NONDETERMINISTIC CIRCUITS, SPACE
COMPLEXITY AND QUASIGROUPS

by
Marty J. Wolf
Computer Sciences Technical Report #870

August 1989

.;‘)')/






Nondeterministic Circuits, Space Complexity and Quasigroups

Marty J. Wolf!
Computer Sciences Department
University of Wisconsin
1210 West Dayton Street

Madison, Wisconsin 53706
August 15, 1989

Abstract: By considering nondeterminism as a quantifiable resource we introduce new nondeterministic complexity
classes obtained from NC circuits using a bounded number of nondeterministic gates. Let NNC(f(n)) denote the
class of languages computable by an NC circuit family with O(f(n)) nondeterministic gates. If f(n) is limited to
log n, we show that the class obtained is equivalent to NC. If f(n) is allowed to encompass all polynomials we show
the class obtained is equivalent to NP. The class of most interest, NNC(polylog), obtained by letting f(n) encom-
pass all polylog functions, contains a version of the quasigroup (Latin square) isomorphism problem. The quasi-
group isomorphism problem is not known to be in P or NP-complete, thus NNC(polylog) is a candidate for separat-
ing NC and NP. We also show that NNC(polylog) ¢ DSPACE(polylog). In fact, if we denote the complexity class
obtained from an NC* circuit with O(log’ n) nondeterministic gates by NNC*(log/ n), we show that NNC*(logk n) is
contained in DSPACE(log* n) which leads to DSPACE(log? n) algorithms for the quasigroup isomorphism problem,
the Latin square isotopism problem and the Latin square graph isomorphism problem. The only other known bound
for these problems is Miller’s time bound of O(n'% " *®™). This result is also a generalization of Lipton, Snyder
and Zalcstein’s DSPACE(log® n) algorithm for the group isomorphism problem. We also show that for every k

NNC(n*) ¢ DSPACE(n¥), and if for some k there exists a j such that DSPACE(n*) ¢ NNC(n/) then NP =

PSPACE.
SECTION 1. Introduction.

By giving NC circuits a limited amount of nondeterminism, we develop potentially
interesting complexity classes between NC and NP, as well as demonstrate their relationship to

well known DSPACE classes. As a result of the relationship between these new classes and

! Research suppérted in part by NSF Grants No. DCR-8504485 and DCR-8552596



DSPACE classes, we develop an DSPACE(log2 n) algorithm for the quasigroup (Latin square)
isomorphism problem. Lipton, Snyder and Zalcstein [11] have a DSPACE(I()g2 n) algorithm for
group isomorphism, but, as Miller [12] points out, their technique relies on the associativity of
groups and does not readily generalize to quasigroups. Miller goes on to present a more general
technique requiring O(n logz n + O(1)) time for the quasigroup isomorphism problem. We use non-
deterministic NC circuits to show that quasigroup isomorphism, Latin square isotopism and

Latin square graph isomorphism can be decided in DSPACE(log? ).

Expanding the approach of Kintala and Fischer in [5], [8], and [9], we consider nondeter-
minism as a quantifiable resource. The usual assumption is that a particular computational dev-
ice is able to make either as many nondeterministic moves as needed or none at all. Fischer and
Kintala [5] studied polynomially time bounded real-time Turing machine computations with a
bounded number of nondeterministic moves and developed an infinite hierarchy of languages
between the real-time languages (the class of languages accepted by deterministic Turing
machines that read an input symbol at every step) and the quasi-real-time languages (the class of
languages accepted by nondeterministic Turing machines that read an input symbol at every
step). Kintala and Wotschke [10] counted the number of nondeterministic states an automaton
passes through on its way to acceptance of an input. They were able to develop a ‘‘succinct-
ness’” hierarchy which measured the savings in the number of states of a nondeterministic finite
automaton with more nondeterministic states over a nondeterministic finite automaton with
fewer nondeterministic states relative to the corresponding minimal deterministic finite automa-
ton. By using circuits as our basic model we have a means to easily quantify nondeterminism,
and we extend the idea of limiting the amount of nondeterminism available to a computational

device by developing a nondeterministic version of NC.




To define new complexity classes, we develop nondeterministic NC (NNC) circuits by uni-
formly adding ‘‘guessing gates’’ to families of LOGSPACE uniform NC circuits. We define
NNC(f(n)) to be the class of sets accepted by LOGSPACE uniform families of NC circuits with
at most O(f(n)) nondeterministic gates or guess gates, where n is the length of the input. We will
refer to a circuit from such a family as a uniform NNC circuit, and such a circuit accepts an
input if it outputs a 1. (See Cook [3] and Ruzzo [13] for complete descriptions of uniform cir-
cuit families.) The guessing gates give the circuit a set of guessing inputs, y, in addition to the
ordinary inputs, x. An NNC circuit is said to accept x if and only if there is some string of guess-
ing bits y that causes the circuit to output a 1. Thus f(r) can be thought of as the maximum
number of guess bits used in computations on inputs of length n. The classes we study in this
paper are of the form NNC(logk n) and NNC(n*). We will often abuse notation and write
NNC(class) where class is a class of functions. For example, we define NNC(polylog) =

) NNC(log" n) and NNC(poly) = U NNC(rik). We also refine the NNC(log’c n) classes to
k=1 k=1

include an index that indicates the depth of the circuit. We let NNC¥(log/ ) denote the class of
languages accepted by an NC* circuit with O(logj n) guessing gates, where an NC¥ circuit is a
circuit with depth O(log® n). This definition is consistent with the notation in Cook [3] in that the

exponent of NC indicates the depth of the circuit.

Note that NNC complexity classes share an intimate relationship with RNC, a random ver-
sion of NC. RNC circuits and NNC circuits can be thought of as computing in exactly the same
manner each with a different acceptance criteria. An NNC circuit accepts if and only if there is
at least one string of guess bits that causes the circuit to output a 1, whereas an RNC circuit
accepts if and only if at least % of the possible strings of random (or guess) bits cause the circuit

to output a 1. Unfortunately, RNC circuits are allowed to use a polynomial number of random



bits, and thus, we can only say that RNC < NNC(poly), which is not surprising since later we
will show that NNC(poly) = NP. On the other hand, we know that any problem that has an RNC

algorithm using O(f(n)) random bits is in NNC(f(n)).

One of our first goals is to determine how much nondeterminism is needed by an NC circuit
in order for the associated complexity class to be new and ‘‘interesting.’’ In Section 2 we will

see that NNC(polylog) lies between NC and NP with neither containment known to be proper.

The parallel computation thesis states that parallel time is roughly equivalent to sequential
space [2]. In Section 3 we explore an expansion of this idea by demonstrating some relation-
ships between well-known DSPACE classes and the nondeterministic NC classes developed in
Section 2. We are interested in the relationship between sequential space and the amount of
nondeterminism given to NC circuits. Unfortunately, we are unable to show equivalence
between the DSPACE classes and the NNC classes. In fact, we give some evidence that certain

DSPACE classes and certain NNC classes are probably not equivalent.

In Section 4 we develop nondeterministic NC algorithms for the quasigroup isomorphism
problem and related problems, problems not known to be in P or NP-complete. By applying the
relationships developed in Section 3, we demonstrate that quasigroup isomorphism, Latin square
isotopism and Latin square graph isomorphism are decidable in DSPACE(log2 n). Our result,
however, relies mostly on a new representation we develop for elements of quasigroups. This
representation coupled with Miller’s observation that a quasigroup has at most log; n generators
leads to a DSPACE(log? n) algorithm as well as our NNC? (log? n ) algorithm for the quasigroup

isomorphism problem.

We now describe the computational models used to define the usual nondeterministic and

deterministic time and space complexity classes.




Our Turing machine models are familiar ones, and we assume the reader is familiar with
Turing machines as described in Chapters 7 and 12 of Hopcroft and Ullman [7]. When we con-
sider nondeterministic time bounds, our Turing machines have a fixed number of two-way
infinite work tapes, one of which contains the input. For a nondeterministic machine, M, we say
that a language L is accepted in time T(n) by M if and only if on all inputs w € L of length n no
sequence of choices causes M to make more than T(n) moves. When considering deterministic
space bounds, we often are concerned with bounds that are less than linear. In this case we
adopt the “‘off-line’” Turing machine with a two-way read only input tape and a fixed number of
infinite work tapes. For a deterministic machine M, we say that a language L is accepted in
space S(n) by M if and only if on all inputs w € L of length n there is a valid computation lead-
ing to an accepting state that uses no more than S(n) tape cells. Then L is said to be in

DSPACE(S(n)).

SECTION 2. Some Basic Relationships.

We would like to find a class of functions C such that NC G NNC(C) & NP. We begin by

considering the class NNC(poly). We will show that this class is too powerful since NNC(poly)
= NP. This is not surprising since Fortune and Wyllie [6] using a PRAM model for NC showed
a similar result. Dymond [4] using a nondeterministic version of a hardware modification
machine also showed that NP and nondeterministic NC are equivalent. The advantage of the NC
circuit model has over these previous models is the straightforward manner in which the amount
of nondeterminism used in computations can be quantified. Thus, next we consider the function
log n and find that NNC(log n) is too weak, since NNC(log n) = NC. The most interesting case
is when C is the class of functions that are bounded by polynomials in log n. In Section 4 we

show a form of quasigroup isomorphism is in NNC(polylog). Since this problem is not known



to be in P and this problem is not known to be NP-complete, the class NNC(polylog) joins P, RP,

ZPP and RNC as candidates for a class separating NC and NP.
We begin by considering the class NNC(poly). Itis not hard to see that NNC(poly) < NP.
Lemma 2.1: NNC(poly) < NP.

Proof. Assume the set A is in NNC(poly). Then given x, an input of length n, and a
description of the NNC circuit to accept words in A of length n, it is easy to construct an NP-
machine to simulate the NNC circuit. First the NP machine guesses the outputs of the guess
gates, and then since there are only a polynomial number of gates in the circuit, the NP machine

can compute the output of each gate including the output gate in polynomial time. [J

The next goal is to show NP ¢ NNC(poly), which implies NNC(poly) = NP. The idea of
the proof is to take a nondeterministic one-tape Turing machine, M, that accepts a set A in NP
and construct an NNC(poly) circuit, C,, that accepts inputs of length n. On input x of length n,
C, ‘“‘guesses’ an instantaneous descriptor (ID) for each move of an accepting computation of M
on input x. AnID is a string of bits representing the contents of the tape, the position of the tape
head (written in binary), and the current state of the machine M. Then for each pair of adjacent
ID’s a small circuit verifies that the second follows from the first via a legal move of M, based
on the head position and the state of M. Furthermore, if each pair of adjacent ID’s represent
legal moves and the state of the last ID is an accepting state the circuit accepts, otherwise it

rejects.
Theorem 2.2: NP = NNC(poly)

Proof. Lemma 2.1 shows one direction of the theorem. We now give more details of the

argument outlined above.




Let M be a nondeterministic polynomial time bounded Turing Machine accepting a
language L in NP. Without loss of generality it can be assumed M has only one tape and that
every computation on inputs of length n takes q(n) steps, where q is some polynomial. Now
consider a computation of M on input x of length n to be a table of instantaneous descriptors,
where each ID represents the string currently on the work tape, the position on the tape of the
read/write head written in binary, and the state of the machine (also in binary). Also, for the
table to represent an accepting computation, /D represents the initial state of the Turing
machine, /D; must follow from ID;_; via a transition rule of M, and the last ID, ID 4 (n), must

represent a final state of M if and only if x € L.

To simulate the computation of M on x, C,, first guesses every ID of an accepting computa-
tion of M. There are O(q(n)z) bits to guess since the length of each ID is O(q(n)) and there are
q(n) ID’s. Then for each pair of adjacent ID’s there is a small circuit for testing whether ID; fol-
lows from ID;_; via a legal move of M. If ID; is correct, each ID follows from the previous

one, and the state of ID ) is a final state, then the circuit accepts, otherwise it rejects.

The circuit used to verify that adjacent ID’s represent legal moves of M is easy to construct
as well. In parallel, it verifies that all the bits have remained the same from ID;_; to ID; except
those in the area of the read/write head. In the area of the read/write head, a constant size circuit

verifies that the move from ID;_; to ID; is a legal move of M by looking it up in a table.

Verifying ID; represents the initial state of M and verifying the state of IDg(n) is a final

state are straightforward, and the detailed construction of these circuits is left to the reader.

Since these circuits can be uniformly constructed, we find that for each set in NP there is a

uniform family of NNC(poly) circuits that accepts it. [



Since NNC(poly) = NP, we need to consider functions other than polynomial ones to find a
new and interesting nondeterministic version of NC. As the next theorem indicates, allowing log
n guess bits does not allow the circuit to compute anything not in NC.

Theorem 2.3: NNC¥(log n) = NC*.

Proof. It is obvious that NC* < NNCk(log n). We now prove the other direction. Since
there are only 2°1°8™ (which is at most a polynomial in n) possible different guesses that can
be made by the guessing gates, the circuit enumerates all of the possible guesses, and with dupli-
cate copies of the NC circuit computes in parallel on each possible guess, accepting if at least
one of the copies accepts. The circuit is still of polynomial size, and the depth of the circuit is

increased only by an additional O(log n). [

Since O(log n) guess bits are too weak and polynomially many guess bits are too powerful,
we settle on the class NNC(polylog) as potentially interesting as it is easy to see that NC ¢
NNC(polylog) ¢ NP. We fall short of our goal, though, since none of the containments are

known to be proper.
SECTION 3. Relationships between NNC classes and DSPACE classes.

The first result in this section establishes a relationship between NNC classes and DSPACE
classes and is instrumental in our result of the next section that the quasigroup isomorphism
question can be decided in DSPACE(log2 n). Lemma 3.1 shows that NNC(polylog) circuits that
are deep and require little guessing and NNC(polylog) circuits that are shallow and require much
guessing can both be simulated by a deterministic polylog-space bounded Turing machine.
Using the more refined definitions of NNC complexity classes, this result can be stated more for-

mally as the following lemma.




Lemma 3.1: For all &, > 1, NNC*(log/ n) c DSPACE(log™ n), where m = max({k, }.

Proof. The deterministic Turing machine that simulates the NNC circuit begins by count-
ing the number, N, of nondeterministic gates in the circuit. The Turing machine then writes the
lexicographically first bit string, B, of length N on a work tape. Using a technique presented by
Borodin [1] the Turing machine simulates the circuit by recursively evaluating first the left input
and then the right input of a given gate, starting with the output gate. (l.e, the Turing machine
does a depth first search of the circuit starting at the output gate.) At any time the Turing
machine need only keep track of the status of each gate (which input is being computed and the
value of the other input if it is known) on a path from the output gate to an input gate or a non-
deterministic gate. If the name of a gate is ever needed, it can be recomputed using the status of
each gate on the path starting with the output gate. Note that we store only a constant amount of
information for each gate on the path and that we have at most one path active at any time. We
continue this recursive procedure until a nondeterministic gate is encountered, at which point the
computation is temporarily stopped. The name of this gate is written on a work tape, then M
counts the number of gates, k, that precede it in the circuit description. Next M retrieves bit & + 1
of B and uses it as the output of the current nondeterministic gate. If the circuit accepts, the Tur-
ing machine accepts, otherwise the Turing machine increments B and repeats the process until

all the bit strings of length N have been tested.

For k = j, the depth of the circuit is larger than the number of nondeterministic bits, there-
fore the Turing machine is given enough space to simulate the circuit. For j >k, the bit string
requires more space than does the simulation of the circuit, so the Turing machine is given
enough space to write down the bit string. In both cases, the Turing machine has enough space to

complete both tasks. [J



Corollary 3.2 is an obvious consequence of Lemma 3.1. Since NC= U NCF, clearly
k21

NNC(polylog) = U\ NNC*¥(log/ n), and if we let DSPACE(polylog) = \_ DSPACE(og n)
kz1j21 k=21

the following containment becomes apparent.
Corollary 3.2: NNC(polylog) < DSPACE(polylog).

It would be desirable to show that either NNC(polylog) = DSPACE(polylog) or that
NNC(polylog) g DSPACE(polylog). With these goals in mind, we present the following
lemma which begins to explore similar relationships between NNC(poly) and DSPACE(poly).
Lemma 3.3: For all £, NNC(n¥) c DSPACE(n%).

Proof. Since n* grows much faster than any polylog function, use the construction of

Lemma 3.1. [

Of course, to complete our expansion of the parallel computation thesis to the relationship
between sequential space and parallel nondeterminism, it is desirable to show that for some &,
DSPACE(nk) c NNC(nk). However, that this containment is unlikely as the next lemma and

theorem indicate.

Lemma 3.4: If there exist integers k and j such that DSPACE(n*) = NNC(n/) then for all r

there is an integer s such that DSPACE(n") ¢ NNC(n®).
Proof. The proof of this claim is via the familiar translation technique (see [6]).

Let L; be any language in DSPACE(n"), and let M; be an n” space-bounded Turing
machine accepting L;. Let # be a symbol not in the alphabet of L, and let L, = {x#* | M,
accepts x using (|x] + 0¥ space}. Thus we can construct a Turing machine M, such that on input
x#i, M 5 marks off (|x| + i)’c tape cells and then simulates M ;. M, accepts x#tt if and only if M

accepts x, and it does so using (x| + i)f tape cells. Thus L, is in DSPACE(n%), and by

10




hypothesis L, is in NNC(n/). Let C, denote the NNC(n/) circuit that accepts the input e
L.

Next we describe an NNC(n®) circuit, C 1, that accepts words in L of length n. On input x
of length n, C'; guesses an i. Next C; simulates C, on x#', and C 1 accepts if and only if C,
accepts. Since |i| is O(n") and C, guesses O((n+i}) = O(n'?) bits, we let s = rj. Also note that
the depth of C'; is no more than that of C, and that the number of gates in C, (and thus C;) is
polynomial in [x|” and thus polynomial in [x|. Therefore we have an s such that DSPACE(n”)

NNC@#*%). O
Theorem 3.5 presents strong evidence that the containment in Lemma 3.3 is proper.
Theorem 3.5: If there exist k and j such that DSPACE(n*) = NNC(r/) then PSPACE = NP.

Proof. From Theorem 2.2 we know that NP = NNC(poly)= U NNC(n"), and by
k21

definition PSPACE = U DSPACE(n*). Since Lemma 3.4 under the same hypothesis as this
k21

theorem states that for all r there is an s such that DSPACE(r") ¢ NNC(n®), we have

PSPACE < NNC(poly) = NP, giving the desired result. [

Theorem 3.5 provides some information about whether NNC(n*) is properly contained in
any DSPACE(n’) class. It would be desirable to find similar information concerning the con-
tainment of NNC(logk n) classes in DSPACE(Iogj n) classes. Doing so, however, seems unlikely
since DSPACE(log n) € NC = NNC(log n). Thus to show a result such as “‘If there exist k and j
such that DSPACE(log" nc NNC(logf n) then an unlikely collapse’’ would require developing
a proof technique that forces the unlikely collapse for £ >2 but does not force the collapse for
k=1. Unfortunately, even the need for such a peculiar proof technique gives us little insight into

whether or not NNC(polylog) is properly contained in DSPACE(polylog).

11



SECTION 4. Quasigroup isomorphism is in DSPACE(log? n).

In this section we show that it is worthwhile to consider NNC complexity classes by show-
ing that a number of interesting problems lie in NNC2(log? n). Since Miller [12] has shown the
quasigroup (Latin square) isomorphism problem has an O(n logz n+0 (1) ) sequential algorithm,
and since n'°%" = 21°g:" this problem is a natural candidate for being in NNC?(log? n). For

review we give the definitions of Latin squares, groups and quasigroups.

Definition: A Latin square is an nxn grid with each of the integers 1,2, - - -, n appearing

exactly once in each row and column.

If each of the integers 1, 2, - - -, n appears as a label for exactly one row and exactly one
column then the Latin square can be viewed as a multiplication table of a quasigroup. We for-
malize the definitions of groups and quasigroups by considering the following four properties of

a set Q with an associated binary operation *. For all a, b, ¢ € O:

1. There is a unique x such that a*b = x.
2. There is a unique x such that a*x = b.
3. There is a unique x such that x*a = b.
4. (a*b)*c = a*(b*c).

Definition: Q is a group if * satisfies properties 1, 2, 3 and 4.
Definition: Q is a quasigroup if * satisfies properties 1, 2 and 3.

Thus a quasigroup is more general than a group. In this paper we view quasigroups of
order n as a binary function on {1, 2, - - -, n}, thus the corresponding multiplication table is a
Latin square. Viewing Latin squares L and L’ as trinary relations <, , > and <, , >/, L is iso-
morphic to L’ if there exists a permutation ¢ such that if <x,y,z> € L then <o(x),0(y),0(z)>" €
L’. Two quasigroups are isomorphic if their corresponding Latin squares are isomorphic. A

more general notion of an isomorphism is an isotopism. L is isotopic to L’ if there exist permuta-

12




tions o, B, y such that if <x,y,z> e L then <au(x),B(y),(z)>" € L’. Thus an isomorphism simul-
taneously interchanges rows, columns and values in L to get L', and an isotopism independently
interchanges rows, columns and values in L to get L. Miller [12] showed that quasigroups of
order n are generated by at most log, n elements, and we take advantage of this fact to develop
the circuit for quasigroup isomorphism testing, Latin square isotopism testing, and Latin square
graph isomorphism testing. Since quasigroups are more general than groups, our construction
also shows group isomorphism is also in NN C2(log2 n). Note that we assume that quasigroups

are input as their corresponding Cayley (multiplication) tables.

Before getting to the main results of this section we develop a useful representation for ele-
ments of quasigroups in terms of generators. The generating set is a subset of the quasigroup
such that every element in the quasigroup can be expressed as a product of elements from that
set. Since quasigroups are not necessarily associative, when an element g € Q is written as the
product of generators from a particular generating set, it must be fully parenthesized, for exam-
ple, g =(((g1*g2)* (g3*g2))*g3). We associate with ¢ € Q the parse trees of all such expres-
sions with internal nodes representing multiplications and leaves representing generators. If g is
in the generating set, then g is represented by a tree consisting of a single node labeled q. If g is
not in the generating set and g =p*r, then g is represented by a tree where the root represents the
multiplication between the element represented by the left subtree (p) and the element
represented by the right subtree (r). This definition gives infinitely many representations for

each element in Q, including some very large representations. If we can show that for every ele-

ment in the quasigroup there is a tree of small depth? that represents it, then the large representa-

2 The depth of a node is the number of edges between it and the root. The depth of a tree is the maximum
depth of a node over all nodes in the tree.

13



tions will not hinder us.

To show that each element has a shallow representation we build a sequence of nonempty
sets based on the depth of the shallowest tree representing each element and show that that
sequence is not too long. Let depth(g) be the depth of the shallowest tree representing g € Q.
Since Q = {1,2, -+, n} we can also assume that for i, jeQ, if i <j, then depth(i) < depth()).
Let depth; = {q € Q | depth(g) 2k} be the set of all elements in Q with shallowest tree represen-
tation at least k. Note that depthg = Q. Since Q is finite, there is an integer d such that
n € depthy and for all integers m >d, depth,, is empty. Now for the sequence of sets
depthg 2 depthy 2 - - - Ddepthy Ddepthy,, = &, we will demonstrate that each depthy is
nonempty, that each of the containments in the sequence is proper and that d is not too large.
For notational convenience, we let Q; = {1,2, - -+, 1} for 1</ <n and let Qg be the empty set.
The following lemma establishes that each depthy is nonempty for each k, 0<k<d, and that each
of the containments is proper. Essentially the lemma says for even h, depth,_, contains at least
one element of O not in depthy_ .1, and, for odd h, depthy_;, contains at least half the elements

of O that are not in depthy._p, 5.

Lemma 4.1: Let % be an even integer, 0<h <d, and let G be any generating set of Q, and let

L

k=|G|. Then |depthy_p4| 2 3 -%—, and either (1) there is an r € depthy_,_; such that
i=1

r € depth;_,, and there exist s, t € Q —depthy_;,_; with r=s*t with either s or ¢ in depthy_j_5 or

2) Gcdepthy_p ;.

Proof. The proof is by induction on A. For the base case, let £ = 0. By assumption, 7 is the
maximal element of Q in depth,. Since n appears once in each row and column of the multipli-

cation table of Q at least half of the elements of Q must have depth at least d — 1 otherwise n

14




does not have depth d, thus |depthy_i|>n/2. Partition Q into two parts, R = depthy | =
{m+1,m+2,---,n}and Q,, = (1,2, - - -, m}, and note that m <n/2 and that no element of O
has depth larger than d—2. This partition divides the multiplication table of Q into four sec-
tions, QX Qp, OXR, RX Q,,, and RxR. If k > m, where k is the number of generators, then m
= 0, i.e., there are no elements in Q in depthy_,. Therefore G Cdepthy_y. So assume k <m.
Since all of the generators of Q are in Q,,, at least one element r € R must appear in section
OmX Q,, of the multiplication table, otherwise G would not generate ). Thus r =s*r, where
S, t€ Om=0 —depthy_;. At least one of s and ¢ must be in depth,_, otherwise depth(r) < d — 1.
Certainly r € depth, otherwise s or ¢t would be in depthy_q, contradicting the fact that all ele-

ments of depth d — 1 are in R.

For the inductive step, assume /4 =2, and assume the lemma holds for # - 2. Let / be the
maximal element of Q such that depth(/) = d—h. The inductive hypothesis also gives
r € depthy_p4) such that r & depth,_y .5 and r=s*t with either s or  in depth,_,,. Without loss of
generality assume s € depthy_,. To complete the inductive step, we first digress and establish

Claim 4.2.
Claim 4.2: In every row (column) of Q;x Q; there is an element x e depthy_,.

Proof. We know that s € depthy_,, and since s € Qy, s € depthy_,,,. Assume the lemma
does not hold, and let i be the label of the row (column) of Q;x Q; with no elements in depthy_p.
Now |depthy_p41| = n—1, and each element of depthy_j.,; as well as s must appear somewhere in
the i row (column) of the multiplication table of Q. Since {s} \U depth;.4.1 C depthy_, and
I{s} U depthy_p+1l=n—1+1, at least one element in {s} \U depthy_, .1 must appear as one of
the first / elements of row (column) i, contradicting the assumption that none of the first / ele-

ments of row (column) i are in depthy_. [

15



Resuming the inductive step, we see that Claim 4.2 implies that at least //2 elements of Q;
are in depthy_p_;. We know |depthy_;_1| is at least the number of elements in Q; that are in
depthy_j..1 plus the number of elements not in Q; that are in depthy_,_;. So |depthy_p_i| =
|deptha—p—1 (MY Q4| + |depthy_p_y - Q)| 2 I/2 + |depthy_p.1), since depthg_y_1 - Q1 = depthy_p4,.

Since Q; = Q~—depthy_p.1, we have | = n—|depthy_y,1]. Thus |depthy 1] = Ya(n +

L3 LaPS
2 2
|depthy_p.411), and invoking the induction hypothesis, |depthy_,_1| = Ya(n + ’Zl—g—i) = 1 "énT
i= i=
Now proceeding as in the base case, we partition Q into two parts, Q,, = {1,2,-- -, m} and
R = depthg.y = {m+1,m+2, -, n} and note that m<1/2 and no element of Q, has depth

greater than d —h —2. Using arguments similar to those of the base case we find that if £ > m,

then G Cdepthy.p_1, and if kK <m we can find an r satisfying the conditions of Lemma 4.1. [

Now we can easily show that each element of the quasigroup is represented by a shallow

tree.

Lemma 4.3: If Q is a quasigroup of order n =22 and G = {g1, g2, * - * , 8¢} generates O, then for

every g € ( there is a tree that represents it with depth no more than 2log, .

Proof. Since the size of the generating set G is at least one, by Lemma 4.1 we need only

h
41
2

find the smallest A such that ¥’ —2'-1;- 2 n—1. Itis easy to show that for & <2log; n —2, the above
i=1

inequality holds. Thus 4 <2logyn—2. Now fix h. Since depth contains everything in Q except
the generators, we have depth, = depth,_,_;, which implies h=d -2, giving d <2log, n.

Recalling that d is the depth of the deepest element, we have the desired result. [J

With this shallow tree representation of elements of a quasigroup, we now can show that

quasigroup isomorphism can be computed with an NNC? (log2 n) circuit.

16




Theorem 4.4: Given two multiplication tables M ; and M, representing the quasigroups Q; and
Q», respectively, the set {(Q;, Q)| Q; is isomorphic to Q5] is in NNC2(10g2 n), where n is

the order of the two quasigroups.

Proof. We first give a general overview of the circuit that tests for the isomorphism, and
later we give a more detailed construction. The circuit to test the isomorphism begins by guess-
ing two sets of generators G, for @, and G, for Q, in parallel. We will assume that G ; and
G, are ordered in some manner and that order determines the isomorphism, i.e., the i element
of G is mapped to the i element of G,. Next in parallel the circuit verifies that G| generates
Q1, G2 generates O, and that the mapping guessed is an isomorphism. Verifying G; generates
Q; involves two general steps. First, elements that are known to be generated by the generators
are marked as being in the quasigroup, with the guessed generators marked initially. Second, in
parallel each marked element of the quasigroup is multiplied by every marked element of the
quasigroup, generating more elements known to be in the quasigroup. To verify the guessed
mapping is an isomorphism the circuit performs two tasks in parallel. First, in parallel for each
pair of elements g, he G 1, the circuit tests whether g and h are the same, and if so, it verifies that
their images in G, are identical. Second, in parallel for each pair of elements g, he G, the cir-
cuit tests whether g and h are the same, and if so, it verifies that their preimages in G, are identi-

cal.

We now provide more details of the isomorphism testing circuit. Miller [12] has shown
that a quasigroup of size n has at most log, n generators, and we note that each generator is
log, n bits long, thus the circuit has 210g22 n guessing gates, half of which are used to guess G,

the set of generators of Q ;, and the rest are used to guess G, the set of generators of Q5.

17



To verify that G; does generate @, we use the following subcircuit with 2log, n levels.
An identical circuit will verify G, generates 0,. Each level of the subcircuit corresponds to a
copy of the multiplication table of Q, and the i " Jevel, level;, computes all the elements of 0,
that can be expressed as the product of at most 2¢ elements of G;. In order to do this, level;
receives from level; _; all of the elements of Q; that can be expressed as the product of at most
2i-1 generators, and then in parallel multiplies each of those elements by every element it
received from the previous level by looking up the product in the input multiplication table.
Instead of receiving inputs from the previous level, level; receives inputs from the guessing
gates, as the generators are the only elements of O that can be expressed as the product of at
most one element of G . After the final level, a check is made to insure that all of the elements

of O have been generated.

From Lemma 4.3 we know that each element in a quasigroup of order » has a tree with
depth no more than 2log, n representing it. Thus after 2log, n levels either all of the elements
are generated or G; is not a generating set for Q;, and therefore there are only O(log n) levels in
the circuits that verify G; generates Q;. At each level, there are at most n> multiplications tak-
ing place, with each multiplication requiring an O(log n) depth circuit with polynomial size.
Since there are O(log n) levels, we have an overall depth of O(Iog2 n), and the overall circuit size
is polynomial.

Verifying that the guessed mapping is an isomorphism is straightforward. Let G; =
(81,82, ", &), andlet Gy = {hy, hy, - - -, b }. The circuit verifies for all 1<i,j <kif g; = g;
then h; = hj, and if h; = h; then g; = g;. Since there are log, n elements in each G;, there are
logz2 n pairs that must be tested. Each test can be computed by an O(loglog n) depth and O(log

n) size circuit. Thus quasigroup isomorphism is in NNC?(log? n). O

18




If we let L be the Latin square associated with Q; and L’ be the Latin square associated
with 0 in the previous proof, then we can view the guessing of the generating sets as the guess-
ing of a permutation o that for all x,y,ze G, takes triples <x,y,z> € L to triples
<0(x),0(y),0(z)>" € L. Now G can also be applied to elements of Q; notin G if they first are
written as the products of generators. To show Latin square isotopism is in NNC2(log? n) we
guess three permutations «, f3, ¥ from three generating sets of L to three generating sets of L’ and

show that if <x,y,z>e L, then <au(x),B(y),¥(z)>" e L.

Theorem 4.5: Given two Latin squares L and L’ as lists of triples of the form <a,b,c> and
<x,y,z>’, respectively, then the set {(L, L’) | L is isotopic to L’} is in NNC2(log? n), where n is

the size of the two Latin squares.

Proof. To show two Latin squares are isotopic we need three surjective functions between
L and L’. The circuit begins by guessing subsets A, B L and subsets A, B’c L. Let A =
{ar,ag, - @k}, B={b1,by, -, b}, A" = (a1, a5, -, %) and B’ = (b'1, b/, -+, b)),
where  k=|logn]. Let C = f{a;*by,a9%by, -, a*b}, and C =
(a1 ¥y, a'2¥'by, -+, a'y ¥, ), where * and * are the appropriate binary operators for the
respective quasigroups. If we show that A, B and C each generate L and that A’, B’ and C’ each

generate L', then we can find the surjective maps needed to take L to L’ as follows:

o Forx €L, if x=g; then o(x)=aq;. Else if x =y*z then au(x)=o(y)*’o(z).
B: Forx eL, if x=a; then B(x)=b;. Else if x =y*z then B(x)=P(y)*'B(z).
Y. Forx €L, if x =a;*b; then y(x)=a;*b;. Else if x=y*z then y(x) =Yy )*"¥(2).

Thus we need only test that each of o, B and 7 is consistent on A and A’, B and B’, and C
and C’, respectively. Using a circuit similar to the one used in deciding quasigroup isomorphism
we find that Latin square isotopism can be decided by a circuit with O(log2 n) guessing gates and
O(log2 n) depth. Thus Latin square isotopism is in NNC? (log2 n). O

19



Latin squares give rise to a special class of graphs called Latin square graphs. A Latin
square graph consists of n2 nodes, one corresponding to each of.the triples of the Latin square.
Two nodes <x,y,z> and <u,v,w> are adjacent if x=u, y=v or z=w. Namely, two nodes are
adjacent if they are in the same row or column of the Latin square or if they share the same

value. Thus Latin square graphs of size n consist of 3n n-cliques.

To show Latin square isomorphism is in NNC?(log? n) we need another notion of isoto-
pism. Two Latin squares L and L' are conjugate if <xi,xp,x3> € L implies
<Xg(1)s Xa(2), Xa@3)> € L, where o is a permutation in S3. L and L’ are main class isotopic if
we can get from L to L’ by a conjugation and an isotopic map. Since there are only six permuta-
tions in S3, main class isotopism can be decided in NNC?(log? n) by giving the circuit that
decides isotopism the ability to guess which one of the six permutations in S; to use. The next

result from Miller [11] gives the relationship between Latin squares and Latin square graphs.

Lemma 4.6 [11]: Let L and L’ be two Latin squares and G(L) and G(L) be the associated Latin

square graphs. L is main class isotopic to L’ if and only if G(L) is isomorphic to G(L").

In Lemma 4.7 we give a means to retrieve the Latin square from a Latin square graph with
a circuit with depth no more than O(log? n) depth. The algorithm given is the obvious paralleli-

zation of Miller’s sequential algorithm that does the same thing in o) sequential time.

Lemma 4.7: We can retrieve the Latin square from the Latin square graph with a polynomial

sized circuit with depth less than O(log? n).
Proof. Let L (l;j) be an nxn matrix used to store the Latin square.
(I)  Pick two adjacent nodes x; and x,.

(2)  In parallel find the n nodes adjacent to both x; and x5. All but two of the nodes form an
n-clique with x, and x,. In parallel, label each node in the clique x3, - - -, x,,. One node
not adjacent to any of x3, - - -, x, is labeled y,.

20




(3)  Associate m, j With x;, and in parallel set m, jtoj.

(4)  In parallel find the clique associated with xyandysy, {(X1,¥2,¥3, """, ¥n}.

(5)  Each x; shares an edge with some Yj» 251, j<n. Order the y;’s so that x; shares an edge
with y;.

(6) Associate m j1 with y;, and in parallel set m; to j for 2<j<n.

(7)  In parallel for each of the (n—1)> remaining nodes z of the graph:

a) If z is adjacent to x; then z is adjacent to a unique y; and a unique Xj, 2<i,j<n. Set
m;j to 1.

b) Else z is not adjacent to x,, and there are unique integers i, j and & such that z is
adjacent to x;, y;, X, and y;. Set m;; to k.

Each of the steps can be computed by an O(log n) depth circuit with a polynomial number

of gates, thus the Latin square can be easily retrieved from the Latin square graph. [J

Theorem 4.8: Given to Latin square graphs G and G, the set {(G1,G,) | G is isomorphic to

G,} is in NNC? (log2 n), where n is the size of the associated Latin squares.

Proof. This follows directly from Theorem 4.5, Lemma 4.6, Lemma 4.7 and the definition

of main class isotopism. [
We now reach the main result of this section.

Theorem 4.9: Quasigroup isomorphism, Latin square isotopism and Latin square graph isomor-

phism are in DSPACE(log? 7).

Proof. This follows directly from Theorem 4.4, Theorem 4.5, Theorem 4.8 and Lemma

3.1.0
SECTION 5. Conclusion.

Initially, in our study of nondeterministic complexity classes our goal was to determine

how much nondeterminism an NC circuit should be given to cause ‘‘interesting’’ things to

21



happen. By considering NC circuits with a polylog number of guessing gates we were able to
show that quasigroup isomorphism is in DSPACE(log2 n). We also saw that NNC(polylog) is a
potential candidate for separating NP from NC and that NNC(n*) is probably different from
NNC(n/) for all j and k. Some open problems include exploring the relationship between P and
NNC(polylog) as well as exploring the relationship between Random NC (RNC) and
NNC(polylog). We conjecture that NNC(polylog) and P are incomparable. The fact that P-
complete problems cannot be easily decided by NNC(polylog) circuits suggests P <
NNC(polylog). Since group and quasigroup isomorphism are not known to be in P, we have
evidence that NNC(polylog) < P. It would be interesting to determine if NNC(polylog) M P =

NC.

We also suspect that RNC and NNC(polylog) are also incomparable, although the evidence
is not as clear. In some sense, RNC and NNC(polylog) are very different complexity classes.
For a set to be in RNC there must be many (a polynomial number) polynomial length witnesses
for every string in the set. On the other hand, a string in an NNC(polylog) set needs only one
witness, and that witness can be short—it only needs to be of polylog length. We do have some
weak evidence that RNC # NNC(polylog). We note that using the obvious approach, quasigroup
isomorphism cannot be shown to be in RNC. If the two input quasigroups are cyclic groups of
order n it is not difficult to show that fixing the mapping between one pair of generators fixes the

mappings between all of the remaining pairs of generators. This forces the probability of finding

. . . 1 .
a string that encodes an isomorphism between the two groups to be less than —5(—-—1—0—5”—)— which is
n

certainly less than 1/p(n).

A final open problem worth considering is determining the intersection of RNC and

NNC(polylog). In light of the recent result of Berger and Rompel [1] that (logk n)-wise indepen-

22




dence can be simulated in NC, it seems reasonable to suspect that RNC M NNC(polylog) = NC.

(1]

(2]
(3]

(4]
(5]
(6]
(7]
(8]
91
[10]
(11]
(12]

(13]

REFERENCES

B. Berger and J. Rompel, Simulating (log® n)-wise independence in NC, to appear in Proceedings of the Thir-
tieth Annual IEEE Symposium on the Foundations of Computer Science (1989).

A.B. Borodin, On relating time and space to size and depth, STAM Journal of Computing 6 (1975) 733-744.

S.A. Cook, The classification of problems which have fast parallel algorithms, Lecture Notes in Computer Sci-
ence V. 158, Springer-Verlag, New York, (1983) 78-93.

P.W. Dymond, On nondeterminism in parallel computation, Theoretical Computer Science 47 (1986) 111-
120.

P.C. Fischer and C.M.R. Kintala, Real-time computations with restricted nondeterminism, Mathematical Sys-
tems Theory 12 (1979) 219-231.

S. Fortune and J. Wyllie, Parallelism in random access machines, Proceedings of the Tenth ACM Symposium
on the Theory of Computing (1978) 114-118.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation, (Addison-
Wesley, Reading, Mass., 1979).

C.M.R. Kintala and P.C. Fischer, Computation with a restricted number of nondeterministic steps, Proceed-
ings of the Ninth ACM Symposium on the Theory of Computing (1977) 178-185.

C.M.R. Kintala and P.C. Fischer, Refining nondeterminism in relativized polynomial-time bounded computa-
tions, SIAM Journal of Computing 9 (1980) 46-53.

C.M.R. Kintala and D. Wotschke, Amounts of nondeterminism in finite automata, Acta Informatica 13 (1980)
199-204,

R.J. Lipton, L. Snyder and Y. Zalcstein, Complexity of the word and isomorphism problems for finite groups,
Proceedings of the Conference on Information Sciences and Systems, 10 (1976) 33-35.

G.L. Miller, On the n'°®" isomorphism technique, Proceedings of the Tenth ACM Symposium on the Theory
of Computing (1978) 51-58.

W.L. Ruzzo, On uniform circuit complexity, Journal of Computer and System Sciences, 22 (1981) 365-383.

23






