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Abstract

An interior point algorithm for obtaining a proximal point solution
of a linear program is presented. Results from our implementation of
this algorithm have been very encouraging. For 36 test problems in-
cluding 32 NETLIB problems, we obtain a total time speedup of 5.6
over the MINOS 5.0 simplex package. We also describe an imple-
mentation of our algorithm for linear programs with upper-bounded
variables, such as the multicommodity Patient Distribution System
models of the Military Airlift Command. We have been able to solve
some of these multicommodity problems with 8-figure accuracy and
speedup of as much as 24 over the MINOS 5.0. Furthermore our run
times on the Astronautics ZS-1 are comparable with those of AT&T’s
KORBX times for some of the problems.

1 Introduction

In this paper we present very encouraging computational results for an in-
terior point algorithm applied to the dual of a proximal point formulation
of a linear program. One fundamental reason for this approach is that the
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interiority condition for the dual problem is trivially satisfied by maintaining
positivity of some of the dual variables. The key ingredients of the method
are :

1. The nonnegatively-constrained convex quadratic objective function of
the dual of the proximal point linear program.

2. The logarithmic penalty formulation of the dual problem.

3. Execution of one step of the Newton method using an efficient sparse
linear algebra package.

The method was tested on 36 problems, including 32 NETLIB problems
and on the multicommodity Patient Distribution System (PDS) model of
the Military Airlift Command. On the 36 test problems, our method outper-
formed the MINQOS 5.0 simplex package by a ratio of 5.6 to 1 in total time.
On the PDS models we obtained a speedup of up to 24 over MINOS. We
were able to solve the 10-day PDS model (16558 rows, 49932 columns) on
the Astronautics ZS-1 pipeline vector machine (with megaflop rate of 5.2-8.2)
in 4.7 hours. In contrast the same problem was solved in 3.3 -4.5 hours on
AT&T’s KORBX machine [2] (with estimated Mflop rate of 8.5-69.3) using

various versions of Karmarkar’s method [7].

2 Problem Formulation
We consider linear program in the standard form

mincz s.t. Az =5, z >0 (1)

T

where c € IR*,b € IR™ and A € IR™*" and its dual

max by s.t. Alut+v=c,v>0 (2)

The proximal point algorithm [1,14] applied to the linear program (1)
generates a sequence {z'} as follows:

i+1 ¢

7 i= arg min cz + 5 st. Az =b, >0 (3)
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where {€¢'} is a bounded sequence of positive numbers and z° € IR™. Instead
of applying an interior method to the subproblem (3), we choose to do that to
its dual which is considerably simpler. The dual [9] of the quadratic program
(3) is

T il
g&z»i”Au—{—v-kaem — €'bu (4)

If we let (u(€'),v(e')) be a solution of the dual program (4), then the primal
solution z(€') is given by
. . 1 . .
z(e) = ' + E(Atu(ez) + v(€") — ¢)
This in effect is an augmented Lagrangian [1,13] update for the dual linear
program (2). Our proposed algorithm consists of taking one Newton step for
the log penalty barrier function associated with subproblem (4) with appro-

priately decreasing values of ¢ and the penalty parameter 7. We describe
the algorithm in detail in the next section.

3 Quadratic Interior Dual Proximal Point
Algorithm (QIDPP)

Consider the barrier penalty minimization problem associated with the dual
problem (4) with penalty parameter v* > 0

min F'(u,v) 1= —;— “Atu +v—c+ eimiH? — by —~ i log v; (5)
=1

U

The gradient and the Hessian of F'(u,v) are

| VuF(uv) [ A(AuA4v—c+eat) — b
VE(u,v) = ( V. F(u,v) ) B ( Alu4v —c+ ezt — 4V le

AA A
2 o .
VF(“:”)“( At I—}-’)’IV“Z)
where V := diag(vy,va,...,v,). The Newton direction can then be obtained

by solving the linear system

VZF(ui,vi) < U — ui ) + VF(ui’vi) =0



We are now ready to state the complete algorithm.

Algorithm QIDPP:

o Initialization

1. Choose any u® € R™, v°* € R}. Set i =0
Choose 7% > Ymin > 0 and € > €, > 0 and 0 < p < 1.
(p is an attenuation factor for € and )

2. Compute

z% = 61—0 (Atuo + 00 — c)

e [teration

1. Solve the linear system
u—ul
v — v

V2F(u',v) ( > + VF(u',v') =0 (6)

Let (@, 7') be the solution of the above linear system.
2. Update
-+1 - z = A‘t——z =1 . 7
T z' + = ( (TR c) (7)
i+1 T

u =

3. Compute stepsize A

A= min{min( Y .)71} (8)
jeJ \v; — U

where J = {]I’U; ~ﬁ§- > 0}

4. Update ' ' . .
o't = vt 4+ 0.98) (ﬁ“ — v’)

e Termination
If (2!, ui! v**1) is feasible to the primal-dual programs (1) and (2)
and |cz™t? — bu't!| is sufficiently small, then stop
Else



1. Setz:=2+4+1
2. 1f ’)’_i > Ymin then ’?’H'l = p'.yi
if € > €mipn then 1! = pet

3. Go to Iteration

Remark 1 Choosing an interior point to start this algorithm is trivial, since
the dual problem (4) has only nonnegativity constraints. This is the main
advantage of this algorithm over the primal algorithm implemented by Gill
et al [6], the dual affine algorithm implemented by Monma and Morton [11]
or the primal-dual affine algorithm implemented by McShane et al [10] and
Lustig [8] where a phase I is needed to start the algorithms.

Remark 2 Solution of the m + n linear system (6) in the m + n variables
(u,v) can be achieved by first solving the m linear equations in m unknowns

A [I ~ (1 + ﬂvi)—?)‘l] A (u— ) =

AT+ (V) VP, v) — Vo F (i, o) (9)

for u and then computing
v—v=— (I + ’)/"(‘/"')“2)—1 (VUF(ui, v') + A (u - u1>)

In our implementation, the Yale Sparse Mairiz Package [3,4] was used to
solve the system of linear equations (9).

Remark 3 By using (@',0') as opposed to (u'+',v**!) in computing =+, we
are guaranteed to have a sequence {z'} such that Az' = b, except for possibly

z°.

4 Computational Results

The algorithm QIDPP was implemented on a Microvax 3200. The code was
written in FORTRAN and the FORTRAN {77 compiler was used with the
?-0” option. All the test problems that we solved are publicly available
through Netlib [5], except 4 problems : Rabo, Trussl, Truss2 and Truss3.
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Rabo comes from the mortgage division of Rabo Bank of the Netherlands.
The truss problems are structural design problems which were made available
by Prof. Michael C. Ferris of the University of Wisconsin. The dimensions
of all our linear programming test problems are given in Table 1.

For comparison purposes, we solved these problems using MINOS 5.0 [12],
one of the most widely used linear programming packages. Results obtained
by MINOS 5.0, using the default parameter settings, are given in Table 2 for
the 36 test problems.

Table 3 shows the results from the QIDPP algorithm. We have used one
set of parameter values that we found work best for all 36 test problems.
The objective values for QIDPP and MINOS agree to 7 or 8 digits for most
problems. Additional information about QIDPP results are listed in Table 4.
The primal infeasibility, dual infeasibility and complementarity are computed
as follows:

Primal Infeasibility = M_ﬁ.(.)-]_[_b_l_l
t p—
Dual Infeasibility = M
[[(=c)+]|
Sl A
Complementarity M
][ 1wl
where X := diag(z1,22,...,%n)-

The relative primal infeasibility achieved by this algorithm is on the av-
erage 1 order of magnitude better than either an interior primal proximal
point algorithm or a pure primal interior point algorithm [15]. Finally, in
Table 5 we compare the run times of MINOS and QIDPP. On these 36 test
problems our total time speedup over MINOS was 5.6.

5 Linear Programs with upper bounds

Since many important linear programs, such as multicommodity problems
with capacitated arcs, have upper bounds on some or all of the variables, we
discuss in this section methods for handling such bounds without increasing
the size of the constraint matrix.

Consider the following linear programs where all of the variables are



bounded

rr}Cincaz st. Az =0, 0 <2z <d (10)
This problem is equivalent to
ngrcliyn cx (11)
subject to
A0 x . b
I 1 Yy - d
z,y =2 0

This is a problem with m + n constraints in 2n variables. The dual of the
linear program (10) is

min bu + dv (12)
subject to |
Alu4+v < ¢
v < 0

The primal and dual proximal point minimization problems corresponding
to the above primal-dual programs are respectively

2

. € 12 _6_1_ A2
n;l,lynca:+~2— a:—x” + 5 Hy—y (13)
subject to
A0 x B b
I I Yy - d
z,y =2 0
and

min %“Atu—%v—l—w-—c—i—eia:i 2+%}lv—{-z%—eiyi”?—eibu——eidv (14)

(w,2)>0,u,v

The barrier penalty minimization problem associated with the dual problem
(14) is

2

u,v

minG(uvvawvz):z%llAtu+U+w—C+6ixi2 + %”v—i"Z‘i—eiyi

—ebu — edv — 'Y logw; — 7°Y logz;
J=1

J=1



where4* > 0 and 5 > 0. The total number of variables in this problem is m
3n. This dimensionality is considerably bigger than the n-dimensional size
of the original linear program (10). However, we will give a transformation
which will enable us to solve a system of equations in m unknowns at each
iteration of the proximal point algorithm.

The optimality condition for the last problem above is

V.G(u,v,w,z)

V.G(u,v,w, 2)

VuG(u,v,w,2)

V.G(u,v,w,z)
A(Au+v+w—c+ézt) — b

Atu 420 +w — ¢+ €zt + z + €yt — ed

VG(u,v,w,z) :=

= Au+v+w—c+ ezt —yWle =0
v4+z+ey —niZ e
where W = diag(wi,ws, ..., w,) and Z = diag(z1, 22, ..., 2,). The lineariza-

tion of the gradient function VG(u,v,w,z) around the point (u,v*,w’, %)
gives us the following system of linear equations

AAT A A Ac+ €b — €Az’

0 U
At 21 I I v | ¢+ éd — ezt — 'y’
At T T++44(WH? 0 w c+ 27 (W)~ te — e'a
0 I 0 I 40742 z 2t (Z)) e — ety

(15)
For ease of notation, define the diagonal matrices

i

Dy = (I4++4(wi?)"
Dy = (I+ni(2))"
and E := (21 — Dy — D,)™!

and vectors

hy Ac+ €b— €Azt
he | ¢+ eld — ezt — eyt
hs | T | e+ 29 (Wi)le — €'at
ha (7)) e — €'y’



The solution of the (m + 3n) dimensional system (15) can then be obtained
by first solving the m dimensional linear system

A(I=D)(I-E(I—-Dy))Au=
hi — AD1hg — A(I — Dy) E (hy — D1hs — Dyhy) (16)

for u. The other 3 unknowns can then be computed as follows:
v = K (h2 - Dlhg — D2h4 - (_[ - Dl) Atu)

w = —I) (Atu+v—h3>
z = MD2('U-I‘L4)

We have thus reduced the dimensionality of the problem from m 4 3n to m
which is of the same size for an LP without upper bounds.

6 Performance of QIDPP for LP with upper
bounded variables

As test problems with upper bounds for QIDPP, we have solved some of
the Patient Distribution System (PDS) problems that were developed by the
staff of the Military Airlift Command at the Scott Air Force Base. These
problems are multicommodity network problems. We listed the sizes of these
problems in Table 6.

MINOS and QIDPP were both run on an Astronautics ZS-1 [16]. The
algorithm QIDPP was implemented in standard FORTRAN. The optimal
value obtained by MINOS and the time MINOS took to get these values are
listed in Table 7. MINOS was run with default parameter values, except for
log frequency 200, summary frequency 200 and solution no. Table 8 shows
the objective values, number of iterations and CPU time for QIDPP. The
time to transform the MPS file (the format required by MINOS) into sparse
format is not included here. The QIDPP program was run with one set
of parameter values for all problems. The Yale Sparse Matrix Package was
used to solve the linear system (16). Variables with no upper bound are
given dummy upper bounds. This dummy bound is set at 100000.

Table 9 shows the errors of the solution obtained by QIDPP. They are
computed as follows:



1. Relative error in objective value

lez* — cz|
|cz*|

cz* is the optimal value obtained by MINOS

2. Absolute error in primal feasibility
|Azy — b, (=2)+, (24 — d)+ [l
3. Absolute error in dual feasibility

”(Atu + v —¢)y, U+HOO

In Table 10 we give a comparison between MINOS times and QIDPP times.
Finally, we listed the time from the KORBX machine as reported by W.
J. Carolan et al [2] and QIDPP time in Table 11. The optimal objective
function value for PDS-10 problem that we obtain is not the same as the one
from the KORBX because the data that we have is similar but not identical.

For larger problem, a preconditioned conjugate gradient approach is cur-
rently being developed [15] as replacement for the YSMP package for solving
the linear systems (16).

7 Conclusions

We have presented an algorithm for solving a linear program based on an
interior point method applied to the dual of a proximal point formulation
of the linear program. In the dual problem that we are solving, the only
constraints present are nonnegativity constraints. These simple constraints
allow us to start the algorithm without a phase 1 or feasibility phase which
is necessary for primal interior algorithms. When an efficient routine such
as the Yale Sparse Matrix Package is utilized to solve the linear system of
equations that arises at each iteration of the algorithm, the method has
been demonstrated to outperform a standard simplex linear programming
package. We have also shown how a linear program with bounded variables
can be solved without increasing the dimensionality of the problem. Patient
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Distribution System models, which are large multicommodity network flow
problems with some capacitated arcs, were used to test our algorithm. Our
actual computing times were comparable to those of other variants of the
interior method implemented on a much more powerful machine than ours.
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| No. l Problem Name | Rows | Columns

| Non-Zeros |

1 | Afiro 28 32 38
2 | Adlittle 57 97 465
3 | ScSdl 78 760 3148
4 | Share2b 97 79 730
5 | Sharelb 118 225 1182
6 | Scagr? 130 140 553
7 | ScSd6 148 1350 5666
8 | Beaconfd 174 262 3476
9 | Israel 175 142 2358
10 | Trussl 200 1602 4984
11 | Sc205 206 203 552
12 | BrandY 221 249 2150
13 | E226 224 282 2767
14 | ScTapl 301 4380 2052
15 | BandM 306 472 2659
16 | Rabo 317 560 5201
17 | Scfxml 331 457 2612
18 | Scorpion 389 358 1708
19 | ScSd8 398 2750 11334
20 | Ship04s 403 1458 5810
21 | Ship041 403 2118 8450
22 | Scagr2b 472 500 2029
23 | Scrs8 491 1169 4029
24 | Truss2 500 4312 13584
25 | Scfxm?2 661 914 5229
26 | Pilot.we 723 2789 9218
27 | Ship08s 779 2387 9501
28 | Ship08l 779 4283 17085
29 | 25fv47 822 1571 11127
30 | CzProb 930 3523 14173
31 | Scfxm3 991 1371 7846
32 | Truss3 1000 8806 27836
33 | ScTap2 1091 1880 8124
34 | Shipl2s 1152 2763 10941
35 | Ship12] 1152 5427 21597
36 | ScTap3 1481 2480 10734

Table 1: Linear Programming Test Problems
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[ No. [ Problem Name | Objective Value | Tterations | CPU Time |
1| Afiro -0.46475314 e+03 6 1.20
2 | Adlittle 0.22549496 e+-06 116 5.05
3 | ScSd1 0.86666667 e+01 217 22.93
4 | Share2b -0.41573224 e+03 120 6.87
5 | Sharelb -0.76589319 e+-05 300 18.68
6 | Scagr7 -0.23313898 e+07 66 6.23
7 | ScSd6 0.50500000 e+02 483 62.45
8 | Beaconfd 0.33592486 e+05 39 11.55
9 | Israel -0.89664482 e+06 265 24.27

10 | Trussl 0.11436413 e+05 1301 189.78
11 | Sc205 -0.52202061 e+02 114 11.57
12 | BrandY 0.15185099 e+-04 331 31.78
13 | K226 -0.18751929 e+02 584 52.37
14 | ScTapl 0.14122500 e+04 304 33.17
15 | BandM -0.15862802 e-+03 422 51.93
16 | Rabo 0.66510241 e+05 857 134.71
17 | Scfxml 0.18416759 e+05 428 45.82
18 | Scorpion 0.18781248 e+04 169 24.18
19 | ScSd8 0.90500000 e+03 1321 294.25
20 | Ship04s 0.17987147 e+407 390 66.95
21 | Ship04l 0.17933245 e+07 579 115.55
22 | Scagr2b -0.14753433 e+08 532 71.77
23 | Scrs8 0.90429695 e-+03 577 96.48
24 | Truss2 0.72752363 e+05 7673 2966.73
25 | Scfxm?2 0.36660262 e+05 1014 182.93
26 | Pilot.we -0.27200991 e+07 5118 1743.85
27 | Ship08s 0.19200982 e+407 657 184.55
28 | Ship08l 0.19090552 e+07 960 336.57
29 | 25fv4T 0.55018459 e+04 7027 2416.82
30 | CzProb 0.21851967 e+07 2547 966.55
31 | Scfxm3 0.54901255 e+05 1467 385.35
32 | Truss3 0.55933897 e-+07 13391 8777.53
33 | ScTap2 0.17248071 e+404 1569 434.77
34 | Shipl2s 0.14892361 e+07 759 353.00
35 | Shipl2l 0.14701879 e+07 1415 769.37
36 | ScTap3 0.14240000 e+04 1571 585.07

Table 2: MINOS 5.0 Results
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Pr. | Problem Total CPU Primal Dual

No. Name | Iterations | Time | Objective Value | Objective Value
1 | Afiro 30 1.06 | -0.46475314 e+03 | -0.46475314 e403
2 | Adlittle 26 2.50 | 0.22549496 e+06 | 0.22549495 e+06
3 | ScSd1 28 | 11.60 | 0.86666671 e+01 0.86666666 e+01
4 | Share2b 27 5.18 | -0.41573230 e+03 | -0.41573229 e+403
5 | Sharelb 63 | 14.22 | -0.76589315 e+05 | -0.76589319 e+05
6 | Scagr7 35 4.32 | -0.23313898 e+07 | -0.23313898 e+07
7 | ScSd6 29 | 21.17 | 0.50500001 e+02 | 0.50499999 e+02
8 | Beaconfd 29 | 21.98 0.33592486 e+405 0.33592486 e+05
9 | Israel 35 | 174.57 | -0.89664482 e+06 | -0.89664485 e+06
10 | Trussl 26 | 47.93 | 0.11436413 e+05 | 0.11436413 e+05
11 | Sc205 43 7.48 | -0.52202061 e+4-02 | -0.55202061 e+02
12 | BrandY 33| 22.70 | 0.15185099 e+04 | 0.15185099 e+-04
13 | E226 38 | 29.45 | -0.18751928 e+02 | 0.18751929 e+02
14 | ScTapl 29 14.06 0.14122500 e404 0.14122499 e+04
15 | BandM 35| 30.70 | -0.15862802 e+03 | -0.15862802 e+4-03
16 | Rabo 32 | 355.33 | 0.66510242 e+05 | 0.66510238 405
17 | Scfxml 37| 32.71 | 0.18416759 e+05 | 0.18416759 e+05
18 | Scorpion 28 | 12.03 | 0.18781248 e+04 | 0.18781248 e+404
19 | ScSd8 27 | 43.31 | 0.90500001 e+03 | 0.90499998 e+03
20 | Ship04s 26 | 21.68 | 0.17987148 407 | 0.17987147 e+07
21 | Ship041 26 | 33.53 | 0.17933246 e+07 | 0.17933245 407
22 | Scagr2b 42 | 19.49 | -0.14753433 e+08 | -0.14753433 e+08
23 | Scrs8 46 | 44.14 | 0.90429695 e+03 | 0.90429694 e+03
24 | Truss2 27 | 277.41 | 0.72752368 e+05 | 0.72752367 e+05
25 | Scfxm2 383 | T71.52 1 0.36660261 e+05 | 0.36660261 e+05
26 | Pilot.we 86 | 440.35 | -0.27201075 e+07 | -0.27201075 e+407
27 | Ship08s 26 | 34.86 | 0.19200982 e+07 | 0.19200981 e+4-07
28 | Ship08l1 26 | 72.78 | 0.19090553 e+07 | 0.19090551 e+07
29 | 25fv4T 39 | 509.50 | 0.55018469 e+04 | 0.55018469 e4-05
30 | CzProb 58 | 92.73 | 0.21851967 e+07 | 0.21851967 e+07
31 | Scfxm3 39 | 114.78 | 0.54901254 e+05 | 0.54901254 e+405
32 | Truss3 32 | 830.11 | 0.55933898 e+07 | 0.55933895 e+07
33 | ScTap2 31| 124.60 | 0.17248072 e+404 | 0.17248071 e+404
34 | Shipl2s 28 | 39.30 | 0.14892362 e4+07 | 0.14892361 e+07
35 | Shipl12l 27 | 93.03 | 0.14701879 e+07 | 0.14701879 407
36 | ScTap3 36 | 174.33 | 0.14240000 e+04 | 0.14240000 e+04

Table 3: QIDPP:Quadratic Interior Dual Proximal Point Results
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Pr. | Problem Primal Dual Complemen-
No. Name | Infeasibility | Infeasibility tarity

1 | Afiro 0.2 e-11 0.1 e-06 0.1 e-07
2 | Adlittle 0.3 e-09 0.2 e-09 0.2 e-09
3 | ScSdl 0.3 e-08 0.2 e-08 0.4 e-09
4 | Share2b 0.5 e-06 0.9 e-09 0.9 e-10
5 | Sharelb 0.2 e-04 0.0 e-00 0.1 e12
6 | Scagr7 0.4 e-11 0.3 e-06 0.5 e-09
7 | ScS5d6 0.1 e-07 0.0 e-00 0.2 e-09
8 | Beaconfd 0.2 e-09 0.2 e-04 0.4 e-13
9 | Israel 0.8 e-09 0.2 e-10 0.3 e-10
10 | Trussl 0.2 e-08 0.6 e-06 0.1 e-09
11 | Sc205 0.4 e-10 0.0 e-00 0.1 e18
12 | BrandY 0.1 e-08 0.1 e-02 0.5 e-10
13 | E226 0.2 e-06 0.2 e-10 0.2 e-15
14 | ScTapl 0.2 e-08 0.7 e-06 0.4 e-09
15 | BandM 0.1 e-08 0.3 e-04 0.5 e-10
16 | Rabo 0.2 e-10 0.2 e-05 0.3 e-09
17 | Scfxml 0.6 e-09 0.2 e-02 0.4 e-09
18 | Scorpion 0.7 e-05 0.0 e-00 0.1 e13
19 | ScSd8 0.3 e-08 0.1 e-06 0.6 e-10
20 | Ship0O4s 0.4 e-08 0.1 e-04 0.2 e-09
21 | Ship04l 0.1 e-06 0.0 e-00 0.6 e-10
22 | Scagr2b 0.2 e-12 0.2 e-08 0.7 e-10
23 | Scrs8 0.8 e-06 0.9 e-09 0.2 e-16
24 | Truss2 0.3 e-07 0.2 e-04 0.4 e-09
25 | Scfxm?2 0.4 e-09 0.6 e-02 0.5 e-10
26 | Pilot.we 0.1e-10 0.6 e-03 0.1 el14
27 | Ship08s 0.4 e-09 0.0 e-00 0.3 e-09
28 | Ship8l 0.2 e-06 0.0 e-00 0.3 e-10
29 | 25147 0.2 e-08 0.3 e-04 0.1 e-07
30 | CzProb 0.8 e-07 0.1 e-02 0.4 e-07
31 | Scfxm3 0.7 e-10 0.3 e-04 0.1 e11
32 | Truss3 0.1 e-06 0.5 e-06 0.6 e-11
33 | ScTap2 0.4 e-09 0.6 e-05 0.2 e-07
34 | Shipl12s 0.7 e-09 0.2 e-04 0.1 e-09
35 | Ship12l 0.3 e-08 0.5 e-06 0.2 e-10
36 | ScTap3 0.8 e-08 0.2 e-03 0.2 e-08

Table 4: QIDPP:Quadratic Interior Dual Proximal Point Results
(Continued)

15



Pr. | Problem | MINOS QIDPP | Minos/QIDPP
No.| Name | (seconds) | (seconds) Time Ratio
1 | Afiro 1.20 1.06 1.13
2 | Adlittle 5.05 2.50 2.02
3 | ScSd1 22.93 11.60 1.98
4 | Share2b 6.87 5.18 1.33
5 | Sharelb 18.68 14.22 1.31
6 | Scagr7 6.23 4.32 1.44
7 | ScSd6 62.45 21.17 2.95
8 | Beaconfd 11.55 21.98 0.53
9 | Israel 24.27 174.57 0.14
10 | Trussl 189.78 47.93 3.96
11 | Sc205 11.57 7.48 1.55
12 | BrandY 31.78 22.70 1.40
13 | E226 52.37 29.45 1.78
14 | ScTapl 33.17 14.06 2.36
15 | BandM 51.93 30.70 1.69
16 | Rabo 134.71 355.53 0.38
17 | Scfxml 45.82 32.71 1.40
18 | Scorpion 24.18 12.03 2.01
19 | ScSd8 294.25 43.31 6.79
20 | Ship04s 66.95 21.68 3.09
21 | Ship04l 115.55 33.53 3.45
22 | Scagr2) 71.77 19.49 3.68
23 | Scrs8 96.48 44.14 2.19
24 | Truss2 2966.73 277.41 10.69
25 | Scfxm?2 182.93 71.52 2.56
26 | Pilot.we 1743.85 440.35 3.96
27 | Ship08s 184.55 34.86 5.29
28 | Ship08l 336.57 72.78 4.62
29 | 25fv4T 2416.82 509.50 4.74
30 | CzProb 966.55 92.73 10.42
31 | Scfxm3 385.35 114.78 3.36
32 | Truss3 8777.53 830.11 10.57
33 | ScTap2 434.77 124.60 3.49
34 | Ship12s 353.00 39.30 8.98
35 | Ship12l 769.37 93.03 8.27
36 | ScTap3 585.07 174.33 3.36
| -[TOTAL [ 21482.63 | 3846.44 | 5.59 |

Table 5: Comparison between Minos and QIDPP (Microvax 3200)
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Days | Rows | Columns | Up. Bound | Non-Zeros
1 1473 3816 605 8139
2 2953 7716 2134 16571
3 4593 12590 3839 27099
4 6372 18615 5555 39944
5 8099 24192 7370 51978
6 9881 29351 9240 63220
10 | 16558 49932 16148 107605

Table 6: Patient Distribution System (PDS) Problem Data

Days | Objective Value | Ph. I It. | Total It. | CPU Hr.
1 2.9083930523 e+10 420 965 0.033

2 2.8857862010 e+10 1715 3003 0.227

3 2.8597374145 e+10 7551 10591 1.818

4 2.8341928581 e+10 10552 15750 5.076

5 2.8054052607 e+10 14026 22515 10.282

6 2.7761037639 e+10 18984 29952 18.521
10f na na na na

Table 7: PDS : MINOS Results
1 Not attempted
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Days | Primal Objective | Dual Objective | Iter. | CPU Hr.
1 2.9083930524 e+10 | 2.9083930521 e+10 47 0.008
2 2.8857862009 e+10 | 2.8857862007 e+10 49 0.029
3 2.8597374136 e+10 | 2.8597374143 e+10 47 0.078
4 2.8341928579 e+10 | 2.8341928580 e+10 57 0.210
5 2.8054052595 e+10 | 2.8054052606 e+10 56 0.590
6 2.7761037575 e+10 | 2.7761037602 e+10 62 0.865
10 2.6727095005 e+10 | 2.6727094976 e+10 82 4.682

Table 8: PDS : QIDPP Results

No. Objective Value | Absolute Infeasiblity

Days | PRIMAL | DUAL | PRIMAL | DUAL
1 3 e-ll Tell 2 e-04 3 e-04
2 4el1l] 1e-10 7 e-04 2 e-04
3 Jelld| Tell 4 e-04 3 e-04
4 Tell| 4e-ll 3 e-04 5 e-04
) 4el10| 4ell 8 e-04 4 e-04
6 2e09] 1e09 1 e-03 4 e-04
10 na na 8 e-04 2 e-04

Table 9: PDS : QIDPP Errors
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No. MINOS QIDPP Speed-
Days | Iter. | CPU Hr. | Iter. | CPU Hr. Up

1 965 0.033 47 0.008 4.1

2] 1715 0.227 49 0.029 7.8

3 | 10591 1.818 47 0.078 23.3

4 | 15750 5.076 57 0.210 24.2

5 | 22515 10.282 56 0.590 17.4

6 | 29952 18.521 51 0.865 21.4

10 na na 82 4.682 na

Table 10: PDS : Comparison between MINOS and QIDPP
(Astronautics ZS-1)
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No. of Days 2 6 10

KORBX SYSTEM

Primal algorithm

Iterations 33 57 66

Time 105.1 sec 38.6 min 3.3 hrs

Obj. Value 2.8858 e+10 | 2.7761 e+10 | 2.5959 e+10

Dual algorithm

Iterations 46 63 66

Time 124.6 sec 42.0 min 3.4 hrs

Obj. Value 2.8858 e+10 | 2.7761 e+410 | 2.5959 e+410

Primal-Dual algorithm

Iterations 38 57 85

Time 135.4 sec 43.7 min 4.5 hrs

Obj. Value 2.8858 e+10 | 2.7761 e+410 | 2.5959 e+10

Power Series algorithm

[terations 21 24 51

Time 148.4 sec 28.2 min 3.3 hrs

Obj. Value 2.8858 e+10 | 2.7761 e+10 | 2.5959 e+10

ASTRONAUTICS

QIDPP algorithm

Iterations 49 62 82

Time 103.4 sec 51.9 min 4.7 hrs

ODbj. Value 2.8858 e+10 | 2.7761 e+10 | 2.6727 e+10
Table 11: PDS : Comparison of the Interior Algorithms on

the KORBX and Astronautics
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