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Program representation graphs are a recently introduced intermediate representation form for programs. In this paper,
we develop a mathematical semantics for these graphs by interpreting them as data-flow graphs. We also study the
relation between this semantics and the standard operational semantics of programs. We show that the semantics of the
program representation graphs is more defined than the program semantics and that for states on which a program ter-
minates normally, the PRG semantics is identical to the program semantics.
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1. INTRODUCTION

In this paper, we develop a mathematical semantics for program representation graphs (PRGs) and study its
relation to the standard (operational) semantics of programs. Program representation graphs are an inter-
mediate representation of programs, introduced by Yang et al. [Yang89a] in an algorithm for detecting pro-
gram components that exhibit identical execution behaviours. They combine features of static-single-
assignment forms (SSA forms) [Shapiro70a, Alpern88a, Cytron89a, Rosen88a] and program dependence
graphs (PDGs) [Kuck81a, Ferrante87a, Horwitz89a]. They have also been used in a new algorithm for
merging program variants[Yang89b].

Program dependence graphs have been used as an intermediate program representation in various appli-
cations such as vectorization, parallelization [Kuck81a], and merging program variants [Horwitz89a].
Horwitz et al. [Horwitz88a] were the first to address the question of whether PDGs were “adequate” as pro-
gram representations. They showed (for a simplified programming language) that if the program depen-
dence graphs of two programs are isomorphic, the programs are equivalent in the following sense: for any
initial state G, either both programs diverge or both halt with the same final state.

Such an equivalence theorem makes it reasonable to try to develop a semantics for program dependence
graphs that is consistent with the program semantics. In contrast to the indirect proof of the equivalence
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theorem given in [Horwitz88a], such a semantics would provide a direct proof of the theorem.

Two different semantics have so far been developed for PDGs (and thus each provides a direct proof of
the equivalence theorem). Selke [Selke89a] provides a graph rewriting semantics for PDGs. This seman-
tics represents computation steps as graph transformations. The dependence edges are used to make sure
that statements are executed in the right order. The store is embedded in the graph. When assignment state-
ments are executed, the relevant portions of the graph are updated to reflect the new value of the
corresponding variable. Evaluation of if predicates results in deletion of the part of the graph representing
the true or false branch, as appropriate. Evaluation of while predicates results in the deletion of the body of
the loop or creating a copy of it, as necessary.

Cartwright et al. [Cartwright89a] start with a non-strict generalization of the denotational semantics of
the programming language and use a staging analysis to decompose the meaning function into two func-
tions: a compiler function that transforms programs into code trees, which resemble PDGs, and an inter-
preter function for code trees. The interpreter function provides an operational semantics for code trees.

A different (and perhaps more natural) way to develop a semantics for program dependence graphs
would be to treat them as graphs of some data-flow programming language and use the conventional opera-
tional semantics of such programming languages. Although analogies between PDGs and data-flow graphs
have been made previously, this idea has not actually been formalized (i.e., to date no semantics has been
developed that interprets PDGs as data-flow graphs). In fact, there are some problems in doing so, as will
be explained in Section 4.

In this paper, we show that, with minor modifications, PRGs — as opposed to PDGs - are very natur-
ally interpreted as data-flow graphs. That is, we show how to develop a mathematical semantics for PRGs
by formalizing the analogy between PRGs and data-flow graphs. We create a set of possibly mutually
recursive equations that, as a function of the initial store, associate a sequence of values with each vertex
in the PRG. The semantics of the PRG is defined to be the least fixed point solution of these equations.
(This approach is similar to the one taken by Kahn [Kahn74a] in developing a semantics for a parallel pro-
gramming language.)

The data-flow semantics for PRGs can be restricted so as to give a semantics for PRGs as store-to-store
transformers. However, for some applications of PRGs, such as merging program variants, the more gen-
eral semantic definition is preferable. The more general semantic definition also leads to a stronger form of
the equivalence theorem for PRGs that relates the sequences of values computed at corresponding vertices
of programs that have isomorphic PRGs.

In particular, we show that (1) the sequence of values computed at any program point (according to the
operational semantics) is, in general, a prefix of the sequence associated with that program point by the
PRG semantics and (2) for normally terminating program executions the two sequences are identical. This
yields the following equivalence theorem: If the PRGs of two programs are isomorphic, then for any initial
state o, either (1) both programs terminate normally, and the sequence of values computed at correspond-
ing vertices are equal or (2) neither program terminates normally and for any pair of corresponding ver-
tices, the sequence of values computed at one of them will be a prefix of the sequence of values computed
at the other. Indirect proofs of such equivalence theorems have been previously derived for PDGs
[Reps89a] and PRGs [Yang89c]; this paper provides the first direct proof of the result.

The remainder of this paper is organized as follows: Section 2 describes the programming language
under consideration. Section 3 defines program representation graphs and Section 4 extends this definition.
Section 5 presents the semantics of PRGs, while Section 6 deals with various properties of the standard
semantics. Section 7 considers the relation between a program’s semantics and its PRG’s semantics.



2. The Programming Language Under Consideration

We are concerned with a programming language with the following characteristics: expressions contain
only scalar variables and constants; statements are either assignment statements, conditional statements,
while-loops, or end statements. An end statement, which can only appear at the end of a program, names
zero or more of the variables used in the program. The variables named in the end statement are those
whose final values are of interest to the programmer. An example program is shown in the upper left-hand
corner of Figure 1.

Our discussion of the language’s semantics is in terms of the following informal model of execution.
We assume a standard operational semantics for sequential execution; the statements and predicates of a
program are executed in the order specified by the program’s control flow graph; at any moment there is a
single locus of control; the execution of each assignment statement or predicate passes control to a single
successor; the execution of each assignment statement changes a global execution state. An execution of
the program on an initial state yields a (possibly infinite) sequence of values for each predicate and assign-
ment statement in the program; the i element in the sequence for program component ¢ consists of the
value computed when ¢ is executed for the i time.

3. Program Representation Graphs

As mentioned previously, PRGs combine features of SSA forms and PDGs. In the SSA form of a program,
special assignment statements (¢ assignments) are inserted so that exactly one assignment to a variable x,
either an assignment from the original program or a ¢ assignment, can reach a use of x from the original
program. The ¢ statements assign the value of a variable to itself; at most two assignments to a variable x
can reach the use of x in a ¢ statement. For instance, consider the following example program fragments:

L, x:=1 L, x =1
if p then if p then
L, x:=2 L, x =2
fi fi
L, =x+3 L, x = y(x)
L4 y =x+3

In the source program (on the left), both assignments to x at L; and L, can reach the use of x at L,; after
the insertion of “x := ¢,/(x)” at L5 (on the right), only the ¢ assignment to x can reach the use of x at L,.
Both assignments to x at L, and L, can reach the use of x at L,.

Different definitions of program dependence graphs have been given, depending on the intended applica-
tion; nevertheless, they are all variations on a theme introduced in [Kuck72a], and share the common
feature of having an explicit representation of data dependences. The program dependence graph defined
in [Ferrante87a] introduced the additional feature of an explicit representation for control dependences.
The program representation graph, defined below, has edges that represent control dependences and one
kind of data dependence, called flow dependence.

The program representation graph of a program P, denoted by Rp, is constructed in two steps. First an
augmented control flow graph is built and then the program representation graph is constructed from the
augmented control flow graph. An example program, its augmented control flow graph, and its program
representation graph are shown in Figure 1.



program Main

x:=1

while x < 11 do result := Initialize,, .,

sum = sum +x

x=x+1 w
od
result := result + sum

end(result) sum = q)enler(sum

= @)

while x < 11

result = Initialize, ., FinalUse (result)

Figure 1. An example program is shown on the top left. This example sums the integers 1 to 10 and adds the sum to
the variable result. On the right is the augmented control flow graph for the program. Note the absence of Initialize
and FinalUse vertices for sum and x and of a ¢,,;, vertex for x. On the bottom left is the program representation graph
for the program. Note that there is a control dependence edge from the while predicate x < 11 to itself. The boldface
arrows represent control dependence edges; thin arrows represent flow dependence edges. The label on each control
dependence edge — true or false — has been omitted.

Step I:

The control flow graph! of program P is augmented by adding Initialize, FinalUse, Gifs Oenrer» and Q. ver-
tices, as follows:

(1) A vertex labeled “x := Initialize,” is added at the beginning of the control flow graph for each vari-
able x that may be used before being defined in the program. If there are many Initialize vertices for

'In control flow graphs, vertices represent the program’s assignment statements and predicates; in addition, there are two additional
vertices, Entry and Exit, which represent the beginning and the end of the program. The Entry vertex is interpreted as an if predicate
that evaluates to true, and the whole program is interpreted as the frue branch of the if statement. See {Ferrante87a]. For the sake of
simplicity, we leave out the edge from Entry to Exit in the control flow graph.



a program, their relative order is not important as long as they come immediately after the Entry ver-
tex.

(2) A vertex labeled “FinalUse (x)” is added at the end of the control flow graph for each variable x that
appears in the end statement of the program. If there are many FinalUse vertices for a program, their
relative order is not important as long as they come immediately before the Exit vertex.

(3) For every variable x that is defined within an if statement, and that may be used before being
redefined after the if statement, a vertex labeled “x := ¢;(x)” is added immediately after the if state-
ment. If there are many ¢, vertices for an if statement, their relative order is not important as long as
they come immediately after the if statement.

(4) For every variable x that is defined inside a loop, and that may be used before being redefined inside
the loop or may be used before being redefined after the loop, a vertex labeled “x := ¢ ., (x)” is
added immediately before the predicate of the loop. If there are many ¢,,,, vertices for a loop, their
relative order is not important as long as they come immediately before the loop predicate. After the
insertion of ¢,,,., vertices, the first ¢,,,., vertex of a loop becomes the entry point of the loop.

(5) For every variable x that is defined inside a loop, and that may be used before being redefined after
the loop, a vertex labeled “x := ¢, (x)” is added immediately after the loop. If there are many ¢,,;
vertices for a loop, their relative order is not important as long as they come immediately after the
loop.

Note that ¢,,,,, vertices are placed inside of loops, but ¢,,;, vertices are placed outside of loops.

Step 2:

Next, the program representation graph is constructed from the angmented control flow graph. The ver-
tices of the program representation graph are those in the augmented control flow graph (except the Exit
vertex). Edges are of two kinds: control dependence edges and flow dependence edges.

A control dependence edge from a vertex u to a vertex v, denoted by u —> v, means that, during execu-
tion, whenever the predicate represented by u is evaluated and its value matches the label — true or false —
on the edge to v, then the program component represented by v will eventually be executed if the program
terminates normally. The source of a control dependence edge is the Entry vertex or a predicate vertex.

® There is a control dependence edge from Entry to a vertex v if v occurs on every path from Entry to
Exit in the augmented control flow graph. This control dependence edge is labeled irue.

° There is a control dependence edge from a predicate vertex u to a vertex v if, in the augmented con-
trol flow graph, v occurs on every path from u to Exit along one branch out of u but not the other.
This control dependence edge is labeled by the truth value of the branch in which v always occurs.

Note that there is a control dependence edge from a while predicate to itself. Methods for determining con-
trol dependence edges for programs with unrestricted flow of control are given in
[Ferrante87a, Cytron89al; however, for our restricted language, control dependence edges can be deter-
mined in a simpler fashion: Except for the extra control dependence edge incident on a ¢,,,, vertex, the
control dependence edges merely reflect the nesting structure of the program.

A flow dependence edge from a vertex u to a vertex v, denoted by u —>;v, means that the value pro-
duced at u may be used at v. There is a flow dependence edge u —>;v if there is a variable x that is



assigned a value at 4 and used at v, and there is an x-definition-free path from u to v in the augmented con-
trol flow graph. The flow dependence edges of a program representation graph can be computed using
data-flow analysis.

The imported variables of a program P, denoted by Impp, are the variables that might be used before
being defined in P, i.e., the variables for which there are Initialize vertices in the PRG of P.

Textually different programs may have isomorphic program representation graphs. However, it has been
shown that if two programs have isomorphic program representation graphs, then the programs are semant-
ically equivalent [Yang89c]:

THEOREM. (EQUIVALENCE THEOREM FOR PROGRAM REPRESENTATION GRAPHS). Suppose P and Q are
programs for which Rp is isomorphic to Rg. If © is a state on which P haits, then for any state 6 that
agrees with G on the imported variables of P, (1) Q halts on &, (2) P and Q compute the same sequence of
values at each corresponding program component, and (3) the final states of P and Q agree on all vari-
ables for which there are final-use vertices in Rp and R.

4. EXTENSIONS TO PROGRAM REPRESENTATION GRAPHS

Our aim is to treat PRGs as pure data-flow graphs. Data-flow graphs are a model of parallel computation,
where vertices represent computing agents and edges represent unidirectional communication channels.
Values computed at one vertex are transmitted to other vertices along the edges. In this model, the
sequence of values “flowing” along an edge out of vertex u is a function of the sequences of values
“flowing” along edges incident on vertex u.

The trouble with treating PDGs (as opposed to PRGs) as data-flow graphs is that multiple definitions of a
variable may reach a vertex. In contrast, vertices in data-flow graphs tend to have only one incident edge
per variable, the only exception being certain control vertices that choose the value in one of two incident
edges based on a boolean input. In contrast with PDGs, PRGs resemble data-flow graphs in this respect —
normally only one definition of any variable reaches any vertex. The exceptions are the ¢;r and @, ver-
tices which are reached by two definitions of a variable. Both ¢; and ¢,,,, vertices are associated with
predicate nodes, and are similar to the control vertices in data-flow graphs.

There is a small problem in treating PRGs as data-flow graphs. If u —,v is a data dependence, then a
particular value computed at ¥ may be used zero or more times at v! However, in data-flow graphs a value
flowing along an edge is consumed exactly once. In order to get around this problem, we introduce several
new kinds of ¢ nodes that can consume unused data or duplicate them a certain number of times. These
extra nodes make it possible to view PRGs as data-flow graphs and simplify the definition of PRG seman-
tics.

The essential idea is to replace all data dependences ¥ —;v that can cause the above-mentioned prob-
lem by two data dependences u —>,w and w —>,v, where w is an appropriate ¢ node, as described below.

(1) Let ¢ be an if statement predicate and u a vertex outside the if statement. If there exists at least one
vertex v such that (1) u —v is an edge in the PRG and (2) v is either in the true branch of the if
statement or is a ¢y vertex associated with the if statement such that the definition u reaches v around
the true branch, then introduce a ¢y vertex for the variable defined in u. Let w denote the new ver-
tex. Add the control dependence edge ¢ —>, w labelled true and the data dependence edge u —>,w.



For each vertex v satisfying the above condition, replace u —>,v by the edge w —>,v. (Note that if
u —>sv is a data dependence of the above form, then the value computed at u gets used at v only if
the if predicate evaluates to true at the appropriate instance. In the data-flow semantics, the ¢ ver-
tices act as filiers that transmit only those values that correspond to the if predicate evaluating to
true.) See Figure 2 for an illustration of this definition. Similarly, ¢ vertices are introduced in the
false branches of if statements.

(2) Lett be a while statement predicate and u a vertex outside the while statement. If there exists at
least one non-9,,,., vertex v inside the while statement such that u —>v is an edge in the PRG, then
introduce a ¢, vertex for the variable defined in u. Let w denote the new vertex. Add control

Figure 2. The above example shows how ¢, vertices are introduced into PRGs.

Figure 3. The above example shows how ¢, vertices are introduced into PRGs. Note that a ¢, vertex will
subsequently be introduced between w and v.



T
(J
t: while i < 10

— =
W 0= Qoprer () w: L= Oupire () @

@m0 217D

Figure 4. The above example shows how ;. vertices are introduced into PRGs.

dependences t —>, w and s —>, w, where s is {’s parent, just as for a ¢,,,, vertex. Add data depen-
dence u —>yw. For each vertex v satisfying the above condition, replace u —>;v by w —>,v. (Note
that in such cases a value computed at u may be used several times at v. The ¢, vertex creates mul-
tiple copies of the value computed at «, one for each evaluation of the while predicate during the
execution of the loop.) See Figure 3 for an illustration of this definition.

(3) Lettbea while statement predicate and u a §pp.r OF @, vertex associated with the while state-
ment. If there exists at least one vertex v # ¢ inside the while statement such that u —,v is an edge
in the PRG, then introduce a ¢,,,;, vertex w corresponding to the relevant variable. Add the control
dependence t —>, w labelled true and the data dependence u —>;w. For each vertex v satisfying the
above condition, replace u —>¢v by w —v. (Note that in such cases the value computed at u gets
used at v only if the while predicate evaluates to frue at the corresponding instance. The ¢, vertex
filters out the values corresponding to an evaluation of the while predicate to false.) See Figure 4
for an illustration of this definition.

The above transformations are performed in the following order: Traverse the control-dependence sub-
tree of the PRG in a top-down fashion. For each predicate vertex ¢, for each suitable vertex u, perform
either (1) or (2) and (3) (in that order) as appropriate.

Let us call the resulting structure an extended PRG. Note that the process guarantees that if there is any
data dependence u —>v and v is a non-¢ vertex, then u and v have the same set of control dependence
predecessors, i.e., u and v execute under the same conditions. Thus, barring nontermination or abnormal
termination, each value computed at u gets used exactly once at v. (Normally, a control dependence prede-
cessor of a vertex u is just a vertex v such that there exists a control dependence edge v —>, u. But occa-
sionally, as above, we use the phrase to refer to a pair <v,b> such that there exists a control dependence
edge v —>, u labelled b).

The above extensions may be viewed as describing a graph-transformation function E - thus, if G is a
PRG, then E(G) is the extended PRG. In the following section, we present a semantics for extended PRGs,
represented by the semantic function M. The semantics of the (unextended) PRG G is then defined to be
M(E(G)).



Let G be the PRG of a program P. We would like to relate the PRG semantics of the G to the standard
operational semantics of program P. To do this, we augment program P with ¢-statements so that there is a
one-to-one correspondence between the statements and predicates of the program so obtained (denoted P”)
and the vertices of E(G). This is done just as in Section 3, with appropriate ¢-statements being added to
correspond to the ¢ vertices introduced in this section. (Thus, what we get is really an augmented control
flow graph, which has a standard operational semantics.) This simplifies various proofs relating the PRG
semantics to the program semantics. Since each ¢ statement is an assignment of some variable to itself, the
introduction of such statements hardly changes the standard semantics of the program. Consequently, the
results we derive relating the semantics of E(G) to the semantics of extended program do relate the PRG
semantics to the standard program semantics.

Here, it should be noted that E(G) may not be the PRG of the program P’. More precisely, the data
dependence edges in E(G) may not correspond to the true data dependences in P’. For instance, consider
the PRG G shown in Figure 5. G is the PRG of both programs P; and P,, shown in augmented form
below. The extended PRG E(G) turns out to be the PRG of extended program P,” but not of P,’.

L, x=0 L, x =0
if p then L, z2=x

L, x = bp(x) if p then

L, yi=x L, x = Or(x)
fi L, yi=Xx

L4 zZ=X fi
Program P’ Program P,’

However, this difference between the actual dependences and the edges in the extended PRG causes no
problem, as shown later.

From now on the terms PRGs and programs will refer to extended PRGs (like E(G)) and extended pro-
grams (like P) respectively.

Figure 5. An example of how extended PRGs may not represent the true data dependences of the extended program.
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5. PRG SEMANTICS

5.1. Notation

Iet u be a vertex in an extended PRG G. The vertex type of u must be one of
{ assignment, if, while, &, O, dir, Qunites Penters Pexit» Ocopys Entry, Initialize, FinalUse} and will be
denoted by typeOf(u). If u is an assignment, if or while vertex, then functionOf(u), a function of n vari-
ables, will represent the n-variable expression in vertex u. When the variables in the expression are
abstracted to create a function, they have to be done so in some particular order. The variables, in the same
order, are denoted by var, (), ..., var,(u). The data dependence predecessor corresponding to var; (i) at u
(where u is an assignment, if or while vertex) is denoted by dataPred;(u). If u has a unique data depen-
dence predecessor, dataPred(u) will denote the predecessor vertex. Let parent(u) denote the unique control
dependence predecessor of vertex u, ignoring self loops; in the case that u is a ,,,, or a ¢, vertex,
parent(u) denotes the corresponding while predicate vertex. If u —>,v is a control dependence edge,
label(u,v) will denote the label (true or false) on that control dependence edge. Let controlLabel(u) denote
label(parent(u),u). If u is an Initialize, FinalUse or ¢ vertex, then varOf(x) denotes the corresponding
variable.

If u is a ¢y, Or or ¢ vertex, then ifNode(u) will denote the corresponding if predicate vertex. Similarly,
if u is some ¢ node associated with a while loop, whileNode(u) will denote the corresponding while
predicate vertex. If u is a ¢,,,., vertex, then innerDef(u) and outerDef(u) denote the definitions that reach u
from inside and outside the loop, respectively. If u is a ¢; vertex, then trueDef(u) and falseDef(u) are
defined similarly. Let CDP(u) denote the set of control dependence predecessorsof u, along with their
associated labels.

Let Var denote the domain of variable names. Let Val denote the basic domain of first-order values
manipulated by the programs - it includes the domain of booleans and any other domains of interest.
Val = boolean + integer + real + ...
The domain Sequence, consisting of finite and infinite sequences of values belonging to Val, is defined by
the following recursive domain equation, where NIL denotes the domain consisting of the single value nil.
Sequence = (NIL + (Val x Sequence))
The cons operator is denoted by -, as in head - tail. Elements of the Sequence domain may be classified
into three kinds: Finite sequences (like a;-a,- - - -a,-nil), infinite sequences (a,-a,- ---) and
sequences whose suffix is unknown or undefined ( like a;-a,- --* -a,-1). (In particular, errors like
“division-by-zero” lead to L-terminated sequences.) If a sequence X has at least i elements, then X() is
defined to be the i* element of X. Otherwise, it is undefined. X(i..j), similarly, denotes the corresponding
subsequence of X, if all those elements are defined. Otherwise, it is undefined. If X contains at least j
occurrences of the value x, then index(X,jx) is defined and denotes the position in sequence X of the j*
occurrence of x. #(X,j,x) denotes the number of occurrences of x in X(1..j). A sequence X is said to be a
prefix of sequence Y iff for every X(i) that is defined, Y(i) is defined and equal 1o X(i).

The meaning function M we want to define belongs to the domain
PRG —> Store —> Vertex —> Sequence.

5.2. The Semantics

Let G be the PRG under consideration and o the initial store. For each vertex u in G, we define a sequence
S(u) by an equation, which depends on the type of the vertex u. This set of equations can be combined into
one recursive equation of the form

s=Fgs



—11-

where s combines all the sequences and hence effectively belongs to the domain Vertex — Sequence. The
least fixed point S of this equation is given by

=1l Fi(L).
13
This least fixed point is taken to be the semantics of the given PRG with respect to the given store, i.e.
M[Glo =S.

The equations are described below.

If u is the Entry vertex,
S(u) = true - nil

If u is an Initialize vertex,
S@) = o(varOf(w)) - nil

If wis a FinalUse vertex,
S(u) = S(dataPred(u))

If uis a ¢ vertex,
S(u) = select( true, S(parent(w)), S(dataPred(u)))
where
select( x,y - tail, z- tail ;) = if (x =y)
then z- select(x, tail,, taily)
else select(x, tail (, tail ;)
select( x, nil, z) = nil
select( x, y, nil) = nil

Note: The value of select(x,s,,57) is the sequence consisting of the values s,(f) such that s, () is the value
x. More formally, let 553 = select(x,s1,55). If 5,(1..)) and s5(1..j) are defined and j = index(s,i,x),
then s4(i) is defined and equal to s,(j). Conversely, if s3(i) is defined, then there must be a j such
that 5 (1..5) and 5,(1..j) are defined and j = index(s i x).

If uis a ¢y vertex,
S(u) = select( false, S(parent(u)), S(dataPred(u)))

If u is a ¢y vertex,
S(u) = merge( S(ifNode(u)), S(trueDef(u)), S(falseDef(u)) )
where
merge( true - taily, x- tail 5, s) = x - merge(tail | tail ,,5)
merge( true - tail y, nil, s) = nil
merge( false - tail ,, s, x - tail ) = x - merge(tail , ,s.tail ;)
merge( false - tail |, s, nil) = nil
merge( nil, y, z) = nil
Note: Let 54 = merge(s;,5,,53). 54 is the sequence obtained by merging the two sequences s, and s

according to 51, a sequence of boolean values. More formally, s4(j) is defined iff s,(1..7) is defined
and s,(1..j) and s5(1..0-j) are defined, where j = #(s,i,true) and i-j = #(s, i false). Further, if the
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latter conditions are true, 5,(i) will equal 5,()) if s, ({) equals true and s5(i-j) if s, (i) equals false.

If uis a ¢,y vertex,
S(u) = select( false, S(whileNode(u)), S(dataPred(u)) )

Ifuisa ¢while vertex,
S(u) = select( true, S(whileNode(u)), S(dataPred(u)) )

If uis a ¢,,,, vertex,

S(u) = whileMerge( S(whileNode(u)), S(innerDef(u)), S(outerDef(u)) )
where

whileMerge(s, 55, x - tail) = x - merge(s; .5, ,tail)

whileMerge(s;, 54, nil) = nil

Note: From the definition, it can be seen that the function whileMerge is quite related to merge. Let 5 =
whileMerge(s,52,53). (1) is defined and equal to s3(1) iff s5(1) is defined. For i > 1, s(i+1) is
defined iff 5,(1..0) is defined and s,(1..j) and s4(1..i+1-j) are defined, where j = #(s ,i,true) and i-j =
#(s.i,false). If the latter conditions are true, then s(i+1) will equal s,(j) if s,(i) equals true and
53(i+1-j) if 5, (0) equals false.

If u is a ¢y vertex,
S(u) = whileCopy( S(whileNode(u)), S(dataPred(u)) )
where
whileCopy(s, x - tail) = x - copy(s, x - tail)
whileCopy(s, nil) = nil
copy( true - tail |, x - tail ) = x - copy( tail ; , x - tail ;)
copy( false - tail |, x - tail ;) = whileCopy(tail ., tail )

Note: whileCopy(s;,5,) is the sequence obtained by duplicating each element s,(#) (of the sequence s5)
n+1 times, where n is the number of occurrences of ‘true‘ between the i—1* and i* occurrence of
‘false* in the sequence s;. More formally, if s = whileCopy(s,,55), then (1) s(1) is defined and equal
to so(1) iff s,(1) is defined and (2) s(i+1) is defined iff 5,(1..7) is defined and s5,(1..j) is defined,
where j = #(s,,i,false)+1. If the latter conditions hold, then s(i+1) equals s5()).

The remaining possibilities are that u is an assignment vertex, an if predicate vertex, or a while predicate
vertex. In these cases, if u has n data dependence predecessors, where n > 0, then
S(u) = map (functionOf(u)) ( S(dataPred,(u)), ... S(dataPred, (1)) )
where
map (N x, - taily, x5 - tail,, ..., x, - tail) = f(x1, X2, ..., X,). map () (ail, tail,, ..., tail,)
map () nil, nil, ..., nil) = nil

Note: Let fbe an n variable function. Let s = map (f)(s1, ..., 8,). Then, s(i) is defined and equal to f(s; (), ...,
s, () iff s,(1..0), ..., 5,(1..0) are all defined.

If n is O, then the expression in vertex u is a constant-valued expression. This case divides into two sub-
cases. If u is anything other than a true-valued while predicate vertex, then
S(u) = replace ( controlLabel(u), functionOfiu), S(parent(u)) )
where
replace( x, y, z- tail) = if (x = 2)
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then y - replace(x,y tail)
else replace(x,y,tail)
replace( x, y, nil) = nil

Note: Let s, = replace(x,y,s1). s, is essentially a sequence consisting of as many ‘y‘s as s, has ‘x‘s. Thus,
all elements in 5, which do not equal x are ignored, and the remaining elements are each replaced by
y. More formally, s,(7) is defined and equal to y iff index(s ,,i,x) is defined.

If u is a true-valued while predicate vertex, then
S(u) = whileReplace( controlLabel(u), S(parent(u) )
where
whileReplace( x, nil) = nil
whileReplace( x, z - tail) = if (x = 2)
then infiniteTrues
else whileReplace(x,tail)
infiniteTrues = true - infiniteTrues

Note: whileReplace( x, s) is an infinite sequence of ‘true‘s if the value x occurs in the sequence s, and the
empty sequence otherwise.

6. STANDARD SEMANTICS

Consider the sequential execution of a program P on initial store ¢, under the standard operational seman-
tics. Let I denote the sequence of program points executed - i.e., I(7) is the program point executed in the
i™ step. Let V denote the corresponding sequence of values computed. Thus, V(i) denotes the value com-
puted during the i* execution step. If a program point u executes at least i times, then step(u.i) denotes the
step number at which u executes for an i time - i.e., step(u,i) = index(1,i,u).

Let A(u) denote the (possibly infinite) sequence of values computed at program point u. Thus, A(u)(i) is
defined iff step (u,i) is defined, in which case it equals V(step(u,i)). Let value(x,u,i) denote the value of the
variable x at the begining of the step (u,i)" execution step. We will be interested in value(x,u,i) only if x is
used at program point u. We now observe some of the properties that hold among the various sequences.
Our aim is to express A(u)(¥) in terms of values computed before step(u.i).

All ¢ statements, Initialize statements and FinalUse statements represent an assignment of a variable to
itself. Other statements u compute the value functionOf{u)(var ; (), ..., var,(u)). This gives us the following
property.

Property 1.

A(u)(@) = value(varOf(u),u.i) if u is a ¢ statement, Initialize statement or FinalUse statement,
= functionOf(u)( value(var | (u),u.p), ..., value(var,(u),u,i)) otherwise.

In the standard semantics, the store is used to communicate values between statements in the program,
The following property follows directly from the way a store is used.

Property 2.
Let A= {j]|1<j<step(u,i) and I(j) assigns to variable x } and
let max(A) denote the maximum element in the set A. Then,
value(x,u,i) = V( max(A)) if A is non-empty
= o(x) otherwise, where

The introduction of /nitialize statements guarantees the following property.
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Property 3. If x is some variable used at u and step(u,i) is defined, then the set { j | 1 < j < step(u,i) and
I(j) assigns to variable x } is empty iff « is an Initialize statement.

Note that since the programming language has no aliasing mechanism, we can talk about assignments to
variables rather than locations. It also makes it possible to compute statically the variable to which a state-
ment dynamically assigns a value. Let RD(u,x) denote the set of reaching definitions of variable x at state-
ment u. The following is a property of reaching definitions.

Property 4. If u is not an Initialize statement and x is some variable used at u, then max{({ j|1 1< j<
step(u,i) and 1(j) assigns to variable x}) is equal to max({ j| 1 £ j < step(u,i) and I(j) € RD(u.x) }).

The preceding three properties imply the following.

Property 5. If x is some variable used at u, then
value(x,u,i) = 6(x) if u is an Initialize statement,
=V(max { j|1<j<step(ui) and I{(j) € RDu.x) }) otherwise.

Let DDP(u.x) denote the set of data dependence predecessors corresponding to variable x of vertex u in
graph G. We drop the subscript G if G is the extended PRG. If G is the PDG or PRG of the extended pro-
gram, then DDP ;(u.x) = RD(1,x), by definition (assuming that x is used at program point u). However, this
need not be true if G is the extended PRG, as observed earlier. Yet, the data dependence edges in the
extended PRG are a sufficient enough approximation to the reaching definitions for the following property
to hold.

Property 6. If uis not an Initialize statement and x is some variable used at u, then
value(x,ui) = V(max { j] 1< j<step(u,i) and 1(j) € DDP(ux) })

The justification for the above claim follows. Let k = max { j | 1< j < step(u,i) and I(j) € DDP(u.x) }.
Since I(k) € DDP(u,x), I(k) must assign to x. Now, for any j such that k < j < step (u,i), if 1(j) is an
assignment to x, then I(j) must be one of the new ¢-statements introduced in the extension of PRGs (Sec-
tion 4). (If not, consider the maximum j such that k < j < step (u,i), 1(j) is an assignment to x and I(j) is not
one of the new ¢-statements. Then, the data dependence 7 (j) —>;u must have been in the original PRG.
Consequently, either I (j) —>;u must be present in the extended PRG, or there must be an m such that
J <m < step(u,i) and I (m) —>u is present in the extended PRG. Either way, we have a contradiction
with the maximality of & in its definition.) Since all the new ¢-statements are assignments of a variable to
itself, the above result follows.

Observe that all statements other than ¢,,,, and ¢ statements have only one data dependence predeces-
sor per variable. In such cases the above equation may be simplified to yield the following property.

Property 7. 1If DDP(u,x) = {v}, then
value(x,u,)) = V(max { j| 1 £ j< step(ui) and I(j) =v })
= V(max { step(v,k) | step(v k) < step(u,i) } )
= A(v)(k) where k is such that step(v.k) < step(u.i) < step(v,k+1)
The notation step(x,i) < step(y,j) essentially means that program point y executes for the j* time only

after program point x executes for the i** time. However, we will also say that step (x,i) < step (y,j) even if
y does not execute j times.

The following properties concern control dependence and help identify the value of k in property 7.
Observe that if v is a data dependence predecessor of u and u and v are non-¢ statements, then u and v have
the same control dependence predecessor and v occurs to the left of u in the program’s abstract syntax tree.
More generally, if v is any kind of data dependence predecessor of # and u is a non-¢ vertex, then u and v
have the same control dependence predecessors and v dominates u in the extended control-flow graph.
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Property 8. If CDP(x) = CDP(v) and v dominates u, then step(v,i) < step(u,i) < step(v,i+1) , for all i.
Further, if the program execution terminates normally, ¥ and v execute the same number of times.

The previous two properties combined with property 1 gives us the following result.

Property 9. If u is an assignment statement, if predicate or while predicate and executes i times, then
A@)(@) = functionOfu)(A(dataPred, (w))(i), ... A(dataPred,(w))(i))

Let u have only one control dependence predecessor, say v. Let this control dependence edge be labelled
true. Then, barring nontermination or abnormal termination, u is executed exactly once each time v is
evaluated to true. More formally, we can say:

Property 10. Let v—>,u, labelled true, be the sole control dependence edge incident on u. Then, if
AQ@)() is defined, j = Index(A(v),itrue) must be defined and step(v,j) < step(u.i). Conversely, if
Index(A(W),itrue) is defined, then A(u)(?) must be defined, barring nontermination or abnormal termination.

The above property can be extended to state that step(u,f) occurs “soon after” step(v,j) - i.e., before any
other statement at the same nesting level as v can be executed. Let w denote some vertex with the same
control dependence predecessors as v and occuring to the left of v. (As a specific example, let u be a ¢r
vertex. Let v be parent(u) and w be dataPred(u).) It is easy to see that step(w,j) < step(u,i) < step(w,j+1).
This gives us the following property.

Property 11. let u be a ¢y vertex. Let v denote parent(u) and w denote dataPred(u). If A(u)(i) is
defined, then j = Index(A(v),i,true) must be defined and
step(w.j) < step(v,)) < step(u.i) < step(w,j+1)
and consequently, from properties 1 and 7,

AW@ = AW)()

A similar extension of property 10 to consider a vertex w with the same control dependence predecessors
as v and occurring to the right of v yields the following property.

Property 12. Let v be an if predicate and let v —>, u, labelled true, be the only control dependence edge
incident on u. Let w be a ¢ vertex associated with v. Let j = #(A(v),i,true). Then step(u.j) < step(w,i) <
step(u,j+1).

Related versions of the above two properties may be obtained by replacing true by false and T by F.
The following property of ¢y vertices is obtained from properties 1, 6 and 12.

Property 13. Let u be a ¢ vertex. Letv be ifNode(u), x be trueDef(u) and y be falseDef(u). If A(u)(i) is
defined, then
A@)(@) = if A(W)(@) then A(x)()) else AY)(-))
where j = #(A(v),i,true).

A formal derivation of the above property follows. Assume A(V)(Q) is true. Let #(A(v),i,true) be j. Obvi-
ously, #(A(v),i-1,true) = j-1, while #(A(v) i false) = #(A(v),i-1,false) = i—j. Hence, from property 12,
step(v,i-J) < step(u.i-1) < step(x,j) < step(u,i) < step(x,j+1)
step(u,i) < step(y,i-j+1)
Properties 1 and 6 imply that A(u)(f) must be A(x)(j). Similarly, if A(v)(i) is false, then A(u)({) must be
AGG-)-

The following property concerns the execution behaviour of a ¢,,,,, vertex. Here, it is useful to consider
the execution of the whole loop (rather than just the loop predicate). The loop completes an execution
when the loop predicate evaluates to false. Suppose the loop predicate v has been executed i times. Then,
the number of times the loop has completed an execution is given by #(A(v),i false).
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Property 14. Let u be a §,,,, vertex. Let v be whileNode(u), x and y be outerDef() and innerDef(u)
respectively. Let w be the parent of x and v. Let the control dependences w —. v and w —>, u be labelled
true. If i > 1, then the following hold true

step(x,1) < step(u,1) < step(y,1)
step(u,i-1) < step(v,i-1) < step(u,i)
step(x.j) < step(u,i) < step(x,j+1) where
J=#(AW)i-1,false)+1
step(y,)) < step(u,i) < step(y,j+1) where
J=#(AW)i-1,true)
In particular, from property 6, if A(u)(1) is defined, then
AQ)(1) = A(x)(1)
and fori > 1, if A(u)(¥) is defined, then
A()(@) = if A(v)(i-1) then A(y)(i-j) else A(X)())
where j = #(A(v),i-1,false)+1.

The derivation of the above property is very similar to the derivation of property 13.

The following property concerns ¢,,,, vertices. It is similar to, though simpler than, the previous pro-
perty.
Property 15. Let u be a ¢.,,, vertex. Let v denote whileNode(u), and w dataPred(u). Let j = #(A(v),-
1.false)+1 Then,
step(u,i-1) < step(v,i-1) < step(u,i),
step(w,j) < step(u,i) < step(w,j+1)
and if A(u)(i) is defined, it must be equal to A(w)()).

7. RELATION TO PROGRAM SEMANTICS

Now, we consider the relation between the semantics of the PRG of a program, as defined earlier, and the
standard operational semantics of the program. We show that in general the sequence S(u) (which is
defined by the PRG semantics) may be more defined than the sequence A(u) (the sequence of values com-
puted by program point «, as defined by the operational semantics of the program) - or more formally, that
A(u) will be a prefix of S(u). However, for input stores on which the program terminates normally, the
sequence S(x) will be shown to be equal to the sequence A(u).

This difference in the case of nonterminating (or abnormally terminating) program execution maybe
explained as follows. Data-flow semantics exposes and exploits the parallelism in programs. The eager or
data-driven evaluation semantics lets a program point execute as soon as the data it needs is available, In
the standard sequential execution of a program, however, the execution of a program point ¥ may have to
be delayed until completion of execution of some other part of the program, even if the result of that com-
putation is unnecessary for the computation to be done at u. And, if that computation never terminates or
terminates abnormally, execution of program point u does not occur.

Let S(u) denote the least fixed point solution of the set of recursive equations for the PRG of program P
and initial store ¢ as defined in Section 5. As observed earlier, the set of equations can be combined into
one recursive equation of the form

s=Fgs
Let S*(u) denote F*(L)(u), the k* approximation to the solution at vertex u. Now we are ready to state a
sequence of lemmas and theorems that relate the standard operational semantics and the PRG semantics.
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LEMMA. Let G be the extended PRG of a program P and © an input store. Let S(u) denote M[G](c)(u),
S*(u) denote the k™ approximation to S(u) and A(u) denote the sequence of values computed at program
point u for input ¢ under the standard operational semantics. If A(u)(i) is defined, then there exists a k
such that S*(u)(i) is defined and equal to A(u)(i).

PROOF. Observe that $* is monotonic in k. Hence the lemma is equivalent to the following stronger
claim: if A(u)(i) is defined, then there exists a k such that " (u)(@) is defined and equal to A(u)(@), for all n 2
k. The proof is by induction on the program execution steps, i.e. step(i,i), and is divided into a number of
cases corresponding to the different types of vertices. In each case, the argument follows the following
general outline:

(i) If A@)() is defined, then program point u executes at least i times. From the properties observed
earlier, A(u)(?) is shown to be some function f, of the values computed at some other program points
at particular instances:

AW =f(A, (1.i1), A, (1.03), ..)
where step(u;i;) < step(u,i) for all j.

(i) From the inductive hypothesis, we assume the existence of a k such that S"(u,-)(l..i ;) is defined and
equal to A (4;)(1..i;), for all j.

(ili) We then look at the definition of $**! (1), obtained from the set of recursive equations,
Sk+l (u) = Fu( Sk(vl)’ Sk(v2)7 --')
and show that S*¥*! ()(i) is defined and equal to f,,( A, (L), A, (1.05), ... ), completing the proof.

Case 1: Let u be the entry vertex or some Initialize vertex.
This is the base case, and the proof is trivial. Under an appropriate interpretation of these vertices, u
executes only once. From the definition we can easily verify that §* (u)(1) is defined and equal to A()(1).

Case 2: Let u be a FinalUse vertex.
Let v be its sole reaching definition. Both u and v can execute at most one time, and v must execute
before u. The result follows trivially.

Case 3: Let u be a ¢ or ¢y vertex.,
Assume, without loss of generality, that u is a ¢y vertex. Let v denote parent(u) and w denote

dataPred(u). From property 11 in the previous section, j = index(A(v),i,irue) must be defined and

step(w,j) < step(v,)) < step(u.i) < step(w,j+1)
and A(u)(i) must be equal to A(w)(j). From the inductive hypothesis, there exists a k such that S*(w)(1..j)
is defined and equal to A(w)(1../) and S*(v)(1.,j) is defined and equal to A(v)(l..j) (and in particular,
index(S*(v),i,true) = j). By definition,

S¥1(u) = select( true, S¥(v), S¥(w))
It is a property of select that $¥' ()(i) is defined and equal to A@w)(@@).

Case 4: Let u be a ¢ vertex.
Let v be ifNode(u), x be trueDef(u) and y be falseDef(u). Obviously, the parent of both x and y is v.

As observed in the previous section, step(v,i) < step(u,i) (property 8), step(x,j) < step(u,i) (property 12),
and step(y,i-j) < step(u,i) (property 12), where j = #(A(v),i,irue) and i-j = #(A(v),i,false). Further, from
property 13,

AQ)() = if A(W)(@) then A(x)(j) else AY)(-))
From the inductive hypothesis, there exists a k such that S*(v)(1..J) = A(W)(1..)), S¥(x)(1..J)) = AX)(1..j) and
S¥»)(1..d-j) = A@)(..i-f), while from definition,

§**1 () = merge( S*(v), $*(x), S¥(3))
It follows that S**! (u)(7) is defined and equal to A(u)(i), as required.
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Case 5: Let u be a ¢, OF 45, vertex.
As can be seen from the defining equations in these cases, these are similar to ¢ and ¢ vertices,
and the proof is similar too.

Case 6: Let u be a §,,,, vertex.
Let v be whileNode(u), x and y be outerDef(x) and innerDef(u) respectively. Let w be the parent of

x and v. Assume, without loss of generality, that the control dependences w —>, v and w —>_ u are labelled
true. Consider the case i=1 first. We showed in the previous section (property 14) that step(x,1) < step(u,1)
and that A(u)(1), if defined, must be equal to A(x)(1). Consider i > 1. Again, we showed that step(v,i-1) <
step(u,i), step(x.j) < step(u,i) and step(y,i-J) < step(u,i) where j = #(A(v),i-1false)+1. Further,

A(u)()) = if A(v)(i-1) then A(y)(i-)) else A(x)())
The hypothesis implies the existence of a k such that S¥(v)(1..i-1) = AW)(1..i-1), S*G)(1..i-f) = A@)(1..i-))
and S*(x)(1..j) = Ax)(1../). By definition,

S** (u) = whileMerge( S*(v), S*(y), S¥(x))
The properties of whileMerge imply that S**! (u)(i) is defined and equal to A(u)(i).

Case 7: Let u be a ¢, vertex.

The proof is similar to the above one, simplified by the fact that there is no definition of varOf(u)
inside the loop. Let v denote whileNode(), and w dataPred(u). We showed in the previous section (pro-
perty 15) that step(v,i-1) < step(u.i), step(w,j) < step(u,i) where j = #(A(v),i-1,false)+1, and that A(W)(@)
must be equal to A(w)(j). From the hypothesis, there exists a k such that

Skw)(1..i-1) = AM)(1..i-1) and
S w)(1..j) = Aw)(1..J)
and by definition
S*¥*1(u) = whileCopy( S¥(v), $¥(w))
It follows that S**!(u)(i) is defined and equal to A(x)(i), as required.

Case 8: Let u be an assignment statement, if predicate or while predicate and let u have at least one data
dependence predecessor.

Let uy, uy, ... u, represent the n data dependence predecessors of u. We know that step(u; i) <
step(u.i) for all j < n (property 8) and that A(u)(@) must be equal to functionOf W)( Aw)GE1), ... AQw,)(@,))
(property 9). From the inductive hypothesis, there exists a k such that, for 1 < j < n,

S*u)(1.0) = AQw;)(1..3)
From definition,

S¥1(u) = map (functionOf W))( S¥(1), ..., S¥(u,))
It follows that S *+! (u)(i) is defined and equal to A()().

Case 9: Let u be a constant-valued assignment statement or if predicate.
Let v be u’s parent. Assume, without loss of generality, that the control dependence v —>, u is
labelled true. We know from property 10 of the previous section that j = Index(A(v).i,true) must be defined
and that
step(v,j) < step(u,i)

Hence, there exists a k such that S¥(v)(1.. J) is defined and equal to A(v)(1..j). By definition,
S*+(u) = replace( true, ¢, S¥(v))

and the required result follows.

Case 10: Let u be a constant-valued while predicate.

If the constant is false, the vertex behaves just like vertices in the previous case. If the constant is
true, and if u executes at least once, then there must be a k and j such that $*(v)(j) is defined and the same
as label(v,u), where v is w’s parent. From the definition, it can be seen that $¥*! (x) is an infinite sequence of
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trues, satisfying the requirement.
We have proved the lemma for each possible value of typeOf(u), and hence the lemma follows. [

THEOREM. Let G be the extended PRG of a program P and & an input store. Let S(u) denote
M/G](c)(u) and A(u) denote the sequence of values computed at program point u for input G under the
standard operational semantics. Then, A(u) is a prefix of S(u).

PROOF. The theorem follows immediately from the previous lemma. Let S*(u) denote the k" approxi-
mation to S(u). Thus, S(u) = _EOS i(u). If A(u)(P) is defined, then there exists a k such that S¥()(0) is defined
]
and equal to A(u)(i), from the previous lemma. Consequently, S(u)(i) is defined and equal to A(w)(@). O

The preceding theorem concerns possibly nonterminating (or abnormally terminating) executions of the
program. We now consider executions that terminate normally and show the stronger result that for all pro-
gram points u, S(u) = A(u).

LEMMA. Let G be the extended PRG of a program P and G an input siore on which P terminates nor-
mally. Let S(u) denote M[G][o](u), S¥(u) denote the k™ approximation to S(u) and A(u) denote the
sequence of values computed at program point u for input G under the standard operational semantics.
For any k, S¥(u) is a prefix of A(u).

PROOF. The proof is by induction on k. Assume that the program terminates normally and that S*(u)(7) is
defined. We show that A(u)(i) is defined. The equality of A(u)(i) and S*()(i) then follows from the previ-
ous lemma and the fact that $¥(x) is monotonic in k.

Now, A()(i) is defined iff u executes i times. Thus, it is enough to show that u executes i times, which
we do below. (Similarly, the inductive hypothesis may be interpreted as: if $¥~'(v)(j) is defined, then
A(v)()) is defined and, hence, v must have executed j times.)

Case 1: Let u be the entry vertex or some Initialize vertex.
The proof is trivial in this case.

Case 2: Let u be a FinalUse vertex.

Let v denote dataPred(u). By definition, S*(¢) = S*7'(v). Thus, if S*(u)(}) is defined, then so is
S*1(v)(@). From the inductive hypothesis, program point v must have executed i times (which also means
that i must be 1, but that is immaterial). Since u and v have the same control dependence predecessors, 1
must also execute i times (before the program can terminate normally).

Case 3: Let u be a ¢ vertex.

Let v denote ifNode(uw) and w denote dataPred(u). By definition, S*u) =
select(true,S*1 (v),S ¥ (w)) Hence, if $¥(u)(i) is defined, then S*! (v) must contain at least i true values.
The hypothesis implies that v must have evaluated to true at least i times. Hence u must execute for an ;"
time. The proof is similar for a ¢, vertex.

Case 4: Let u be a ¢y vertex.

Let wyx, and y denote ifNode(u), trueDef(u) and falseDef(u) respectively. Then, S¥(u) = merge(
SE1w), S¥1(x), S¥71(y)). If S*(w)(i) is defined, then S*~1(w)(i) must also be defined. The hypothesis
implies that w must have executed i times. Consequently, ¥ must also have executed i times.

Case 5: Let u be a ¢, vertex.

Let v and w denote whileNode(u) and dataPred(u) respectively. Then, S*(u) = select( false, S*7' (v),

S*L(w)). If S*(u)(i) is defined, then S*~!(v) must contain at least i occurrences of false. From the induc-

tive hypothesis, the corresponding while loop must have completed execution at least i times. Hence u
must have executed at least i times.
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Case 6: Let u be a ¢,,,;, vertex.
The proof is similar to the case of a ¢r vertex.

Case 7: Let u be a ¢,,,,, vertex.

Let v,y, and x denote whileNode(u), innerDef(u) and outerDef(u) respectively. Then, S¥(u) =
whileMerge( §*71(v), $¥71(y), §*(x)). Consider the case i = 1. If S¥(u)(1) is defined, then $*~!(x)(1)
must be defined too. Hence, x must have executed at least once, from the induction hypothesis. Conse-
quently, u must have executed at least once too. Consider the case i > 1. If $*(u)(7) is defined, $¥~1 (v)(1..i-
1) must be defined too. Consequently, v must have executed i-1 times, by the induction hypothesis. Sup-
pose it evaluated to true in the i—1" time, i.e., assume S*1(v)(i-1) were true. Then u must subsequently
execute, for an i* time. On the other hand, let S*~'(v)(i-1) be false. Let j = #(S*'(v),i-1,false). Then,
S*1(x)(j+1) must be defined. That is, x must have executed at least once after u had executed i-1 times.
Hence, u must execute for an i™ time too.

Case 8: Let u be a ¢, vertex.
The proof is just as in the previous case.

Case 9: Let u be an assignment, if predicate or while predicate, with n data dependence predecessors
U1..U,, where n> 0.

Then, S*(u) = map (N(S* 1), .. $¥7(w,)). If S*()(P) is defined, then $*!(u;)(i) must be
defined, for all j. Thus, u; must have executed i times. Hence, u must also execute i times, since « and all
the u; have the same control dependence predecessors.

Case 10: Let u be a constant valued assignment statement or if predicate.

Let v be u’s parent. Assume, without loss of generality, that the control dependence v —>, u is
labelled true. Then S*(u) = replace( true, functionOf(u), $*~1 (v)). Thus, if S¥(u)(i) is defined, then S*~! (v)
must contain at least i occurrences of true. Hence, v must have evaluated to frue at least i times. So, u must
execute at least i times.

Case 11: Let u be a constant-valued while predicate.

If the constant is false, the vertex behaves like the vertices in the previous case. Otherwise, if
Sk(u)(i) is defined, then its parent v must have evaluated to label(v.u) at least once, which would have
caused u to execute. This would have resulted in an infinite loop, contradicting the assumption that the
program halts. Hence §*(u) must be a null sequence, for any k, completing the proof. [

THEOREM. Let GG be the extended PRG of a program P and & an input store on which P terminates nor-
mally. Let S(u) denote M[G][c](u) and A(u) denote the sequence of values computed at program point u
for input © under the standard operational semantics. Then S(u) is a prefix of A(u).

PROOF. Let $*(u) denote the k& approximation to S(u). If S(u)(@) is defined, then there must be a k such
that S*(u)(i) is defined (and, obviously, equal to S()(@)). It follows from the previous lemma that A(w)(@) is
defined and equal to S(u)(@). [

THEOREM. Let G be the extended PRG of a program P and © an input store on which P terminates nor-
mally. M[G][c](u) is equal to A(u), the sequence of values computed at program point u for input ¢ under
the standard operational semantics.

PROOF. It follows from the last two theorems that A(u) is a prefix of M[G][c](x) and M[G]{c](w) is a
prefix of A(w). Hence, A(u) and M[G][¢](x) must be equal. [J

A stronger form of the equivalence theorem for PRGs [Yang89c] (see Section 3) follows directly from
the previous theorems.
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THEOREM. Let P and Q be programs with isomorphic PRGs, Rp and Ry, respectively. Let 6, and &, be
two states that agree on the imported variables of P and Q. Let x| and x5 be two corresponding vertices of
P and Q. Let Ap(x1) and Ay(x,) denote the sequence of values computed at x; and x,, on states o, and
O,, respectively. Then, either (1) P and Q terminate normally on &, and G,, respectively, and Ap(x,)
equals Ap(x,), or (2) neither P nor Q terminates normally on 6, and ©,, respectively, and Ap(x,) is a
prefix of Ag(x,) or vice versa.

PROOF. Note that the dependence of the PRG semantics on the initial state is restricted to the values of
the imported variables. Consequently, the semantics of the isomorphic PRGS Rp and R, for initial states o,
and oy, respectively, say Sp and Sy, are identical. Thus Sp(x;) = Sy(x,). From the previous section, we
also know that Ap(x1) is a prefix of Sp(x;) and that Ap(x,) is a prefix of Sp(x;). Consequently, Ap(x;)
must be a prefix of Ay(x,) or vice versa.

Note that Ap(x) and Sp(x) are finite for all vertices x in P iff the program P terminates normally. Hence,
either P and @ both terminate normally (in which case, Ap(x1) = Sp(x,) = Sp(x,) = Ap(x,)) or neither P
nor Q terminates normally. The theorem follows immediately. [J

However, note that this stronger equivalence theorem can be derived from the Sequence-Congruence
Theorem [Yang89a] too.
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