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Abstract. We describe a simple method for generating tilings of IR%. The basic tile
is defined as

Q:={o e R: [f(2)] < |[f(z+ )| Vje€ZN\0},

where f is a real analytic function with |f(z -+ 7)| -~ oo as |j| — oo for almost every z.
We show that the translates of ) over the lattice 72.% form an essentially disjoint partition
of IR%. As an illustration of this general result, we consider in detail the special case d = 2

and
f(z) = (£'z)(n'w)

with £, nin 7Z2%. Already this simple choice, which arises in box-spline theory, yields rather
. . o 2
interesting partitions of IR”.
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Box-Spline Tilings

Carl de Boor!? and Klaus Hollig?*
Let f: R® — TR be a real analytic function such that, for almost all z and all j € 7°,
(1) fz+ ) = o0 asj = co.
Then the translates of the set
Q:=0(f) = {z e R : f(@) < |f(z+ ) VI € 7Z\0}

provide a tiling for RY. Precisely, we have the following.

Theorem. The sets Q@+, j € 724, form an essentially disjoint partition of RY ie.
() Qn@+5)=0 Y #0;

(ii) meas (]Rd\(Q + 7ZZH)) = 0;

(iii) meas(Q) = 1.

Such sets Q arise in box spline theory, in the characterization of functions of expo-
nential type as limits of multivariate cardinal series [BHR]. In that setting, the functions

f have the simple form
felz) =[] €=,

£e=

with = a multiset from 72%\0 which spans R¢ and with &' denoting the transpose of ¢.
Already for d = 2 and for = consisting of just two vectors, even these very simple f give
rise to surprisingly complex (and strangely beautiful) = Q=.
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(2)Figure. Qz for = = B ﬂ

Proof of the theorem To prove (i), let z = limzn with z, € Q and z —j € {.
Then, the definition of Q) leads to the contradiction

|f(z —9)| fz =) _ . f(@a =)

— U 2 = lim o 2 L
e oh el s @ el C
For the proof of (ii), we recall the assumption that the function

jr f@+7)

has a minimum for almost all z. If this minimum is unique, then there exists 7* so that

f(z+ 39 < |fle+D) Vi#T

and therefore z € @ —7%. Consequently, up to a set of measure zero, the set IRd\(Q + Zd)
lies in the union of the zero sets of the (countably many) functions

g(z) = |fe + P~ 1z + R, T#F
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Since each such g is analytic, its zero set is of measure zero unless g vanishes identically.
But, this latter possibility :s excluded since g = 0 implies that f is periodic in the direction
j — k and this would contradict assumption (1).

For the proof of (iii), we conclude from (i) and (ii) that, up to a set of measure zero,

[0,1]¢ is the disjoint union of the sets [0,1]¢N (R +j) with j € 7%, while Q is the disjoint
union of the sets ([0,1]% —j) N with j € 7%, and

meas([0, 12 -j)nQ= meas ([0, 140 (Q+71))-

Q {1 3} rearranged to fill the unit square.
31

Special case In this paper, we limit ourselves to the very special case
f(z) = (€'z)(n'z), =€l

with £, € 77% linearly independent. In this situation, it is convenient to introduce the
new variables
(u,v) :=E'z = (£'z,n'z).

In these new coordinates, the definition of §2 becomes
(4) Q) = {(u,v) : Jully] < |u+allv + B for (e, 6) € I'\0}

with
T .= :'rEZ

a sublattice of 722 .



(5)Figure. Sublattice I' for = = [; ﬂ

The original { can always be recovered via the linear transformation
Q(E) = ()71a().
Therefore, in the new coordinates,
(6) meas(Q) = | det Z|.
Also, the tiling is now obtained by translating 2 over the sublattice T' (rather than over

7Z*). On the other hand, we have gained much simplicity since now all possible Q are
intersections of some of the same sets ; with

Qo = {(u,v) : Jullv] < |u+allv + Bl}

(see (7)Figure), different { being obtained from different choices of the sublattice T



(7)Figure. o for a= -1,1,2,3and f=~1,...,2.

Symmetries We now investigate how many essentially different tiles we can obtain
in this way. We begin by noting the following obvious symmetries.

(i) Since I' = —T', we also have Q=-qQ.

(ii) T’ does not change if = is multiplied from the right by a unimodular matrix, 1.e.
an integer matrix with determinant £1.

In particular, we may restrict attention to Z' of the form

PA)  Lith p:= | detE|/e, € := ged(m,m2),

and a € [0,p[. For, with o the appropriate sign, n* := o(n2, ~m)/e € 72% is carried by =’
to (o det =/¢,0) = (p, 0), while the fact that n1 /€ and ny /€ are relatively prime implies the
existence of an integer vector y for which n'y = e. Thus, for some choice of the integer ¢,

=/ carries ( 1= cn* +y € Z* to (a,¢) with a € [0,p[. Consequently, |5 %| =Z' [7*,¢], with

[77*, ¢ ] necessarily unimodular.



(iii) The scaling

re [T

[5ele

We consider such Q obtainable one from the other by such scaling as essentially the

changes {2 correspondingly to

same. This means that we may further restrict attention to Z' of the form Z' = [’5 ‘;} with

0 < a < panda /fp. In fact, since

(8) [gclz], with 0 < a < p/2 and a fp.

In particular, there is just one lattice of interest for each value of p <5, and p=T1s
the first value for which there are, offhand, three lattices of interest.

The resulting lattices

['=Tpq:= [gi]ZZQ, 0<a<p/2 afp,

are indeed different one from the other in that, e.g., (a, 1) is the only point in ', ; of the
form (b,1) with 0 < b < p. This follows from the fact that

(9) min{b > 0:(5,0) €Ty} = p.
The corresponding statement
(10) min{b>0:(0,b) €T} =p
also holds since (Z2')7! = [lé” —‘;/”l , hence (£)71(0,b) = (—ba/p, b), and, since a [p, this
is in 727 iff p|b.

Bounds We conclude from (9) and (10) that

QCQoNQeoponQoypnQo,—p

The sets appearing on the right hand side are halfspaces (cf. (7)Figure); e.g.

Qp0 = {(u,v) :u>—p/2}.



Consequently,

(11) Qc (p/2)-1,1]"

Note that this bounding square has area p?, while Q has area p. This implies that
Q = [—1,1)?/2 when p = 1. It indicates that, for large p, 2 is a rather sparse subset of
this bounding square.

From the definition (4),  cannot contain any point (u,v) with v = —a, provided
(e, B) € T for some 3. But, we can find such 8 for every o € ZZ\0. Hence {I meets none
of the lines © + a = 0 nor v + a = 0 for @ € ZZ\0.

(12)Figure.  must lie inside such a set.

We conclude from (11) that, in constructing Q = (), ¢p €2;, we only need to consider
(13) jepl-1,1%
For, if (u,v) € (p/2)[-1,1]* and, e.g., (o, ) > 0, then
lu+ allu+ B < |u+a+mpllv+ 8 +np|

for any positive integers m and n. Consequently

ze@E2)-L12n (] &4 = =z [)] 2
j€rn[o,p]? jel“n%?{_



Figures We conclude this note with pictures of the first few essentially different
tilings obtained in this special case.

For every p, there is a lattice I' generated by (p,0) and (1,1). For p = 1, it is the
centered square of side length 1. For p = 2, it is the centered diamond with side length 2,
i.e., the diamond with vertices at the unit vectors. For p > 2, the central portion of the
confining set shown in (12)Figure becomes too small, and {2 sprouts four arms. The lattice
is invariant under the map (u,v) +— (v,u) (in addition to the symmetry I' = —T" observed
earlier), hence so is . The resulting four-fold symmetry implies that, in constructing 2,
only one of its four ‘arms’ need be calculated. The corresponding Q all look similar, and
the following figure gives a typical example.

(14)Figure. Q for &' = [8 1].

The first tiling of a different kind occurs for p = 5.

(15)Figure. Q forZ' = [5 2}.



Here are the next few ‘unorthodox’ tiles.

(17)Figure.

cated patterns develop. The smallest p for which we first

As p increases, rather compli
— 15. The tile is shown on the next page.

encounter a disconnected tile is p



The next figure shows a more elaborate tile.

. 1 = 175
(19)Figure. Tiling for Z' = [0 1}.

As we mentioned in the beginning, we have considered in this paper a very special
choice of f, motivated by results from box-spline theory. Our final figures give a hint of
things to come [BH].

(20)Figure. The BUG: generating function f(z,y) := 3 +y® — 2zy.
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