of training examples constant makes it possible to judge solely the

effect of the increased diversity that Loco makes possible.

Testing Data  The test set consists of 27 items each of which was used in a single triad. The
nine resulting triads depicted in Figure 5 have also been used to test the ideas of geometry of second
and fifth grade students [Lehrer et al., 1989]. The second grade sample consisted of 47 students
who were presented the these triads and asked to indicate which two were most alike and why. The
fifth grade sample consisted of 28 children who received two weeks of geometry instruction with

Logo.

RESULTS AND DISCUSSION
Results Table 4 presents the answers generated by the model and the modal choices of
children at each grade level. Responses by the model of “AB or AC” indicate that the model
considers the pair AB and AC to be equally similar. This occurs when the the similarity valuation

of two pairs of shapes differs by less than 5%. For the children’s responses “AB / BC” indicates



8 Learning Geometric Reasoning

A B C A B C
O O <5 s L
o 1 A I 11 = X =——
s A [T A s a O <<
J L7 OO &£ ¢ O A4 @™
s N\ U £
Figure 5: Triads used to test learning.
Response of Model After Children’s Response
Triad  “Correct” No “Textbook”  “LOGO” Second  Fifth Grade
Number Response | Training Triads Triads Grade with LOGO
1 AB BC BC BC BC AB / BC
2 AB BC BC AB BC AB
3 AB AC AC AB AC AC / AB
4 BC BC or AB BC BCor AB | BC/ AB BC
5 AB BC BC AB BC AB
6 AB BC AB BC 777 AB / BC
7 BC AC AC AB or AC AC AC
8 AB BC AB AB BC BC / AB
9 BC AC AC BC AB BC

Table 4: Results of training.

that AB and BC were, respectively, the first and second most common responses. “??7?” indicates

that all responses were equally common.

Using only the conception of geometry expressed in L@, the model failed to uniquely identify
the “correct” most similar pair for all of the testing triads. After training on the textbook examples,
the model correctly classified three of the nine testing triads. After training on the Loco examples,
the model was correct on five of the nine test triads and uncertain between the correct answer and

an incorrect answer on one other triad.

Responses of the model and children  As might be expected, before training the model,
L® matched the modal choices of the second grade sample for nearly all nine triads. This merely

indicates that the proposed starting point for the model has an empirical basis.

Table 4 shows a similarity between the answers generated by the model after LoGo training and

the responses of fifth graders after using Loco. On the seven triads for which the model provided
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definite answers, that answer agrees with the most common response of the fifth graders on three
triads and with their second most common response on the remaining four triads. When the model

did not provide a single answer, one of the two pairs selected by the model was the most common

response of the fifth graders.

It should be noted that the LoGo training data are being compared to a group of students who
used Logo for a comparatively brief duration. Closer matches might occur with a longer exposure
(e.g., our training set may be overestimating what the children actually generated, especially for
triangles). On the other hand, the textbook examples may be overrepresented because they were
arranged in a context for training that was probably more extensive than that provided by the
text. (This would not be true for LoGO because one can generate multiple instances on the screen

for comparison.)

Analysis of learning by the model Our model allows deeper comparisons than mere
number of test examples correct because the ANN following learning can be understood through
comparison to its starting state [Towell et al., 1990]. Our plans are to use this sort of analysis as
the basis for detailed comparisons of learning by the model and by children. However, the analysis

presented here looks only to explain why the model acts as it does after learning.

For example, after LOGO training the model was incorrect on triad 1 because although it learned
to ignore slanty lines and pointiness, the model continued to rely upon tilted. To correct this error,
triads could be added to the training set which highlight the importance all angles congruent and
all sides congruent and the irrelevance of tilted. Also after LoGo training, the model was correct
on triad 8 because it applied a newly learned feature convezity while ignoring features such as
pointiness and area. The model was unable to make unique decisions on triads 6 and 7 because
it mixed visual with symbolic features when making its decisions. Thus, the model acts as if is at

van Hiele level 0 on triad 1, level 1 on triad 8, and somewhere between on triads 6 and 7.

Further analysis of the model after LoGO training suggests that it began to discover the sort
of relationships characteristic of van Hiele level 2. For instance, consideration of the number of
sides was clearly linked to consideration of the number of angles. In other words, the network
learned that these two features, which have no necessary relation, are the same for closed figures.

So, depending on the problem, the model might give a response characteristic of any of van Hiele

levels 0, 1, or 2 or some combination of these levels.



10 Learning Geometric Reasoning

Analysis of the model after training on the textbook triads reveals that these triads largely
failed to move the model towards level 1. While the model learned to ignore the visual features
area and point direction, it still relied upon other visual features such as pointy and 2 long and 2
short sides. These changes can be traced directly to the characteristics of the textbook training
set. Point direction and area are eliminated because the textbook set makes this contrast quite
effectively. Conversely, pointy remained significant because triangles which are all pointy were never
presented in a triad with pointy non-triangles. Hence, the model never learned that a pair of figures

can be pointy and yet not be similar in a meaningful way.

Despite the inability of the textbook examples to move the model towards level 1, the model
learned rules characteristic of level 2. For instance, a rule developed for recognizing squares which
used a combination of number of right angles, all angles equal and number of lines of symmetry.
Unfortunately, while this rule indicated that the pair AB for test triad 1 was the most similar, it

was overshadowed by the judgments of visual features.

CURRENT RESEARCH ISSUES

Rules such as 3.11 are intended to let the model recognize shapes by relationship to prototypes
and to treat these shape names as equivalent to other visual features. However, these shape-naming
rules were never generalized. As a result, shape names did not acquire diagnostic significance under
either set of training examples. Nevertheless, after LoGo training the model learned relationships
outside of the provided shape naming rules which were specific to pentagons, hexagons, and oc-
tagons. Thus, the network was able to learn to general shape definitions, but was unable to do so
from the supplied prototypes. We are investigating how the model can be modified to encourage
the use and modification of the shape prototypes. One approach we intend to pursue is to directly
train the hidden units related to the shape-naming rules. Through this explicit training, the shape
naming rules should generalize from the supplied prototypes.

This explicit training of shape naming will allow us to modify the training style for textbook
shapes to more closely reflect the content of textbooks. Realistically, textbooks do not present
triads; instead single shapes are presented and their most specific name is given. The type of
training implied by textbook presentation style is not possible for the model as described in this

paper. As a result, future comparisons of textbook and LoGo training might be more accurate.

Finally, we plan expand significantly on the comparison of the development of geometric reason-

ing in our model and in children. Initially, this effort will involve making more detailed comparisons
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of responses from our model and from children on sets of test triads as suggested in the discussion
section. Following this work, we plan to simulate actual instruction given to children and compare
the learning of the model to that of children. Part of this effort will require augmenting our model
with the ability to add new rules after training has commenced. Through this addition, we will be

able use our model to test the combined effect of direct instruction with example presentation.

CONCLUSIONS
In the introduction, we proposed a list of five necessary properties of a model of geometry
learning (Table 1) and argued that the van Hiele model does not have these properties. Subsequently
we proposed a model for geometry learning based upon the KBANN machine learning algorithm. In
the course of this paper we have shown that our model has four of the five properties, and have

suggested that enhancements to our model that will give it all five properties.

We also proposed that a model should be able to make specific suggestions about the content of
classroom instruction and criticized the van Hiele model for its inability to do so. In contrast, the
experiment showed that, using our model, it is possible to determine the effectiveness of a training

sequence and to make specific pedagogical recommendations.
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APPENDIX — Complete Listing of Rules and Features

name(triangle,?obj)

name(triangle,?obj)

name(triangle,?obj)

name(triangle,?obj)

name(triangle,?obj)

name(triangle,?obj)

name(pentagon,?obj)

name(pentagon,?obj)

name(hexagon,?obj)

name(hexagon,?obj)

name(quadrilateral,?obj)

name(quadrilateral,?obj)

tilted(?o0bj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,somewhat), point-direction(?obj,up),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,very), point-direction(?obj,up),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,little),
pointy(?obj,somewhat), point-direction(?obj,right),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?0bj,0), slanty-lines(?obj,yes), area(?obj,big),
pointy(?obj,somewhat), point-direction(?obj,up),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no0).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,very), point-direction(?obj,down),
shape(?obj,skinny), 2-long-and-2-short-sides(?obj,n0).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,little),
pointy(?obj,somewhat), point-direction(?obj,down),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?0bj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,n0).
tilted(?0bj,0), slanty-lines(?obj,yes), area(?obj,large),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).

tilted(70bj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,large),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(?obj,no), area(?obj,big),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(?obj,no), area(?obj,medium),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).

Table 5: Shape naming rules — part I.
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name(square,?obj) - tilted(?0bj,0), slanty-lines(?obj,no0), area(?obj,medium),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).

name(square,?obj) - tilted(?obj,0), slanty-lines(?obj,no), area(?obj,big),

name(rectangle,?obj)

name(rectangle,?obj)

name(rectangle,?obj)

name(rhombus,?obj)

name(rhombus,?obj)

name(parallelogram,?obj) :-

name(parallelogram,?obj)

name(parallelogram,?obj) :-

name(trapezoid,?obj)

name(trapezoid,?obj)

name(trapezoid,?obj)

pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no0).

tilted(?obj,0), slanty-lines(?obj,no0), area(?obj,medium),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,yes).
tilted(?0bj,0), slanty-lines(?obj,no), area(?obj,medium),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,skinny), 2-long-and-2-short-sides(?obj,yes).
tilted(?obj,0), slanty-lines(?obj,no0), area(?obj,medium),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,fat), 2-long-and-2-short-sides(?obj,yes).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,somewhat), point-direction(?obj,right),
shape(7obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,little),
pointy(?obj,somewhat), point-direction(?obj,up),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,somewhat), point-direction(?obj,left),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,yes).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,big),
pointy(?obj,somewhat), point-direction(?obj,right),
shape(?obj,fat), 2-long-and-2-short-sides(?obj,yes).
tilted(?0bj,0), slanty-lines(?obj,yes), area(?obj,little),
pointy(?obj,very), point-direction(?obj,left),
shape(?obj,skinny), 2-long-and-2-short-sides(?obj,yes).
tilted(?0bj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,very), point-direction(?obj,right),
shape(?obj,medium), 2-long-and-2-short-sides(%obj,no).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,somewhat), point-direction(?obj,up),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,big),
pointy(?obj,somewhat), point-direction(?obj,left),
shape(?obj,fat), 2-long-and-2-short-sides(?obj,no).

Table 6:

Shape naming rules — part II.
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same-name(?objl,?obj2) - name(?nme,?objl), name(?nme,?obj2).
same-tilted(?obj1,%0bj2) - tilted(?obj1,?tlt), tilted(?obj2,?tlt).
same-slanty-lines(?obj1,?0bj2) i-  slanty-lines(?obj1,%slant), slanty-lines(7obj2,?slany).
same-area(?objl,?objz) - area(?objl,?area), (?obj2,?area).
same-pointy(?objl,?obj2) - pointy(?objl,?pty), pointy(?obj2,?pty).
same-point-direction(?obj1,%bj2) :- point-direction(?obj1,?pd), point-direction(?obj2,?pd)
same-shape(?obj1,?0bj2) :- shape(7obj1,?shp), shape(?obj2,?shp).
same-2-2(?0bj1,?0bj2) :-  2-long-and-2-short-sides(?obj1,?two),
2-long-and-2-short-sides(?obj2,?two).

Table 7: Feature counting rules.

Let 8-Antecedents represent the following set of eight antecedents:
same-2-2(?obj1,?0bj2), same-shape(?obj1,%0bj2),
same-point-direction(?obj1,mkvobj2), same-pointy(?obj1,%0bj2),
same-area(?objl,?0bj2), same-slanty-lines(?obj1,?obj2),
same-tilted(?obj1,%0bj2), same-name(?obj1,?o0bj2)

similarity(?obj1,?0bj2,very) - n-true-antecedents(7, 8-Antecedents).
similarity(?obj1,?0bj2,quite) - n-true-antecedents(6, 8-Antecedents).
similarity(?obj1,?obj2,mostly) -  n-true-antecedents(5, 8-Antecedents).
similarity(?obj1,?0bj2,fairly) - n-true-antecedents(4, 8-Antecedents).
similarity(?obj1,?obj2,sort-of ) - n-true-antecedents(3, 8-Antecedents).

similarity(?obj1,?obj2,not-very) :- n-true-antecedents(2,8-Antecedents).

Table 8: Similarity recognition rules.

most-similar-pair(?obj1,?0bj2) :- similarity(?obj1,?obj2,very),
not similarity(?obj1,?0bj3,very),
not similarity(?obj3,?obj2,very).
most-similar-pair(?obj1,?0bj2) :- similarity(?obj1,?obj2,quite),
not similarity(?obj1,?0bj3,quite),
not similarity(?obj3,?obj2,quite).
most-similar-pair(?obj1,?obj2) :-  similarity(?obj1,?obj2,mostly),
not similarity(?obj1,?0bj3,mostly),
not similarity(?obj3,?obj2,mostly).
most-similar-pair(?obj1,?obj2) :- similarity(?obj1,?obj2,fairly),
not similarity(?obj1,?obj3,fairly),
not similarity(?obj3,?obj2,fairly).
most-similar-pair(?obj1,?bj2) :- similarity(?obj1,?0bj2,s01t-0f),
not similarity(?obj1,?obj3,sort-of ),
not similarity(?obj3,%bj2,sort-of ).
most-similar-pair(?obj1,?0bj2) :- similarity(?obj1,?0bj2,not-very),
not similarity(?obj1,?0bj3,not-very),
not similarity(?obj3,?obj2,not-very).

Table 9: Combining rules.
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Feature Name Possible Values

Visual Features

Tilted 0 10 20 30 40

Slanty Yes No

Area Little Medium Big

Shape Skinny Fat Medium
Pointy Yes No

Point Direction None Up Down Right Left
2 long and 2 short sides Yes No

Symbolic Features

Convex Yes No
Number of Sides 345638
Number of Angles 34568
Number of Right Angles 01234
Number of Pairs of Parallel Sides 01234
Number of Pairs of Equal Opposite Angles 01234
Adajacent Angles Sum to 180 Yes No
Number of Pairs of Opposite Sides Equal 01234
Number of Lines of Symmetry 01234568
All Sides Equal Yes No

All Angles Equal Yes No
Number of Equal Sides 0234568
Number of Equal Angles 0234568

Table 10: Features and their possible values.




