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ON THE MULTIGRID F-CYCLE
JAN MANDEL* AND SEYMOUR V. PARTER/!

Abstract. In a recent paper [4], a bound was derived on the convergence of the multigrid V-cycle for the
case when the solution is in the Sobolev space H1+¢ but not in H1+¢' o’ > o, showing that the convergence
factor approaches one only as 1 — O(k(*=1)/ @) for a large number of levels k. We now extend the technique
to obtain the asymptotically better bound 1 — O(k‘(l‘“)z/ ®) on the multigrid F-cycle. We also show that

in many cases, for practical values of k, one gets the same bound for the F-cycle as for the V-cycle with
a=1.

1. Introduction. Multigrid methods are by now well established as fast and general
solution methods for systems arising by discretization of elliptic equations. In this paper,
we are concerned with theoretical bounds on convergence of multigrid methods. For more
information and additional references, see the monographs [8, 5].

The basic multigrid schemes are the V-cycle and W-cycle, obtained by solving the coarse
grid problem by one or two recursive applications of the multigrid method itself, respectively.

Convergence bounds for the W-cycle bounded away from one independently on the
number of levels can be obtained under rather general circumstances, see [5]. The first
convergence proof for the V-cycle was obtained in [2]. Like all later V-cycle convergence
proofs, see [1, 6, 9, 10], it required a variational setting of the method (as in this paper)
and full elliptic regularity, which means for second order systems that the solution is in the
Sobolev space H?(Q) for the right-hand side in L?(). If, in general, the solution is only in
HY*(Q), a < 1, all known V-cycle proofs give bounds which approach one as the number
of levels grows [7, 8]. This effect has been also observed in computational experiments.
Nevertheless, the V-cycle is often used in practice because of its lower computational cost.
An intermediate scheme, the F-cycle has just slightly higher computational cost than the
V-cycle and much better convergence properties, and it is the method of choice in many
practical situations [11].

In [4], it was shown that for a < 1, the convergence factor of the V-cycle can approach
one only very slowly. The same result was derived independently in [3]. Since then, our
attention has been attracted to the F-cycle, and the question arose: is the F-cycle bound
bounded away from one, as in the case of the W-cycle, or goes to one, as in the case of the
V-cycle? In this paper, we answer this question by showing that the bound derived using
the techniques of 7, 8] does converge to one but even more slowly than for the V-cycle. We
also show that the F-cycle bound often remains constant for a finite number of levels.

The paper is organized as follows: In Section 2, we formulate the cycling schemes and
recall the basic results of [7, 8]. Section 3 is concerned with the asymptotics of V-cycle and
F-cycle bounds. Section 4 gives bounds for a small number of levels and explicit evaluations
of the V, F, and W-cycle bounds in several representative situations.
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Our result can be formulated that the asymptotic bounds p; obtained in Section 3 for

the energy convergence factor squared pj of the F-cycle with k levels satisfy inequality of
the form

pr <1—Ck+ko)™, ~>0.

We would like to remark that attempts to “identify” the quantities C, kg, and v from
computational results so that

(1.1) pr =1 —C(k+ ko)™,

where p; are observed convergence factors squared, are somehow futile for the following
reason: (1.1) can be written as

log(1 — pi) =~ log C + vlog(k + ko).

Then it is evident that the problem of determining C', v and k¢ simultaneously is very poorly
determined when one has the data for just few consecutive values of k, because the term
vlog(k + ko) behaves approximately like the same linear function over a fixed range of k for
vastly different pairs (v, ko). We therefore refrain from such attempts.

2. Preliminaries. We first state the multigrid algorithm and convergence bounds,

following [7, 8]. Let
Vi=R™, k=12,...,
and
If Vil =V
be full-rank linear operators (matrices), and
AV =V,
be symmetric, positive definite linear operators such that the variational conditions
([Ii-c~1)TAk]l§~1 = Ak

hold. The operators (I ,’j_l)T : Vi — Vi1 are denoted by [ ,’:"1. We are interested in the
solution of the system of ny linear equations

(21) Akuk = fk-

Define the energy norm

uel] = \/uf Arug, uy € Vg.

Consider the following generic two-level algorithm for the solution of the problem (2.1),
starting from an initial approximation uy € Vi. Let wp « up — By HAgug ~ fi) and
up — up — By %(Akuk — fr) be linear stationary consistent iterative methods for the solution
of (2.1), called smoothers.
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ALGORITHM 2.1.
a) If k =1, solve (2.1) by a direct method.
b) If k > 1, then set u} = up and do the following:
Step 1 Let uf = uj — Bj 1 (Awuj, — fi) (pre-smoothing).
Step 2 Letu}_y =0, fi_y = I (fr.— Arul) and use some iterative method with initial
approzimation u}_, = 0 to solve approzimately the problem

(2-2) Apqup_1 = fk—l-

Let vy be the result.
Step 3 Let ud = u2 + IF v 4.
Step 4 Let vy = uj — Bi3(Arui — fr) (post-smoothing).
Define the convergence factor of an iterative method as the maximum ratio of the norm
of errors before and after one iteration; that is, for the method above, the convergence factor
is

|Joe — ui]|
up€V), Huk - U‘IH,

where u} = A" fi, up is the initial and vy, the resulting approximate solution.
We then have the following bound on the convergence factors. Let

Ty =1~ I;{f_lA;EII;;WIAk

be the orthogonal projection (in the energy norm) onto the A-orthogonal complement of the
range of If_, = Vi, /Vi_1.
THEOREM 2.2. [7, 8] Suppose there is & > 0 and § < +oo such that for all k = 1,2,...

p(AD)P(TeAT*) < 6.

Let the square of the convergence factor of the iterative method in Step 2 of Algorithm 2.1
be at most €. Then the square of the convergence factor of Algorithm 2.1 is at most

p(B1, €1)p(B, €2),

where €, and &y are arbitrary such that e1e; = & with &1, &, € (0,1], and
b;
';5_’

t+e(l—1t)
p(B,e) = % T gare Bi =
with b;,1 = 1,2, depending only on algebraic properties of the smoothers. (For example, for
By = ;Z—}T;)—Ak, one has b; = 1.) If the pre-smoothing or post-smoothing step is absent, then
the theorem holds with By = 0 or By = 0, respectively. (For more details and extensions, see

[7, 8].)
We only look at the case when only post-smoothing or only pre-smoothing is present
and the approximate solver in Step 2 of Algorithm 2.1 is the same method applied p times
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to (2.2) on level k£ — 1. Then Theorem 2.2 gives the following recursive bound ¢; on the
convergence factor squared of Algorithm 2.1:

(23) &1 = 07 Ef = p(ﬁa 5;:—-1)7

where f is the one nonzero ;. The resulting algorithm is called V-cycle if u = 1 and W-cycle
if 4 = 2. It is known that for the V-cycle, ¢, = i%ﬁ’ E>1,ifa=1,and gy =1 — O(k"’lﬁg‘),
k — oo, if a < 1, see [4]. For the W-cycle, ¢, < C < 1 for all k and any a > 0, with
C = C(a, B), see [7, 8]. If both pre-smoothing and post-smoothing is present, the bound
on the squared convergence factor is obtained as the product epier2, where ¢, satisfy
recursions analogous to (2.3), cf. [8].

Obviously, the V-cycle has lower computational cost than the W-cycle and it is often
used in practice in spite of the fact that the bounds &, on the squared convergence factors
satisfy ey — 1 as & — oo. This deterioration of convergence is actually observed in practice
for even medium sized k. On the other hand, the W-cycle convergence factor has been
observed not to deteriorate with growing &, exactly as predicted by the theory.

The purpose of this paper is to analyze the F-cycle, a cycling scheme between the V-cycle
and the W-cycle. The F-cycle is defined as Algorithm 2.1 where the approximate solver for
the system (2.2) in Step 2 is defined as one application of V-cycle and one application of the
F-cycle itself. We then get from Theorem 2.2 the following recursion for the bound p; on
the F-cycle convergence factor squared and the bound o}, on the convergence factor squared
of the V-cycle. For simplicity, assume that only pre-smoothing or only post-smoothing is
present, and let 8 be the one nonzero §;:

(2.4) or=p1=0, or=f(or1), pr=fpr-10k-1), k>1,
t+e(l—1)

2 = { e

(2:5) Je) = max 5 + Bt/

The rest of the paper is concerned with study of the recursive bounds o} and p; defined

by (2.4) and (2.5).

3. Asymptotic behavior of F and V-cycle bounds. We start with the following
lemma. Its proof is a revised version of the proof in [4].

LEMMA 3.1. Lete > 1-4175, a<l, >0, and f be defined by (2.5). Then

fle) fe+Ci(1— 5)71’3,
with Cy = Cy(a, B).
Proof.  Since the function g¢g(t) = t* is concave on [0,1], from the inequality
9(t) < gle) + (t — ¢)g'(c), we have for any ¢ € [0,1] and for all ¢ € [0,1], that
t* <+ (t—e)ac*™ = ac® M+ (1 — a)c”.
Define ¢, as the solution of ac®* ¢, + (1 — a)c® = 1. Then
_1-(1=a)

acoe——l
4

1

(3.1) e



because ¢ < 1, and a < 1. Writing (2.5) as

e+ (1 —e)e
&)= — 55
we have
e+ (1—¢) min{l, ac® M4 (1 - a)c"}
f(e) < max :
0<t<1 14 Bt
The maximum may be attained only at ¢ = ¢, or t = 0 and using the inequality

e+ (1—-¢)(1~a)c* <1, we have that

70 S max{ i e+ -1~y <1,

_ 1-5>1—:57
C = ﬂ@ 5

we have ¢ < 1 because ¢ > l_iﬁ’ and from (3.1),

Choosing

1 1
14 ft. = 1+ Bel-a 7

and

e+(l-e)l-a)*=c+r(l—-e)¥z, += 1—?;

where 7 < Ci(e, 8) because we have assumed that e > T' a
The next lemma isolates an argument from [4], which we will need later.
LEMMA 3.2. There is a constant Cy = Co(a, B) > 0 such that if

(32) i‘%ﬁ S [ § - CQ'ITLMLES_, m 2 1,
then
(3.3) (&) <1 Co(m + 1)~

Proof. By Lemma 3.1, f(¢) < e + Cy(1 — 5) =%. Assume that (3.2) holds with some
Cy > 0. Then, because f(¢) is monotone in ¢,

1

fle) < f(1 - sz_l_;-_a) <1- sz_l%a_ e (Cg7n‘—;£)r:5
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and to prove (3.3), it is sufficient to have

(3.4) CICT M™% < Oy (m™ % — (m 4 1)),

l—-a

Because the function h(z) = 2~"5% is convex on [m,m + 1], we have
h(m) — h(m +1) > —h'(m + 1),
giving

—a —a _1—
m“l_a'-(m—l)‘!'r > CY(m—{—l)"fl?.
a

So, (3.4) and thus (3.3) will be satisfied if
-«

-
—

C\C5

m- <O, (m + 1)"21?.

This is equivalent to

C’zl—f_&ﬂ l—a ( m )3?_1_’
o m+1/ C
which is satisfied for all sufficiently small C; because of the restriction m. >1. 0
We can now easily obtain the V-cycle result of [4].
THEOREM 3.3. There is a constant ko such that the V-cycle bound oy defined
by (2.4),(2.5) satisfies

op < 1— Cylko + k)55

Proof. Obviously, o, > i—_ll_—ﬁ, k > 2. Let ko be such that ko 4+ 2 > 1 and

1 1—a
—— <0, <1 =Colkyg+2) = .
5 <o <1-Callo+2)
Then the theorem follows immediately by induction from Lemma 3.2. [I
We now proceed to the main result of this section.
THEOREM 3.4. Let 0 < o < 1 and B > 0. Then the F-cycle bound Pr, defined by (2.4)
and (2.5), satisfies

1
et - 1 St
1 07 P2 = 1+/37 1,;1_1.{2; Pk 13

and there exist constants ko, ky, and Cj, depending only on o and (3, so that for all k > k,
it holds that

_(1—0:)2
pr <1 —Cylko+ k)™= .



Proof. Because f(0) > l—i—ﬁ- we have immediately that o3 = p, > - From the

T+
definition of £, it follows that f(e) > ¢ for all ¢ € [0,1), because

d [t+e(l—1t)
EZ( 14 i/« )t=0>0’

Therefore, op = f(0)-1) > 041 and 0 — o € [0,1], ¥ — oco. From the continuity of f,
f(o) = 0. It follows that 0 = 1 and so o} — 1. Now we are ready to prove that p, — 1.
Suppose

(3.5) limsuppr = p < 1.

k—rco

Then there exists a convergent subsequence py, — p, | — 0o, and

Ply+1 = f(pkzakt) - f(ﬂ) > P,

a contradiction to (3.5).
Define the numbers p and m;, by

1 —
(3.6) pr=1—Com;?, p= -

(8%

with C5 > 0 from Lemma 3.2. Because pr — 1, it holds that m; — +o0o0. From (3.6) and
Theorem 3.3,

PrOL S (1 - Cgm;p) (1 - Og(ko -+ k)_p) =1 Cz'ﬁllzp, ﬁ’bk = g(k‘, mk),
where the function ¢ is defined by

-1/p

g(k,m) = ((ko + k)P +m7P — Coko + k)_pm_p)

Note that the term in brackets is nonnegative for all £ > 2. Define

(3.7) ky =min{k e N: k> 2, proy > i—-_-::_—ﬁ, g(k,my) > 1}.

It follows from pp — 1, o — 1, and g(k,m;) — 400, as k — oo, that k; is well defined.
Now from (3.6) and Lemma 3.2, we have for all k > ki, that

prir = f(prow) < 1= Co(g(k,my) +1)77,
s0
(3.8) mppr < 1+ glk,my), k> k.

It follows from 0 < o1, <1 — Cy(ko + k)P, cf., Theorem 3.3, that



dg

=

(3.9) (1= Calleo + £)77) (—=p)m~7"
>0

-1

-% (o + )7 4+ m~" = Ca(ko + k) Pm=») "

for all £ > 2 and m > 0. We will show that

(3.10) my, < Cs(ko + k)
and
(3.11) 1+ g(k, Calko + k)=) < Cako + b + 1) for all k > ky.

Then, using (3.8) and (3.9) a simple induction shows that my < Cz(ko + k)'~® and the
theorem immediately follows.
Denote

1+ g(k, Calko + k)=)
T Calkot R)e

Then @ <1 implies (3.11). From the definition of ¢,
g(k,m)

m

1/p

= (mP(ko + k)™ +1 = Calko + k)7) ",
SO

1

Q= Cs(ko + k)1-

— + (1 + CB(ko + k)PP Cy(ko + k)"’)_”p.

Using the facts that (1 —a)p—p=—-ap=a—~1land —p—1+a = :1—;*—°ﬁ < 0, we have

-1/p

Q=

ool Ao Ty + (14 (CE = Callbo + 1)) (ko + ™)

for all & > ky, where C'y = (ko+k;)~P~1*+*. Define i(z) = (142)~'/? and let z; > 0. Because
h is convex on [0, z4], it holds tha

-1/p
< 1
”C3k0+k1 a"'( +(A0+L1 a) )
)~
t

h(z) < h(0) + f—-(h(ml) ~1(0)), 0<z<um
1
Using this inequality with
Cc¥—Cy Cc% - C4

:‘——‘~(k0+k)1__a) Iy = (k0+k1)1ma7
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we obtain

1 (ko + ky)1-e ( Cy - C} )"”P
< T4 |14+ 2222 ) |,
Q< Calbo t = T 1T [ +(

(ko + k)1-o ko + ky)t—e
Consequently,

Q <1+ (ko + k)"0 p(Cy),
where

lim F(Og) < 0.

Ca—++oo
So, @ <1 for all k > %, and all sufficiently large C5. O

4. F-cycle bounds for small number of levels. In this section, we show that
the F-cycle bounds are, in fact, often constant for the number of levels that occur in
practice. It was proved in [7, 8] that the W-cycle bounds 7, = f(r2,) satisfy 7, = ﬁ-ﬁ
for o > (B +1)/(B+2). We prove a related result for the F-cycle.

THEOREM 4.1. Let 5; = 0 <09 <63 < ... be bounds on the convergence factor squared

of the V-cycle. Let 0 < a < 1, and B > 0. Then py, defined by
(4]) ﬁl = 07 ﬁk = f(ﬁk—l&k—l)a k> 1,

where f is given by (2.5), is an upper bound on the convergence Jactor squared of the F-cycle,
and

1 — Gy
4.2 _ — >1
(2) (1=a)(1+4p-6iy)
implies

|

Pk = 1+4

Proof. First, (4.1) follows immediately from Theorem 2.2. We proceed by induction.
Assume that

1
<
Pk1_1+ﬁ

and that (4.2) holds. Denote ¢ = 1_+1'5 and o = &;_;. We show that

t+eo(l—t)

(4.3) T s

<e, forallt, 0 <t <1,

which will conclude the proof. But (4.3) is equivalent to

(1 + Bt/*) > eo(l —1t)+t,
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for all 4, 0 < ¢ < 1, which is the same as
B> ®(t), forallt, 0 <t<1,
where
O(t) = eV (eo(l —t) + t—€) = t71/%(0 — 1) + t~5H1(1 — oe) Je.

Now ®'(t,,) = 0 is equivalent to

which gives

e(l—o)
1—a)(l—oe)

If ¢, > 1, then the maximum of ® on (0,1] is attained at ¢ = 1 and (4.3) holds. 0O
COROLLARY 4.2. A necessary condition for (4.2) to hold for some &1, > 0 is

(4.4) (1-a)(14+8)<1.

=1

If we use in Theorem 4.1 &, = o, where oy, is the V-cycle bound from (2.4), then a necessary
condition for p, = 1—4175 for some k> 2 is

(4.5) (1—-a)(2+p8)<1;

in particular, one must have o > %
Proof. (4.4) is immediate from (4.2). For (4.5) note that oz, > T%—ﬁ’k > 2, and
that (4.2) then implies
1
| < -5 !

Tl-a)(1+8-5t) (1-a)2+8)

O

In Fig. 1 to Fig. 5, we have plotted the values of the V-cycle bounds o}, (full line), the
F-cycle bounds p; (dashed line) and the W bounds 7 (dashdot line), 7, = f(72_;). We see
that indeed for o > % and not too large 3, the W-cycle and F-cycle bounds coincide for small
k. In general, the F-cycle bound grows, albeit more slowly than the V-cycle bound. (Because
larger B corresponds to smaller bound, the higher curves are for smaller 3). Because we were
interested in the asymptotics of oy, pr, and 71, we have plotted their values for admittedly
unrealistically large values of k. In reality, one never uses more that k = 8 levels.

We should note that good smoothing corresponds to large 8. Thus, for good smoothing,
B is large and (4.2) is not likely to occur. Small # may give the constant or essentially
constant pg. But one is, in practice, of course still better off smoothing a few times more, or
generally getting better smoothing to get large beta, because even though the convergence
factor decays with k, it is still smaller than the essentially constant, but larger, factor for

small 3.
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