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The need to integrate several versions of a program into a common one arises frequently, but it is a tedious and time
consuming task to merge programs by hand. The program-integration algorithm recently proposed by S. Horwitz, J.
Prins, and T. Reps provides a way to create a semantics-based tool for program integration. The integration algorithm
is based on the assumption that any change in the behavior, rather than the text, of a program variant is significant and
must be preserved in the merged program. An integration system based on this algorithm will either automatically
combine several different but related variants of a base program, or else determine that the programs incorporate
interfering changes.

In this paper we discuss how an integration tool can illustrate the causes of interference to the user when interference
is detected. Our main technical result is an alternative characterization of the integration algorithm’s interference cri-
terion that is more suitable for illustrating the causes of interference. We then propose six methods for an integration
system to display information to demonstrate the causes of interference to the user.
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1. INTRODUCTION

The program-integration algorithm recently proposed by S. Horwitz, J. Prins, and T. Reps provides a way
to create a semantics-based tool for program integration [1-3]. Semantics-based integration is based on the
assumption that a difference in the behavior of one of the variant programs from that of the base program,
rather than a difference in the text, is significant and must be preserved in the merged program. Although it
is undecidable to determine whether a program modification actually leads to such a difference, it is possi-
ble to determine a safe approximation by comparing each of the variants with the base program.

To determine this information, the integration algorithm employs a program representation that is similar
(although not identical) to the dependence graphs that have been used previously in vectorizing and paral-
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lelizing compilers. The algorithm also makes use of the notion of a program slice to find just those state-
ments of a program that determine the values of potentially affected variables, as well as to characterize
interfering variants.!

In this paper, we describe an alternative characterization of the algorithm’s interference criterion; the
new interference test presented here is more suitable for illustrating the causes of interference when
interference is detected. Our description of the new test assumes familiarity with the technical details of
the program-integration algorithm; the reader is referred to {1-3] for definitions of the terms used in this
paper and for a description of the steps of the program-integration algorithm.

A preliminary implementation of a program-integration tool that uses the technique from [1-3] has been
embedded in a program editor created using the Synthesizer Generator, a meta-system for creating interac-
tive, language-based program development systems [4,5]. Data-flow analysis of programs is carried out
according to the editor’s defining attribute grammar and used to construct dependence graphs. An integra-
tion command added to the editor invokes the integration algorithm on the dependence graphs, reports
whether the variant programs interfere, and, if there is no interference, builds the integrated program.
Several of the methods for illustrating interference described below have been incorporated into this tool.

The remainder of the paper is divided into three sections. Section 2 introduces some terminology that is
used in the new characterization of interference. Section 3 defines the interference vertices arising from
the integration of two program variants with respect to a base program and shows that they may be used to
characterize interference. Section 4 describes six methods for an integration system to display information
to demonstrate the causes of interference to the user.

2. AFFECTED POINTS AND DIRECTLY AFFECTED POINTS

We define the sets of edges incident on a vertex v in dependence graph G as follows:
IncidentControl(v,G)= {w —>,vIw —>, v € E(G))

IncidentFlow(v,G) = [ w —rviw —veE(@G))
IncidentDefOrder(v,G) = { x %)) 11X 50y € E(G))
The set IncidentFlow(v,G) can be further subdivided into IncidentLoopIndependentFlow(v,G) and

IncidentLoopCarriedFlow(v, G ). Note that a def-order edge x —> 4, can be thought of as a hyper-edge
directed from x to y tov. Itis in this sense that a def-order edge is incident on witness vertex v.

Definition. Given dependence graphs Gy, and Gy, the set DAPy y of vertices in Gy that are directly
affected with respect to Gy, consisting of all vertices of Gy that have different incident-edge sets than the
corresponding vertices of Gy, is
DAPy v ={v e V(Gy)! IncidentControl(v , Gy, ) # IncidentControl(v Gy

v IncidentFlow(v, Gy ) # IncidentFlow(v Gy)
v IncidentDefOrder(v , Gy ) # IncidentDefOrder(v , Gy) }.

We can give a definition of APy y, the affected points of Gy with respect to Gy, in terms of the directly
affected points of Gy, with respect to Gy using the following concept:

"It should be noted, however, that the integration capabilities of the tool are severely limited; in particular, the tool can only handle
programs written in a simple language in which expressions contain scalar variables and constants, and the only statements are assign-
ment statements, conditional statements, and while-loops.




Definition. Given dependence graph G and vertex set S, the set AffectedBy(S, G ), consisting of ver-
tices affected by members of S is

AffectedBy(S,G)=(veV(G)I SnV(G Iv)# D).

The set AffectedBy(S,G) is the vertex set of the “forward slice” of G with respect to §. Thus,
APM,N = AffectedBy(DAPM'N,GM).

3. INTERFERENCE VERTICES: AN ALTERNATIVE CHARACTERIZATION OF INTERFER-
ENCE

It is sometimes convenient to use one of a number of alternative characterizations of the interference condi-
tion

(Ga IAP4 pase # Gy /AP g pas.) OF (Gg 1 APp pas, # Gy | APg Base)

(so called “Type I” interference? ). It is possible to characterize the Type 1 interference condition in terms

of a certain set of vertices (say §) and a statement of the form: “There is Type I interference if and only if
the set § is non-empty.”

One characterization of this form is that there is Type I interference if and only if the following set is
non-empty:
(APy pase "APy 4) U (APg g NAPy ).
This is shown by observing that the clause “G, 1AP g pase # Gy APy pas.” is equivalent to “The set

APy pae APy 4 is non-empty.” Both conditions say that there is some vertex v € AP4 p,, such that
Gulv# Gylv.

Our method for illustrating interference when integration fails is based on yet another characterization of
the Type I interference condition. The new characterization is based on the notion of interference vertices,
defined as follows:

Definition. The set of interference vertices arising from the integration of programs A and B with
respect to Base is the set

InterferenceVertices(A ,B , Base ) = (V (G4 / APy pase) 0 DAPy ) (V(Gp | APp pase ) "DAPy ).

The theorem proven below shows that the integration of A and B with respect to Base leads to Type I
interference if and only if the set of interference vertices InterferenceVertices(4 , B, Base ) is non-empty.

THEOREM (Alternative Characterization of Type I Interference). The integration of A and B with
respect 10 Base leads to Type I interference if and only if the set InterferenceVertices(A ,B ,Base ) is non-
empty.

PROOF.

= case:

Without loss of generality, assume that G, exhibits the interference (ie. Go/AP, puse # Gy 1 APy o)
This is equivalent to saying that there is some vertex w € APy pase such that Gy /w # G, /w. Working
back from w in graph G, /w we must eventually come to a vertex v for which the set of incident control,

*The Type II interference condition is that the merged dependence graph G, is infeasible; that is, there is no program P whose depen-
dence graph Gp is identical to Gy, .



flow, or def-order edges are different in G, than in G4. Because v e V(Gy /APy pos.) and G, / AP, puse
is a subgraph of Gy, v € V(Gy). Thus, by definition, vertex v is a member of DAPy; 4. We have now
shown that if G, exhibits the interference there is a vertex v such that v e V(G4 /AP4 pu.) and
v € DAPy 4 (i.e., the set V(G, /AP, ,Base)"DAPy 4 is non-empty).

Because the same argument applies if G, exhibits the interference, we conclude that, if there is interfer-
ence, the set (V (G, /AP, pgq.) NDAPy 4)v(V(Gp /APy pas.) NDAPy g) is non-empty.

&= case:

Assume  that InterferenceVertices(A,B,Base)#@, and let v be a member of
InterferenceVertices(4 ,B , Base ). Without loss of generality, assume that
Vv € (V(Gp /AP paee )N DAPy 4). But Gy /v # G, /v, because any member of DAPy, , must have a dif-
ferent slice in Gy than in G, , which means that the slice V(G4 /APy ) is not preserved in Gy, We
conclude that A and B interfere with respect to Base. [

An important property of the characterization of Type I interference in terms of interference vertices is
that InterferenceVertices(4 ,B,Base ) c (DAP, ,Base VDAPp p.,). That is, the members of
InterferenceVertices(A ,B ,Base ) are members of either DAP4 pos. O DAPp p,;, (or both), as shown
below in the proof of the following theorem.

THEOREM (DAP-Union Theorem). InterferenceVertices(A , B, Base) c (DAP 4 pose VDAPg g, ).

PROOF. Without loss of generality, assume that G, exhibits the interference, which is to say that the set
V(G4 /AP, o) NDAPy ,A is non-empty. That is, there is a vertex v such that v € V(G4 AP, pu.) and
v € DAP M,A-

What remains to be shown is that either v e DAP, p,, or veDAPp p,,. Supposing that
v & DAP, g, , there are four cases to consider:

Case 1.
Suppose that in Gy, v is the target of a flow edge (respectively, control edge) from vertex w, where
edge w —>¢ v (w —>, v) is not found in G,.

Gy Gy
Since v & DAP4 pas. , Ggas must contain the same flow (control) edges into v as are found in G4. In
particular, the edge w —>¢ v (W —>,v) is not in the edge set of Gpas.. From the construction of

Gy, it must be that edge w —rv (w—>.v) is a flow (control) edge of G5, which implies that
ve DAPB,Ba.s‘e .

Case 2.
Suppose that in G4 v is the target of a flow edge (respectively, control edge) from vertex w, where
edge w —>r v (w —>, v) isnot found in G,




W

But by the construction of Gy, this is not possible because v e V(G4)/ AP, o, and
V(Ga)/ APy pa, is a subgraph of Gy, (By the definition of the edge set of a slice, in Gy v must
have all of the incoming control or flow predecessors that v has in Gyl)

Case 3. '
Suppose that in Gy v is the witness of a def-order edge y —> do(v)X DOt found in G4 .

GA GM

By Cases (1) and (2), for v not to be an element of DAP, g, G4 must contain edges x —> v and
¥y —>; v. Given that these edges are in G, and that edge y —> Hb)X is notin G, it must be that a
def-order edge x —> 4,¢,)y occurs in G, and hence in Gg,,. By the construction of Gy, the only
way edge y —> 4,¢,yx could occur in Gy is if y — do(v)* Occurs in Gp. Because Gp,,, cannot con-
tainbothx —> 4,¢,yy and y —> 4,,yx, this implies that v e DAPg pue.
Case 4.

Suppose that in G, v is the witness of a def-order edge x —2 do(v)y Nt found in G);. But by the
construction of Gy, this is not possible because v € V(G, )/ AP, pas. and V(G4 ) /APy p,. is a sub-

graph of Gy . (By the definition of the edge set of a slice, in Gy v must be a witness for all def-
order edges for which v is a witmess in G, .)

(]

A second important property of the characterization of Type I interference in terms of interference ver-
tices is that InterferenceVertices(A,B,Base)c(V(G4)nV(Gg)); that is, the members of
InterferenceVertices(4 , B, Base ) are members of both V(G,) and V (Gg), as shown below in the proof of
the following theorem.

THEOREM (AB-Intersection Theorem). InterferenceVertices(Ad,B ,Base)c (V (G )NV (Gy)).

PROOF. Suppose v is a member of
(V(Ga /APy pase) "\DAPy 4) O (V (Gg / APg pase ) n\DAPy ).

Without loss of generality, assume that v € (V(G, [AP4 po. )N DAPy 4). From inspection of the first
subterm, it is obvious that v € V(G,). Because v € DAPy 4 we know that there is an edge incident on v
in Gy that does not occur in G4. By the construction of Gy, this edge can only come from the edge set of
Gpg; consequently, v € V(Gy). O '



4. DISPLAYING INTERFERING SLICES

Interference vertices provide a useful basis for illustrating Type I interference because of the two properties
captured by the DAP-Union Theorem and the AB-Intersection Theorem:

(1) By the AB-Intersection Theorem, interference vertices are members of both V(G,) and V(G;).
Consequently, interference can be illustrated by displaying information about interference vertices
simultaneously in programs A and B .

(2) By the DAP-Union Theorem, each interference vertex is a directly-affected element in at least one of
the programs A and B. For this reason, an interference vertex identifies a direct effect of a change
introduced by at least one of the programmers.

Interference vertices can be used in several ways to illustrate Type I interference; six methods are
described below, all of which are based on making a comparison of slices of G4 and Gy with respect to
interference vertices.

In devising methods for illustrating interference, a practical consideration is whether the amount of
information presented will overwhelm the user. Thus, of the methods discussed below, we feel that
Methods 5 and 6, which break down the information to the finest level of granularity, are the ones that are
most likely to be useful to users who are trying to diagnose the cause of interference in a failed integration.

We will demonstrate our methods for illustrating interference with a running example based on the three
program versions shown below. Buffer demoBase contains a program to sum the integers from 1 to 10.
Buffer demoA contains a version of the program in buffer demoBase (created by editing a copy of
demoBase). It differs from the program in demoBase in two respects:

(1) There is an additional statement at the end of the program, amean = sum/ i, which computes the
arithmetic mean.

(2) The initialization statement i := 1 has been changed toi = 0.

Buffer demoB contains a second version of the program in buffer demoBase, incorporating the computa-
tion of the geometric mean (but not the arithmetic mean, which was introduced solely in demoA).

[demoA 11 || [demoBase 1 il [demoB |
program demo; program demo; program demo;
begin begin begin
sum = 0; sum := 0; sum = 0;
i=0; i=1; prod := 1,
while (i <= 10) do while (i <= 10) do i=1;
sum = sum + i; sSum ;= sum + i; while (i <= 10) do
i=i+1 i=0+1 sum ;= sum + i;
od; od; prod = prod * i;
amean = sum/i end. i=i+1
end. od;
gmean :=prod** (1/(i - 1))
end.

In this example, if we try to integrate the programs in buffers demoA and demoB with respect to the base
program in buffer demoBase, the interference vertices are the loop predicate (i <= 10) and the statement
i=i+1.




(1) Predicate (i <= 10) is an interference vertex because it is directly affected with respect to
demoBase in the dependence graph of demoA and directly affected with respect to demoA in the
merged dependence graph. Note that in the merged dependence graph, (i <= 10) has incident loop-
independent flow edges from both statement i := 0 and statement i = 1.

(2) Statement i =i+ 1 is an interference vertex for essentially the same reasons as predicate (i <= 10);
i =i+ 1 is directly affected with respect to demoBase in the dependence graph of demoA and
directly affected with respect to demoA in the merged dependence graph. Note that in the merged
dependence graph, i =i+ 1 has incident loop-independent flow edges from both statement i := 0
and statement i ;= 1,

Method 1:

When integration fails due to Type I interference, we can illustrate interference by displaying the slices
G, /InterferenceVertices(A , B ,Base) and Gp / InterferenceVertices(A ,B ,Base). These slices represent
computation threads that need to be preserved in the merged dependence graph Gy, but which the integra-
tion algorithm does not (and cannot) preserve. Note that these slices are taken with respect to vertices that
are directly-affected points (with respect to Gg,, ) of G4, Gg, or both.

Example. The slices of demoA and demoB with respect to the two interference vertices of our running
example (loop predicate (i <= 10) and statement i := i + 1) are shown below. In the screen images shown
below, elements of a slice are indicated by enclosing them in double angle brackets — << and >>; obvi-
ously other mechanisms, including color, could be employed to make the elements of a slice stand out
better from the rest of the program.

[demoA ] || f [demoB ]
program demo; program demo;
begin begin
sum = 0; sum = 0;
<<i == 0>>; prod :=1;
while <<(i <= 10)>> do <<i 1= 1>>;
sum = sum + i; while <<(i <= 10)>> do
<<ii=i+1>> SUm = sum +i;
od; prod := prod * i;
amean = sum/i <<i=i+1>>
end. od;
gmean := prod ** (1 /(i — 1))
end.
Method 2:

Instead of displaying in their entirety both of the slices G, /InterferenceVertices(A ,B ,Base) and
G /InterferenceVertices(A , B, Base ), it is possible to display slices of G, and (g with respect to single
interference vertices (i.e. individual vertices v, where v € InterferenceVertices(A , B, Base)). Commands
can be provided in the integration system to permit the user to step through all the possible v ’s and display
the slices G, /v and G /v.



Example. To illustrate the interference that arises when demoA and demoB are integrated with respect
to demoBase, we invoke a command to move the respective selections of buffers demoA and demoB to
an interference vertex and display the slice of the buffer with respect to that vertex. For instance, because
loop predicate (i <= 10) is one of the interference vertices of the example, when this command is applied
the two selections would be moved to (i <= 10), and their slices with respect to (i <= 10) would be
displayed, as shown below. (A buffer’s selection is indicated by outlining it in a single-ruled box.)

[demoA 11 Il [demoB |
program demo; program demo;
begin begin
sum = 0; sum = 0;
<<i = 0>>; prod = 1;
while do <<i = 1>>;
SUM = Sum +i; while do
<<i=i+1>> SUM = SUM +i;
od; prod := prod * i;
amean ;= sum/i <<i=i+ 15>
end. od;
gmean :=prod** (1/(i— 1))
end.

The significance of a slice is that it captures a portion of a program’s behavior in the sense that, for any ini-
tial state on which the program halts, the program and the slice compute the same sequence of values for
each element of the slice [6]. In our case a program point may be an assignment statement or a control
predicate. Because a statement or control predicate may be reached repeatedly in a program, by “comput-
ing the same sequence of values for each element of the slice” we mean: (1) for an assignment statement
the same sequence of values is assigned to the target variable; (2) for a predicate the same sequence of
boolean values is produced.

Because the slices shown above are not the same, predicate (i <= 10) may take on a different sequence
of values in an execution of demoA than it does in an execution of demoB; (i <= 10) is an interference
vertex because the two slices cannot both be preserved in the merged dependence graph.

Continuing the example, when the command to show the next interference vertex is given, the respective
selections of demoA and demoB are changed to statement i := i + 1, and the slices shown below would be
displayed in the two buffers. As before, these represent slices that cannot both be preserved in the merged
dependence graph.




{demoA [l 1| [demoB
program demo; program demo;
begin begin
sum := 0; sum = 0;
<<i = 0>>; prod = 1;
while <<(i <= 10)>> do <<i = 1>>;
sum = sum + i; while <<(i <= 10)>> do
<<i =i+ 1>> sum = sum +i;
od; prod := prod * i;
amean :=sum/ i
end. od;
gmean :=prod ** (1 /(i — 1))
end.
Method 3:

For each interference vertex v, it is also possible to provide information about what is different between
the slices G4 /v and G /v. Rather than displaying the slices themselves, it is possible to point to the par-
ticular edges that make the two slices different. Thus, if v is an interference vertex, the system can display
in programs A and B the endpoints of all edges in the symmetric difference of the slices’ edge sets (i.e.,
E(G4 /v)AE(Gp /v)). More precisely, the edge-set difference E (G4 /v)~E(Gg /v) is displayed in pro-
gram A and the edge-set difference E(Gp /v) — E (G, / v) is displayed in program B .

Example. In the slice of buffer demoA with respect to interference vertex (i <= 10) there is a flow edge
from i := 0 to (i <= 10) that does not occur in the slice of demoB with respect to (i <= 10). Likewise, in
the slice of buffer demoB with respect to (i <= 10) there is a flow edge from i = 1 to (i <= 10) that does
not occur in the slice of demoA with respect to (i <= 10). As shown below, this difference can be illus-
trated by displaying the endpoints of the offending edges. Endpoints of individual dependence edges are
indicated below by enclosing them in double square brackets — [[ and 1l

[demoA | . [demoB |

program demo; program demo;

begin begin
sum = 0; sum = 0;
prod = 1;

[li :==01);
while [[{{ <= 10)]]] do
sum = sum + i;

i=1]
\[Bhile do

i=i+1 sum := sum +i;
od; prod := prod * i;
amean = sum/i i=i+1
end. od;
gmean :=prod ** (1/(i— 1))
end.
Continuing the example, in the slice of buffer demoA with respect to interference vertex i := i + 1 there is
a flow edge from i := 0 toi:=i+ 1 that does not occur in the slice of demoB with respect to i =1+ 1.
Likewise, in the slice of buffer demoB with respect to i =i+ 1 there is a flow edge from i =1 to

i :=1+ 1 that does not occur in the slice of demoA with respect to i *=i + 1. The endpoints of the offend-
ing edges are shown below. ’
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[demoA 1l |l [demoB
program demo; program demo;
begin begin

sum = 0; sum = 0;

[[i =0]f; prod := 1;

while (i <= 10) do
sum = sum + i;

[[i:=1]%
while (i <= 10) do

SUM := sum + i;
od; rod := prod * i;
amean :=sum/i [%{i =i+ 1]
end. od;
gmean = prod ** (1/(i— 1))
end.

It is instructive to consider why we choose to display the symmetric difference of the edge sets rather
than the symmetric difference of the vertex sets. To see why, consider the following example:

[demo2A 11l || [demo2Base [ || [demo2B ]
program demo?2; program demo2; program demo2;
begin begin begin
X:=0; X :=0; X = 0;
if P then if P then if Qthen
X:=1 X=1 X =2
fi; fi; fi;
if Q then if Q then if P then
X=2 X =2 X =1
fi; fi; fi;
y =X if R then y =X
end. X:=3 end.
fi;
Yy =X
end.

In this example, the statement if R then x := 3 fi has been deleted from both the programs in buffers
demo2A and demo2B. The only other change is in buffer demo2B, where the order of statements
if Pthen x := 1fi and if Qthenx := 2 fi has been interchanged; this change is a rearrangement of pro-
gram elements that also exist in buffers demo2A and demo2Base and introduces no new statements.

The vertex that corresponds to the assignment statement Y = X is the sole interference vertex in this
example. However, the slices G, /v and Gjp /v, shown below, have the same vertex sets; consequently,
the symmetric difference of the vertex sets, V (G, /v) A V(Gp /v), is empty.
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{demo2A [demo2Base {demo2B
program demo2; program demoZ2; program demo2;
begin begin begin
<<X = 0>>; x:=0; <<X = 0>>;
if <<P>> then if P then if <<Q>> then
<<X = I1>> X =1 <<X = 25>
fi; fi; fi;
if <<Q>> then if Q then if <<P>> then
<<X = 2>> X =2 <<X = 1>>
fi; fi; fi;
<<y = X>> if R then <<y = X>>
end. X =3 end.
fi;
y =X
end.

By contrast, the symmetric difference of the edge sets is non-empty: the difference
E(G4/v)—E(Gg /v) consists of the def-order edge [X == 1] =>4, [X = 2] (with witness Y := X); the differ-
ence E(Gp /v)—E (G, /v) consists of the edge [x = 2] —>,, [x := 1] (also with witness y:= X). Thus, the
interference in this example would be illustrated by displaying the endpoints of these two (hyper-)edges, as

follows:

{demo2A |[demo2Base {[demo2B
program demoz2; program demo2; pregram demo2;
begin begin begin
X :=0; X :=0; X = 0;
if P then if P then if Qthen
[[x = 1]] X =1 [Ix=2]]
i fi; fi;
if Q then it Qthen if P then
[Ix=2]] X:=2 [Ix=1]
fi; fi; fi;
lly :==x]] if R then [ly = x]]
end. X:=3 end.
fi;
Y =X
end.

Note that in the case of Type I interference due to a flow edge in G4 (or Gp) from an entirely new ver-
tex, the new vertex is at the tail of a new edge, so the edge-set-difference method and a method for illus-
trating interference based on vertex-set differences would display almost the same information. However,
the edge-set-difference method also handles cases like the one discussed above in which the vertex-set
difference is empty.

Method 4:

Because Method 3 displays all edges of the edge-set difference E(G4 /v)AE(Gg /v) simultaneously,
Method 3 may overwhelm the user with too much information. Furthermore, the information displayed
with Method 3 does not make it clear how edges displayed in program A relate to edges displayed in pro-
gram B, and vice versa. Thus, instead of displaying all edges of the set E(G4 /v) AE (Gg /v) simultane-
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ously, Method 4 displays only the edges of the set that are incident on a single vertex w; commands are
provided to step through all such w’s.

Example. For each of the two interference vertices in the example that accompanies Method 3 (predi-
cate (i<=10) and statement i:=i+ 1), there is only one edge in each of the set differences
E(G4/v)-E(Gp/v)and E(Gg /v) - E(Gy /v). For interference vertex (i <= 10) both of the edges are
incident on (i <= 10); for interference vertex i =i + 1 both of the edges are incident on i =i+ 1. Thus,
for this example the information that would be displayed using Method 4 is exactly the same as that
displayed using Method 3.

Method 5:

A further refinement on Method 4 is to break down the information to a finer level of granularity and
display separately the different classes of edges that are incident on w. That is, instead of displaying
simultaneously all four kinds of edges incident on w that are members of E (G4 Iv) AE(Gg /v), different
commands are provided to display separately the control edges, loop-independent flow edges, loop-carried
flow edges, and def-order edges.

Example. For each of the two interference vertices in the example that accompanies Method 3, the
edges in the set differences E(G, /v)-E (Gp /v) and E(Gg /v) — E(G, /v) are loop-independent flow
edges. Thus, for this example, when loop-independent flow edges are displayed, the information displayed
using Method 5 is exactly the same as that displayed using Method 3.

Method 6:

For each vertex v InterferenceVertices(A , B, Base)), it is possible to provide information about why a
particular edge that Method 5 would bring to light (in one program) conflicts with the changed computation
threads of the other program. Thus, Method 6 displays in program A an edge (y,z) in the edge difference
E(G4 /v)-—-E(Gg /v) while at the same time displaying in program B a slice Gz /w, where w is a vertex
of B that is not only affected by v but is also one of the affected points of B with respect to Base . That is,
w is a vertex such that w € (AffectedBy({ v }, Gg)nAPg g, ).

Example. In our running example, interference vertex (i<=10) affects statement
gmean := prod ** (1 /(i — 1)), which is also an affected point of demoB with respect to demoBase.
Thus, one of the ways Method 6 would illustrate the interference condition is by displaying the endpoints
of the loop-independent flow edge [i := 0] —¢ [(i <= 10)] in demoA together with the slice of demoB
with respect to gmean := prod ** (1/ (i - 1)) in demoB.




-13-

[demoA Il || [demoB
program demo; program demo;
begin begin
sum = 0; . sum = 0;
[li == 0]}; <<prod = 1>>;
while do <<i = 1>>;
sum = sum + i, while <<(i <= 10)>> do
i=i+1 sum = sum + i;
od; <<prod = prod * i>>;
amean = sum/i <<ii=i+1>>
end. od;

{<<amean := prod ** (1 /(i - 1))>5]
end.

Interference vertex (i <= 10) also affects statement prod := prod * i in demoB, so another one of the ways
Method 6 would illustrate the interference condition is by displaying the endpoints of the edge

[i := 0] =/ [(i <= 10)] in demoA together with the slice of demoB with respect to prod := prod * i.

[demoA I || [demoB |
program demo; program demo;
begin begin
sum := 0; sum := 0;
[li:=0; <<prod = 1>>;
while do <<i = 1>>;
sum = sum +i; while <<(i <= 10)>> do
i=i+1 sum = sum + i;
od; [<<prod := prod *i>>];
amean = sum/i <<i=i+1>>
end. od,;
gmean :=prod ** {1 /{i~ 1))
end.
Similarly, interference vertex i:=i+1 affects statements gmean := prod ** (1/(i—1)) and

prod := prod * i in demoB, so Method 6 would also illustrate the interference condition of the example

with the following two pairs of displays:

[demoA 11l | [demoB Il
program demo; program demo;
begin begin
sum = 0; sum = 0;
[fi := O]} <<prod = 1>>;
while (i <= 10) do <<i = 1>>;
sum = sum + i; while <<(i <= 10)>> do
i=i+1 sum = sum + i;
od; <<prod = prod * i>>;
amean =sum/i <<ii=i+1>>
end. od;

l<<gmean :=prod ** (1/ (i~ 1))>>]
end.
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[demoA [l || [demoB
program demo; program demo;
begin begin
sum := 0; V sum =0,
[li := 0J]; <<prod = 1>>;
while (i <= 10) do <<i 1= 1>>;
sum = sum + i; while <<(i <= 10)>> do
Mi=i+11] sum = sum + i;
od; [<<prod :=prod * i>>];
amean :=sum/i <<ii=i+1>>
end. od;
gmean = prod ** (1 /(i —~ 1))
end.

Turning things around, Method 6 would also display in program B an edge (v,z) in the edge difference
(E(Gp/v)—E (G, /v)) while at the same time displaying in program A a slice G, /w, where w is an
affected point of B with respect to Base that is also affected by vertex v (ie.
w € (AffectedBy({ v },G4)n AP, pae ).

Example. Interference vertex (i <=10) affects statements Sum :=sum+i, i:=i+1, and
amean := sum /i, which are all affected points of demoA with respect to demoBase, so Method 6 would
illustrate the interference condition of the example with the following three pairs of displays:

[demoA [l || [demoB
program demo; program demo;
begin begin
<<Sum = 0>>; sum = 0;
<<i = 0>>; prod = 1;
while <<(i <= 10)>> do {li :=1]];
[<<sum :=sum + i>>); while [[[( <= 10)]]] do
<<i=i+1>> SUm = sum +i;
od; prod = prod * i;
amean = sum/i i=i+1
end. od;
gmean = prod ** (1/ (i~ 1))
end.
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[demoA J| it [demoB
program demo; program demo;
begin begin
sum := 0; sum := 0;
<<i = 0>>; prod = 1;
while <<({i <= 10)>> do [li=1]; :
SUm := sum + i; while do
[c<i =i+ 155) sum = sum + i;
od; prod = prod * i;
amean = sum/i i=i+
end. od;

gmean :=prod** (1/(i- 1))

end.
[ demoA ] [demoB
program demo; program demo;
begin begin
<<SUm = 0>>; sum = 0;
<<i = 0>>; prod = 1;
while <<(i <= 10)>> do fli =11
<<SUM = SUM + i>>; while do
<<i =i+ 1>> sum = sum + i;
od; prod = prod * i;
<<amean := sum/i>>] i=i+1
end. od;
gmean :=prod** (1/(i- 1))
end.
Finally, interference vertex i := i + 1 affects statements sum = sum +1, i =i + 1 , and amean =sum/i
in demoA, so Method 6 would also illustrate the interference condition of the example with the following
three pairs of displays:
m‘
[demoA | demoB
program demo; program demo;
begin begin
<<SuUm = 0>>; sum = 0;
<<i = 0>>; prod = 1;
while <<(i <= 10)>> do [li:=1]];
[<<sum :=sum + i>>); while (i <= 10) do
<<ii=i+1>> sSum = sum +i;
od; prod = prod * i;
amean = sum/i
end. od;

gmean := prod ** (1/ (i — 1))
end.
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[demoA {| | [demoB
program demo; program demo;
begin begin
sum = 0; sum = 0;
<<i 1= 0>>; prod := 1,
while <<(i <= 10)>> do fli:==1]);
SUM = sum + i; while (i <= 10) do
[eci =i+ 155] Sum = sum + i;
od;
amean :=sum/i
end. od;
gmean = prod ** (1 /(i — 1))
end.
[demoA Il || [demoB
program demo; program demo;
begin begin
<<SuUMm = 0>>; sum = 0;
<<i = 0>>; prod = 1;
while <<(i <= 10)>> do [li =1]];
<<SUM = SUM + i>>; while (i <= 10) do
<<i=i+ 15> sum = sum + i;
od; rod := prod * i;
[<<amean := sum/i>>] ][il = i}‘_pj—jﬂ
end. od;
gmean = prod ** (1 /(i— 1))
end.
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