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Abstract

We discuss prime number sieves, that is, sieve algorithms that find all the prime
numbers up to a bound n. We start with the classical Sieve of Eratosthenes, which uses
O(nloglogn) additions and O(n) bits of storage space. We then show how to improve
both the time and space used by this algorithm. The fastest known improvement
runs in O(n/loglogn) additions, and is due to Pritchard. The most space-efficient
algorithms use only O(y/n) bits.

1 Introduction.

In this paper we discuss algorithms to solve the following problem: Given a positive integer
n, find all the primes p < n. Perhaps the most famous algorithm to solve this problem is
due to the ancient librarian Eratosthenes, who lived about 2000 years ago. The Sieve of
Eratosthenes takes O(n log logn) additions using O(n) bits of storage to find all the primes
up to n.

The purpose of this paper is to give an introduction to the many improvements and
extensions of Eratosthenes’s sieve. These algorithms fall into one of two broad categories:

1. Algorithms which discard each composite integer exactly once, thus using only O(n)
arithmetic operations, and

2. Algorithms which use only O(y/n) space.
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We cover one algorithm of each type, illustrating the basic ideas involved and sketching the
running time analyses. We then show how to use wheels to improve the running times of
each by a factor of loglogn.

In 1977, Mairson [Mai77] published theoretically significant improvements to Eratos-
thenes’s sieve. He developed an algorithm which uses only O(n) arithmetic operations. thus
falling into category (1). Using a wheel, though he did not call it that, he improved this
to O(n/loglogn) operations. Unfortunately, he had to bring in multiplications to achieve
these bounds, and his space requirement jumped from O(n) bits for Eratosthenes’s sieve to
O(nlogn/loglogn) bits.

Since then, many researchers have designed category (1) algorithms, including Gries and
Misra [GM78], Barstow [Bar79], Misra [Mis81], Pritchard [Pri81, Pri82], and Bengelloun
[Ben86]. All of these can be improved to O(n/ loglogn) arithmetic operations using wheels.
Pritchard [Pri87] summarized these results.

Two of these are notable for additional reasons.

Pritchard [Pri81] showed how to replace multiplications with additions, thus improving
on the Sieve of Eratosthenes at the bit-complexity level. He also showed how to reduce the
storage requirements to O(n/loglogn) bits.

Bengelloun [Ben86] designed an algorithm which is incremental. "This algorithm main-
tains a data structure that stores sufficient information so that, if the primes up to n are
known, the primality of n + 1 can be determined in O(1) operations. This requires a total of
O(nlog n) bits of space. Such an algorithm is useful in applications like trial division where
an upper bound on the primes needed is not known beforehand.

We will not cover trading multiplications for additions or incremental sieve ideas here, in
the interest of length.

All of the category (1) algorithms listed above can find the primes up to one million in
under a minute on a DEC VAXstation 3200. So in practice, the real limitation is space, not
time.

Bays and Hudson [BH77] showed how to segment the Sieve of Eratosthenes to reduce
the space requirement to only O(y/n) bits while maintaining the same running time of
O(nloglogn) additions, thus giving a category (2) algorithm. Brent [Bre73] also used a
segmented sieve. Pritchard [Pri83] applied a wheel to give an algorithm using only O(n)
additions which allows segmentation. These segmented algorithms are the most useful in
practice for larger values of n.

It is an open question whether it is possible to get a sublinear arithmetic complexity for
this problem using only O(y/n) space, or in other words, find an algorithm falling into both
categories.

This paper is organized as follows. Alter some delinitions and lormnlas o section 20 we
review the Sieve of Eratosthenes in section 3. lu section 4, we give an exainple ol an algovithm
using O(n) arithmetic operations, that is, one in category (1). In section 5, we describe Bays
and Hudson’s segmented sieve algorithm, a category (2) algorithm. We then describe the
concept of a wheel in section 6; we give some examples and describe a very simple basic data
structure which makes them easy to use. We apply the wheel to our category (1) algorithm
giving one which uses O(n/ loglogn) arithmetic operations in section 7, and we also apply
the wheel to our category (2) algorithm giving Pritchard’s linear segmented wheel sicve in
section 8. We close with remarks in section 9 and implementation results in section 10.
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2  Some Definitions and Formulas.

In this section we place all the definitions in one place for easy reference, and we also quote
a few formulas.

Definitions

p is always a prime. p; is the ith prime, with p; = 2. If T is a set, then #T denotes its
cardinality.

¢(n) = #{z<n : ged(n,z)=1} (Euler’s function)

m(z) = #{p<z : pisprime}
k
A/[k = 1—[ pi
i=1
Wi = {z< My : ged(My,2) =1}  (the kth wheel)
Wen) = {z<n : ged(My,z) =1} (the kth wheel extended to n)

wk is an array used in implementing a data structure for the kth extended wheel. ['(p) 1s
the set of factors f used to generate multiples of the prime p. A is the length of a sieve
segment.

S is the set of integers sifted by a sieve algorithm, and s is an array-based implementation
of 5. next(S,z) gives the smallest y € S with y > =, and prev(S,z) gives the largest y € S
with y < z. For both functions we assume that 2 € 5.

Formulas

We make use of the following formulas whose proofs can be found in Hardy and Wright
[HW79, chapter 22]. All sums and products are only over primes.

p<z
1 '
Y = = logloga +0(1) (2)
p<le P
1 e i
107 - & - o)
p<z p log @ log @
Note that (3) is Mertens’s Theorem, where v is Euler’s constant and e=7 = 0.5614 - - -



3 The Sieve of Eratosthenes.

We will now review the Sieve of Eratosthenes. The algorithm works as follows.

We start with an array of bits of length n. We initialize each array location to 1, except
for position 1, which we set to 0. By the end of the algorithm, in position @ we will have a
0 if z is composite and a 1 if @ is prime. Starting with p = 2, for each prime p < V1. we set
position m to 0 for all multiples m of p, starting with p? and finishing with p - n/pl.

This gives the following algorithim.

Initialize:
s[1] := 05
for 7 := 2 to n do s[i] :=1;
Main Loop:
p=1
while p? < n do
Remove multiples:
for f:=p to [n/p| do: s[pf] :=0;
Find the next prime:
repeat p :=p+ 1 until s[p] = 1;
end while;

Let us analyze the complexity of this algorithm. It uses O(n) bits of space for the array s.
Initialization takes O(n) operations. The total time spent finding the next prime is equal
to the number of times we add one to p, which is at most O(y/n). Finally, the time spent
removing multiples is at most

. on
}_: — = Ofnloglogn)
pevi

using (2).

Notice that the array s can be thought of as a set S; an integer @ € S if s[z] = 1 and
z ¢ S if s|z] = 0. Thus, the algorithm starts with § = {2 : 2 <& < n}, and finishes with
S={p<n : pisprime }.

Let next(S,z) be the smallest element in S larger than x. For all our implementations.
we assume that z € S.

For a fixed prime p, we can also think of the integers f used to remove the multiple pf
as a set. Call this set F((p). For Eratosthenes’s sieve, we have F(p) ={f : p< [ < L/pl}
If n = 100, this gives us

F(2)=1{2,...,50} F(5)={5,...,20}
F(3)=1{3,...,33} F(7)={T,...,14}.

Il

Let us now rewrite the Sieve of Eratosthenes in the following abstract form.




Initialize:

S:={2,...,n}
Main loop:
pi=2

while p? < n do
Remove multiples:
for each f € F'(p) do
5= 5 (nf)
Find the next prime:
p := next(S,p)
end while;

Loop Invariant: If p = p;, then for all 2 € § with @ > p;, j <1 implies ged(z,p;) = L.

In our descriptions of the various algorithms which follow, we will use this abstract
algorithm as an outline. In other words, the variations on the Sieve of Eratosthenes differ
mainly in their implementations of the sets S and F(p).

4 A Linear Algorithm.

We now show how Eratosthenes’s sieve can be improved to use only a linear number of
arithmetic operations. The algorithm we present is largely due to Gries and Misra [GMTS],
though we use an idea or two from Pritchard [Prisl].

The problem with Eratosthenes’s sieve is that each composite integer v may be * crossed
off” the array s more than once, especially if ¢ has many divisors. In the terms ol ow
abstract algorithm, the set F(p) is larger than necessary. Our goal is to reduce F(p) to
contain only elements which must be there, so that we remove each composite integer from
S exactly once. If each removal uses O(1) steps, that will give us a linear algorithm.

Choosing F(p)

Every composite integer z, 2 < & < n, can be written uniquely in the form @ = p -/ such
that p is prime and f has no prime divisor smaller than p. This means that we will choose

Fp) = {f:p<f<in/pl, Yg<p, gedlq, f)=1}.

For example, if n = 100, we want the following for F/(p):

F(2) = {2,. )0}
F(3) = {3.5,7,9,...,33)
F(5) = {5,1, 11 13,17,19)
F(T) = {7.11,13)

The next question, then, is how do we compute F(p)? Well, in some sense. we alteady
have it. Consider S just before we remove multiples of p. By the loop invariant, 5 contains



precisely the primes up to p and integers between p and n which are not divisible by auy
prime below p. So, we simply compute

F(p) = Sn{z:p<a<n/pl}.

If $ were implemented as an array of bits, this computation is no faster than simply using
all values of f in this range, which is what the Sieve of Eratosthenes does. To fix this, we
implement S as a doubly linked list, and we use arrays for the implementation to allow us
to randomly access nodes in the list.

Implementing S

One way to implement S as a doubly linked list using an array is as follows (we use Pascal
notation).

type
srec = record
wn : boolean;
prev, next : integer;
end;
var s : array [1..n] of srec;

Then we implement the functions next(.S,z), which finds the next element in S
z for @ € S, prev(S, z), which gives the next smaller element of §, and remove(S
removes z from S, as follows.

arger than
), which

next(S,z) returns s{z].next;
prev(S,z) returns s[z].prev;

remove(S,z): s[z].in := false;
s[s[z].next].prev := s[z].prev;
s[s[z].prev].neat := s[x|.next;

So the next, prev, and remove functions all use Q1) avithimetic operations.

We leave the problem of initializing the array s to the reader.

The total space used by s is O(n log n) bits, because s has n nodes. and cach node stores
two integer pointers which require O(log n) bits.




The Algorithm

We have one more problem to solve, and that is to generate the elements of £'(p). [Lhe
simplest way is to start by setting f := p and repeatedly executing f := next(.S, f) until
f > |n/p). For each value taken by f, we remove pf from S.

There is a problem with this straight-forward approach, however; we are changing S
while using it to compute F(p). The elements in F'(p) may be removed from S before we've
had a chance to use them as values of f. For example, p* € F(p), but the first value of f.
which is p, causes pf = p® to be removed from S. Thus f can not later take the value p?,
which means p® is not removed, though it should be, and so on. There are three wavs to
avoid this:

1. Make a pass through 5 to find all the elements of F'(p) and copy them into an auxiliary
array. Then make a pass through this array to generate the values of f to remove pf
from S. This solution is due to Mairson [Mai77].

Q]

Instead of just removing pf from .S, remove p® f for e = 1,2,... until p° f is larger than
n. This works because those elements of F(p) which are removed from S prematurely
must be multiples of p. This solution is due to Gries and Misra [GMT8].

3. Find the largest element in F(p) and work down. This works since the elements
removed are pf > f, so those elements in F'(p) which are removed are removed after
they are used. This is due to Pritchard [Pri8l], and is the method we use.

This leads to the algorithm below.

Initialize:
initialize;
Main Loop:
p=2;
while p? < n do
Remove multiples:
Find the largest element of I'(p):
f=n
while p-next(S,f)< n do f:=next(5,f);
Loop down through the values of f:
repeat
remove(.S,pf);
f = prev($, 1)
until f < p;
Find the next prime:
p:=next(S,p);
end while;

As observed earlier, the space used by this algorithm is O(n log n) bits. The time, though, is

O(n) because each composite integer is crossed off exactly once, and the nu mber of operations
performed for each removal is O(1).



5 Segmentation.

Perhaps the most practical improvement to the Sieve of Eratosthenes is the idea of segmen-
tation. Bays and Hudson [BH77] describe the method in detail, and Brent [Bre73] also used
this method.

The idea is to not sieve the entire interval from 2 to n at once. lustead, sieve intervals
of length A one at a time, and alter n/A intervals have been sieved, we have tound all the
primes. So, the basic steps are

1. Find all the primes up to /n

2. l:=+/m;
While [ < n do:
Sieve the interval [ [+ 1...01+ A |;
li= 1+ A

Step 1 can be done with trial division or one of the methods described in the previous
sections. In Step 2, what I mean by “sieve the interval” is, for each prime p < J/n, cross off
the multiples of p in the interval currently being sieved. The first number to cross off for the
prime p in the interval [[+ 1,1+ A]is [+ p — (I mod p). Successive multiples of p are found
by just adding p.

Clearly the cost of step 1 is o(n). The space needed is at most ¥ < /mlogp = O(y/n)
using (1). The cost of step 2 is roughly

n Z ~— 4+l = O<nloglog‘n+%\/ﬁ>l

The space used is O(y/n + A). This suggests choosing A = Vi, which gives us the same
time complexity as the Sieve of Eratosthenes. The total space used is O(/n), as promised.

6 Wheels.

Before we can go on to describe the sublinear algorithm and the linear segmented algorithm,
we require the concept of a wheel. The idea is simple and elegant, and it is useful in algorithms
other than prime number sieves.

Let p; be the sth prime, with p; = 2. Let us define

k
A’-[Ic = Hpi
i=1

We = {2:0<z< M, ged(z, M) =1}
We(n) = {2 <n:ged(z, My) =1}

In other words, Wj denotes the integers between 0 and My — 1 which are velatively prime to
the first & primes. We will call W the kth wheel. and Wi(n) the Ath wheel extended to .




Wheels have several useful properties which we will need later.
k

log M, = Zlog i = O(ps)
=1

k , M,y M,
BW, = $(My) = z\szH<l——]—> _ @( M ) _ @(—-—i—>

i=1 pi log pk log log M,
#Wi(n) = O <_-_”__..>

log log M}
(See (1), (3)).
We will now describe a data structure for wheels. In a constant number of operations,
it will tell us whether or not an integer is in the extended wheel (is relatively prime to M)
and what the next largest element in the extended wheel is.

var wk : array [0..M) — 1] of integer;

For each @, 0 < & < My, wklz] = 0 if ged(z, My) # 1, and wklz] = g if ged(z, M) = 1,
where ¢ = y — = and y is the next largest element in the kth extended wheel. Notice that
wk[My — 1] = 2. Let us see some examples:

k= l, ]‘([1 = 2
x 0 1
wl[z] 0 2
k=2 My, =2-3=6:
T 0 1 2 3 4 5
w2[z] 0 4 0 0 0 2
k=3, Ms=2-3-5=30 (non-zero entries only)
T 1 7 11 13 17 19 23 29
w3[z] 6 4 2 4 2 . 6 2

To compute this data structure, we execute the following steps.
1. Use trial division to find the first & primes. Compute M.

2. Sieve the array wk so that wk[z] = 0 or 1 depending on whether ged(z, My) is 1. The
1 entries will be changed in the next step.

3. Set wk[My — 1] = 2, and then make a pass over wk starting from My — 1 going down.
Save the previous z such that wk[z] was nonzero. When the next smallest nonzero
entry is found, store the difference. As a check, the value of wk[1] should be pyy1 — 1.

It is not hard to see that the total cost for this is at most O(Myloglogpr) =
O(M, log loglog M}) steps. Alternatively, a ged algorithm could be used instead of a sieve
for a complexity of O(Mj log® M) = O(My - k*) bit operations.

If we set d = 1 and then repeat the operation d:=d + wk[d mod My}, d will take on all
the values in the extended kth wheel.



Also notice that if we want the previous element in the extended wheel, we can get this
using the wheel’s symmetry; the element previous to is 2 — wk[ M, — (v mod My)]. We will
not take advantage of this property here.

7 A Sublinear Algorithm.

We are now ready to convert our linear algorithm from section 4 to a sublinear algorithm
using wheels. The technique we describe below will work for almost any linear algorithm, and
certainly for most of those described in Pritchard’s article [Pri87]. Our algorithm consists of
the following steps.

1. Choose k as large as possible such that M < y/n. Find the first £ primes and compute
wkz] for all z < M.

o

Initialize the set S to the kth wheel extended to n. Recall S is implemented as a
doubly linked list using avravs as described in section 4.

d:=1,
repeat
S:=Su{d}

d = d + wk[d mod My];
until d > n;

3. Run the linear algorithm starting with p := next(5,1), which is just peyr.

4. Qutput S — {1} and the first & primes.

Notice that S is initialized to contain only O(n/loglogn) elements, so the phase of the
algorithm which uses the linear algorithm uses only O(n/loglogn) arithmetic operations.
Clearly this dominates the running time, so we have a sublinear algorithm.

Pritchard [Pri81] describes how to reduce the operations to only additions and how to
reduce the storage requirements. The main tricks for reducing the storage include:

o using differences instead of absolute addresses in the prevand nerl fields of <.

e using mapping functions to reduce the number ol nodes s to those onlv e the
extended wheel (as we described it, those not in the extended wheel are just wasted
space), and

e using a bit vector for the integers in the range n/ps to n, since none of these integers
are found in the sets F'(p), making the linked list structure on this interval unnecessary.

In practice, if space is a premium, then a segmented method should be used. So these tricks
are, for the most part, only of theoretical interest.
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8 A Linear Segmented Wheel Sieve.

Unfortunately, there is no apparent way to segment the linear and sublinear algorithms
presented in earlier sections, because they use a linked list representation for S (and hence
for F(p)). There is, however, a way to create a linear algorithm using segments and wheels.
This algorithm, called the segmented wheel sieve, is due to Pritchard [Pri83].

The idea is to generate the set F'(p) using the kth wheel, where we choose k so that M,
is about \/n as before. Then, when sieving each interval, we only sieve on the primes p with
e <p<+n.

Only those integers in the extended wheel which are not crossed off in this sieve process
are prime. To determine where to start “crossing off” for each prime p, we simply store the
last value of f used on the previous interval and use the wk array to find the next value
for f from the extended wheel. This gives us the following modifications to our segmernted
algorithm from in section 5.

Preprocessing:
1. Find the first & primes such that My ~ \/n and compute the array wk[z].
2. Find all the primes below \/n.

3. For each prime p; < +/n, ¢ > k, initialize factor[s] := p;.

Sieving the Interval [[+1,...,]1+ A]:

1. Initialize the array of length A to all zeros. Mark 1’s on the array for elements in

I/Vk(n).

2. For each prime p;, pr < pi < /n do
f = factor[i];
while pf <1+ A do
set position pf to 0
f = f + wk[f mod My
end while

factor(t] := f;

The total number of operations for this algorithm will be roughly

2.

pr<p<Vn

1 n

p loglogn = Ol

The total space used is: O(y/n) for the array wk, plus O(y/n) for the primes below vn. plus
A = O(+/n) for the interval. This gives a total of O(y/n) bits.

Again, Pritchard shows how to remove the multiplications, though such techniques are
of doubtful practical value.
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9 Some Remarks.

I will make a few remarks.

o The Sieve of Eratosthenes, both the classical and segmented versions, can be easily
modified to factor all the integers up to n. The only change is to store a list of prime
divisors for each position in the array s instead of just one bit. For this to work, note
that F(p) must start with 1, and p is added to the list of every pth element in s.

o Luo’s recent algorithm [Luo89], is simply the Sieve of Eratosthenes with the 2nd wheel.
Its asymptotic time and space complexity are the same as that of Eratosthenes’s sieve,
though with a smaller constant of proportionality.

e Bengelloun’s incremental sieve [Ben86] uses a clever loop structure to genevate the
values of f and the primes p. For an excellent description ol this algorithm. see also
Pritchard’s article [Pri87].

e In those algorithms where Ay is chosen near \/n, notice that what we really want
is loglog My = O(loglogn). So, in fact, we could make M = exp[O(log? n)] for
0 < d < 1. For example we could choose k so that py is about Viogn giving d = 1/2.
In practice, choosing px equal to 7 or 11 is close to optimal. Anything too much larger
may make the array wk too large to be practical, since it is referenced frequently and
should fit in main memory.

o The kth extended wheel useful in trial division. First reduce n, the number to be
factored, modulo M}, to see if it is relatively prime to the first & primes. Then generate
wheel elements for use as trial divisors. This is a very nice compromise between trial
division by all numbers and only primes.

e For a parallel implementation, we can use the segmented sieve and assign each processor
intervals of length A. This is probably optimal for up to O(y/n) processors.




10 Implementation Results.

The bottom line in designing efficient algorithms is to make them fast in practice. With this
in mind, I implemented one example of each type of algorithm discussed in this paper: The
Sieve of Eratosthenes, Gries and Misra’s linear algorithm, Pritchard’s sublinear algorithm
(1), Bays and Hudson’s segmented sieve, and Pritchard’s linear segmented wheel sieve (2).
The results appear below.

I had each algorithm find all the primes up to n for n = 104, d =2.3,....9. m(n) gives
the number of primes up to n. Under each algorithm name is a list of times, in CPU seconds.
These columns give the time needed for that algorithm to find all the primes for that value
of n.

The first three algorithms were only run on values of n up to 10°%, for lack of space.
The limit of 10° for the others was chosen because the largest integer representable in one
machine word is around 2 x 10%; I wished to avoid extended precision arithmetic.

[ wrote the routines in Pascal, and the machine I used was a DEC VAXstation 3200
running Ultrix.

The results below suggest that to find all the primes below n for n up to about one
million, one should use the sieve of Eratosthenes; the faster methods are more difficult to
implement and the added complexity is not really justified. If n is much larger; either of the
segmented methods is good; Pritchard’s wheel sieve is a substantial improvement over Bays
and Hudson’s algorithm, but even for n = 10° the difference between the two is only about
1.25 hours.

Notice that Gries and Misra’s algorithm is not as fast as Eratosthenes’s, in spite of the
fact that Gries and Misra’s algorithm has a faster asymptotic running time (in arithmetic
operations). This discrepency can be attributed to the constant of proportionality in the
running times; Gries and Misra’s algorithm uses a linked list as the primary data structure,
and each step requires several pointer manipulations, whereas the sieve of Eratosthenes wou ks
with a simple array.

n m(n) Eratosthenes | Gries-Misra | Pritchard-1 | Bays-Hudson | Pritchaid-2
100 25 0.001 0.001 0.001 0.001 0.001
10° 168 0.008 0.013 0.005 0012 0.010
10* 1229 0.091 0.142 0.04 0.116 0.095
10° 9592 0.980 1.498 0.450 1.142 0.816
108 78498 10.180 15.730 4.680 11.900 8.380
107 664579 — — — 115.160 77.810
10% | 5761455 — — — 1149.520 795.730
10° | 50847534 — — — 12074.410 | 7666.480
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