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Abstract

This paper presents and compares results
for three types of connectionist networks:

[A] Multi-layered converging networks of
neuron-like units, with each unit con-
nected to a small randomly chosen subset
of units in the adjacent layers, that learn
by re-weighting of their links;

[B] Networks of neuron-like units structured
into successively larger modules under
brain-like topological constraints (such as
layered, converging-diverging heterar-
chies and local receptive fields) that learn
by re-weighting of their links;

[C] Networks with brain-like structures that
learn by generation-discovery, which
involves the growth of links and recruit-
ing of units in addition to re-weighting of
links.

Preliminary empirical results from simu-
lation of these networks for perceptual recog-
nition tasks show large improvements in learn-
ing from using brain-like structures (e.g., local
receptive fields, global convergence) over net-
works that lack such structure; further substan-
tial improvements in learning result from the
use of generation in addition to reweighting of
links. We examine some of the implications of
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these results for perceptual learning in connec-
tionist networks.

Introduction

Connectionist networks are graphs of
linked nodes of the following sort: Each node
is a simple neuron-like unit. Each link has a
weight associated with it. The net input to a
node is a weighted sum of the outputs of the
nodes that are actively firing into it. Each
node applies some form of non-linear function
(such as the threshold or the sigmoid) to its net
input and sends the result to other nodes to
which it is connected via its output links.

It is easy to show that networks of thres-
hold units are universal computing engines
(McCulloch, 1943) in the sense that there exist
such (sufficiently large) networks that can
compute any function computable by a Turing
machine or a system of Post Productions; but
the problem of finding the necessary,
sufficiently powerful, efficient and robust net-
works for perceptual recognition tasks
remains, just as it does no matter how we try
to embody intelligent processes.

Learning in connectionist networks can
involve modification of any of the following:
[1] Processing functions of the nodes (e.g.,

changes in the threshold or the output

function),
[2] The weights associated with the links,

[3]1 The topology of the network (addition
and deletion of links and nodes), and



[4] The learning rules themselves.

Most of the work on learning in connec-
tionist networks to date has concentrated on
[2]. Several algorithms for changing weights
associated with the links are available (Hinton,
1987). Some of them utilize feedback that
allows the network to compute the error
between its output and the desired output and
use the back-propagated error to change the
weights, e.g., the generalized delta rule
(Rumelhart, 1986). Some use a kind of rein-
forcement learning that enables the network to
utilize feedback in the form of a reward for
good actions or a penalty for bad ones. If a
unit can learn to increase the frequency of
reward from a noisy critic, it can act coopera-
tively with other units in the network to
improve the performance of the entire network
(Barto, 1985). Some use a form of association
learning ie., a link between two units is
strengthened if both of them fire at the same
time. Such a scheme tends to sharpen the
unit’s predisposition without any external
feedback, getting its firing to become better
and better correlated with a cluster of stimulus
patterns (Hebb, 1949).

A learning scheme for [3] that employs a
mechanism for growth of links and recruiting
of nodes guided by regulatory mechanisms
designed to discover minimally complex net-
works has been described in (Honavar, 1988).

Complexity Issues

Given the Turing equivalence of
(sufficiently large) connectionist networks, the
problem of building such networks for percep-
tual recognition tasks is reduced to one of dis-
covering the design principles that yield
economically feasible structures (for machine
perception) and/or biologically plausible struc-
tures (for brain modeling). We briefly examine
the complexity of perceptual recognition, and
list some observations as to the physics of the
environment and the structure of the brain that

could potentially help us in deriving such
design principles.

The complexity of recognition is O(V¥)
for an N-pixel image where each pixel can
range through V values. This means that to
handle the general recognition problem,
including the worst case, a network needs at
least V¥ nodes, each linked (either directly or
via intermediate nodes in layers or some other
structure) to all nodes in the input retina. This
of course is combinatorially explosive, and our
real problem is the expected case, that is,
recognition of real-world images. The human
brain and its visual system is clearly capable
of perception of real-world objects in real-
time, yet it does rather poorly at the worst
case, e.g., discriminating images that differ by
a few randomly placed pixels. For the
expected case E, the number of nodes needed
is clearly within feasible bounds; otherwise
nature could not have evolved brains capable
of successful recognition.

If the structure of the human brain and
the visual system is any indication, the neces-
sary number of nodes, Ng, is still almost cer-
tainly extremely large, and the necessary
topology Gg, of the network is far from ran-
dom. A great deal is known about the human
brain (Peters, 1986; Uhr, 1986; Crick, 1986;
Zeki, 1988; DeYoe, 1988; Livingstone, 1988).
Neurons predominantly interact with near-
neighbors and are organized into fairly ordered
structures (columns, hypercolumns, areas);
Yet a great deal is unknown about how the
neurons get allocated for computing specific
functions, and how the detailed topology of
the network of neurons emerges as a result of
learning through constant exposure to the
environment.

If the desired perceptual recognition abil-
ities are to be attained by a connectionist net-
work through re-weighting of its links alone, it
must be initialized to contain a sufficient
number of appropriately linked nodes. The
only way to guarantee that this kind of net-
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work has enough nodes, each with the neces-
sary links, is either to build them in, using a
priori knowledge, or to make some guess as to
Nz - and use a substantially larger number of
nodes and links than that to be on the safe
side. To handle the full vision problem the
only completely safe thing to do would appear
to be to use V¥ nodes, each with N links - but
this is impossibly large to actually implement.

Generation involving the addition of
nodes and links enables a network to modify
its topology, and appears to offer a way out of
this dilemma. Given mechanisms to generate
new nodes as needed, the network can gradu-
ally grow, until the number of nodes
approaches Ny and the network topology
approaches Gy - whatever Ny and Gz may be.
Thus there is no need to estimate E; this is
done constructively by the network itself.

Recent neuroanatomical and neurophy-
siological evidence indicates that the arrange-
ment of synaptic connections in the mature
nervous system can undergo striking changes
during normal functioning - structural changes
that alter the number and/or pattern of synaptic
connections (Greenough, 1987; Greenough,
1988).

Rather than hope that some particular
random or pre-programmed connectivity will
work, or pay the excessive costs of complete
connectivity, a system that generates can,
under the implicit guidance of the
environment’s inputs and feedback, move
toward sufficient connectivity. Generation
works best hand-in-hand with, supplementing,
the fine-tuning of functions provided by re-
weighting of links. In addition, mechanisms
that break links, effectively eliminating gen-
erations that turn out to be poor, are desirable
to keep nets within reasonable size bounds.
Some of these issues, as well as a specific
learning scheme combining generation and
re-weighting, have been examined in (Hona-
var, 1988).

Connectionist Network Structures Com-
pared Experimentally

Several alternative multi-layered connec-
tionist network structures and learning
mechanisms are possible. Our goal is to com-
pare some of these alternatives in terms of the
sizes of networks required as well as the
number of training presentations needed for
achieving correct recognition of simple pat-
terns. The multi-layered converging network
structures studied include those that learn by
re-weighting of their links (with no genera-
tion), using several types of connectivity - ran-
dom, as well as restricted to near-neighbors,
and those that learn by a combination of gen-
eration and re-weighting (where generation
takes place within the constraints of near-
neighbor connectivity). A summary of these
network structures is given in figure 1. The
objective of these comparison experiments is
to examine and draw some insights into the
usefulness of both topological constraints
(e.g., local receptive fields) and also genera-
tion for connectionist networks that learn to
recognize patterns.

Network Recep- Gen- | Built-

structure tive era- in
field tion edges
[CP.R--] Random | No -

[CPL--] Local No No

[CP.1.-E] Local No Yes

| [CP.1.G-] Local Yes No
[CP1.GE] | Local Yes Yes

Figure 1: Summary of multi-layered, feed-forward, con-
verging network structures; CP stands for the connec-
tionist pyramids; R for random and L for local receptive
fields; G for generation; E for built-in edge-detectors; a
- in a given position indicates the absence of the
corresponding network property; all use reweighting of
links as a learning mechanism; only the last two use
generation in addition to reweighting.
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Connectionist Networks That Learn by Re-
Weighting

Several multi-layer, converging connec-
tionist networks (using the same number of
nodes and links in all the cases) were built,
with the following structure:

Layer L contains 1/4th the number of
node-clusters found in the adjacent layer L-1.
Each node at layer L contains 4 times as many
nodes per cluster as in the layer L-1. Each
node in a node cluster at layer L receives input
from 2-tuples of nodes drawn from 4 node
clusters in layer L-1. In the current implemen-
tation, layer 2 is an exception in that each
node in layer 2 receives input from 9 nodes in
the input layer. This forms an overall
Pyramid-like converging-diverging structure
(see figure 2). In all the simulations described
in this paper, the input layer (the retina) is a
32x32 array of pixels.

Layer 5

Layer4

Layer 3

Layer 1

Z. -
Image
Ay

Figure 2: A Converging pyramid-like structure: Each
point in a layer has a cluster of nodes; Each node in a
cluster computes a simple function over the outputs of
nodes in the node-clusters in a small neighborhood in

the layer below.

Three variants of the basic multi-layered,
converging network described above were
implemented:

[CP.L-E]

With local receptive fields preserving

topographic mapping between layers:

each node in layer L is linked to nodes in

the 4 node clusters spatially located
directly below it in layer L-1; layer 1
contains 8 pre-wired edge detectors
(these are extremely simplified versions
of the local spot and edge detectors found
in the retina and primary visual area (V1)
of living primate brains),

[CP.L--]
Same as [CP.L-E] above, but without the
built-in edge detectors in layer 1, and

[CP.R--]
With random receptive fields: Each node
in layer L is linked to nodes in 4 ran-
domly chosen node clusters in layer L-1.

In all the simulations, 8 detectors (either
pre-wired or learnable) were provided at layer
1. All the weights other than those correspond-
ing to the built-in edge detectors were
assigned randomly.

Clearly, there are other variants of the
same basic structure that could be studied; but
we chose the ones described here because they
are useful in evaluating the usefulness of
locality of receptive fields in perceptual learn-
ing.

In all cases, learning involved re-
weighting links as a function of the back-
propagated error signal. Suppose a pattern
class Cy is implied by the network with a
weight Ww, and the pattern class indicated by
the feedback, Cr is implied with a weight Wg,
the amount of reweighting at the output layer
is given by (Kx(Ww—Wg)) where K is a parame-
ter related to the rate of learning. Our current
implementation has K set equal to 0.25. This
weight change is distributed equally among all
the links firing into the node implying Cw. At
internal nodes, the weight changes are com-
puted in a similar fashion.
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Connectionist Networks That Learn By
Generation and Discovery As Well As Re-
weighting

Connectionist network structures that
learn by generation and re-weighting of links
and recruiting of new nodes from a pool of
unused nodes were studied. The topological
constraints on the network structure are the
same as those present in [CP.L--] described
earlier. However, the networks that learn by
generation as well as reweighting differ in that
they start with a pool of uncommitted nodes
and no pre-wired links. Generation grows new
links and adds new nodes to the network from
the pool of nodes as the network learns aided
by feedback. The weights associated with the
links are changed using the same reweighting
mechanism as the one used in [CP.L--]. A par-
ticular implementation of generation and
reweighting of this sort is described in more
detail in (Honavar, 1988).

Because generation takes place within the
topological constraints of the layered, loga-
rithmically converging organization as well as
the local receptive fields, the networks that are
discovered through generation and reweight-
ing (e.g., [CP.LGE] and [CP.LG-]) are topo-
logically similar to [CP.L--] and [CP.L-E]. But
unlike [CP.L--], the number of nodes per
node-cluster at a given layer in [CP.LG-] and
[CP.LGE], or the connectivity between node
clusters in adjacent layers, is not pre-
programmed; it is determined dynamically
through learning.

Runs were made with pre-wired edge-
detectors in the first layer - [CP.LGE], and
without any pre-wired nodes (i.e., having all
the nodes added to the network as part of the
learning process) - [CP.LG-]. In both these
cases, the reweighting of nodes as a function
of feedback proceeds according to the same
reweighting rule as the one used in [CP.L--]
and [CP.L-E]. In addition, the network occa-
sionally generates a new node, when it deter-
mines this to be appropriate - on the basis of

information provided by sub-networks that
monitor the network’s performance on each
pattern class on which it is being trained. The
design of these sub-structures is motivated by
the need to discover the simplest networks
capable of the desired accuracy of recognition.
A particular implementation of such structures
is explained in detail elsewhere (Honavar,
1988).

The rationale behind the design is as fol-
lows: Continue to reweight existing links so
long as the network’s performance is improv-
ing. When it is observed that the network’s
performance has leveled off (before reaching
the desired accuracy of recognition), generate
a new node. This is accomplished easily by a
simple network of neuron-like units, using
local computations that are performed incre-
mentally following each training presentation.

Generation proceeds as follows: In the
Ist layer, a 3-by-3 sub-array is extracted from
the raw input image (this is done only when
feedback indicates an error was made, and the
history of the recent past indicates that perfor-
mance is levelling off rather than improving.
The 9 links from this sub-array fire into a new
node placed directly above it in the next layer.

The extraction is got from a busy part of
the input image, one where the network judges
there may be useful information. The present
simple system insists that a gradient be
present; but potentially more powerful
mechanisms for evaluating the candidate
extraction are being investigated.

In layers other than the Ist, extraction
randomly links into a new node from 2 nodes
that actively responded to the present
(incorrectly identified) input image in the 2-
by-2 of node-clusters directly below it in the
previous layer.

Whenever a node is generated it is put
into a node-cluster at that location, and also at
every other location in that layer of the net-
work - as though it is immediately broadcast
(either laterally through that layer or up to the
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apex of the pyramid and then showered back
down). All the links added to the network
through generation will now get tuned through
reweighting as a function of feedback.

Experimental Results

Several test runs were made to compare
multi-layered connectionist network structures
([CP.R--], [CP.L--], [CP.L-E], [CP.LG-] and
[CP.LGE]). Simple 2-dimensional patterns
such as letters of the alphabet (T, D, E) and
simple objects (apple, cup, banana) were uscd
for training the networks. The training and test
sets were obtained by randomly dividing the
set of drawings of each pattern (provided by 3
different volunteers) into two subsets. The
drawings were made using the Xgremlin
graphics utility on a Digital VAXstation-3200,
in a 24x24 subarray of a 32x32 grid. A sample
set of patterns is shown in figure 3, and an
indication of the variation among instances of
a pattern class is given by the instances shown
in figure 4. Figure 5 gives a summary of the
pattern classes used in the runs, i.e., (T, D, E),
(apple, banana, cup) and the combined set (T,
D, E, apple, banana, cup).

Figure 3: Sample images used in the simulation of
learning

A run consists of several epochs of train-
ing interspersed with epochs of testing,
repeated until the desired acuuracy of recogni-
tion (currently set to 100 percent) is attained or
the performance clearly levels off, as indicated

Figure 4: Sample instances of two of the object
classes used in the training and test sets.

Pattern | # # #
Set of of of
classes | train- test

ing instances
instances | per
per class
classs

T,D,E | 3 4 3

apple, 3 4 4

cup,

banana

T, D, | 6 4 3

E,

apple,

cup,

banana

Figure 5: Summary of pattern sets used in the experi-
ments: the pattern sets were obtained from instances
provided by 3 volunteers. Training and test instances
for each class were obtained by randomly partitioning
the set of instances for a given class into two subsets -

one for training and the other for testing.

by the learning curve. An epoch of training (or
testing) involves cycling through the entire
training set (or test set) once, in some arbitrary
order. The runs for the structures [CP.R--],
[CP.L-E] and [CP.L--] were made with several
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different percentages of possible connections,
having fixed the number of nodes at each loca-
tion in the first layer to 8, each with 9 connec-
tions (these percentages are indicated next to
the corresponding learning curves in the
figures 6A through 6C).

In all cases, [CP.LGE] (pyramid conver-
gence, locality, generation, built-in edge
detectors) gave the best results, followed by
[CP.LG-] (pyramid convergence, locality, no
built-in edge detectors). These were both sub-
stantially better than the networks [CP.L-E]
(pyramid convergence, locality, and built-in
edge detectors), which in turn were substan-
tially better than [CP.L--] (pyramid conver-
gence, locality, no built-in edge detectors).

The figures 6A through 6E show the
results of these runs on the pattern set (T, D,
E). The results with pattern sets (apple, cup,
banana) were qualitatively similar in all the
cases (the runs were slightly longer (took
about 10% more epochs); about 10% more
links were generated in [CP.LGE] and
[CP.LG-D).
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Figure 6B: [CP.L--]: Pyramid convergence, local
receptive fields, no built-in edges

The networks [CP.R--] (random connec-
tivity between layers, logarithmic conver-
gence) failed to improve beyond 60% correct
recognition (see figure 6A) given the same
maximum number of connections that were
used in [CP.L--] structures The networks
[CP.L--] attained 100% accuracy of recogni-
tion with approximately 16k links (see figure
6B), which were distributed equally between
layers (1,2), (2,3), (3,4) and (4,5) in about 600
epochs of training, whereas the networks
[CP.L-E] attained the same performance with
the same network size, in about 90 epochs of
training (see figure 6C).

The network [CP.LG-] attained 100%
accuracy of recognition in 26 epochs of train-
ing and at about 8000 links (14 new
transforms were generated and they were
replicated at each location in the correspond-
ing layers). The network [CP.I.GE] reached
100% correct recognition in about 8 epochs of
training (see figure 6E) and at about 6000 links
(6 new transforms were generated and they
were replicated at each location in the
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Figure 6D: [CP.LG-]: Pyramid convergence, genera-
tion, local receptive fields, without built-in edges

The runs were repeated for [CP.LG-] and
[CP.LGE] with 6 pattern classes (T, D, E,
apple, banana, cup) and the results were quali-
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Figure 6E: [CP.LGE]: Pyramid convergence, genera-
tion, local receptive fields, with built-in edges

tatively similar, but there were more genera-
tions (about twice as many) at the higher
layers resulting in approximately 10k and 8k
links respectively, and about twice as many
epochs of training were needed to attain 100%
accuracy of recognition. The exact numbers
reported here should not be given too much
importance; however the results do suggest
that other factors being constant, generation
and local structure significantly improve learn-
ing, both in terms of the number of training
epochs needed as well as the size of the net-
works necessary to attain the desired accuracy
of recognition.

Discussion and Summary

The results presented in this paper sug-
gest that the incorporation of brain-like con-
straints on network structure can substantially
reduce the complexity of connectionist net-
works for perceptual learning and improve the
speed of learning. Retinotopic mapping and
near-neighbor connectivity exploit spatio-
temporal contiguity in the environment. The
choice of constraints on network connectivity
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is important: random connectivity is unlikely
to work in most practical problems. Similar
conclusions were reached in another study that
used recurrent back-propagation (Pineda,
1987) to train a connectionist network to solve
random-dot stereograms (Quian, 1988). Con-
straints on the network topology determine the
space of the transforms that may be learned,
and bias the network so that the learning of
certain relations is favored. Topographic map-
ping and local receptive fields favor the
discovery of relations between the subpatterns
that are imaged onto the neighboring regions
of the retina. Multi-layered pyramid-like
hierarchical architectures embodying such
topological constraints have been studied
rather extensively for image processing and
computer vision (Uhr, 1972; Uhr, 1987; Burt,
1984; Rosenfeld, 1983; Dyer, 1987; Li, 1987).
For an examination of such architectures as
connectionist networks, see (Honavar, 1987).
The results presented here indicate that such
structures are also useful in networks that
learn (as opposed to being carefully pre-
programmed) to recognize objects.

Our results suggest that the addition of
mechanisms such as generation, that enable
the network to grow new links as needed,
under guidance from feedback, aided by net-
work structures that enable it to monitor its
own performance over time, yield further
improvements in learning. Although genera-
tion has been used in the experiments
described in this paper in conjunction with a
form of error back-propagation for reweight-
ing of links, local receptive fields and global
convergence, it could potentially be used with
other reweighting rules and other network
structures.

Generation ensures that successively
more complex non-linear relations between
features in the input patterns are discovered at
higher layers, to be assessed by the new
transforms that are added. Thus, generation in
a layered, converging network structure biases
the system so that: learning of simpler features

preceeds the learning of more complex rela-
tions; and successively more global relations
are learned at successively higher layers. An
examination of the transforms generated in the
network simulations supports this intuition.

The extraction-generation programs
described here do not discard bad nodes or
place any limit on the number of nodes gen-
erated. Neither capability was needed for the
test runs reported here, since these programs
learned to recognize the pattern-sets they were
tested on in relatively small numbers of train-
ing epochs. But to handle larger sets of more
complex patterns, the ability to discard is
almost certainly necessary; otherwise the net-
work will get bogged down with many poor or
worthless links. Thus, additional subnetworks
that constantly evaluate and maintain records
of the usefulness of functions computed by
individual nodes or small groups of nodes
would be useful in determining which nodes
(and hence, transforms) to discard, so that they
can be reused to compute new, and potentially
better functions.

There are a number of promising
improvements to be made, including the addi-
tion of networks that make better assessments
of potential generations, that learn to improve
upon these assessments, that evaluate the gen-
erations for their usefulness for recognition,
that discard poor generations to make room for
new ones, that narrow and broaden the
tolerance-threshold for matching, and that gen-
erate sets of alternate possible transforms that
are placed in competition with one another.
There are a number of other issues to be inves-
tigated, including the development of good
sub-networks that realize functions for decid-
ing whether to further re-weight or to generate,
the optimal number of nodes in a node-cluster,
and the usefulness of putting nodes within a
cluster into direct competition.

There are several aspects of networks
that learn by generation and reweighting that
may be worth examining in detail, individually
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as well as collectively. In what follows, we
outline some of these issues briefly.

The extent of generalization, i.e., build-
ing of meaningful internal representations by
discarding uninteresting details, is an impor-
tant property of connectionist systems that
learn. More compact representations result
from better generalization. There is reason to
believe that the extent of generalization in
connectionist networks is sensitive to the
number of hidden units as well as the connec-
tivity (Hinton, 1987a). If the hidden units (or
connections) are too many, the network may
generalize rather poorly; if they are too few,
the network may never learn. Thus, finding the
optimal number of hidden units and/or weights
is of interest. One approach involves the intro-
duction of local and distributed bottlenecks on
the number of units and/or links that tend to
drive certain weights to zero (Kruschke,
1988). Generation and deletion of links can be
seen in this context as providing mechanisms
that dynamically determine the optimal
numbers of hidden units and connections
needed in the network. Thus, such networks
may exhibit good generalization properties as
well. Generation makes possible the linking up
of an adequate number of units to solve a
given problem; minimal generation favors the
discovery of the smallest necessary number,
hence better generalization. We intend to
examine this conjecture experimentally.

Sub-structures that, as appropriate, main-
tain, update, and transmit information, record-
ing the network’s performance over time (e.g.,
using portions of the learning curve, to trigger
generation) offer several promising mechan-
isms that may be worth examining. Such struc-
tures can be used to alter learning strategies,
rates of learning, and thresholds of firing, each
of which has an impact on the plasticity of the
network. Future work will address some of
these issues.

Networks that generate, reweight, and
discard transforms need to have mechanisms

that keep a reasonable balance between them.
Reweighting of links by small amounts
changes the pattern descrimination properties
of the network gradually. If the network
topology is held constant, reweighting tends to
minimise the error between the actual and the
desired outputs of the network for the various
pattern classes. However, there is a risk of get-
ting caught in the local minima (Rumelhart,
1986) of the error function. Generation and
discarding of transforms can be thought of as
providing the network some means of getting
out of such local minima. When the accuracy
of recognition levels off and fails to improve
with reweighting alone, it suggests that the
network may have hit a local minimum of the
error function. Future work will examine
several mechanisms that might be useful in
striking just the right balance between
reweighting on one hand, and generation and
discarding of transforms on the other.

Intuition suggests that good system per-
formance requires a proper match between the
entropy of the source of external stimuli and
the connectivity, both between the source and
the system (Abu-Mostafa, 1988) as well as
within the system itself. Since generation
relies on the environmental stimuli to develop
the connectivity of the system, the resulting
network is likely to have a better match with
the entropy of the environment, than a network
that starts out with a random subset of the pos-
sible connections and is constrained not to
change the initial topology, and whose learn-
ing is restricted to reweighting of links alone.

The network structures that we have stu-
died so far have been restricted to be of the
feed-forward type. Future work may explore
the usefulness of relaxing this constraint and
using a form of recurrent back-propagation
(Pineda, 1987) for reweighting of links.

Most of the research on learning in con-
nectionist networks has concentrated on
schemes that modify weights in a static topol-
ogy. Recent anatomical and physiological stu-
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dies suggest that learning may involve altera-
tion of the number as well as the pattern of
synaptic interconnections in the brain, in addi-
tion to the well-accepted mechanisms for
changes in synaptic strengths (Greenough,
1987; Greenough, 1988). The results
presented in this paper suggest that there may
be promising improvements to be realized
using additional learning mechanisms that
dynamically alter the network topology (e.g.,
generation), suitable constraints on the net-
work structure for particular domains (such as
local receptive fields and global convergence
for vision) and regulatory mechanisms that
alter the plasticity of the network, choose
between different learning strategies, and so
on. Extensive and systematic evaluations of
networks incorporating one of more of these
features for perceptual learning of pattern sets
of varying complexity are needed in order
determine how they perform individually as
well as collectively. The experiments and
results discussed in this paper constitute at
best, a preliminary exploration of only a few
aspects of the problem. Future work will
examine these issues in greater detail.
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