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1. Introduction

A very simple model ( and surprisingly a very rich one) in multivariate approximation theory is
given in terms of a compactly supported function ¢ : IR° — C and the space S(¢) spanned by

its integer translates. Closely related to such a model is the semi-discrete convolution operator

¢* defined by
prxic pxci= Z cad(c — @), (1.1)

a€Z*
where ¢ : Z* is a complex-valued sequence. The injectivity of the operator ¢*, which is usually
referred to as “the (global) linear independence of the integer translates of ¢”, is certainly one
of the most important properties related to ¢ and S(¢), and is intimately connected with the
stabilty of the approximation process by elements from S(¢).

Exponential box (EB-) splines, introduced in [9], generalize the well-known polynomial box
splines ([2], [3]) and provide a wide selection of choices of the function ¢. An essential feature
of an EB-spline, which is a piecewise-exponential-polynomial function, is that it is generated by
convolving lower order ones. To introduce a typical EB-spline, let ' be a finite multiset (to be

referred later as a defining set) with cardinality |I'| consisting of elements of the form

7= (30 M), (1.2)

where x., € Z°\{0} and A, € C. The EB-spline B(T'), based on T', can be defined via its Fourier

transform by

ﬁmm:nmmm=ﬂ(fﬁﬂwmﬁ- (1.3)

yerl ver

It should be noted that if

(T') := span {xy}yer = IR®, (1.4)

then B(T') gives rise to a compactly supported function B(T|-); otherwise the EB-spline is merely
a distribution (actually a measure) supported in (I'). Those basic properties of EB-splines that
are needed for our purposes here, will be discussed in section 2. For more information about
EB-splines we refer the reader to [Rys], [5], [7] and [8]. Specifically, the question of linear
independence of the integer translates of an EB-spline B(I') was settled in the (stronger) local

sense in [10].



Given an EB-spline B(T'), we examine in this paper the convolution g * B(T') of the box
spline with an arbitrary compactly supported distribution pz and the question of the global linear
independence of the integer translates of ux B(I'). The approach we choose makes an essential use
of the necessary and sufficient condition for the linear independence of the integer translates of
a compactly supported distribution derived in [11] and consequently is based on Fourier analysis
arguments. The general result we obtain is characterized in terms of the correspondence between
the defining set I' and the distribution of the zeros of the Fourier transform & of 1, and is proved
to be applicable to many specific situations where u is defined by geometrical means. The

following examples serve as typical illustrations for the usefulness of the results here.

Example 1.1. Let B(T') be a three-directional polynomial box spline; that is, s = 2, A, = 0
and x, € {(1,0),(0,1),(1,1)}) for all ¥y € I'. As mentioned above, p is assumed to be a bivariate
compactly supported distribution. Note that in this case the defining set I' consists of three
distinct elements 7,72, vs with (possible) multiplicities. Here, a straightforward application of
the results in [11] shows that the integer translates of p* B(I') are globally linearly independent
if and only if the same holds for % B({v1,72,73}). In fact a stronger solution for this problem
is valid as follows:
Solution of Example 1.1. For a three-directional polynomial box spline B(I'), the integer
translates of p* B(T') are globally linearly independent if and only if i(0) # 0 and the integer
translates of each p* B({7;}) are globally linearly independent, for j = 1,2,3.

We remark that similar results (with a suitable modification of f(0) # 0) hold for the
(more general) three-directional exponential box spline (i.e., when the restriction A, = 0, V7, is
removed) although in this general case no direct application of the results of [11] seems to be

available.

The second example below shows that the analysis here may sometimes lead to an explicit

geometric characterization:

Example 1.2. As in the above example, let B(T') be a three-directional polynomial box spline.
In addition, let p be a measure whose support is contained in the unit square, whose total
mass is one and is equally distributed on its support, and whose integer translates are linearly
independent.f What shape does supp £ admit to ensure the linear independence of the integer

translates of ¢ := p* B(I')? One special case is actually well-known: if supp p consists of the

1 An additional mild restriction is needed here. For details see section 5.
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north-west south-east diagonal of the unit square, then ¢ is a so-called four-directional polynomial
box spline, whose integer translates are globally linearly dependent.

Solution of Example 1.2. The integer translates of ¢ are globally linearly dependent if and
only if there exists an & > 0 such that for every x with 0 < 21 — 25 < 1, the ratio between the

one dimensional Lebegue measures} of

{x+ (t,t)}ter N supp p

and

{x+ (%t + 1)} ter N supp

equals ¢ (independent of x). Moreover in this case the kernel of the operator ¢* contains the

exponential

Co = (—€)*1 72,

The main rtesults of this paper are presented and proved in section 3. This section is
preceeded by section 2, where some preliminaries about the linear independence question on the
one hand, and about box splines on the other, are given. Section 4 contains applications of the
main results to the case where supp i is “small” in a suitable sense, and in section 5 we discuss

the above Example 1.2 and another bivariate example.

We conclude the introduction with some notations and terminology which will be used
in the sequel. Given K C T, its cardinality is denoted by |K| while (K) stands for the real
linear span of {x,}yex. The set K is referred to as “linearly independent” whenever {x,}yex
form a linearly independent set of vectors. Orthogonal relations are always considered here in
the complex situation; thus the notation K+ stands for the set of all vectors in C*® which are
orthogonal to all of {x,}yex. Given a compactly supported distribution u, we let i denote its
Fourier-Laplace transform; i.e., fi is the entire function obtained as the analytic continuation of
the Fourier transform of p. The exponential function e is abreviated as eg. Finally, following
de Boor [1], we set ¢+’ f for the semi-discrete convolution ¢ (f|zs). The notation “=” is used
for either the usual convolution (of functions or distributions) or the semi-discrete one. The

appropriate meaning can be easily verified from the context.

t In case supp p has a zero two-dimensional volume one measures the width of these sets by

the counting measure.



2. Preliminaries on Box Splines

In this section, we give a very brief review of some basic properties of (exponential) box splines

that are needed in the sequel, and present a result from [11] which the analysis here is based on.

Several sets and families of sets are associated with the defining set I' and its corresponding

box spline B(T'). One of these is the collection of all “bases” J(T'), defined as
IO)={JcT| [J|=s, (J)= R} (2.1)
Each “basis” J € J(I') induces a set of s linearly independent linear equations in s variables
Xy 0= Ay, Vy e J. (2.2)

The unique solution (in C°) of this system is denoted by 6; and will be referred to as a node

later. We set
o) = {65 J € J(I)}. (2.3)

(This definition slightly differs from the original one in [9], but seems to be somewhat more

convenient in the context of the Fourier analysis methods employed in the sequel).

Given a linearly independent set X C I' we may associate K with its node fx which is

defined similarily by
Xy 0 = Ay, Vv € K, (2.4)
A € span {ix,y},yej\', (2.5)

where the span in (2.5) is regarded over C' (not as in the definition of (I') when the span is

regarded to be taken over IR).

Proposition 2.1[9;Cor. 5.1]. For any J € J(T)

B(J) %! €g; = €g;. (2.6)

This last result can be easily extended to cases when (I') # JR®. The modified version of
Proposition 2.1 thus reads

Proposition 2.1*. Let I be a linearly independent subset of I'. Then

S s (@)B(K| - —a) = e X(rys
Q€ZN{K)



where xry is the Lebegue measure associated with the linear subspace (I').

Fach element v € T is also associated with a first order differential operator
D7 f = Dy, f— A, (2.7)

and a corresponding difference operator

Vf = f—eMf(--x,), (2.8)

where D, is the usual (distributional) directional derivative.

Proposition 2.2[9;Th. 2.2].

DYB(I) = V'B(T'\y), VyeTl. (2.9)

We now turn to two results concerning the linear independence problem. The first one is a

necessary and sufficient condition for the linear independence of the translates of a box spline.

Result 2.1[10;Th.4.2]. The integer translates of an exponential box spline B(T') are linearly
independent if and only if the following two conditions are satisfied

(a) B(T)6) #0, V8 e O(); (2.10)
(b) |det Xs| =1, VJ e J(T). ‘ (2.11)

Here, Xy is the matrix whose columns are {x}yes.

The second result we need is concerned with the global linear independence of the integer

translates of an arbitrary compactly supported distribution:

Result 2.2[11; Th.1.1]. Let ¢ be a compactly supported distribution and 1Z its Fourier-Laplace
transform. Then the integer translates of ¢ are globally linearly dependent if and only if one of
the following two equivalent conditions holds for some 6 € C'°:

(a) P(0 +2ra) =0, Yo e Z° (2.12)
(b) P *'eg = 0. (2.13)

Finally, in view of (1.3), we note that for any vy € T,

B({y}]x) =0 <= A\, —ix,-x€ 2miZ\{0}. (2.14)



3. Main Results

We are now ready to describe our results concerning the linear independence of the integer
translates of the convolution of a box spline with a compactly supported distribution, and we

will apply these results to several specific situations.

Basically most of the analysis concerning exponential box splines (and polynomial box
splines in particular) is either based on various reccurence relations (such as Proposition 2.2),
or makes use of the simple form of the Fourier transform of B(T'). For questions exclusively
concerned with box splines, the first approach is usually more effective and more efficient. Yet,
in the present situation, where arbitrary distributions are involved as well, the Fourier analysis
method seems to be the one that leads to more comprehensive results and therefore is the one

chosen here.

In the sequel we make a frequent use of the trivial fact that for arbitrary compactly supported
distributions p; and po, the global linear independence for the integer translates of up * ug
always implies linear independence for the integer translates of each of uy, pa. Thus, seeking
for conditions to guarantee the linear independence of the integer translates of p * B(T'), where
B(T') is an exponential box spline and yx is a compactly supported distribution, it is necessary to
assume the linear independence of the integer translates of B(I'). According to Result 2.1 this
is equivalent to the validity of conditions (2.10) and (2.11); however this fact will not be used

in the proof of Theorem 3.1.

The necessary and sufficient condition for the linear independence of the integer translates
of p* B(T'), which is derived below, can be presented in several slightly different versions. The

best adequate version may vary upon the specific choice of 4 and T'.

Theorem 3.1. Let u be a compactly supported distribution and T' a defining set. Assume
that both the integer translates of B(I') and of yu are globally linearly independent. Then the

following conditions are equivalent:

(a) The integer translates of % B(T') are globally linearly dependent.

(b) There exists a linearly independent set I C T’ such that the integer translates of p* B(K)
are globally linearly dependent.

(c) There exist a linearly independent set ' C ' and a z € K+ such that
00g +z+2ra) =0, Vo€ Z°nK*. (3.1)
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(d) Either the integer translates of u* B(L') are globally linearly dependent, for some linearly

independent set K C T of cardinality < s, or
(0) =0 for some 8 € O(T).

(e) For some basis J € J(I'), the integer translates of u+ B(J) are globally linearly dependent.

Proof: First let us analyze the situation when, for some I C T, the integer translates of
p* B(K) are linearly dependent, and K is minimal with respect to this last property. By Result

2.2, there exists a ' € C® such that
[u* B(IO(6! +2ra) =0, Va € Z°, (3.2)
where the minimality of K implies that there exists {o, }yex C Z° that satisfies
B({y}|8' + 27ra,) =0, yeK. (3.3)
By (2.14) this last condition is equivalent to
Ay — 1%y - (01 + 27ay) € 213 Z\{0}, 7€ K, (3.4)

and hence,

Ay — 1%y - (0 +270) € 20iZ, Vye K, a € Z°. 3.5
Y Y

On the other hand, suppose that the integer translates of B(T'), hence of B(K'), are linearly

independent, which means (in view of Result 2.2) that for some § € Z°
B({y}|6* +27B8) #0, Vye€ K. (3.6)
Then setting § = 6' + 273, we may combine (3.5), (3.6), and (2.14) to deduce that
Ay —ixy-0=0, VyeK, (3.7)
and therefore for every o € Z°n K+, we have
Ay~ Xy (0 + 27a) =0, Vye€ K.
Using (2.14), we can now conclude that for such o, B(K|0 + 2ra) # 0 and (3.2) thus imposes

A0+ 2ra) =0, VYae Z°NnK*t. (3.8)



Now let Ky C K be a “basis” for (X), (which means, as in (2.1), that the vectors {x,} ek,
form a basis of (K)). Let a € Z°\K=*. Then there exists a ¥ € K; such that o -x, # 0 and

hence for this v, we have
Ay —1Xy - (04 2710a) = 0 — ixy - 21 € 27iZ\{0},
so that (2.14) implies that for this a, B({y}|d + 27a) = 0, and thus
B(K,|0 4 27a) =0, Vae Z°\K* . (3.9)
Combining (3.9) together with (3.8) we see that
(p* B(K1)) (0 + 27a) =0, Vae€ Z°;

and Result 2.2, when applied to the present situation, yields that the integer translates of
w* B(K7) are linearly dependent. The minimality of K thus shows K; = K and hence K
is in fact linearly independent.

To start with the proof of the cycle of implications, let us assume (a). Then we may choose
K as in the preceding remarks (i.e., minimal with respect to the linear dependence of the integer
translates of p* B(X)) and follow the above arguments to conclude that this set K is linearly
independent, verifying thereby (b).

Suppose that (b) holds. We may also assume (without loss of generality) that the set I
appearing in (b) is minimal (with respect to the linear dependence of the translates of ux B(K)).
The analysis above shows that there exists a § € C* satisfying (3.7) and (3.8). Since 0 satisfies
(3.7) as well, we see that z := § — g € K+. This shows that (3.8) and (3.1) are actually
equivalent and (c) is thus established.

Turning into proving that (c) implies (d), we first assume that the subset K appearing
in (c¢) has exactly s elements (and hence is an element of J(I')), and prove that in this case
A(0x) = 0. Indeed, this easily follows, since, in view of (K) = IR°, we must have z = 0 in
(3.1) and substitution of & = 0 there thus yields the desired result. The other case needed to be
considered is when (I{) # IR®. Here, since 0 := 0 + z satisfies (3.7), we can follow the above

arguments to deduce (3.9) (with Ky = K). This last result, together with (3.1), shows
(p* B(K)) (g +z+ 21a) =0, Vae Z?®,
and Result 2.2 is now available for the verification of (d).
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Now we will show that either of the conditions in (d) implies (e). Let us first assume that
for some linearly independent set ' C I, the integer translates of p* B(LK') are globally linearly
dependent. In this case, the same holds with respect to every extension of K to a basis J € J(T),
and (e) follows. Otherwise, we have fi(6) = 0 for some 6§ € ®(T"). Here for J € J(T") with 8 = 6,

we have by Proposition 2.1

B(J) «' €5 = e,

so that
(% B(J))*' eg = p*eqg = [i(f)eg = 0,

and consequently the integer translates of p* B(J) are linearly dependent which verifies (e) for

this case as well.

To complete the cycle of implications, we need only observe that the implication (e) = (a)

is trivial. o

For later references we record the following result which has been obtained in the proof of

Theorem 3.1

Corollary 3.1. Let B(T') and p be as in Theorem 3.1. Suppose that the integer translates of
p* B(I') are globally linearly dependent. Then there exist a linearly independent set &' C T and
a z € K+ such that

(a) i0x +z+2ra) =0, Vae Z°nNnKt,

(b) B(K|0x +z+ 27a) =0, VYae Z°\K*L.

As a first application we show now that Result 2.1 can be derived from Theorem 3.1.

Proof of Result 2.1. The harder implication in the result is to prove that the two conditions
(2.10) and (2.11) imply the linear independence of the translates. The proof of the converse is
straightforward and will not be given here. (cf. [Ry;8§5] for its proof).

Let us assume that (2.10) and (2.11) are satisfied, but on the contrary, that the integer
translates of B(I') are linearly dependent. First, we consider the case when I' consists of only
s elements. In this case it easily follows from (2.11) that the supports of the integer translates
of B(T') are pairwise disjoint (up to a set of measure zero) and therefore the linear dependence
cannot hold.

Knowing therefore that I' contains at least s 4+ 1 elements we pick v € I' such that (I'\y) =

IR?, and comnsider the following two possibilties:



(a) The integer translates of B(I'\«y) are still linearly dependent.
(b) The integer translates of B(I'\7y) are already linearly independent.

In case (a) there are at least s + 1 elements in the remaining set, so we may pr;)ceed to
delete another element and hence this case is reduced to (b).

Note that in any case the integer translates of B({v}) are linearly independent (otherwise we
can extend 7 to a basis J € J(T'), conclude that the translates of B(J) are linearly dependent and
arrive as in the preceding paragraph at a contradiction to (2.11)). Now we apply the equivalence
of (a) and (b) in Theorem 3.1 (with T replaced by I'\{7} and and g = B({y})) to conclude
that for some linearly independent set I C T'\{7} the integer translates of B(K) * B({v}) =
B(IK U {v}) are linearly dependent.

If KU {~} is still a linearly independent set, we can extend it to a basis J € J(I'), con-
clude that the integer translates of B(J) are linearly dependent, and obtain again the same
contradiction to (2.11) as before.

Otherwise, x., € (I{). Here we appeal to Theorem 3.1(c) to conclude that for some z € K,
B({7}0x +2) = 0. (3.10)

The assumption on x., guarantees that the Fourier transform of B({v}) is constant along lines
orthogonal to K, hence (3.10) is actually valid with respect to all z € K*. Let J be an extension
of K to a basis. Then, since ; as well as 0 satisfies (3.7), it follows that z := 67 — g € K+

and thus, by (3.10), B({7}), and hence B(T), vanishes at 67, a contradiction to (2.10). =

The following corollary, which is essentially known in the theory of exponential box splines,
follows directly from the proof above:
Corollary 3.2. Suppose that the integer translates of B(T') are linearly dependent. Then there
exists a subset I C I' of cardinality s+ 1 such that the linear dependence still holds with respect

to B(K).

In the bivariate situation the most interesting case where the integer translates of the box
spline are linearly independent is the three-directional mesh, i.e., when x, € {(1,0),(1,1),(0,1)}

for each v € T'. For this specific situation we deduce from Theorem 3.1 the following

Theorem 3.2. Let B(I') be a three-directional exponential box spline and p a compactly
supported distribution. Then the following conditions are equivalent:

(a) The integer translates of p % B(I') are globally linearly independent.
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(b) Both of the following are satisfied:
(b1) A(0)B(T|8) #0, V6 e O().

(b2) For every v € T the integer translates of p* B({y}) are globally linearly independent.

Proof: In the case of a three-directional mesh, condition (2.11) is always satisfied and (b1)

above implies (2.10), and hence the claim easily follows from the equivalence of (a) and (d) in

Theorem 3.1. o

Note that the claim in Example 1.1 is also covered by the above theorem, since ®(I') = {0} and

B(T)0) # 0 in the polynomial case.

4. Applications to Distributions with Small Support

Here we discuss some of the possible applications of Theorem 3.1. The typical nature of these
applications seems to be that for “small” enough supp u, 11:11ea1‘ independence is more likely to
occur. Throughout this section we will always assume that the integer translates of the box
spline B(T'), as well as the integer translates of the distribution g are linearly independent, so
that condition should be added to all of the results below.

For the first application we need a certain restriction on supp p which we find convenient to

formalize as follows:

Definition 4.1. We say that supp g is I'-small if for every K C T with (K) # IR® and every

sequence ¢ : Z° +— C, such that

wk B(K)*c=0,

we have

> calp* BK)](-—a) =0,

a€Z*N(K)

The property of I'-smallness is referred to the support of u (rather than, say, to p itself)
since we seek for conditions where the I'-smallness is guaranteed by the relations between supp p
and T', regardless of the specific definition of u. We will elaborate on this point later on, after

stating and proving the main result in this context.
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Theorem 4.1. Let B(I') and p be as in Theorem 3.1. Assume also that the support of p is
T'-small. Then the integer translates of p* B(I') are globally linearly dependent if and only if

#(6y) =0 for some J € J(T). (4.1)

Proof: The “if” implication follows directly from the implication (d) = (a) in Theorem 3.1.
For the converse, we make use of the equivalence of (a) and (c¢) in Theorem 3.1. Denoting
0 + z in (3.1) by 6, this equivalence relationship, together with the definition of fx, ensures

the existence of a linearly independent set K that satisfies:
Ay —ixy-0=0, VyeK, (4.2)

A0 +2ra) =0, acZ°NnK+t. (4.3)

In case (K) = IR®, (4.1) becomes equivalent to (4.3) (with J = I and 6; = §) and the desired
claim is therefore evident. Otherwise, we combine Result 2.2 together with Corollary 3.1 to

deduce that pu* B(K) *' eg = 0. Now the I'—smallness assumption ensures that

Y. esl@)(px BUIO)(- - a) = 0. (4.4)

a€Z*N{K)

In this last equation we can replace 8 by any 6 + y where y € K*. Extending K to a basis
J € J(T'), we know from its definition that 8y satisfies (4.2) and hence x, - (67 — ) = 0 for all
v € K;ie., 8;—60¢c KL, Thus replacing 6 by 8 in (4.4), we may appeal to Proposition 2.1* to

obtain

> eo, (@) (ux B(E))(- — o) = p* (e, x(x) )s
a€Z*N{K)

where x(r) is a measure supported on (I) with mass equally distributed on its support (i.e.,

the Lebegue measure associated with (K)). Therefore we may conclude that

1 * (ea; X(xy) = 0,
which clearly implies that
A0y +y)=0, VyeKk™,
and (4.1) follows. o
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Corollary 4.1. Let B(I') and p be as in Theorem 4.1. If ' is a real defining set (i.e., A, € IR for
all v) and p is a positive distribution then the integer translates of u* B(T') are globally linearly

independent.

Proof: Since I' is real, ®(I") C 7JR°. On the hand, i, as the Fourier transform of a positive

distribution, vanishes nowhere on ¢IR°. Hence the result follows by applying Theorem 4.1. o

Next, we aim at describing specific situations were the “I'-smallness” of supp p is guaranteed.

For this purpose we need the notion of a “I'-cell”:

Definition 4.2. A T'-cell is a maximal (connected) region in IR® which is disjoint from a + (K)

forall @ € Z° and all X C T with (K) # IR°.

We remark that in the tensor product case, (when every x., is taken from the standard
basis for IR®), the only T'-cell (up to an integer translate) is the open unit cube. In the case of
a bivariate three-directional mesh, the two I'-cells are the triangles obtained when dividing the
unit square along its south-west north-east diagonal. Note also that the notion of a I'-cell is

independent of the choice of the A’s.

Theorem 4.2. Suppose that the support of the distribution p is contained in the closure of a
T-cell A and also that for every K C T with (K) # IR®, the support of p intersects at most one
of the manifolds {& + (K)}aezs. Then the integer translates of p* B(T') are globally linearly
independent if and only if fi(f) # 0 for all § € ©(T"). Moreover, if in addition u is a positive

distribution and T is real, the linear independence is always valid.

Proof: In view of Theorem 4.1 and Corollary 4.1, it is sufficient to show that the support of
p is T-small. Yet, this is evident: the support of 3 ¢ xynzs Calpt * B(K)](- — @) (with K C T
and (K) # IR®) lies in the set Uxe(xy{x+supp u} , while the conditions assumed in the theorem
clearly imply that the support of any shift of u* B(K) by a € Z°\(K) does not intersect that

set. 8]

Remark 4.1. Some relaxations on the conditions assumed in Theorem 4.2 are available. For
instance, one may assume that a certain translate of u, rather than pu itself, is supported in a
T-cell, since the linear independence property is invariant under translations and convolution

commutes with translation.
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The condition described in Theorem 4.2 may appear to be unsatisfactory in certain cases of
interest. E.g., when p is the characteristic function of a I'-cell, its support might intersect with
two different hyperplanes of the form a + (K), K C T, a € Z?®. In the following we modify

Theorem 4.2 to cover such cases as well.

Theorem 4.3. Let p be a compactly supported (Radon) measure. Assume that supp p is
contained in the closure of a I'-cell, and that for every KX C T' with (K) # IR®, at most one of
the manifolds {a + (I)}aezs intersects supp p in a set carrying a non-zero mass of . Then the

integer translates of u* B(I") are globally linearly independent if and only if fi(8) # 0, V8 € ©(T).

The proof of Theorem 4.3 is straightforward. Indeed, whenever the support of y intersects a set
of the form a + (K) at a set which carries 0 mass of 4 one may simply change the definition of
1 to be 0 on that set. Since the total number of such intersections is finite these modifications

do not alter u as a distribution, and preserve the proof of Theorem 4.2.

Corollary 4.2. Let ¢ be a compactly supported measurable function whose support is contained
in the closure of a I'-cell. Then the integer translates of u* B(I') are globally linearly independent
if and only if fi(8) # 0, V8 € O(I'). In particular, if T is real and p is positive the linear
independence of the transaltes of u* B(I') is guaranteed.}

Again the proof is evident: the argument in Theorem 4.3 ensures the I'-smallness of supp p

and therefore Theorem 4.1 and Corollary 4.1 yield the desired results.

5. Examples

We present here two bivariate examples. In both examples B(I') will be a three-directional
polynomial box spline and p a measure whose mass is equally distributed on its support. (e.g.,

if voljgz(supp ) > 0, g is the characteristic function of its support.)

Example 5.1. Assume that supp p is contained in the closed triangle with vertices (0,0),(1,0),
(1,1). (As mentioned before, this triangle is the closure of a I'-cell for the case of a three-

directional mesh). Here we discuss three different possibilities:

T Recall the assumption in the begining of the section about the linear independence of the

integer translates of B(T') and of p.

14



(a) The support of u has a two-dimensional positive volume. In this case p is a function and thus
the linear independence for the integer translates of u* B(T') is guaranteed by Corollary 4.2.
If we choose u to be the characteristic function of the above triangle, the functions u* B(T)
so obtained are certain functions of minimal supports (see [4], [6]). The linear independence

for this special case was already proved in [11].

(b) The support of p has a zero two-dimensional volume but has a positive one-dimensional
volume. In this case the vertices of the triangle still carry zero mass; thus Theorem 4.3 is
easily shown to be applicable to this case, namely: the integer translates of p* B(T') are
necessarily linearly independent

(c) The last case is when p is a finite sum of translates of the § distribution; i.e., a certain
difference operator. Here, if at least two of the point-masses are located at the vertices,
then the condition needed for the application of Theorem 4.3 is violated. It can be shown
that in this case linear dependence is obtained if and only if the support of y lies on the
union of a vertex and the edge opposite to that vertex; (both must contain some of the

support).

We turn now to the discussion of Example 1.2. As mentioned in the introduction a certain
constraint should be imposed: for the case volgz(supp ) = 0, we exclude the situation when
this support intersects two parallel edges of the boundary of the unit square at sets carrying
non-zero mass from pu.

First note that B(T'), as a three-directional polynomial box spline, is generated by repeated
convolution of B({y1}), B({¥2}) and B({y3}), where x,, = (1,0), x4, = (0,1), and x,, = (1,1),
and A, = 0 for all v’s. Also, ®(T') = {0} and thus the Fourier tranform of a positive measure
g vanishes nowhere on ®(T'). We can now appeal to Theorem 3.2 to conclude that the integer
translates of u * B(I') are linearly dependent if and only if the same holds for pu* B({v;}) for
some 1 < 7 < 3. On the other hand, Theorem 4.2, together with the fact that supp p lies in the
unit square, shows that the integer translates of p* B({v;}) are linearly independent for j = 1,2;
(to see this we simply apply Theorem 4.2 to a bivariate tensor case.) Consequently, the solution

to our problem can be derived from the behaviour of ¢ := u* B({vy3}).

To analyze the latter case, let ¢ : Z° + C and assume that

$xc=0. (5.1)
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Application of D" to B({vy3}) gives, in view of Proposition 2.2, V7§ where § is the Dirac
distribution; hence (5.1) yields

0=D%(¢p*xc)=VPpuxc=p*xVPic.

Since the integer translates of p are linearly independent, we have V¥ ¢ = 0, which means that
c is constant along lines in the direction (1,1). Let S be the strip located between ay — az = 0
and a; — ag = 1. We can assume without loss of generality that c(;; = 1 and ¢(j41,5 = @
for some complex-valued constant a. Since we know that the support of u* B({vs}) is entirely
located between the lines ay — as = 1 and a3 — @z = —1, the restriction of equation (5.1) to S
reads as follows:

o0

Yo GG =GN+ D et — (G +1,5) = 0. (5.2)

j:-—oo j:—-OO
Now, since here §.,, = 0, Proposition 2.1* shows that
[e 0]
Z B({73}| : _(.77.7)) =X
j=—o0

where x is the Lebegue measure associated with the line {(¢,t)}:er. Thus (5.2) becomes

pxx+al(p* X)( - (170))] =0, (5.3)

and this relation should hold in the strip S.

Fixing x € S, we see that the first term in (5.3) measures the width of the section of supp p
that lies on the line {x + (¢,t)}+tem, while the second term in (5.3) is a times the width of the
section that lies on {x+ (¢,t+ 1)} iem. In order for (5.3) to be valid, it is necessary and sufficient
that there is a constant ratio (—a) between the two widths. Thus we have established the claim

of the example.

We remark that the same approach might be applied to higher-dimensional settings when

all the x., vectors are either elements of the standard basis or the vector (1,1,...,1) in IR®.
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