BOX-SPLINE TILINGS

by

Carl de Boor and Klaus Höllig

Computer Sciences Technical Report #848

May 1989

UNIVERSITY OF WISCONSIN-MADISON COMPUTER SCIENCES DEPARTMENT

Box-Spline Tilings

Carl de Boor 1,2 and Klaus Höllig 2,3

May 1989

Abstract. We describe a simple method for generating tilings of \mathbb{R}^d . The basic tile is defined as

 $\Omega := \{ x \in \mathbb{R}^d : |f(x)| < |f(x+j)| \quad \forall j \in \mathbb{Z}^d \setminus 0 \},$

where f is a real analytic function with $|f(x+j)| \to \infty$ as $|j| \to \infty$ for almost every x. We show that the translates of $\bar{\Omega}$ over the lattice \mathbb{Z}^d form an essentially disjoint partition of \mathbb{R}^d . As an illustration of this general result, we consider in detail the special case d=2 and

$$f(x) := (\xi' x)(\eta' x)$$

with ξ , η in \mathbb{Z}^2 . Already this simple choice, which arises in box-spline theory, yields rather interesting partitions of \mathbb{R}^2 .

Keywords: tilings, box-splines.

AMS classification: 41A15, 41A63

¹ supported by the National Science Foundation under Grant No. DMS-8701275

² supported by the United States Army under Contract No. DAAG29-80-C-0041

³ sponsored by the National Science Foundation under Grant No. DMS-8351187

Box-Spline Tilings

Carl de Boor 1,2 and Klaus Höllig 2,3

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a real analytic function such that, for almost all x and all $j \in \mathbb{Z}^d$,

(1)
$$|f(x+j)| \to \infty \text{ as } j \to \infty.$$

Then the translates of the set

$$\Omega := \Omega(f) := \{ x \in \mathbb{R}^d : |f(x)| < |f(x+j)| \ \forall j \in \mathbb{Z}^d \setminus 0 \}$$

provide a tiling for \mathbb{R}^d . Precisely, we have the following.

Theorem. The sets $\bar{\Omega} + j$, $j \in \mathbb{Z}^d$, form an essentially disjoint partition of \mathbb{R}^d , i.e.

- (i) $\bar{\Omega} \cap (\Omega + j) = \emptyset \quad \forall j \neq 0;$
- (ii) meas $(\mathbb{R}^d \setminus (\Omega + \mathbb{Z}^d)) = 0;$
- (iii) $meas(\Omega) = 1$.

Such sets Ω arise in box spline theory, in the characterization of functions of exponential type as limits of multivariate cardinal series [BHR]. In that setting, the functions f have the simple form

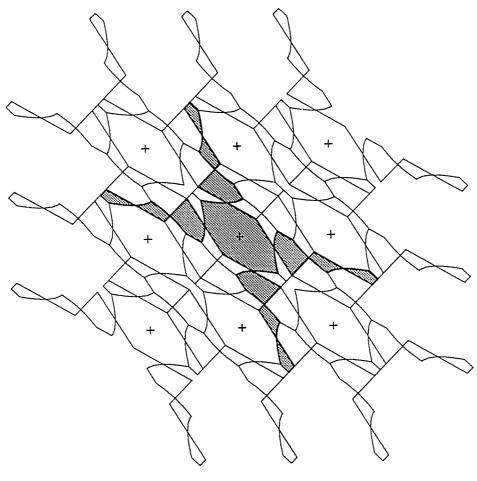
$$f_{\Xi}(x) = \prod_{\xi \in \Xi} \xi' x,$$

with Ξ a multiset from $\mathbb{Z}^d \setminus 0$ which spans \mathbb{R}^d and with ξ' denoting the transpose of ξ . Already for d=2 and for Ξ consisting of just two vectors, even these very simple f give rise to surprisingly complex (and strangely beautiful) $\Omega = \Omega_{\Xi}$.

supported by the National Science Foundation under Grant No. DMS-8701275

² supported by the United States Army under Contract No. DAAG29-80-C-0041

³ sponsored by the National Science Foundation under Grant No. DMS-8351187



(2) Figure.
$$\bar{\Omega}_{\Xi}$$
 for $\Xi = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$

Proof of the theorem To prove (i), let $x = \lim x_n$ with $x_n \in \Omega$ and $x - j \in \Omega$. Then, the definition of Ω leads to the contradiction

$$1 > \frac{|f(x-j)|}{|f((x-j)+j)|} = \frac{|f(x-j)|}{|f(x)|} = \lim \frac{|f(x_n-j)|}{|f(x_n)|} \ge 1.$$

For the proof of (ii), we recall the assumption that the function

$$j \mapsto f(x+j)$$

has a minimum for almost all x. If this minimum is unique, then there exists j^* so that

$$|f(x+j^*)| < |f(x+j)| \quad \forall j \neq j^*,$$

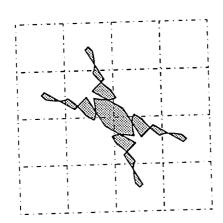
and therefore $x \in \Omega - j^*$. Consequently, up to a set of measure zero, the set $\mathbb{R}^d \setminus (\Omega + \mathbb{Z}^d)$ lies in the union of the zero sets of the (countably many) functions

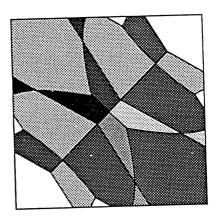
$$g(x) := |f(x+j)|^2 - |f(x+k)|^2, \quad j \neq k.$$

Since each such g is analytic, its zero set is of measure zero unless g vanishes identically. But, this latter possibility is excluded since g = 0 implies that f is periodic in the direction j-k and this would contradict assumption (1).

For the proof of (iii), we conclude from (i) and (ii) that, up to a set of measure zero, $[0,1]^d$ is the disjoint union of the sets $[0,1]^d \cap (\Omega+j)$ with $j \in \mathbb{Z}^d$, while Ω is the disjoint union of the sets $([0,1]^d-j) \cap \Omega$ with $j \in \mathbb{Z}^d$, and

$$\operatorname{meas}([0,1]^d - j) \cap \Omega = \operatorname{meas}([0,1]^d \cap (\Omega + j)).$$





 $\Omega_{\begin{bmatrix} 1 & 3\\ 3 & 1 \end{bmatrix}}$ rearranged to fill the unit square. (3) Figure.

Special case In this paper, we limit ourselves to the very special case

$$f(x) = (\xi' x)(\eta' x), \quad x \in \mathbb{R}^2,$$

with $\xi, \eta \in \mathbb{Z}^2$ linearly independent. In this situation, it is convenient to introduce the new variables

$$(u, v) := \Xi' x = (\xi' x, \eta' x).$$

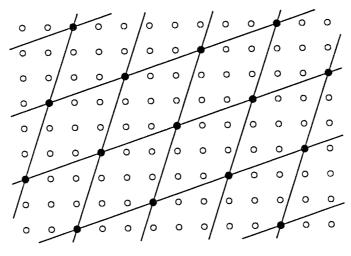
In these new coordinates, the definition of Ω becomes

(4)
$$\Omega(\Gamma) := \{(u, v) : |u||v| < |u + \alpha||v + \beta| \text{ for } (\alpha, \beta) \in \Gamma \setminus 0\}$$

with

$$\Gamma := \Xi' \mathbb{Z}^2$$

a sublattice of \mathbb{Z}^2 .



(5) Figure. Sublattice Γ for $\Xi = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

The original Ω can always be recovered via the linear transformation

$$\Omega(\Xi) = (\Xi')^{-1}\Omega(\Gamma).$$

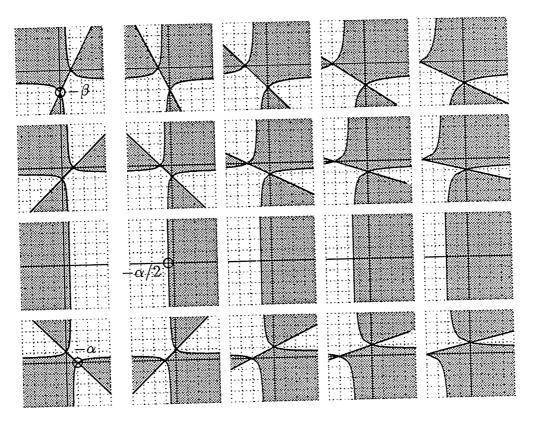
Therefore, in the new coordinates,

(6)
$$\operatorname{meas}(\Omega) = |\det \Xi|.$$

Also, the tiling is now obtained by translating Ω over the *sublattice* Γ (rather than over \mathbb{Z}^2). On the other hand, we have gained much simplicity since now all possible Ω are intersections of some of the *same* sets Ω_j with

$$\Omega_{\alpha,\beta} := \{(u,v) : |u||v| < |u+\alpha||v+\beta|\}$$

(see (7)Figure), different Ω being obtained from different choices of the sublattice Γ .



(7) Figure. $\Omega_{\alpha,\beta}$ for $\alpha = -1, 1, 2, 3$ and $\beta = -1, \ldots, 2$.

Symmetries We now investigate how many essentially different tiles we can obtain in this way. We begin by noting the following obvious symmetries.

- (i) Since $\Gamma = -\Gamma$, we also have $\Omega = -\Omega$.
- (ii) Γ does not change if Ξ' is multiplied from the right by a unimodular matrix, i.e. an integer matrix with determinant ± 1 .

In particular, we may restrict attention to Ξ' of the form

$$\begin{bmatrix} p & a \\ 0 & \epsilon \end{bmatrix}$$
 with $p := |\det \Xi|/\epsilon, \ \epsilon := \gcd(\eta_1, \eta_2),$

and $a \in [0, p[$. For, with σ the appropriate sign, $\eta^* := \sigma(\eta_2, -\eta_1)/\epsilon \in \mathbb{Z}^2$ is carried by Ξ' to $(\sigma \det \Xi/\epsilon, 0) = (p, 0)$, while the fact that η_1/ϵ and η_2/ϵ are relatively prime implies the existence of an integer vector y for which $\eta' y = \epsilon$. Thus, for some choice of the integer c, Ξ' carries $\zeta := c\eta^* + y \in \mathbb{Z}^2$ to (a, ϵ) with $a \in [0, p[$. Consequently, $\begin{bmatrix} p & a \\ 0 & \epsilon \end{bmatrix} = \Xi' \begin{bmatrix} \eta^*, \zeta \end{bmatrix}$, with $[\eta^*, \zeta]$ necessarily unimodular.

(iii) The scaling

$$\Gamma \mapsto \begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} \Gamma$$

changes Ω correspondingly to

$$\begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} \Omega.$$

We consider such Ω obtainable one from the other by such scaling as essentially the same. This means that we may further restrict attention to Ξ' of the form $\Xi' = \begin{bmatrix} p & a \\ 0 & 1 \end{bmatrix}$ with 0 < a < p and $a \nmid p$. In fact, since

$$\begin{bmatrix} p & p - a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} p & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix},$$

it is sufficient to consider \(\mathbb{E}' \) of the form

In particular, there is just one lattice of interest for each value of p < 5, and p = 7 is the first value for which there are, offhand, three lattices of interest.

The resulting lattices

$$\Gamma = \Gamma_{p,a} := \begin{bmatrix} p & a \\ 0 & 1 \end{bmatrix} \mathbb{Z}^2, \quad 0 < a < p/2, \ a \not\mid p,$$

are indeed different one from the other in that, e.g., (a, 1) is the only point in $\Gamma_{p,a}$ of the form (b, 1) with $0 \le b < p$. This follows from the fact that

(9)
$$\min\{b > 0 : (b,0) \in \Gamma_{p,a}\} = p.$$

The corresponding statement

(10)
$$\min\{b > 0 : (0, b) \in \Gamma_{p, a}\} = p$$

also holds since $(\Xi')^{-1} = \begin{bmatrix} 1/p - a/p \\ 0 \end{bmatrix}$, hence $(\Xi')^{-1}(0,b) = (-ba/p,b)$, and, since $a \not\mid p$, this is in \mathbb{Z}^2 iff p|b.

Bounds We conclude from (9) and (10) that

$$\Omega \subset \Omega_{p,0} \cap \Omega_{-p,0} \cap \Omega_{0,p} \cap \Omega_{0,-p}.$$

The sets appearing on the right hand side are halfspaces (cf. (7)Figure); e.g.

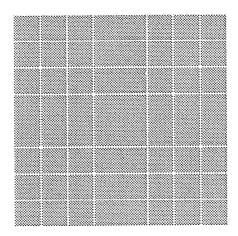
$$\Omega_{p,0} = \{(u,v) : u > -p/2\}.$$

Consequently,

$$(11) \qquad \qquad \Omega \subset (p/2)[-1,1]^2.$$

Note that this bounding square has area p^2 , while Ω has area p. This implies that $\Omega = [-1,1]^2/2$ when p=1. It indicates that, for large p, Ω is a rather sparse subset of this bounding square.

From the definition (4), Ω cannot contain any point (u, v) with $u = -\alpha$, provided $(\alpha, \beta) \in \Gamma$ for some β . But, we can find such β for every $\alpha \in \mathbb{Z} \setminus 0$. Hence Ω meets none of the lines $u + \alpha = 0$ nor $v + \alpha = 0$ for $\alpha \in \mathbb{Z} \setminus 0$.



(12) Figure. Ω must lie inside such a set.

We conclude from (11) that, in constructing $\Omega = \bigcap_{j \in \Gamma} \Omega_j$, we only need to consider

$$(13) j \in p[-1,1]^2.$$

For, if $(u, v) \in (p/2)[-1, 1]^2$ and, e.g., $(\alpha, \beta) > 0$, then

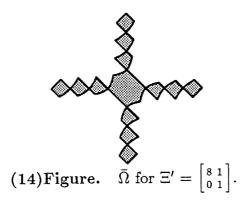
$$|u + \alpha||u + \beta| < |u + \alpha + mp||v + \beta + np|$$

for any positive integers m and n. Consequently

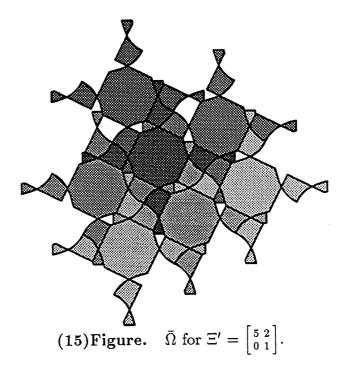
$$x \in (p/2)[-1,1]^2 \cap \bigcap_{j \in \Gamma \cap [0,p]^2} \Omega_j \implies x \in \bigcap_{j \in \Gamma \cap \mathbb{Z}_+^2} \Omega_j.$$

Figures We conclude this note with pictures of the first few essentially different tilings obtained in this special case.

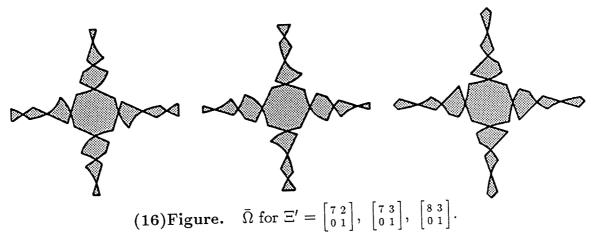
For every p, there is a lattice Γ generated by (p,0) and (1,1). For p=1, it is the centered square of side length 1. For p=2, it is the centered diamond with side length 2, i.e., the diamond with vertices at the unit vectors. For p>2, the central portion of the confining set shown in (12)Figure becomes too small, and Ω sprouts four arms. The lattice is invariant under the map $(u,v)\mapsto (v,u)$ (in addition to the symmetry $\Gamma=-\Gamma$ observed earlier), hence so is Ω . The resulting four-fold symmetry implies that, in constructing Ω , only one of its four 'arms' need be calculated. The corresponding Ω all look similar, and the following figure gives a typical example.

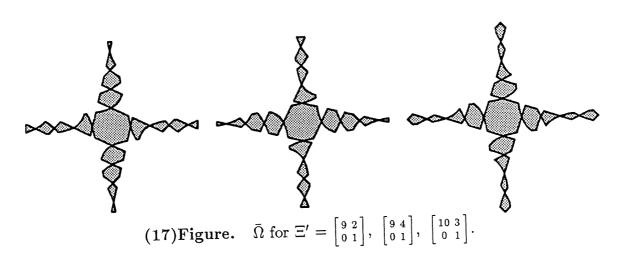


The first tiling of a different kind occurs for p = 5.



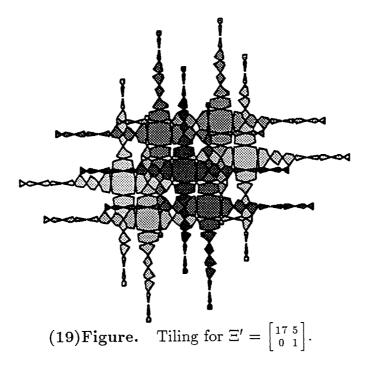
Here are the next few 'unorthodox' tiles.



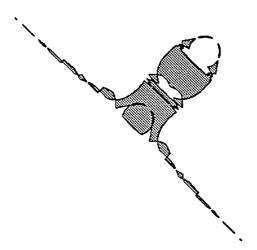


As p increases, rather complicated patterns develop. The smallest p for which we first encounter a disconnected tile is p = 15. The tile is shown on the next page.

The next figure shows a more elaborate tile.



As we mentioned in the beginning, we have considered in this paper a very special choice of f, motivated by results from box-spline theory. Our final figures give a hint of things to come [BH].



(20) Figure. The BUG: generating function $f(x,y) := x^3 + y^3 - 2xy$.