RESTRICTED FETCH&® OPERATIONS
FOR PARALLEL PROCESSING

by
Gurindar S. Sohi

James E. Smith
James R. Goodman

Computer Sciences Technical Report #922
March 1990

Appeared in the

International Conference on Supercomputing

Heraklion-Crete, Greece
June, 1989.

Restricted Fetch&® Operations for Parallel Processing

Gurindar S. Sohi
Computer Sciences Department

James E. Smith
Department of Electrical

James R. Goodman
Computer Sciences Department

and Computer Engineering

University of Wisconsin-Madison
1210 W. Dayton Street
Madison, WI 53706

Abstract

This paper discusses a restricted form of the general
Fetch&® operation and how the restricted form can be
combined. In this restricted form, all processors partici-
pating in the combining have identical Fetch&® opera-
tions. Most applications of Fetch&® proposed in the
literature satisfy the restrictions imposed. We show how
this restricted form of Fetch&® allows an easy imple-
mentation of combining, especially in bus-based mul-
tiprocessors and multiprocessors with a separate syn-
chronization memory. Applications of the proposed res-
tricted Fetch&® operation are also considered.

1. Introduction

For scalable parallel processing, it is essential that
systems be designed without serial bottlenecks. In pro-
posed parallel processing systems, serial bottlenecks are
often associated with access to shared resources.
Because shared variables held in memory are typically
used for controlling access to shared resources, the serial
botilenecks manifest themselves as contention for the
same memory location, i.e., a “hotspot” [11].

To avoid such serial bottlenecks due to memory
hotspots, it has been proposed that the Fetch&® opera-
tion be used as a fundamental synchronization operation
[1,5]. The Fetch& ®(X, C) operation indivisibly reads
the value at memory location X, performs the binary @
operation with the value at X and C, and places the
result back into memory location X. If @ is an associa-
tive and commutative operation, then multiple Fetch&®
operations directed at the same memory location can be
combined into a single request by the interconnection
network [1]. An important special case of Fetch®
occurs when the & operation simply returns the value of
X. This corresponds to a memory load operation. Com-
bining operations of this type results in a broadcast of
the value at X. For synchronization, the more useful
Fetch&® operation is a Fetch&Add [1].

To combine multiple Fetch&® operations,
hardware combining networks have been proposed, but
none has been constructed for a large-scale system (64
processors or more). It was initially proposed that
hardware combining be used in the IBM RP3 [12], but
the technology used for the RP3 interconnection net-
work made the implementation prohibitively expensive,
and it was not completed.

Cheaper implementations have been proposed for
SIMD environments but the applicability of the cheaper
implementation to a MIMD environment is not clear [9].
By replacing a single synchronization variable with a
logical hierarchy of variables stored in memory, com-
bining requests through levels of the hierarchy can be
performed by software. These software combining trees
have been proposed for barrier synchronization opera-
tions in Cedar [16]; a more general software combining
Fetch&® algorithm has been proposed for Multicube
[4]. However, efficient software combining algorithms
for general Fetch&® operations and their effectiveness
are still open research questions.

Based on the existing literature, it is clear that an
efficient, cost-effective implementation for a combining
Fetch&® (or an equivalent) is highly desirable, We
emphasize that the implementation of the selected primi-
tive should be: i) applicable for a wide range of sitma-
tions, i.e., it should be able to eliminate most (or all)
potential serial bottlenecks involving shared variables
and ii) cost-effective, i.e., the benefit should be com-
mensurate with the complexity. In this paper, we
present a solution that has both features. The main idea
of the proposed solution is that by using a restricted
form of the general Fetch&® primitive, we can imple-
ment the combining operations locally in the processors,
without expensive combining hardware in the
processor-memory interconnection network,

The rest of this paper is organized as follows. In
section 2, we describe a restricted form of the general
Fetch&® primitive that is the backbone of our paper.

We present the basic idea that facilitates a cheap
hardware implementation, discuss potential implementa-
tions and the limitations of the restricted primitive. In
section 3 we present and discuss some example applica-
tion areas and in section 4 we present concluding
remarks.

2. A Restricted Form of Fetch&®

2.1. Background

Consider the gencral form of the Fetch&®
instruction, F& ®(X, ¢;) [5]. To implement this instruc-
tion, we need to specify three things explicitly: i) the
operation (®) to be carried out, ii) the variable X on
which the operation is to be carried out and iii) the
operand e;. In order for two Fetch&® instructions to be
combinable, they must operate on the same variable X
and perform the same operation ®. Furthermore, ®
must be an associative and commutative operation.

Now consider the operand ¢; of the F&D(X, ¢;)
issued by processor P;. In its complete generality, the
operand ¢; can be different from the operand e; of
instruction F&®(X, e;) issued by processor P; , and the
two can be combined used a hardware combining net-
work. However, in most practical applications of the
Fetch&® instruction in parallel processing, e; =e; for
arbitrary P; and P; [1,6]. For example, the Fetch&®
instructions commonly used for parallel queue manage-
ment are Fetch&Add(QueueHead, EntrySize) and
Fetch&Add (QueueTail, EntrySize), where EntrySize is
a constant, and those for barrier synchronization are
Fetch&Add (Var, —1). This observation that e; for all
processors P; executing F&D(X, ¢;) is the same is a key
to a cheaper implementation of a combining Fetch&®
instruction in a restricted (though widely applicable)
form. In this restricted form of the Fetch&® instruction,
RFE&®(X, C), all processors perform the same operation
with the same operand (C) on the variable X. Thus, a
restricted Fetch&Add (X, C) operation is the same as a
Fetch&Increment by a constant (C) instruction.

2.2. Operation of Restricted Fetch&® (X, C)

Let us suppose that the processing system consists
of N processors, and M(M<N) processors issue a
RF&®X,C) instruction. To combine the M
RF&®(X, C) instructions directed at a variable X, the
only information we need to know is which M proces-
sors have issued the RF&®(X, C) instruction since all
processors have the same operand C. Thus, if every pro-
cessor knows which M processors have issued the
RF&®(X, C) instruction, then using a preassigned prior-

ity scheme!, each one of the participating M processors
can carry out an appropriate number of RF&D(X, C)
instructions locally and obtain a unique value of X just
as if the RF&D(X, C) operation had been carried out
using a combining network. This process is best illus-
trated by an example.

Consider a multiprocessor with 4 processors, P,
P,, P5 and P,4. Suppose that 3 processors are ready to
execute a RF&®(X, C) instruction. The three values of
X that represent a serialization of the instructions are:

V, =X®0(C)
V, =XO(COC)
V3 =XO(CPCOC)

These values must now be assigned to the three proces-
sors to complete the implementation of the 3
RF&®(X, C) instructions. Our general strategy for
implementing these operations, without a combining
network, is the following. By interacting with one
another (via mechanisms to be described later) all the
processors inform the others of their intention to execute
the same RF&®(X, C) instruction. Once a processor
knows which other processors are also executing the
same instruction, it can determine how many times it
must apply the © operation to obtain a unique value (C,
COC or COCOC in the above example) by determining
its position in the overall priority chain. One processor
takes the responsibility of fetching X from the shared
memory (or wherever it exists), and/or updating X with
the final value. The memory could also be responsible
for this instead. Once X has been fetched, it can be
broadcast to all processors participating in the combin-
ing operation which in turn can carry out the final phase
of the RF&®(X, C) instruction locally. Thus, the vari-
able X is accessed and updated only once and each pro-
cessor gets a unique value of X, just as might occur in a
combining network.

In the above example, suppose that processors P 1,
P and P, initiated the RF&®(X, C) instructions and
suppose that the processors are prioritized as Py, P,, P4
and P,. All processors realize that Py, P3, and P, are
participating in a combinable RF&®(X, C) instruction.
Since P; has no processors with ‘‘a higher priority”
also carrying the RF&®P(X,C) instruction, it takes
responsibility for fetching X for all processors (if it does

"The use of the word **priority’’ may be a bit misleading,
All that we need do is define and implement a serial ordering
of the processors that are participating in the combining opera-
tion. In this paper, by prioritization we mean the enforcing of
an arbitrary serial order, and by priorities we mean the relative
positions in the serial order. Note that the ordering need not be
static.

not exist locally), and calculating V;. P53 knows that
one other processor with ‘‘a higher priority’’ has issued
a RF&®(X, C) instruction and, therefore, it is responsi-
ble for computing V, once X is known and using V, as
its result of the RF&®(X, C) instruction. Finally, P,
computes V4 locally, and updates X with the new value
V3. If the three processors generating RF&P(X, C)
instructions were P, P, and P then, with the above
prioritization scheme, P, P, and P; would compute
and receive Vi, V, and V3, respectively with P, fetch-
ing X from its remote location and distributing the value
to all participating processors and, for example, Pj
updating the remote value of X.

In general, to implement the RF& ®(X, C) instruc-
tion with combining, each processor needs to determine
which other processors are participating in the combin-
ing operation and each processor needs to know the old
value of X (it could, of course, compute the old value
from the new). Then, each processor can compute and
use a unique value of X locally, based upon its position
(with respect to others participating in the combining
operation) in a preassigned priority chain (or serial
order). Given the basic principle of having each proces-
sor determine its position in the serial order by determin-
ing how many higher priority processors are participat-
ing, let us now consider some hardware implementations
of RF& DX, C).

2.3. Implementations of Restricted Fetch&® (X, C)

To implement a combining RF& (X, C), we need
to solve two problems: i) determining which processors
are executing the RF&®(X, C) instruction and ii) con-
veying this information to all the participating proces-
Sors.

To solve the first problem, some encoding of the
processors participating in the operation is needed.

Since there are a total of N processors, each of which
could be participating in the operation, there are 2 pos-
sible combinations and a minimum of N bits is needed?.
A simple N-bit encoding is the unary encoding in which
bit i is associated with processor P;. P; sets bit i if it is
participating in the operation and resets it if it is not.

The second problem is easily solved by a broad-
cast interconnection network such as a bus. In fact, an
N-bit-wide bus provides an easy solution to both prob-
lems; let us illustrate with an example.

Consider the 4-processor system of Figure 1. The
processors are interconnected by a 4-bit wide bus with
lines Sy, §1, § and §4. For purpose of illustration, we
shall assume that this bus is used solely for the purpose
of implementing combinable RF&®(X, C) operations.
In general, this could be a separate synchronization bus,
or even the primary interprocessor interconnect (as in a
bus-based multiprocessor). Each processor monitors all
lines of the bus and only processor P; can write on line i
of the bus. When processor P; wants to carry out a
RF&®(X, C) operation, it grabs the bus and informs the
other processors of its intentions. In the process, it also
informs the other processors about the operation @ and
values of X and C (the broadcast of C may not be needed
if the possible values of C that could be used are res-
tricted). After this step, all processors interested in par-
ticipating in the combining RF & ®(X, C) operation raise
their respective line on the bus. In the next step, by
determining which processors have stated their

2Note that theoretical encodings (such as a Huffman en-
coding) that require less than N bits on the average might be
possible if particular combinations of processors participating
in combining operations are more frequent than other combina-
tions. However, we shall not consider them in this paper.

Py P,

Py P

Figure 1: A 4-Processor System with a Broadcast Combining Bus

intentions about participating in the combining opera-
tion, each processor can carry out its RF&DX, C)
operation locally as mentioned earlier. In this manner,
up to N RF&®(X, C) operations can be combined in a
single bus cycle, where N is the smaller of the number of
lines in the bus or the number of processors that are
monitoring the bus. As we shall see in section 3.1, most
of the hardware needed to implement these operations
already exists in commercial bus-based multiprocessors,
and this scheme can be used in such processors with lit-

tle hardware modifications?.

With the above implementation, the number of
lines on the bus needs to be as large as the total number
of processors participating to achieve a single-cycle
combining operation. If the width of the bus is smaller
that the number of processors connected to it, we can
combine RF&D(X, C) operations generated by up to
PxD processors by breaking up the combining operation
into P phases, where D is the number of lines in the
broadcast bus. This is easily done by partitioning the
processors into P groups of D processors each and by
having processors in different groups state their inten-
tions to combine using the same D lines, but on different
phases of the broadcast-and-combine operation. Of
course, additional control logic is needed to keep track
of the different phases.

The broadcast capabilities of a single bus provide
an elegant implementation of a combining RF& DX, C)
operation since all processors can determine which oth-
ers are participating simply by monitoring the bus. If
combining is to be done with more processors than the
number that can be connected to a single bus, we need to
construct an alternate subsystem that achieves the pur-
pose of informing each processor about its relative posi-
tion in the overall serial ordering. This may be achieved
through a combination of the bus-based implementation
of RF&D(X, C) for M processors in a cluster connected
to a single bus and a conventional combining network
that connects several clusters. The conventional com-
bining network would treat each RF& DX, C) with M
combined operations from a single cluster as a single
F&OX, MC), where MC is the value that would have
the same effect as M applications of the restricted ©
operation, and combine the different F&P(X, MC)
requests from the different clusters to determine the
number of participants in the combining operation and
consequently determine the serial ordering. The task of
determining the serial ordering can also be achieved,
possibly more simply, by the use of parallel prefix com-
putation networks [3,7]. Such networks are currently

3In Figure 1, we have only shown 4 lines of the bus.
Since our scheme uses this bus to broadcast values of X and C,
the bus should be wide enough to accommodate both.

under study.

Once the serial ordering has been established, the
computation done by a ‘“‘processor’’ might be done
explicitly in software, in hardware or both. Further-
more, because of the constant operand C of the
RF&®(X, C) operation, the actual operations carried out
by the processor may be different from the & operation
to improve the efficiency of computation. For example,
the ith processor carrying out and F&Add(X, C) would
not add C to X i times but rather would add the result of
multiplying i and C to X.

2.4. Limitations of Restricted Fetch&® (X, C)

The RF&®(X,C) operation described above
suffers from two limitations when compared to a full-
fledged F&®(X,Y) operation implemented with a gen-
eral hardware combining network: a) it is of limited use
unless all the processors have the same value of ¥ and b)
the use of bandwidth-limited buses may restrict its use
for general-purpose combining. Let us elaborate on
these limitations.

As mentioned earlier, most existing examples of
F&D(X, ¢;) are actually RF&O(X, C) [1]. Some appli-
cations, such as updates to a database, clearly are not
[15]. Of the examples that are not, it is possible that
some of them could be altered to exploit a RF&®(X, C)
operation. For the remaining, the proposed implementa-
tion will not be as effective as a general combining net-
work. However, if many processors have the same
value of Y, some combining can be carried out in the
‘‘average’’ case by using the RF&®(X, C) implementa-
tion for the operation F&P(X,Y), combining all
requests with the same value of ¥ and repeating the pro-
cess until all processors have completed their
F&®X,Y) operation. Of course, in the worst case in
which all processors have different values of Y, no com-
bining can be carried out using the proposed
RF& DX, C) implementation whereas it could be car-
ried out in a more general combining network. Many
times, however, it may be possible to reformulate the
program to exploit an efficient RF& ®(X, C).

The second limitation is the bandwidth of the net-
work that implements the RE&®(X, C). Unlike a full-
fledged combining network embedded in the regular
data transfer network, the proposed network can not
combine requests ‘‘on the fly’’ as they pass through the
data transfer network (however, see the special case of
bus-based multiprocessors in section 3.1). Combinable
requests must be submitted explicitly to this network and
other non-combinable requests should not because of the
limited bandwidth of the network. This means that an a
priori distinction must be made between the two types
of requests. We do not perceive this to be a problem
since many hot-spot requests that benefit from Fetch&®
operations are typically to synchronization variables,
queue pointers, etc., that are known at compile time.

This distinction between combinable and non-
combinable requests with separate networks for each has
also been made in the IBM RP3 [12].

3. Applications of Restricted Fetch& D

In this section, we consider some applications of
the RF&P(X, C) operation and its proposed implemen-
tation. In sections 3.1 and 3.2, we shall illustrate the use
of RF&D(X, C) in two commercial multiprocessor sys-
tems and in sections 3.3 and 3.4, we shall illustrate its
use for the operations of barrier synchronization and
parallel queue management, respectively.

3.1. Single-Bus, Snooping Cache Multiprocessors

An application for which RF&®(X, C) is most
easily adapted is the single-bus, shared-memory mul-
tiprocessor employing a ‘‘snooping’’ cache coherence
protocol. Nearly all the hardware necessary to imple-
ment RF& DX, C) is already present in such a system.
In a snooping protocol, all processors observe every
memory operation, and intervene or accept data as
necessary to maintain a single, consistent view of the
shared memory. This means that every cache controller
observes every memory operation, checking its tag
memory for each bus operation. Itis only a small exten-
sion to recognize that a local pending bus operation is a
RF&®(X, C) to the same address as the one appearing
on the bus. When such a coincidence is recognized, the
controller must intervene to effect the combining.

The combining can be accomplished by defining a
new operation, different than either a read or a write,
i.e., there is data delivered to memory, and data
retumed. The data delivered is a unary representation of
M, the number of processors involved in the combined
operation. The data returned is X, the old value from
memory, (it could also be the new value).

In fact, neither the old or the new value need be
broadcast during the operation, since the participating
processors may be assumed to have the old value, and
they can compute the new value. However, other con-
trollers that are not participating in the current operation
must also perform the computation and update their
local cache line in order to participate in a later opera-
tion. Transmitting the new value of the line would not
only obviate such local computations among non-
participants, but would also allow processors to partici-
pate even if they didn’t already have the current value of
X in their cache.

3.2. CRAY X-MP- and Y-MP-Style Parallel Process-
ing

An effective technique for coordinating and syn-
chronizing multiprocessor systems is used in the CRAY
X-MP and Y-MP systems. Such a mechanism is
indispensable if fine- to medium-grain parallelism at the
loop level is to be exploited [8], i.e., if parallelism is to
be exploited by having each processor execute a loop
iteration (or some number of them). After each proces-
sor has executed its task, it must access and obtain a new
value for the loop iteration variable and begin executing
a new loop iteration.

To facilitate the exploitation of fine- and
medium-grain parallelism, the CRAY X-MP and Y-MP
multiprocessors use a small memory organized as a
shared register file. Data and control information can be
passed through this register file. Registers can contain
semaphore bits and can be operated upon with indivisi-
ble read-modify-write operations. In the actual imple-
mentations, the processors have their own identical
copies of the shared register file [14]. If one processor
wishes to modify the file, the change must be broadcast
to the others. By having their own copies, busy-waits on
control variables can be performed without using any
system resources. Arbitration logic is needed to deter-
mine the winning processor when more than one proces-
sor tries to update the same register at the same time.

Access to a loop index variable (stored in the
shared register file) is, at best, an O (V) operation (where
N is the number of processors) even with a complex
implementation that prevents all processors accessing a
lock for the register when it is released. If an implemen-
tation does not prevent all waiting processors from
attempting to access a lock when it is released, O (N?)
traffic can be generated on the system resources (see
explanation for a similar phenomenon in section 3.4).
This contention can increase the number of cycles spent
in the synchronization phase and consequently decrease
the benefit of fine-grain parallel processing [13].

To minimize the synchronization overhead (that
is, implement the synchronization in O(1) time) and still
carry out fine-grain parallel processing, a combining
RF&®(X, C) implementation can be used for the shared
register file (in fact, the proposed combining
RF&®(X, C) implementation is ideally suited for this
situation). After the processors have used the bus (that
connects the various copies of the shared register file) to
determine which processors and how many want to per-
form a specific operation, they can all simultaneously
read, modify and write their own copy of the variable in
parallel. Hence, no broadcast of the modified variable is
needed and, furthermore, only a single cycle (or a small
constant number of cycles) is needed for each processor
to obtain a unique copy of the loop index variable (as
opposed to a best-case of N serial cycles and complex
arbitration hardware that is needed for serializing

simultaneous writes without a combining operation).

3.3. Barrier Synchronization

Clearly, barrier synchronization can be imple-
mented with RF&®(X, C) by initializing X with a count
of the number of processors to be synchronized and hav-
ing each processor execute RF&D(X, —1). When the
count reaches zero, the processors are synchronized.

If barrier synchronization is the only form of syn-
chronization to be done, then an even more restricted
form of Fetch&® can be used, with a correspondingly
more efficient implementation. This is precisely what
was done in the Burroughs Flow Model Processor

(FMP) [2, 10].

The proposed FMP had a ‘‘coordinator’” unit with
connections to all the processors. Interrupts and small
diagnostic control messages could be sent from the coor-
dinator, but its primary function was to combine syn-
chronization information quickly from the 512 proces-
sors. The hardware combining could be made very
efficient because the type of operation was given as an
instruction to the coordinator, and all the enabled pro-
cessors involved in synchronization performed the same
operation.

The FMP provides an example of simple, fast
hardware combining due to restricting generality and
flexibility of synchronization mechanisms; the proposed
implementation of RF& ®(X, C) can also be viewed as a
generalization of this approach.

3.4. Parallel Queue Management

‘While barrier synchronization can also be imple-
mented with synchronization primitives other than
Fetch&d (since barrier synchronization does not require
any intermediate results), scalable, parallel queue
management is one application for which a combining
Fetch&Add is currently the only known solution [1].
With a combining Fetch&Add operation, parallel access
to queue elements can be carried out with O (1) accesses
to the queue pointers. Without a combining Fetch&Add,
access to the queue pointers can result in O(N?) traffic

on the processor-memory interconnect’. Even in the
best case, Q(N) serial read-modify-write cycles have to

“O(N?) traffic results when a lock must be set and
released to update the queue pointers. When a lock is released,
O(N) processors that are waiting to grab the lock attempt to
get it, thereby causing O(N) traffic each time the lock is
released. Only 1 processor can get the lock and the remaining
processors have to try again when the lock is released. This
leads to O(N?) accesses to the lock variable and O (N?) traffic
on the interconnect. Note that if any processors are spinning
over the interconnect the traffic can be much worse than
O3,

be performed on the queue pointers.

As mentioned earlier, a RF&D(X, C) operation
could be used in situations where each processor takes
from and adds to the queue, fixed-size portions of work.
We believe that this is, by far, the most common case.
When variable-sized portions of work are added and
deleted, partial combining (as in section 2.4) might be
possible.

A surprising (and pleasant) side-effect of using
RF&P(X, C) and the proposed combining hardware for
parallel queue management is that the resulting code for
inserting and deleting uniform-sized tasks into and from
the queue is actually simpler than the equivalent code
using a general Fetch&Add operation with a general
combining network. To illustrate this, we consider the
Insert procedure from [1].

Insert
If #Q0py= SIZE: Full

If F&A(#Qy,1)=SIZE:
F&A (#Qy,-1)
Full

MyI <- Mod(F&A(#I,-1), SIZE)
Q[MyI] <~ Data

F&RA(#0;, 1)

For simplicity, we have ignored the semaphores needed
to prevent the access of meaningless data.

In the above code, the first four lines (with 2 F&A
operations) are needed to prevent queue overflow. With
the RF&®P(X,C) implementation suggested in this
paper, the additional F&A operations to check for queue
overflow are not necessary. This is because each pro-
cessor can locally determine how many entries are being
inserted by processors higher up in the serial order and,
by comparing SIZE with the return value of the
RF&DPX,C) locally, insertions that would cause
overflow can be converted to NOPs and resubmitted
when SIZE changes. Of course, each processor would
have to maintain a valid local copy of SIZE. Maintain-
ing up-to-date local copies of SIZE is straightforward
if the RF&O(X, C) implementation also returns the total
number of processors participating in a RF&OX, C)
along with the number of higher priority processors so
that updates to SIZE can be carried out locally.

4. Conclusions

In this paper, we have discussed a restricted form,
RF&DX, C), of the general Fetch&® operation and
have shown how this restricted form can lead to simpler
and cheaper hardware combining implementations than
in the general case. In this restricted form, all participat-
ing processors have the same value of both operands of
the Fetch&® operation. We presented hardware imple-
mentations for RF& DX, C) and considered some prac-
tical situations in which a RF&P(X, C) operation can
perform the same functional tasks as the general
Fetch&® operation. The proposed implementation is
particularly suitable for bus-based snooping cache mul-
tiprocessors and other multiprocessors that have a small,
shared synchronization memory. While a RF&P(X, C)
operation does not have the complete functionality of
the general combining Fetch&® operation, we believe
that it constitutes a good engineering solution in many
situations and should be considered in systems where
hardware combining (especially to a synchronization
memory) is desirable but implementing a general com-
bining Fetch&® operation is too expensive.

Acknowledgments

This work was supported in part by NSF grants
CCR-8706722 and MIP-8604224. The authors would
also like to thank the anonymous reviewers for their
helpful comments.

References

[1] G. S. Almasi and A. Gottlieb, Highly Parallel

Computing. Redwood City, CA:
Benjamin/Cummings Publishing Company, Inc.,
1989.

2] Burroughs Corporation, ‘‘Final Report Numeri-
cal Aerodynamic Simulation Facility Feasibility
Study,”” March 1979,

[3] F. E. Fich, ‘“New Bounds for Parallel Prefix Cir-
cuits,”” in Proc. 15th Annual ACM Symposium
on Theory of Computing, Boston, MA, pp. 100-
109, April, 1983,

[4] J. R. Goodman, M. K. Vernon, and P. J. Woest,
““A Set of Efficient Synchronization Primitives
for a Large-Scale Shared-Memory Multiproces-
sor,”” in Proc. ASPLOS-III, Boston, MA, April
1989,

[51 A. Gottlieb, et al, *“The NYU Ultracomputer --
Designing a MIMD, Shared Memory Parallel
Machine,”” IEEE Transactions on Computers,
vol. C-32, pp. 175-189, February 1983.

(6]

(7]

(8]

9]

[10]

(11}

[12]

[13]

(14]

[15]

[16]

A. Gottlieb, B. D. Lubachevsky, and L. Rudolph,
‘“‘Basic Techniques for the Efficient Coordina-
tion of Very Large Numbers of Cooperating
Sequential Processors,”” ACM TOPLAS, vol. 5,
pp. 164-189, April 1983,

R. E. Ladner and M. J. Fischer, ‘‘Parallel Prefix
Computation,”” JACM, vol. 27, pp. 831-838, Oc-
tober 1980,

J. L. Larson, “*“Multitasking on the Cray X-MP-2
Multiprocessor,”” IEEE Computer, pp. 62-69,
1984,

G. J. Lipovski and P. Vaughn, ‘A Fetch-and-Op
Implementation for Parallel Computers,”” in
Proc. 15th Annual Symposium on Computer Ar-
chitecture, Honoluln, HI, pp. 384-392, June
1988.

S. F. Lundstrom, ‘‘Applications Considerations
in the System Design of Highly Concurrent Mul-
tiprocessors,”’ IEEE Transactions on Computers,
vol. C-36, pp. 1292-1309, November 1987.

G. F. Pfister and V. A. Norton, ‘*"Hot-Spot’ Con-
tention and Combining in Multistage Intercon-
nection Networks,”” JEEE Transactions on Com-
puters, vol. C-34, pp. 943-948, October 1985.

G: F. Pfister, et al, ‘““The IBM Research Parallel
Processor Prototype (RP3): introduction and ar-
chitecture,”” Proceedings 1985 International

Conference on Parallel Processing, pp. 764-
771, August 1985.

C. D. Polychronopoulos, ‘“The Impact of Run-
Time Overhead on Usable Parallelism,”
Proceedings 1988 International Conference on
Parallel Processing, August 1988.

R. D. Pribnow, ‘‘System for Multiprocessor
Communication Using Local and Common
Semaphore and Information Registers,”” United
States Patent 4,754,398, June 1988.

H. S. Stone, ‘“‘Database Applications of the
FETCH-AND-ADD Instruction,”” IEEE Tran-
sactions on Computers, vol. C-33, pp. 604-612,
July 1984.

P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie,
“Distributing Hot-Spot Addressing in Large
Scale Multiprocessors,”” IEEE Transactions on
Computers, vol. C-36, pp. 388-395, April 1987.

