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PARTIALLY AND TOTALLY ASYNCHRONOUS ALGORITHMS FOR LINEAR
COMPLEMENTARITY PROBLEMS *

RENATO DE LEONE!

Abstract. A unified treatment is given for partially and totally asynchronous parallel successive overre-
laxation (SOR) algorithms for the linear complementarity problem. Convergence conditions are established
and compared to previous results. Convergence of the partially asynchronous method for the symmetric linear
complementarity problem can be guaranteed if the relaxation factor is sufficiently small. Unlike previous results
this relaxation factor interval does not depend explicitly on problem size.
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1. Introduction. We consider here parallel iterative algorithms for the (not necessarily
symmetric) linear complementarity problem

Mz+¢>02z>0 27 (Mz+q)=0 (1.1)

where M is a real n-dimensional matrix and ¢ is a given vector in IR". Various parallel
synchronous as well as asynchronous methods based on a successive overrelaxation scheme
have been proposed and discussed in [7, 8, 5, 12]. A principal aim of this work is to provide
a unified treatment for these parallel schemes and establish their convergence. General
asynchronous iterative algorithms for fixed points have been obtained by Bertsekas and
Tsitsiklis [2, 3]. However, the emphasis of this paper will be on the linear complementarity
problem, as a special but important case of the fixed point problem.

We give now a brief summary of the paper. We begin in Section 2 by defining the general
Asynchronous Successive Overrelaxation Algorithm and we consider a parallel implementa-
tion of the algorithm. Concepts of totally and partially asynchronous schemes are precisely
defined. Section 3 deals with convergence conditions for the Totally Asynchronous SOR
Algorithm and its relationship to previously established results. In particular we will show
that our sufficient conditions for the convergence of the totally asynchronous algorithm imply
the convergence conditions of the Jacobi Overrelaxation Algorithm. The same result will hold
also for the partially asynchronous case. In Sections 4 and 5, conditions for the convergence
of the Partially Asynchronous SOR Algorithm are obtained. More specifically, Section 5
deals with partially asynchronous algorithms for the symmetric linear complementarity prob-
lem for which convergence is established under the assumption that the matrix M is positive
semidefinite and under a relaxation factor interval which is an attenuated (0,2) interval. The
bound (5.6) improves the bound obtained in [2] which explicitly depends on the size of the
problem. Our bound, instead, depends on the maximum number of components updated at
the same instant. This quantity is bounded above by the number of different processors used
in the computation. We will discuss in more detail the meaning of this new bound at the end
of Section 5.

* This material is based on research supported by the Air Force Office of Scientific Research Grant AFOSR-
89-0410
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2 R. De Leone

We briefly describe our notation now. For a vector z in the n-dimensional real space IR",
z, will denote the vector with components (z.); = max(z;,0), ¢ = 1,...,n. The scalar
product of two vectors z and y in IR™ will be denoted by z7y. For 1 < p < +o0 the p-norm
of a vector  in R™ will be denoted by ||z||,. For the 2-norm the subscript will be dropped.
For A in R™", AT will denote the ith row of A. The spectral radius of a matrix will be
indicated by p(A). If A is a square matrix, || A||, will denote the matrix norm of A induced by
the vector norm ||.]|. For a vector z € R™, |z| will denote the vector with components ||,
i =1,...,n, and similarly for a real mxn matrix A, |A| will denote the matrix with absolute
value elements |A;;|, 2 = 1,...,m, 7 = 1,...,n. Here and throughout the symbols := and
=: denote definition of the term on the left and right sides of each symbol respectively.

2. Asynchronous Successive Overrelaxation Algorithm. We begin by making the
observation that (see [6]) the linear complementarity problem (1.1) is equivalent to the fixed
point problem:

= (zr—-wEMz+q)), (2.1)

for positive w and an arbitrary positive diagonal matrix £. We will use this as the basis for
the following Asynchronous SOR Algorithm.

Asynchronous SOR Algorithm

For each 7 € {1,...,n} let 7; be the instants of time at which the :** component of z is
updated and
e = = N
t otherwise.

13

where 7;;(t) are instants of times, A € (0, 1] and w and E;; are positive scalars.

Remark The previous algorithm can be realized by the following parallel implementation.
Assume that p processors are available with each processor responsible for updating a subset
of the components of z. At time ¢ one or more components of = are updated using (eventually
outdated) values of z;,j = 1,...,n computed at some time in the past. The following natural
assumptions we will be used to distinguish different degree of asynchronism:

Al 0 < Tj,‘(t) <t YVt € I];, Vzand\/] = 1, , N
A2 The sets 7; are infinite.
A3 If {t;} C 7; and t; — +oo then lillcn 75:(tx) = +oo forevery j = 1,...,n.

Following [2], an asynchronous algorithm satisfying A1, A2 and A3 will be referred as a
totally asynchronous algorithm. A partially asynchronous algorithm satisfies A1 as well as
the following conditions involving a time-frame limit B:

Ad Foreveryi e {1,...,n}andt >0
Tin{t,t+1,....,t+ B—1} #0.
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A5 t—B<7;(t)<t VteT;,ViandVj=1,...,n.
A6 Tii(t)“—:t Vie T;and Ve = 1,...,n.

As noted in [3], asynchronous algorithms can converge under any of the following degree of
asynchronism:

1. total asynchronism,;

2. partial asynchronism, for every value B (but not under total asynchronism);

3. partial asynchronism, but only if B is sufficiently small.

In the next sections we will derive conditions that guarantee convergence for the asyn-

chronous SOR in each of these cases. In order to do that, we need to introduce the following
operators that will be needed in the sequel:

h(z) := (z —wE(Mz + q)), (2.2)

f(z):=(1 =Xz + Ah(z) (2.3)

3. The Totally Asynchronous Algorithm. The main advantage of totally asynchronous
algorithms is that the processors need not have access to a global clock and they can continue
updating the components assigned to them without waiting for messages from the other
processors. In addition, each processor need not immediately communicate or receive the
newly computed values, but is only required to transmit them once in a while. Convergence of
general asynchronous methods has been established by various authors starting with Chazan
and Miranker [4] and Baudet [1]. In [5] convergence has been established for a totally
asynchronous algorithm for the linear complementarity problem. In particular it has been
proved in [5] that A is a contracting operator if the spectral radius of (1 — w)I +wD!|L + U]
is less than 1, where D is the diagonal part of M ( assumed to be positive) and L (resp. U)
is the strict lower (resp. upper) triangular part of M. Therefore, under these assumptions
the convergence of the Totally Asynchronous SOR Algorithm was proved with A = 1.
Moreover, the convergence proof can be easily modified to establish convergence (under the
same assumptions) for all values of A in the interval (0, 1].

We now discuss in more detail the convergence conditions for the Totally Asynchronous
SOR Algorithm. Using arguments similar to those of [5, Lemma 2.3] it is easy to show that

|h(z) = h(y)| < [T —wE(L+ D+ U)| |z -yl
Now, let
A, =|I —wE(L+ D+ U)|
and assume that
(I—-wED); >0 Vi=1,...,n

then p(A,) < 1ifand only if D — |L + U| is an M-matrix (that is it has a nonnegative inverse).
In fact p(A,) < 1if and only if [14, Theorem 3.8] I —~ A, is a M-matrix. But

[—Ay=I—-|I-wE(L+D+U)|=1-|(I—-wED)—wE(L+U)

=wED —wE|L+U| =wE(D — |L +U])
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where the third equality follows from the fact that the diagonal of A, is strictly positive.
Hence D — |L + U| must be an M-matrix. From the above discussion we can conclude
that the convergence of the Totally Asynchronous SOR Algorithm can be guaranteed if the
following conditions are satisfied:

Cl C(M):= D — |L + U| is an M-matrix.
C2 (I -wED); >0Ve=1,...,n

The following theorem summarizes these results.

THEOREM 3.1. Assume that conditions C1 and C2 are satisfied, where D is the diagonal
part of M, and L (resp. U) is the strict lower (resp. upper) triangular part of M. Then
the sequence {z'} generated by the Totally Asynchronous SOR Algorithm satisfying the
assumptions A1-A3 converges to the unique solution of the linear complementarity problem
(1.1). 0

Now, since

2wE)" — D~ |L+U| =2 ((wE)™ = D) + D ~|L+U|

= 2(wE)" (I —wED) + D — |L + U]

the matrix 2(wE)™! — D — |L + U] is the sum of an M-matrix and a positive diagonal
matrix and therefore [9, p. 109] is an M-matrix. This implies that the matrix 2(wE)™! — M
is positive definite hence each accumulation point of the Projected Jacobi Overrelaxation
Algorithm solves the linear complementarity problem(see [6]). This is to be expected, since
the Projected Jacobi Overrelaxation Algorithm is a special case of the Asynchronous SOR
algorithm, where

T, =N and 7;(t{)=t Viandj=1,...,n.

Note that the conditions stated in the above theorem are much stronger than the conditions
required for the convergence of the Projected Jacobi Algorithm, namely the matrix 2(wE) ™! —
M being positive definite [6].

4. The Partially Asynchronous Algorithm. General asynchronous methods are dis-
cussed in [10] and convergence conditions for asynchronous methods for quadratic problems
are considered. In this section we will concentrate on Partially Asynchronous SOR Algorithm
for not necessarily symmetric linear complementarity problems and we will derive conditions
that guarantee convergence of the algorithm for every value of the constant B. We will show
that the following conditions are sufficient for convergence:

C3 ||l -wEM| <1

C4 M irreducible.

C5 The solution set X™ of the linear complementarity problem (1.1) is not empty.
Condition similar to C3-CS5 are required [2] for the convergence of the Partially Asynchronous
Algorithm for solving system of linear equations.

In order to establish our result, the following lemma that is a special case of [10, Propo-
sition 3.1] is needed.
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LEMMA 4.1. If conditions C3-CS5 are satisfied then the function h is pseudo—nonexpansive,
that is:

lA(z) — 2|, < |z —2%||, Yr€R™andVz™ € X™.
and for every x € R" and =* € X™ such that

o~ 2"lloo = mig llo = yll, >0

there exists 1 € I(z,z*) := {1 : |z; — z}| = ||z — z*|| .} such that

hi(y) # yi Vy € U(z,z")

where

; =xz;fore € I(z,x*
U(-’E,CC*)::: {yE]R" Yy z;1or: € (517(1}) }

ly: — @3] < ||z — "]l fori ¢ I(z,2")

a
We are now ready to establish our convergence results for the Partially Asynchronous SOR
Algorithm.

THEOREM 4.2. Let conditions C3-C5 hold. The sequence {z'} generated by the Partially
Asynchronous SOR Algorithm satisfying assumptions Al and Ad-A6 with X € (0, 1) converges
to some element in X*.

Proof. From [2, Proposition 2.2, p. 493] we have that the mapping f defined in (2.3)
satisfies the following condition (for A € (0, 1)):

C6 If z; # fi(z) and z* € X* then |fi(z) — 27| < ||z — «¥||,

Now, since
Il —wEM], <1

we have that Vi = 1,...,n

|1 — wEi M| + ) | M| < 1
7

The previous inequality and the irreducibility of the matrix M imply that M is diagonally
dominant with positive diagonal elements. Therefore [11] M is column sufficient and hence
[13] the solution set of the linear complementarity problem(1.1) is convex. Note that the
convexity of X* can also be inferred using Lemma 2.4 in [10].
The result now follows from [2, Proposition 2.3, p.495]. g

The following example shows a case for which a partially asynchronous but not a
totally asynchronous SOR algorithm converges. Nonconvergence of the totally asynchronous
algorithm is caused by the fact that the two processors do not communicate often enough.
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Consider the linear complementarity problem (1.1) where

e 4] e8] e

The updating formula (when A = 1) is:

{ 2= (21 — w(z — 22)) , = (1 —w)z1 +wa2))
2 := (22 — w(—z1 + 22)) ; = (w1 + (1 —w)22))

We consider the following scenario (see [2, p.484-485] for a similar example): two processors
Py and P, are available and processor F; updates component x; at each instant, ¢ = 1,2. At
instants 1, ¢, ... each processor broadcasts the newly computed value and this information
is used by the other processor. Starting with positive values for z; and z, and choosing
w € (0, 1], the updating formula becomes:

it = (1 — w)zl + walk
it = walk + (1 — w)zld

fort € [tg,tre1]. The following iterative scheme has been analyzed in [2] for the case w =
and it has been shown that convergence cannot be guaranteed in the totally asynchronous cas
but it is obtained if ¢34, — £ < B for any fixed B.

The next example shows the importance of the parameter A < 1. For the same problem,
consider the following iterative scheme:

1
2
e

{ gri= (1= Nz + A (21 — w(z1 — 22)),
22 = (1 — Nz + A (22 — w(—21 + 22))

where A € (0,1] and w € (0,1]. Starting with positive values for z; and z,, the updating
formula becomes:

z1 = (1 — dw)z1 + Iwz,
zp = dway 4 (1 = dw)zs

In this case (using £ = D~ = I) we have that

ImeM:[l—w w ]

—w l-w
and forw =1, || —wEM]||_, = 1. Butchoosingw = 1and A = 1 we have
z1i= ()4 2= (1)

and if 20 # 2 the Projected Jacobi Overrelaxation Algorithm does not converge to a solution
of the linear complementarity problem. In order to guarantee convergence (when w = 1) a
value of A less than 1 must be used.
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We now investigate the relationship between the sufficient conditions for convergence of
the partially asynchronous method and the sufficient conditions for the totally asynchronous
and the Projected Jacobi Overrelaxation algorithms. Let

A, =1—wEM (4.1)

Condition C3 requires that || A, ||, < 1 and hence |[(Au):ll; < 1= 1,...,n. If for some
¢ we have that ||(A.)ill; < 1 then [9, p. 109, 6.2.16] p(A.) < 1 and the convergence
proof follows from that for the Totally Asynchronous SOR algorithm (in fact, in this case the
conditions C1 and C2 are satisfied). Hence the interesting case is

(ALl =1 Ve=1,...,n

le.
]1 — wEii]\/I,-,-| +whly; Z IMijl =1 (42)
p
In this case
2
- M;; 2
whi; 20
(in fact if wE; M;; > 2 the condition (4.2) cannot be satisfied) and for.A € (0,1)
2
o - M;; > 0.

Moreover the matrix 2(AwE)~! — M is strictly diagonally dominant. In fact either 1 —
wE;M; > 0or 1 —wE; M;; < 0. In the first case, from (4.2) we have that

~wEi M + wE; Y [Mi;| =0
i=1
i

and hence
n
',
My =y | M|
o
and

2 i 1
/\wEii — M — z——; ]MZJI =2 ()\wEii - Mii) > 0.

It

In the second case, again from (4.2), we have that

—1 +wky;M; +WEz'iZ |M;| =1
J=1
Gt
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which implies that

2 n
- M;; — M;:| =0.
WEii g ’ J|
i
Hence in this case, YA € (0,1)
2 —-M”—ilM,|>0
/\wE,-,- =1 7
i
and hence
2 “Miz’ >i|le
/\U)Eﬁ G I

i

Thus, the conditions of Theorem 4.2 imply that the matrix 2( AwE)~! — M is positive definite
[6, Remark 3.1] and hence any accumulation point of the the Projected Jacobi Overrelaxation
Algorithm solves the linear complementarity problem (1.1)

5. Partially Asynchronous Algorithm for symmetric linear complementarity prob-
lems. In this section we concentrate on the important case of partially asynchronous methods
for symmetric linear complementarity problems. In this case conditions (1.1) are necessary
optimality conditions for

mir;iérolize F(z):= miriiznolize —;-xT.M:E + 47z (5.1)
Similar results to those obtained here for gradient-like optimization algorithms and more
general Lipschitzian functions F'(z) can be found in [2, §7.5].

We need the following lemmas:

LEMMA 5.1. For each t, let s* := xt*! — ', where {z'} is the sequence constructed by
the Partially Asynchronous SOR algorithm with A = 1. Then

- 1 2
t AR R . . t
st (M2 + ¢;) < S (%) (5.2)
foralli=1,...,n and for all t, where the vector z** is defined as
gt = [a:;“(t), il:gzi(t), .. ,:c;"‘(t)]T (5.3)

Proof. If t ¢ 7; then s} = 0 and hence (5.2) is satisfied. If, instead, ¢ € 7; then
bt " Tty o — gt
s; = (:10z wk;; <Mz T +q,))+ x;
and from the definition of projection:

<('Lf  WEs (MiT:Ci,t n Qi))+ — xf) ((xf —wEy (MiTxi,t + Qi>>+ — af + wk (MiTmi,i + qz')> <0.
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Hence

wEj;st (MiTmi’t + (Zz') < - (35)2

0
LEMMA 5.2. Under the same assumptions of Lemma 5.1 we have:
Jot 2] < 5 ] 54
k=t-B

foralli=1,...,nand for all t, where B is the constant defined in A4-AS
Proof. The proof of this lemma follows from simple modification of [2, Proposition 5.1,
p. 529] O
LEMMA 5.3. Under the same assumptions of Lemma 5.1:

észwzﬁw ~ o) < 2p(M) (mé (s5)°+ ﬁ:‘z usknz) (5.5)

where L is the maximum number of components of x updated at the same instant.
Proof. Let I(t) := {7 such that s! # 0}; we have:

i

isﬁ]\éfiT (xt - w”) < p(,M)i | st “:ct
i=1

==l

M) i | st § || (from (5.4) )
1=1

k=t-B

t—1
o) ST sl s = p(d) 3o 3 (£ st (L

k=t—-B iel(t) k=t—-Biel(t)

)

l\)l’—‘

<30 5 5 (VEGR+ [ ) = o0 (vESr+ B 2 19

k=t—B (€I(t) k=t~B el

Nl*—-—‘

o) (sz 'y VE S |]3k1|2)

k=t—B

O

By using the above lemmas, we obtain our convergence theorem for the symmetric linear
complementarity problem.

THEOREM 5.4. Let M be symmetric and F(z) be bounded below on Ry and suppose that

0 <wEii <

2
 =1,2,...,n. 5.6
RBVE + Dp(M) for every 1 n (5.6)
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Any accumulation point of the sequence {z'} generated by the Asynchronous SOR Algorithm
satisfying the assumptions Al and A4-A6 solves the linear complementarity problem (1.1).
Proof. We first show that

F(:L‘t+1 + Z ( ZB\/_'; 1) (M) _ w;ﬁ) Z_;) (S§)2 (57)

We will then show that (5.7) and (5.6) imply that every accumulation point of the sequence
{z'} solves the linear complementarity problem (1.1) provided that F'(z) is bounded below.
We have

F(z") = F(z' + s') = F(z") + > st (MiTact + q,-) + —;-stTMst
i=1

n

= F(a') + 3 st (M2 + g;) + ZstM (2" — 2™) + %stTMst
=1 =1

o35 (P00 L) (o St (- ) rom 529

n te1 5
< F(zh) + (@ - é—) (35)2+ ;p (B\/_Z( ) +vVL Y |5 ) (from (5.5))

k=t—B

n y t~1
+Z(B\/—+1) p(M) 1 )(3) \/_pM > ||s’°‘[

2 wE’” Poval

i=1

By adding the inequalities from O to ¢, we obtain:

F(a:Hl)

rie 5 (A - ) £ o« S

=1

43 (BRI L) gy

=1

Note that condition (5.6) implies that

(2BVE +1)p(M) 1
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forallz = 1,...,n. The remaining of the proof follows by simple modifications of the proofs
of Proposition 5.3 (p. 535) and Proposition 5.1 (p. 529-531) of [2]. Since F' is bounded
belowonR%, then Ve =1,...,n

2
Z (sf) < 00
k=0
and hence it follows that
lim |s¥ =0 Vi=1,...,n

Since ztt! = z* + st, we obtain that
lign ”wt“ — :I)t“ = Q.
But for ¢t € 7; and for all §
0 t t
Ty t t
|z =25 1< >0 |85,
k=t-—B

and thus

Ogliin

t
bt — wt” < lim Z HskH = 0.
t
k=t-B

Now let z* be an accumulation point of {z*} and
li}n Tl = z*.
For each £; let r; be such that
|ti—m |<B rmeT;
(the existence of the sequence {r;} is guaranteed by the assumptions A4 and AS5). Since

Ty

lign “mt‘ — " =0

=0 and lim th —z

we obtain
limz" = z” = lim g = lim gt
But
:L'?_H = (.’I‘:l —wk; (MiTZUi’T' + qi))+
and taking the limit on both sides we have

:E;k = (CI}: —wk;; (MiT.’B* -+ Qi>)+ .
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We can repeat that for each i and therefore
¥ = (2" —wE(Mz" +q)), .

0
We comment now on the meaning of the bound (5.6). For a given fixed problem, the
quantity £ is an upper bound on the number of components updated at each instant by
the Partially Asynchronous SOR Algorithm. We notice that Assumption A4 holds only if
BL > n and hence this bound still depends (implicitly) on the size of the problem. On
the other hand, the number of processing elements used in the computation also provides
an upper bound for £. Therefore, this bound reflects the fact that the time-frame B for the
asynchronous algorithm, the size of the problem and the number of processing elements used
in the computation are not independent quantities but are related to each other. However, if
the number of processing elements in the computation is much smaller than » but sufficiently
large to allow updating of all components every B instants, then (5.6) provides a much tighter
bound than [2, (5.16) p. 553].
As a final remark, we note that when B = 0 ( as for the Projected Jacobi Overrelaxation),
the condition (5.6) becomes

2
0< LUE,'Z' < —
p(M)
which implies that the matrix 2(wFE)~! — M is positive definite and hence the sufficient
conditions for the Projected Jacobi Overrelaxation Algorithm are satisfied also in this case.

6. Conclusion. We have studied sufficient conditions for convergence of totally and
partially asynchronous SOR algorithms. For symmetric positive semidefinite linear comple-
mentarity problems we have shown convergence of a partially asynchronous SOR algorithm
under a relaxation factor w interval (0,w). The value w is inversely proportional to the mea-
sure of asynchronism B and to the maximum number of components updated at the same
instant.

Acknowledgment. I wish to thank the referee for pointing out how to improve the bound
(5.6). The same technique can be used to reduce the factor n in [2, (5.16) p. 553] to 2+/n.
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