TRADEOFFS IN INSTRUCTION FORMAT DESIGN
FOR HORIZONTAL ARCHITECTURES

by

Gurindar S. Sohi and Sriram Vajapeyam

Computer Sciences Technical Report #810

December 1988

TRADEOFFS IN INSTRUCTION FORMAT DESIGN
FOR HORIZONTAL ARCHITECTURES

Gurindar S. Sohi and Sriram Vajapeyam

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, W1 53706.

Abstract

With recent improvements in software techniques and the
enhanced level of fine grain parallelism made available by
such techniques, there has been an increased interest in hor-
izontal architectures and large instruction words that are capa-
ble of issuing more that one operation per instruction. This
paper investigates some issues in the design of such instruction
formats. We study how the choice of an instruction format is
influenced by factors such as the degree of pipelining and the
instruction’s view of the register file. Our results suggest that
very large instruction words capable of issuing one operation
to each functional unit resource in a horizontal architecture
may be overkill. Restricted instruction formats with limited
operation issuing capabilities are capable of providing similar
performance (measured by the total number of time steps) with
significantly less hardware in many cases.

1. INTRODUCTION

To exploit fine grain parallelism, a high-performance pro-
cessor must provide a set of functional units that comprise an
underlying resource architecture and an operation issuing
mechanism to provide work to the functional units. Fine grain
parallelism amongst operations of different types can be
exploited by using multiple functional units, each of which
performs a different arithmetic/logic operation and by issuing
operations to these functional units in parallel. Fine grain
parallelism amongst operations of the same type can be
exploited by pipelining the functional unit (used by the opera-
tions) to a greater extent or by providing multiple copies of the
same functional unit.

The resource architecture is driven by an operation issu-
ing mechanism that reads source operands from a set of regis-
ters (register file) and routes them to the functional units via a
datapath (input interconnect). Once the results of the opera-
tions are available at the output of the functional units, they are
routed back to the register file via another datapath (ourput
interconnect).

Traditionally, the operation issuing mechanism in most
machines has been limited to issuing at most one operation’ (a
single instruction) in a single clock cycle in spite of the pres-
ence of multiple functional units that could accept more than
one operation per clock cycle [1,14]. This is sometimes
referred to as the Flynn bottleneck [6]. For many years this
bottleneck was not considered to be very significant because of
the limited amounts of fine-grain parallelism that could be
detected in most applications [13,16]. In the absence of
sophisticated compiler techniques to detect and enhance the
available fine-grain paralielism and the enormous hardware
required to do the same, a peak operation issue rate of 1 opera-
tion per cycle seemed adequate.

However, recent work, has suggested that the amount of
fine-grain parallelism that is available in an application could
be enhanced considerably by the use of software techniques,
especially for computation-intensive scientific programs [9].
With an enhanced level of fine-grain parallelism in the applica-
tion programs, operation issuing mechanisms that allow for the
initiation of several operations simultaneously may be in order.

Architectures with enhanced operation issuing capabili-
ties have aroused considerable interest in the computer archi-
tecture community and several have appeared recently. These
include VLIW machines such as the ELI-512[5] and its
follow-on TRACE family of machines [3], the ESL Polycyclic
processor{11] and its follow-on Cydrome Cydra 5 Departmen-
tal Supercomputer {12], and decoupled architectures such as
the ZS-1 [15]. Even some single-chip microarchitectures
attempt to issue more than one operation in a clock cycle [10].

VLIWs and the Cydra 5 provide instruction formats
where each instruction is capable of issuing several operations
in a single clock cycle. Such architectures are also called hor-
izontal architectures and their instructions are called horizontal
instructions. Proposed horizontal architectures make extensive
use of software support to detect parallelism and pack several
independent operations into a horizontal instruction. A hor-
izontal instruction provides the basic multiple operation issuing
mechanism. Architectures such as the ZS-1 use more tradi-
tional instruction formats that issue only one operation per
instruction; multiple operation issue is achieved by issuing
more than one operation per cycle at run time.

"In this paper, we distinguish between "operations” and “instructions”. An instruction
consists of one or more opertions.

In this paper, we study horizontal architectures whose
instruction formats are capable of issuing multiple operations
with a single instruction. In designing such architectures, one
of the first questions that a computer architect must answer
concerns the number of operations that each instruction should
be capable of issuing. There are several tradeoffs to consider.
Let us illustrate this with the help of an example.

Suppose that a machine has to be designed for a hypothet-
ical task that consists of 3 independent floating-point ADD
operations and 2 independent floating-point MUL operations.
Assume that the floating-point ADD and MUL operations take
5 and 6 clock cycles to execute, respectively. Using a resource
architecture of 3 adders and 2 multipliers and an instruction
format capable of issuing 5 operations simultaneously, one
could achieve a best-case execution time of 6 clock cycles. To
support this execution, the register file and the input intercon-
nect would have to be capable of supplying 10 operands per
cycle to the functional units. However, an execution time of 6
clock cycles could be achieved even with 2 multipliers, 2
adders, an instruction format capable of issuing 4 operations
simultaneously and a register file/input interconnect capable of
supplying 8 operands per cycle if the adders are pipelined and
are able to accept a new request on every clock cycle. Con-
tinuing further, an execution time of 7 (10) clock cycles could
be achieved with only one pipelined multiplier, one pipelined
adder, an instruction format capable of issuing 2 (1) operations
and a register file capable of supplying 4 (2) operands per
cycle.

The above example serves to illustrate one major tradeoff
in the design of a horizontal instruction format, namely the
capabilities of an instruction format (and the associated
hardware needed to support it) versus the number of time steps
taken to execute a task using the instruction format. As we
shall see, the tradeoff is complicated further by several factors.
While the choice of an appropriate instruction format is clearly
a very important one, it has not been studied widely in the
literature. Previous studies have concentrated on full-fledged
instruction formats that are capable of issuing one operation to
every functional unit in the resource architecture in a single
instruction [4]. This may be due to the fact that the machines
capable of issuing more than one operation per instruction that
have been built so far use full-fledged horizontal instruction
formats {2, 3, 5, 12].

In this paper, we are interested in determining if full-
fledged horizontal instruction formats (and the enormous
amount of hardware needed to support them) are indeed
worthwhile or might restricted instruction formats that can
issue only a few operations at once be adequate. To do so, we
study various horizontal instruction formats and see how they
are influenced by and how they impact other architectural fac-
tors and decisions. Our studies use a hypothetical horizontal
architecture that resembles (though not exactly) some recently
announced horizontal architectures. The factors that we con-
sider include the degree of pipelining of each resource, the
view of the registers presented to the operations, and the paral-
lelism available in the programs.

The outline of this paper is as follows. Section 2
discusses our machine model, the benchmarks that we use and
our evaluation methodology. Section 3 discusses the max-
imum performance potential. Section 4 presents a detailed
study of several horizontal instruction formats. Finally, section
5 presents a summary and some concluding remarks.

2. MACHINE MODEL AND EVALUATION
METHODOLOGY

2.1. Machine Architecture and Instruction Format
Considerations

The basic operation set of most horizontal architectures
consists of "simple" load/store, register-register operations.
Simple operations are used because more complex operations
can be broken into a sequence of simpler operations that allow
the software more flexibility in optimization. Each operation is
simple in that it can be examined, decoded and issued in a sin-
gle clock cycle. However, it may take several clock cycles to
actually complete execution. We use a similar operation set in
our machine model. Arithmetic operations use a 3-address for-
mat; 2 source operand addresses and 1 destination operand
address. Load and store operations use a 2-address format.
The operation set includes floating point operations as well as
integer operations. All operatons have scalar operands; no
vector operations are used.

Register File

!

Input Interconnect

Int. Int. FP FP Data
ALU Mul Add Mul II\’Acmory
ot

Qutput Interconnect

@ To Register File

Figure 1: The Model Horizontal Architecture

The resource architecture that we consider in this paper
consists of an integer adder/logical unit, an integer multiplier, a
floating point adder, a floating point multiplier and a port to the
data memory (Figure 1). We study two degrees of pipelining
for each resource: (i) a modest degree of pipelining which we
shall refer to as modest pipelining and (ii) a greater degree of
pipelining which we shall refer to as deep pipelining. The
number of pipeline stages in each of the functional units for the
two cases is given below.

Functional Modest Deep
Unit Pipelining | Pipelining

Load 6 12

Int. Add 1 2

Int. Mul. 4 8

FP Add 3 6

FP Mul. . 4 8

The number of pipeline stages for a system with modest pipe-
lining are taken from [4] and are representative of moderately
pipelined machines such as the TRACE family; the number of
pipeline stages for deep pipelining are twice that of modest
pipelining and are representative of highly pipelined machines
such as the CRAY class of machines.

The computational units in Figure 1 are used .n the obvi-
ous manner. Only memory data references proceed through
the memory port; instruction references access an instruction
cache and, to simplify matters, we assume that all instruction
references hit in the instruction cache (not shown).

Fine-grain parallelism amongst operations that use dis-
tinct functional units can be exploited easily with the resource
architecture of Figure 1. Fine-grain parallelism amongst
operations that use the same functional unit can be exploited
by providing more copies of the functional units, by increasing
the number of pipeline stages in each unit, or by both. We do
not consider multiple copies of each functional unit for two
reasons. First, as we shall see in Section 3, the best-case per-
formance of the resource architecture of Figure 1 is not sub-
stantially different from the best-case performance of a
machine with unlimited resources for our benchmark pro-
grams, especially if the degree of pipelining is high. Second,
the resource architecture of Figure 1 provides an excellent
starting point for any study of horizontal architectures. Unless
we understand the issues involved in exploiting the resource
architecture of Figure 1, the study of more complex resource
architectures can be quite frustrating. Finally, the resource
architecture of Figure 1 is of significant current interest (notice
the similarities between it and the resource architectures of the
TRACE 7/200 and Cydra 5).

To provide operands to the operations in a horizontal
instruction, the register file must be designed accordingly.
Important factors include: (i) the view of the registers
presented to the operations/instructions, and (ii) the number of
read and write ports that must be provided.

The registers could be organized so that the instruction set
views them either as a set of shared registers that are used both
for integer and floating-point operations or as a split register
file with a distinct set of registers for integer and floating-point
operands. A shared register file is used in the Cydra 5 whereas
a split register file is used in the TRACE machines. Apart
from the splitting of registers, another issue that must be con-
sidered is the partitioning of registers of a particular type. Par-
titioning is needed to reduce the number of read and write ports
for very long instruction formats [3]. However, the partition-
ing of a set of registers is important only if there is more than
one functional unit of each type and we shall not consider it in
this paper.

A shared register file has three distinct advantages over a
split register file. First, a shared register file provides the best
opportunity for a compiler to schedule operations in parailel
since operations can be scheduled without being constrained
by their type. More on this in section 4. Second, a shared
register file is able to achieve a better utilization of registers.
Third, a compiler’s job is easier if it is presented with a unified
view of the registers {17].

Unfortunately, the number of ports that must be provided
(and consequently the complexity of the interconnects) is
increased if a shared register file is used in conjunction with a
horizontal instruction format. The number of register read and
write ports that must be provided is dictated by the horizontal

-3-

instruction format. If P independent operations are packed
into a horizontal instruction, the register file must have 2P read

ports to provide the operands and P write ports® to accept
results from the functional units (note that loads and stores
require fewer ports). Once the design of the register file and
the horizontal instruction format has been fixed, the design of
the input and output interconnects is determined automatically
since the interconnects must be capable of routing as many
operations from and to the register file(s) as is specified by the
instruction format.

We use 2 metrics to measure the "goodness" of a horizon-
tal instruction format. They are: (i) the number of time steps
(clock cycles) taken to execute a program, and (ii) the code
density of the program using the horizontal instruction format.
The code density (a static measure) is the average number of
useful (non-NOP) operations that are present in a horizontal
instruction. NOPs must be used if no useful operation can be
found to fill an operation slot in a horizontal instruction. Less
dense code implies wasted memory space, unless an encoding
of the horizontal instructions is used (as is the case in the
TRACE machines). More importantly, the code density is an
indicator of how well the capabilities of the instruction format
are actually being used. More on this in section 4.

2.2. Experimental Methodology, Benchmark Programs
and Performance Metrics

To evaluate the different performance tradeoffs, we car-
ried out several experiments using a set of benchmark pro-
grams. The benchmark programs that we use are the original
14 Lawrence Livermore loops [8]. (Also see{7] for related
experiments using some more benchmarks). These bench-
marks are easily understood and have been used widely in the
evaluation of high-performance numeric processing machines.
We assume that the reader is familiar with these benchmarks.
The programs are hand-compiled into our 3-address operation
set assuming that only one operation can be issued per instruc-
tion and assuming an unlimited number of registers’. An
unlimited number of registers is assumed because we did not
want our results to be influenced by the spilling operations
introduced due to a limited number of registers. Furthermore,
the number of architectural registers that one provides are
always subject to debate.

Loop unrolling is used to enhance the available fine-grain
parallelism. More loop unrolling implies more fine-grain
parallelism. After unrolling, the benchmarks are fed into a
scheduler (discussed in the next section). The scheduler com-
pacts the operations into a horizontal instruction format subject
to resource and instruction format constraints.

Using the resulting code we calculate (i) the per iteration
execution time, (ii) the code density of the resulting code and
(iii) the total execution time which is the sum of the individual
execution times of each of the benchmarks. We assume that an
instruction can be issued in a single clock cycle, irrespective of
its width. All our results for the execution times are presented
in clock cycles. We do not attempt to convert clock cycles into
actual times since many of the factors that influence the clock

Providing additional read ports can be accomplished by a simple replication of the re-
gisters, Providing additional write ports is more complex. We shall not discuss ways of pro-
viding additional write ports in this paper; suffice it to say that providing additional write ports

can be quite in most technologi

This assumption has also been made in [4].

are highly dependent upon the technology and the implementa-
tion. Keep in mind, however, that the clock cycle for a deeply
pipelined system is smaller than the clock cycle for a modestly
pipelined system.

2.3. The Scheduler

All our experiments are driven by a scheduler that
schedules operations in the benchmark subject to the con-
straints of the horizontal instruction format and compacts the
operations into horizontal instructions. The scheduler uses
algorithms similar to those used in the Bulldog compiler [4]. It
attempts to generate an optimal compaction of operations into
horizontal instructions; however, optimality is not guaranteed.

The scheduler first builds a DAG representing the depen-
dencies in the basic block. The nodes of the graphs are the
individual operations and the edges are the dependencies.
Each node is then assigned a depth. The depth of a node is the
longest path to the node from any entry point of the DAG, plus
the time taken to execute the operation in the node itself. The
depths are used as priorities in scheduling the instructions.

After the depths have been assigned, operations are
scheduled bottom-up, i.e., starting from the exit points in the
DAG, and propagating up to the entry points. Scheduling is
done on a first-come first-served basis, with the depths used to
assign priorities to operations that are ready to be scheduled at
the same time. Constraints are placed on the scheduler by the
number of operations of each type that can be issued
simultaneously (this is dictated by the number of read ports in
the register file that supplies operand values and the number of
functional units of each type) and also by the number of opera-
tions that can complete execution simultaneously (number of
write ports in the register file).

3. MAXIMUM PERFORMANCE POTENTIAL

Before evaluating various horizontal instruction formats,
let us consider the best-case performance that can be achieved
with the parallelism available in the benchmarks. Table 1
presents the best-case per iteration execution time (in time
steps or clock cycles) for the benchmarks for various degrees

of unrolling both for modest (Mod.) and deep (Deep) pipelin-
ing. An unrolling of 1 implies no loop unrolling. Unrollings
greater than 10 have not been shown because they did not
result in significant additional improvement in the rotal execu-
tion time (though individual loops with none or very few loop-
carried dependencies did benefit from additional unrolling with
unlimited resources in some cases).

The results of Table 1 assume an unlimited number of
functional unit resources, unlimited number of read and write
ports, and a horizontal instruction format capable of issuing an
unlimited number of operations. Hence the best-case execu-
tion time is determined solely by the length of the critical path.
Since the length of the critical path (in terms of clock cycles) is
doubled in the case of deep pipelining with unlimited
resources, the execution times for deep pipelining are exactly
twice the execution times for modest pipelining. The total exe-
cution time is the sum of the time taken to execute all iterations
of all the loops (implicit in this calculation is a multiplication
of the per-iteration execution times by the number of iterations
in each loop).

Table 2 presents the best-case execution times for the hor-
izontal architecture of Figure 1 for the cases of modest and
deep pipelining using a full-fledged horizontal instruction for-
mat capable of issuing one operation to each functional unit in
a single instruction (a total of 5 operations). Figures 2(a) and
2(b) compare the execution times of the model architecture of
Figure 1 and an ideal horizontal architecture capable of issuing
an unlimited number of operations to an unlimited number of
functional units in a single instruction. Bar charts are used in
Figure 2 because of their visual appeal. Unless shown other-
wise, subsequent results in this paper will use bar charts to
present the results as a total or an average for all the bench-
marks.

As we can see from Table 1, Table 2 and Figure 2, the
limited resource architecture of Figure 1 is not a major impedi-
ment to the exploitation of the parallelism available in the
benchmark programs (even with a high degree of loop unro!-
ling), especially if the degree of pipelining is high. In some
cases, additional performance could be obtained by providing

Table 1: Execution Times with an Unlimited Resource

Architecture and Unlimited Operation Issue

Iterations Unrolled

Loop 1 2 5 10

Mod. | Deep || Mod. Deep Mod. | Deep || Mod. | Deep
1 22 44 11.5 23.0 52 104 3.1 6.2
2 21 42 11.0 22.0 5.0 10.0 3.0 6.0
3 14 28 8.5 17.0 52 104 4.1 8.2
4 14 28 7.5 150 3.6 7.2 2.3 4.6
5 28 56 24.5 49.0 22.4 44.8 21.7 43.4
6 29 58 25.0 50.0 22.6 452 21.8 43.6
7 32 64 16.5 33.0 7.2 144 4.1 8.2
8 34 68 17.5 35.0 7.6 15.2 4.3 8.6
9 26 52 13.5 27.0 6.0 12.0 3.5 7.0

94 188 58.1

(x1000)

10 35 70 17.5 35.0 7.6 15.2 4.3 8.6

11 10 20 6.5 13.0 4.4 8.8 3.7 7.4

12 11 22 6.0 12.0 3.0 6.0 2.0 4.0

13 51 102 26.0 52.0 11.0 2.0 6.0 12.0

14 50 100 25.5 51.0 10.8 21.6 5.9 11.8
Total

116.2 (| 367 73.3 29.5

-4

Table 2: Execution Times with the Resource Architecture

of Figure 1 and Full-Fledged Instruction Formats

Iterations Unrolled
Loop 1 2 5 10

Mod. | Deep || Mod. | Deep || Mod. | Deep | Mod. | Deep

1 24 45 14.5 25.0 8.8 13.0 7.2 9.0

2 30 50 21.0 31.0 17.0 20.2 16.2 17.6

3 15 29 9.0 17.5 54 10.6 4.2 8.3

4 15 29 9.5 16.5 6.4 9.0 6.0 6.7

5 28 56 24.5 490 || 22.4 44.8 21.7 43.4

6 29 58 25.0 50.0 | 22.6 452 21.8 43.6

7 33 64 23.0 34.0 19.6 22.0 18.5 19.6

8 48 71 45.0 48.5 || 41.0 43.0 37.7 38.7

9 30 53 21.0 30.5 15.6 18.8 13.5 14.8
10 36 70 24.0 370 || 22.0 23.6 22.0 22.1
11 10 20 6.5 13.0 4.4 8.8 4.0 7.4
12 11 22 7.0 12.5 5.0 6.8 5.0 5.1
13 51 102 26.5 52.0 || 20.0 22.2 20.0 20.1
14 51 101 27.0 52.0 16.0 23.2 14.8 15.7

Total
(x1000) 98.8 1914 || 66.2 1212 || 49.7 81.0 46.1 69.8
4 - 0 4 -
«
™

Speedup

1 2 5 10

Iterations Unrolled

(a) Modest Pipelining

3.24

2.74

Speedup

lterations Unrolled

(b) Deep Pipelining

Solid Bars : Ideal Architecture
Hatched Bars : Model Architecture

Figure 2: Comparative Performance of an Ideal and the Model Architectures

more resources (for example loops 2 and 7). Overall, the per-
formance could be improved by a factor of 1.56 by providing
additional resources if the resources are moderately pipelined
and each loop is unrolled 10 times to enhance the available
parallelism (it is interesting to compare this number with a fac-
tor of 1.48 for the TRACE 14/200 versus the TRACE 7/200 for
all 24 Livermore loops[3]). If the resources are deeply pipe-
lined, this factor is only 1.18.

To support execution of a full-fledged instruction format
for the architecture of Figure 1, a shared register file needs 10
read ports and 5 write ports. If the register file was split into
separate floating-point and integer register files, the floating

point register file would need 5 read ports (4 for arithmetic
operations and 1 for a store) and 3 write ports (2 for arithmetic
operation results and 1 for the destination of a store). The
integer register file would need 6 read ports (4 for arithmetic
operations, 1 for the address of a memory operation and 1 for
the store of an integer register) and 3 write ports (2 arithmetic
operations plus 1 integer load).

A full-fledged horizontal instruction format will work
very well in executing a program that has precisely the same
number of independent operations of each type. However,
such a format could be quite wasteful of instruction space and
interconnection datapaths if the operations are unbalanced

-5-

(more operations of one type) and if similar performance could
be achieved with more restricted formats. Therefore, we con-
sider restricted instruction formats for the resource architecture
of Figure 1.

4. RESTRICTED HORIZONTAL INSTRUCTION
FORMATS

4.1. One Operation Per Instruction

A first step would be to issue only a single operation per
clock cycle as in any conventional machine. By doing so, we
are exploiting the available fine-grain parallelism by pipelining
alone. However, by studying the performance with a single
operation issue per clock, we can establish a good lower bound
on the performance of the resource architecture of Figure 1.

Shared Register File

To support the issue of one operation per cycle, a register
file needs to provide 2 operands per cycle to the functional
units and be able to accept | result from them, i.e., have 2 read
ports and 1 write port. The input interconnect needs to be
capable of routing two operands from the register file to the
inputs of an arbitrary functional unit in every clock cycle and
the output interconnect needs to be capable of routing a single
result from the output of the functional units back to the regis-
ter file. This configuration of the interconnects is standard in
most conventional processor designs. Figure 3 presents the
total execution time for the benchmarks for varying degrees of
loop unrolling both for modest and deep pipelining.

Split Register File

Now consider a register file partitioned into distinct
integer and floating point registers. If the input and output
interconnects are similar to the case of a shared register file,
i.e., a set of buses for the input operands of all the functional
units and a single result bus for the result of all the functional
units, a split register file is no different from a shared register
file and, with no constraints on the size of either set of regis-
ters, the performance of the two architectural organizations
will be the same.

Total Execution Time

Iterations Unrolled
Solid Bars : Modest Pipelining
Hatched Bars : Deep Pipelining

Figure 3: Total Execution Time (in thousands of clock cycles)

with a Shared Register File and 1 Qperation Per Instruction

However, partitioning the register file allows for a
modification of the interconnect. The input interconnect can
be partitioned into two input interconnects - one that connects
the integer registers to the inputs of the integer functional units
and another that connects the inputs of the floating point regis-
ters to the inputs of the floating point functional units (with
appropriate connections to the memory port). Likewise, the
output interconnect can be partitioned into separate intercon-
nects for the integer and floating-point components. If the out-
put interconnect is partitioned, an integer and floating-point
operation can complete in the same clock cycle (even though
only one operation is issued in a clock cycle). This flexibility
allows for a slightly better performance than what could be
achieved with a shared register file.

Figure 4 presents the results for a split register file with
separate input and output interconnect for the integer and
floating-point components. Comparing with Figure 3, we see
that we can achieve slightly better performance by partitioning
the interconnect mainly due to the scheduling flexibility pro-
vided by the additional data path. However, there is room for
improvement both for split and shared register files (compare
the results of Figures 3 and 4 with the results of Table 2).

Total Execution Time

Iterations Unrolled

Solid Bars : Modest Pipelining
Hatched Bars : Deep Pipelining

Figure 4: Total Execution Time {in thousands of clock cycles)
with a Split Register File and 1 Operation Per Instruction

For the reader interested in comparing our results with the
results presented in [4], the results of Figures 3 and 4
correspond to the "sequential ELI" (but with a different
resource architecture), those of Table 1 correspond to an "ideal
ELI" and those of Table 2 correspond to a "single cluster ELI".
Our results follow trends similar to the results of [4]. In some
cases, speedups greater than 20 over a simple pipelined execu-
tion* can be achieved with an enhanced level of fine grain
parallelism and multiple operation issue (loop 8 is one such
case) whereas in other cases the speedup is not so significant
(loops 5 and 6 show this behavior).

*Note that a simple pipelined cxccution with limited fine grain parallelism aiready al-
lows for some overlap. The msulis for a purcly serial machine have not been presented because
that would not provide a realistic lower hound for comparing horizontal architcctures

—6-

From Table 2 and Figures 3 and 4 we see that, for the
resource architecture of Figure 1, speedups of 2.54 and 2.81
can be achieved for modest and deep pipelining, respectively,
by making use of loop unrolling to enhance fine grain parallel-
ism and by using pipelining and multiple operation issue to
exploit this parallelism (going from rolled loops and the issue
of one operation per instruction in Figure 3 to unrolled loops
and the issue of 5 operations per instruction in Table 2). How-
ever, in the case of deep pipelining, most of this performance
improvement can be obtained simply by enhancing the fine
grain parallelism (loop unrolling) and by using pipelining to
exploit it, without the need to issue more than one operation
per instruction. This can be seen from Figure 3 where, with a
loop unrolling of 10 and pipeline scheduling, a speedup of 1.96
can be achieved even with the issue of a single operation per
instruction. This leaves only a factor of 1.44 to be gained by
the issue of more than 1 operation per instruction. For modest
pipelining where pipelining alone is not sufficient to exploit the
available fine grain parallelism, multiple operation issue must
also be used. Therefore, while the use of instruction formats
capable of issuing more than one operation simultaneously will
clearly improve the number of time steps required to execute a
program, the need for such instruction formats is less compel-
ling if the degree of pipelining in the machine is greater.

4.2. Two Operations Per Instruction

Now we consider a horizontal instruction format that
allows two operations to be issued simultaneously.

Shared Register File

To allow two operations to issue per cycle with a shared
register file, the input interconnect must be capable of deliver-
ing 4 operands from the register file to the functional units in
every cycle. This requires the register file to have 4 read ports.
Similarly, since 2 results can be generated in each cycle, the
register file needs to have 2 write ports and the output intercon-
nect needs to be able to deliver the results from the outputs of
the functional units to the register file write ports. With this
configuration, operations can be submitted to any two func-
tional units with a single instruction,

200 4

Total Execution Time

1 2 5 1

o

lterations Unrolled
Solid Bars : Modest Pipelining
Hatched Bars : Deep Pipelining

Figure 5: Total Execution Time (in thousands of clock cycles)
with a Shared Register File and 2 Operations Per Instruction

-7-

Figures 5 and 6 present the total execution times and the
average code densities for the benchmark programs for the
cases of modest and deep pipelining. The code density is the
average of the code densities of all the benchmarks (the code
densities were not presented for the results of Figures 3 and 4
because the code density is 1 if there is only 1 operation per
instruction). Since the code density is an indicator of a static
phenomenon, namely the efficiency of a horizontal instruction
format, the average has not been weighted by the number of
iterations in the benchmarks.

By issuing two operations per cycle in a horizontal’
instruction, we can obtain a significant performance improve-
ment especially if the level of pipelining is modest (compare
the results of Figures 5 and 6 with the results of Figure 3).
However, the code density suffers. This is because several
horizontal instructions can not issue 2 operations. When two
useful operations cannot be packed into a horizontal instruc-
tion, a NOP must be inserted. Notice that the code density
improves as more loop unrolling is used. This is because by
increasing the parallelism available (more loop unrolling) the
same number of operations can be compacted into a fewer hor-
izontal instructions.

Comparing the results of Figures 5 and 6 with the results
of Table 2, we see that the roral execution time that can be
achieved by issuing 2 operations per instruction is quite close
(a 13% difference for modest pipelining and a 6% difference
for deep pipelining) to the best-case execution time that can be
achieved by using a full-fledged instruction format, but the
former requires significantly smaller amount of hardware to
support it. We note again that for some individual loops (for
example loops 3 and 8) the execution time could be improved
by issuing more operations per instruction (see Table 3).

In Table 3, we show the code densities (CD) and per-
iteration execution times (T) for each of the individual loops
for a loop unrolling of 10 both for modest and deep pipelining.
We notice that loops which could benefit from issuing more
operations per instruction have comparatively high code densi-
ties for this restricted horizontal format. That is, the restricted
format is being utilized well and a wider instruction format
may be more appropriate. But loops with code densities near

1.0 1
0.8
0.6 -

0.4

Code Density

0.2

7

1 2 5 10

0.0+

lterations Unrolled

Solid Bars : Modest Pipelining
Hatched Bars : Deep Pipelining

Figure 6: Average Code Density with a Shared Register
File and 2 Operations Per Instruction

0.5 are able to achieve close to the best-case performance with
this restricted instruction format. Note that code densities can
not be less than 0.5 for this instruction format since that would
imply the presence of instructions with no operations at all,

Table 3: Performance of the Individual Loops
with a Shared Register File and
Two Operations Per Instruction

Modest Deep
Loop T I”T [c©
1 10,0 | 0.76 || 104 | 0.74
2 213 |1 082] 215 | 0.82
3 49 | 0.80 8.3 | 0.56
4 7.1 | 0.79 7.5 | 0.76
5 21.7 | 0.66 jj 43.4 | 0.62
6 21.8 | 0.68 | 43.6 | 0.64
7 264 | 081 | 262 | 0.82
8 50.1 |1 093 || 509 | 0.92
9 19.2 | 076 | 19.7 | 0.76
10 274 | 075 || 28.2 | 0.73
11 40 | 0.75 74 | 0.58
12 5.0 | 0.80 53 1 077
13 22,6 | 095 | 233 | 0.93
14 17.6 | 094 || 18.6 | 0.89
Split Register File

If the register file is partitioned, then we have a choice of
two horizontal instruction formats to support the issue of more
than one operation per instruction. The first format (free for-
mat) allows the issue of two operations to arbitrary functional
units in a single instruction. As with a shared file, this would
require the use of 4 read ports and 2 write ports in each of the
register files. The second format (constrained format) is con-
strained to allow at most one integer and one floating point

operation per instruction®. Because the constrained horizontal
format places additional restrictions on the scheduler, pro-
grams compiled into a constrained format horizontal instruc-
tion set will have a greater execution time than programs com-
piled into a free format instruction set. But supporting the con-
strained horizontal instruction format poses fewer demands on
the register files and the interconnects. To support the con-
strained horizontal format, each register file needs to have only
2 read ports and 1 write port and the input and output intercon-
nects have the same complexity as in the case of the single
operation instruction format of Section 4.1.

The total execution times and the average code densities
for the benchmark programs using split register files and a con-
strained horizontal instruction format are presented in Figures
7 and 8. For these results, our scheduler was constrained to use
a split register file with 2 read ports and 1 write port on either
file. Comparing the results of Figures 7 and 8 with the results
of Figure 4, we see that the performance improvement by issu-
ing 1 integer and 1 floating-point operation per instruction in a
constrained format is significant, though not spectacular
(20.2% and 12.9%, respectively, for modest and deep pipelin-
ing). Furthermore, as expected, the constrained format is not
able to accomplish the same performance as the free format

*Load and store operations are classified specially. Both need to access an integer regis-
ter read port to obtzin an address when they are issued. For a store, the other source operand
accessed when it is issued could cither be a floating point or an integer register. Likewise,
loads would require a write port to the appmpnau: register file when they complete. Special
case situations for loads and stores are lly handled by our schedul

-8-

194.3

200

Total Execution Time

7
1 2 5 10
lterations Unrolled
Solid Bars : Modest Pipelining
Hatched Bars : Deep Pipelining

Figure 7: Total Execution Time (in thousands of clock cycles)
with a Split Register File and 2 Operations Per Instruction

0.8 1

0.54
0.55
0.53
0.57
0.55
0.61
0.58

Y,

Code Density

1 2 5 10

lterations Unrofled

Solid Bars : Modest Pipelining
Hatched Bars : Deep Pipelining

Figure 8: Average Code Density with a Split Register
File and 2 Operations Per Instruction

(compare Figures 5 and 7) but it requires less hardware (fewer
register ports and less complex interconnect) to support it.
Also, the code density is worse with a split register file because
of the additional constraints placed on the scheduler (compare
Figures 6 and 8).

4.3. Three Operations Per Instruction

Continuing further, we now consider horizontal instruc-
tion formats capable of issuing 3 operations per instruction.

Shared Register File

To support the issue of 3 operations per instruction cycle,
the register file needs to have 6 read ports and 3 write ports.
Also, the sizes of the input and output interconnects increase in
proportion to the increased number of register file ports.

Figures 9 and 10 present the total execution times and the
average code densities for the cases of modest and deep pipe-
lining, respectively. As expected, the code density is lower
than in the case of a 2-operation horizontal instruction format
because of the large number of NOPs. Furthermore, little per-
formance improvement over a 2-operation instruction format
can be achieved since there is little room for improvement.
For modest levels of pipelining and a loop unrolling of 10, the
capability to issue 3 operations per instruction results in only a
9-10% improvement over the capability to issue 2 operations
per instruction. For deep pipelining, this figure is about 5%.
Therefore, if the hardware needed to provide the additional
register ports and the additional interconnect degrades the
clock cycle by as little as 5% in the deep pipelining case, the
utility of the wider horizontal instruction format for the given
functional unit resources (and benchmarks) is questionable.

191.4

200 -

100

Total Execution Time

Iterations Unrolled

Solid Bars : Modest Pipelining
Hatched Bars : Deep Pipelining

Figure 9: Total Execution Time (in thousands of clock cycles)
with a Shared Register File and 3 Operations Per Instruction

200

100 A

Total Execution Time

lterations Unrolled
Solid Bars : Modest Pipelining
Hatched Bars : Deep Pipelining

Figure 11: Total Execution Time (in thousands of clock cycles)

with a Split Register File and 3 Operations Per Instruction

-9-

Split Register File

With a split register file, we can have three different hor-
izontal instruction formats that can support the issue of 3
operations: a free format that allows the issue of up to 3 opera-
tions of either type, a constrained format that allows the issue
of two floating point and one integer operation (CONS1) and a
constrained format that allows the issue of two integer and one
floating point operation (CONS2) per instruction. As before,
loads and stores are classified accordingly.

We do not consider a free format for the same reasons as
Section 4.2. If an application has more floating point opera-
tions than integer operations, the CONS1 format is more suit-
able. On the other hand, if the application has more integer
operations than floating point operations, the CONS2 format is
more suitable. We evaluated both restricted formats and both
had a similar overall performance for our benchmark pro-
grams, though one was somewhat better than the other in indi-
vidual cases. For brevity, we present only the results for the
CONS]1 format (in Figures 11 and 12). Surprisingly, issuing 3

0.8 -

Code Density
o
-
1

0.2 1

0.0 -

lterations Unrolled
Solid Bars : Modest Pipelining

Hatched Bars : Deep Pipelining

Figure 10: Average Code Density with a Shared Register
File and 3 Operations Per Instruction

Code Density

lterations Unrolled
Solid Bars : Modest Pipelining

Hatched Bars : Deep Pipelining

Figure 12: Average Code Density with a Split Register
File and 3 Operations Per Instruction

operations in a restricted format with a split register file has
worse performance than a 2-operation instruction format with a
shared register file even though the former requires more
hardware. Remember, however, that the latter format file is
able to support 2 operations of either type in a single instruc-
tion. This is not possible with the former instruction format.

The somewhat disappointing total execution time results
of Figure 11 suggest that a shared register file may be prefer-
able to a split register file if a restricted instruction format is to
be used. For a full-fledged instruction format capable of issu-
ing one operation to every functional unit, splitting the regis-
ters clearly saves on the number of register ports and reduces
the complexity of the interconnects. However, if restricted
instruction formats (and simpler interconnects) are to be used,
splitting the register file may pose unnecessary constraints on
the scheduling of operations, thereby resulting in worse perfor-
mance as compared to a shared register file.

Since the performance of restricted instruction formats
capable of issuing 2-3 operations per instruction is quite close
to the performance of a full-fledged instruction format espe-
cially with a shared register file, we do not consider other res-
tricted instruction formats, for example, formats capable of
issuing 4 operations.

4.4. Comparative Results

Figures 13(a) and 13(b) summarize our results by com-
paring the performance of different horizontal instruction for-
mats for our model architecture, both with modest and deep
pipelining. Maximum performance (minimum number of
clock cycles) is achieved when we can issue an operation to
each functional unit in a single clock cycle with a wide instruc-
tion. Issuing only one operation per instruction with a shared
register file results in minimum performance.

The figures also show the performance when issuing one
operation per instruction with a split register file, and two and
three operations per instruction with a shared register file.
(The register file organizations chosen here are the ones which
give the better performance for the corresponding instruction
formats). We notice that for both modest and deep pipelining,
issuing 3 operations per instruction results in very little addi-
tional speedup as compared to issuing 2 operations per instruc-
tion. Issuing 2 operations per instruction has a significant
advantage over issuing just one operation per instruction if the
degree of pipelining is modest and has a modest performance
advantage if the degree of pipelining is high.

©

- ©
2 ~
R

-

1.57

Min
1op/instr
2ops/instr
ops/instr
Max

ONESE

S —

(a) Modest Pipelining

5. SUMMARY AND CONCLUDING REMARKS

The choice of an appropriate horizontal instruction format
is crucial to the design of horizontal architectures. Horizontal
architectures that have been proposed in the literature have
full-fledged instruction formats capable of issuing an operation
to each functional in the resource architecture unit with a sin-
gle instruction. We felt that a horizontal architecture with a
full-fledged instruction format (or to coin a term, a "complex
horizontal architecture™) is overkill since it is appropriate only
for some programs and also requires an enormous amount of
register file and interconnect hardware. Keeping this in mind,
we studied horizontal architectures with restricted instruction
formats (or "reduced horizontal architectures") and saw how
this choice was influenced by factors such as the degree of
pipelining and an instruction’s view of the register file.

Our results suggest that, if the degree of pipelining is
high, there is less need to issue more operations in parallel.
Even with moderate levels of pipelining, restricted horizontal
instruction formats capable of issuing operations only to a few
functional units are competitive with full-fledged instruction
formats capable of issuing one operation to each functional
unit. While restricted instruction formats may perform worse
than full-fledged formats on some programs, overall they are
able to execute programs in a comparable number of time steps
with much better code density and much less hardware.

We also considered the choice of a register file organiza-
tion. A register file split into integer and floating point regis-
ters is clearly superior to a shared register file when a full-
fledged horizontal instruction format is supported. However,
for restricted horizontal instruction formats, a shared register
file may be better and deserves attention.

An issue that we have ignored in this paper is the impact
of the additional hardware needed to support a wider horizontal
instruction format on the clock cycle. We assumed that an
instruction is issued in a single clock cycle and that the clock
cycle is the same for the various instruction formats, irrespec-
tive of the amount of hardware needed to support it. This is
not true and machines with wider instruction formats typically
have larger clock periods. As an example, compare the ZS-1
whose instruction formats can issue only one operation per
instruction and the TRACE 7/200 whose instruction formats
can issue several operations per instruction. Both machines are
implemented in similar TTL technology but the clock period of
the ZS-1 is 45ns and that of the TRACE 7/200 is 130ns. When
the clock period is taken into account, the need to use wider
instruction formats is even less compelling.

2 -

Min
1op/instr
2ops/instr
3opsfinstr
Max

ONENE

(b) Deep Pipelining

Figure 13: Comparative Speedups for various Horizontal Instruction Formats,
using the Model Architecture of Figure 1 (10 Iterations Unrolled for each Loop)

-10~

In conclusion, horizontal architectures provide an excel-
lent paradigm for exploiting fine-grain parallelism. However,
a good architecture for exploiting fine-grain parallelism must
make use of both pipelining and parallel operation issue.
Unless the computer architect pays adequate attention to pipe-
lining also, the architect is bound to get caught up in a vicious
circle. To issue more operations simultaneously, additional
register file and interconnect hardware must be provided. This
additional hardware will penalize the clock cycle which in turn
will reduce the number of pipeline stages in the functional
units. With a reduced number of pipeline stages, more opera-
tions must be issued in parallel to exploit the available parallel-
ism. A good horizontal architecture design must attempt to use
both pipelining and parallel operation issue and must provide
adequate instruction formats that enhance the ability of the
architecture to exploit both pipelining and multiple operation
issue without penalizing either.

Acknowledgments

This work has benefited from discussions with Jim Good-
man and Jim Smith and was supported in part by NSF Grant
CCR-8706722.

References

{1] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo,
*“The IBM System/360 Model 91: Machine Philosophy
and Instruction-Handling,”” IBM Journal of Research
and Development, pp. 8-24, January 1967.

[2] A. E. Charlesworth, ‘*An Approach to Scientific Array
Processing: The Architectural Design of the AP-
120B/FPS-164 Family,”” Computer, vol. 14, September
1981.

{31 R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Pap-
worth, and P. K. Rodman, ‘A VLIW Architecture for a
Trace Scheduling Compiler,”” /EEE Transactions on
Computers, vol. 37, pp. 967-979, August 1988.

[4] J. R. Ellis, ‘‘Bulldog: A Compiler for VLIW Architec-
tures,”’ Research Report YALE/DCS/RR-364, Depart-
ment of Computer Science, Yale University, Seattle,
WA 98195, February 1985.

-11-

(5]

(6]

(7]

(8]

(91

{101

(1

[12]

(13]

[14]
{15]

{16]

(171

J. A. Fisher, “‘Very Long Instruction Word Architec-
tures and the ELI-512,” Proc. 10th Annual Symposium
on Computer Architecture, pp. 140-150, June 1983.

M. J. Flynn, ‘‘Very High-Speed Computing Systems,”’
Proceedings of the IEEE, vol. 54, pp. 1901-1909, De-
cember 1966.

N. P. Jouppi and D. W. Wall, ““Available Instruction-
Level Parallelism for Superscalar and Superpipelined
Machines,”’ in Proc. ASPLOS IlI, Boston, MA, April
1989,

F. H. McMahon, FORTRAN CPU Performance
Analysis. Lawrence Livermore Laboratories, 1972.

A. Nicolau and J. A. Fisher, ‘‘Measuring the Parallel-
ism Available for Very Long Instruction Work Archi-
tectures,”’ IEEE Transactions on Computers, vol. C-33,
pp. 968-976, November 1984,

Y. N. Patt, W.-M. Hwu, and M. Shebanow, ‘‘HPS, A
New Microarchitecture: Rationale and Introduction,”’
in Proc. 18th Annual Workshop on Microprogramming,
Pacific Grove, CA, pp. 103-108, December 1985.

B. R. Rau, C. D. Glaeser, and R. L. Picard, “‘Efficient
Code Generation For Horizontal Architectures: Com-
piler Techniques and Architectural Support,”” Proc. 9th
Annual Symposium on Computer Architecture, pp.
131-139, April 1982.

B. R. Rau, “‘Cydra 5 Directed Dataflow Architecture,”
Digest of Papers, COMPCON Spring 1988, pp. 106-
113, February 1988.

E. M. Riseman and C. C. Foster, ‘‘The Inhibition of Po-
tential Parallelism by Conditional Jumps,”” IEEE Tran-
sactions on Computers, vol. C-21, pp. 1405-1411, De-
cember 1972.

R. M. Russel, ‘“The CRAY-1 Computer System,”
CACM, vol. 21, pp. 63-72, January 1978.

J. E. Smith, et al, ““The ZS-1 Central Processor,”’ Proc.
ASPLOS II, pp. 199-204, October 1987.

G. S. Tjaden and M. J. Flynn, ‘‘Detection and Parallel
Execution of Independent Instructions,”” IEEE Tran-
sactions on Computers, vol. C-19, pp. 889-895, Oc-
tober 1970,

W. A. Wulf, ‘‘Compilers and Computer Architecture,”’
IEEE Computer, vol. 14, pp. 41-47, July 1981.

