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Abstract

We investigate the role of commutativity in query processing of linear recursion. We give a sufficient condition for two
linear, function-free, and constant-free rules to commute. The condition depends on the form of the rules themselves.
For a restricted class of rules, we show that the condition is necessary and sufficient and can be tested in polynomial time
in the size of the rules. Using the algebraic structure of such rules, we study the relationship of commutativity with
several other properties of linear recursive rules and show that it is closely related to the important special classes of
separable recursion and recursion with recursively redundant predicates.

1. INTRODUCTION

Several general algorithms have been proposed for the processing of recursive programs in database systems
(DBMSs). Recursive query processing is recognized as an expensive operation, and all the proposed algorithms incur
some significant cost. Thus, it is important to identify special cases of recursion on which specialized and more efficient
algorithms are applicable. Such special cases of recursion include bounded recursion (uniform and other), transitive clo-
sure, separable recursion, and one-sided recursion. In this paper, we elaborate on another special case of recursion,
where participating operators (or rules) commute with each other. When this happens, recursive queries can be decom-

posed into smaller queries, which are expected to have a lower total execution cost than the original query.

Commutativity has already been identified as a significant special case of recursion [Toan88]. Its effect on general
algorithms for several types of recursive queries have been studied, as well as how it can be used in conjunction with
constants 1o reduce the amount of data the system has to look at to answer a query with selections. This earlier work on
commutativity was done within the algebraic framework of linear recursive operators (rules) [Toan86a, Ioan88]. In this
paper, we use the logic representation of rules to give conditions for two linear recursive rules to commute with each
other. These conditions are based on the form of the rules themselves and make no direct use of the definition of com-

mutativity, which requires composing the two rules in both ways and examining the two composites for equivalence.

T An earlier version of this paper appeared in the Proceedings of the 15th International VLDB Conference, Amsterdam, The Netherlands, Au-
gust 1989, pp. 155-164.
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For a class of rules for which the conditions are necessary and sufficient, they can be tested in time that is a polynomial
in the size of the rules. We also use the algebraic formulation of recursion to compare commutativity with other special
classes of recursion, in particular, separable recursion and recursion with recursively redundant predicates, and discuss

the effects of commutativity on the algorithms proposed for them.

The paper is organized as follows. Section 1 is an introduction. Section 2 is a summary of the algebraic model for
linear recursion, which has been introduced elsewhere [Ioan86a, Ioan88]. In Section 3, we define commutativity in the
algebraic model, show its impact on the efficiency of processing recursive rules, and discuss some previous work. In
Section 4, we compare the notion of commutativity with separability and recursive redundancy. Section 5 uses the logic
representation of rules and gives conditions for commutativity, which for a restricted class of rules are necessary and
sufficient. In Section 6, separability and recursive redundancy are reexamined for the restricted class of rules studied in

Section 5. Finally, Section 7 presents our conclusions and gives some directions for future work.

2. ALGEBRAIC MODEL

In this section, we provide a summary of the algebraic model for linear recursion [loan86a, Ioan88]. We use the
terms relation and predicate indistinguishably. Consider the following pair of one linear recursive and one nonrecursive

rule:

PO AQiGM) A -+ AQux®) - P D), @D

Q*1) » P x*), 2.2)

where for each 7, x @ is a vector of variables. No restriction is imposed on the form of the rule, or on the finiteness of the
relations corresponding to the various predicate symbols in the rule. Thus, for example, the rules can contain functions.
Each one of P (x®), Q (x**"), and the Q ;(x“)’s is a (positive) literal. Without loss of generality, we assume a type-

less system, so that the schema of a relation is defined as the number of its argument positions.

Operationally, (2.1) can be represented by a function f{P,{Q;}) that has {Q;} as parameters and accepts as input
and produces as output relations of the same schema as P:
fF®.{Q:HcP.
The function f can be thought of as a linear relational operator applied to the recursive relation P to produce another
relation of the same schema. Let R be the set of all such operators. We can establish an algebraic framework in which

we can define operations on relational operators as follows. Multiplication of operators is defined by
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(A *B)P =A(BP) and addition by (A+B)P =AP UBP. T For notational convenience we omit the operator *. The
multiplicative identity (1P =P) and the additive identity (OP = &, & the empty set) are defined in obvious ways. The
n-th power of an operator A is inductively defined as: A®=1, A" =A*A™! = A"1xA. Equality of operators in R is
defined as A=B <> VP AP =BP. Finally, a partial order < is defined on R as A<B <> VP, APcBP. The setR

with the above defined operations forms a closed semiring [loan88].

The above embedding of the linear relational operators in a closed semiring allows the rewriting of the set of Horn

clauses (2.1) and (2.2) (assuming that A is the operator that corresponds to (2.1)) as

AP cP,

QcP.

The minimal solution of the system is the minimal solution of the equation

P=AP uQ. (2.3)
The solution is a function of Q. Hence, P can be written as P = B Q, and the problem becomes one of finding the opera-
tor B. Manipulation of (2.3) results in the elimination of Q, so that the equation contains operators only. In this pure
operator form, the recursion problem can be restated as follows. Given operator A, find B satisfying the following:
(@ 1+AB =B,

24)
) B is minimal with respect to (a), i.e., +A C=C = B < C.

Theorem 2.1: [Toan88] The solution of equation (2.4a) with restriction (24b)is 4" = EA".
k=0

The operator A" is called the transitive closure of A. Theorem 2.1 is originally due to Tarski [Tars55], and in the
database context, it was first examined by Aho and Ullman [Aho79b]. It is the first time though that the solution of (2.4)
is expressed in an explicit algebraic form within an algebraic structure like the closed semiring of linear relational opera-
tors. The implications of the manipulative power thus afforded on the implementation of A" are significant
[foan86a, Ioan86b, Ioan87, Ioan88]. In this paper, we concentrate on the implications of commutativity of operators in

the implementation of A*.

T The above definitions are valid only if the operators involved are appropriately compatible, e.g., for +, the operators have to agree on the sche-
ma of their input and the schema of their output. Although in the rest of the paper we only deal with appropriately compatible operators, the general
algebraic theory incorporates all operators [Toan88].



Note that, although an operator A may be derived from a recursive rule, the operator itself is nonrecursive, i.e., it
corresponds to a conjunctive query [Chan77]. Also note that A™ represents an operator. The query answer is the result
of applying A™ to a given relation Q. This is only an abstraction, however, that allows us to study recursion within the
closed semiring of relational operators. It poses no restriction whatsoever in the processing order of the query, i.e., it
does not enforce that A” is computed first and then it is applied to Q. For example, assume that A™ can be decomposed
into B* and C", i.e., A"=B" C”", so that the final computation is B* C* Q. The computation may proceed by first com-
puting C*, then applying it to Q, and then using seminaive [Banc85] with B as the basic operator and (C* Q) as the ini-
tial relation. The significance of the algebraic formulation lies in the abstraction that it offers, within which the capabil-

ity of the decomposition A* = B*C" can be exhibited.
3. COMMUTATIVITY

3.1. Definitions and Motivation

We say that two operators B and C commute if B C = C B. Consider computing A”, the transitive closure of A,
where A =B+C. It has been shown that if B C <C*B', for some k,I with ke {0,1} or le{0,1}, then A" =B"C"
[loan88]. Commutativity is a special case of this condition. The computation of A* is decomposed into two smaller
computations, those of B" and C* (plus an additional multiplication of them). The complexity of B and C is smaller than
that of A. In general, this is expected to affect the total cost of the computation significantly. To see this observe that the
following always holds:

B+C)Y'=B"C"+B+C)' CBB+C)". 3.1)
This formula expresses the fact that the terms of the series that corresponds to (B + C)* can be partitioned into those that
do not have C' B in them and those that do. In general, all such terms need to be computed. If the condition that was
mentioned at the beginning of this section holds, however, then the second set of terms does not need to be computed,
because it is known that it can only produce duplicates. Unfortunately, this is not enough to prove that computing B* C*
is more efficient than computing (B + C)". In an actual implementation, several parameters affect performance, and their
complex interactions can rarely be studied analytically, e.g., main memory size, buffer replacement strategies, and avai-
lability of indices. For example, the computation of B* C* is likely to be cheaper than that of (B +C)" because main
memory can be used more efficiently when computing the transitive closure of smaller operators (recall that B<B +C and

C<B+(), but this is hard to quantify.
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One aspect of performance that is tractable is the number of duplicate tuples produced by an algorithm. Quite
often, especially in recursive computations, duplicate production and elimination has been shown to dominate the cost of
an algorithm [Agra87]. Comparing the computations of B* C* and (B +C)" with respect to duplicates, we can easily
derive the superiority of B* C” in certain special cases. For instance, if the computation of B* C* is duplicate-free, then
applying the decomposition is always beneficial (unless C B=0, in which case the second set of terms in (3.1) would not
produce anything anyway). If the computation of B” C" is not duplicate-free, however, it is conceivable that the various
terms in (3.1) may interact in a way so that more duplicates are produced by B* C* than by the full expansion of

(B +C)", despite the additional terms of the latter. The following general result shows that this impossible.

Theorem 3.1: Let {4;}, {B;}, {C;} be sets of linear operators such that every operator in {4;} and (B;} is a pro-
duct of operators in {C;}, and if C; * - - C,1C € {A;} ({B;}) then Cy -+~ Cr; € {A;) ({B;}) as well. Consider two

linear operators A,B, where A=B, A=Y"A;, and B=Y B;. Let Q be an arbitrary relation and T be equal to T = AQ = BQ.

If {A;} < {B;}, then the evaluation of T based on A produces no more duplicates than its evaluation based on B.

Proof: Let the derivation graph of a computation of T be a labeled directed graph G=(V,E,L:E->{C;}), where

the set of nodes V, the set of arcs E, and the label function L from E to the set of operators {C;} are defined as follows:

V=T, i.e., the nodes of G are the tuplesin T

E = {(t;—>t3) | t5 is produced by applying one operator from {C;} on ¢}

L ((t1-13)) = C, where Ce {C;} and 5 is produced by applying C on ¢4
Since there is a 1-1 correspondence between nodes and tuples, we shall use the two terms indistinguishably. We assume
a model of computation that starts at the tuples in Q and traverses the graph until all nodes are visited at least once. We
also assume computations that do not derive the same tuple through the same arc more than once. * Such a computation

can be achieved, for example, by employing the semi-naive evaluation [Banc85].

A path in the graph from a tuple s in Q to a tuple ¢ represents a derivation of ¢ starting from s. The labels of the
arcs along the path represent one of the operators in {4;} or {B;}. No derived tuple has zero in-degree, i.e., every
derived tuple is always connected to some tuple in Q. Each tuple is derived as many times as there are arcs entering it.

Thus, the number of tuple derivations during a computation, which is the sum of the number of tuples in T plus the

¥ We do not take into account any computation steps that fail to produce a tuple. Such computation steps are not represented in the graph and
their cost is not captured.
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number of duplicates produced, is equal to the sum of the in-degrees of the nodes in the graph that corresponds to the
computation, i.e., it is equal to |E|. If {A;}c{B;], the graph corresponding to A has the same set of nodes but is possibly
missing some of the arcs of the graph corresponding to B. In that case, some nodes have lower in-degree in the graph of
A than in the graph of B, which implies that computing T based on A will produce less duplicates than computing it

based on B. 0

We would like to elaborate on the result of Theorem 3.1 briefly. Consider the derivation graph for the computa-
tion of T based on B. If the computation by B is duplicate-free, then all nodes have in-degree equal to 1, and no
improvement can be made. Only arcs that lead into nodes with in-degrees that are higher than 1 can be removed from
the graph of B to construct the graph of A, In that case, i.e., when the terms in {B,; }-{A;} do produce tuples when applied

to Q, the computation based on A is more efficient than the computation based on B.

Theorem 3.1 shows that it is important to be able to identify when two operators commute, since commutativity
allows decompositions of the form (B+C)"=B" C*, which in several cases decrease the number of produced duplicates.
In Section 5, we present a sufficient condition for commutativity, which for rules of some restricted form is shown to be

necessary and sufficient.

3.2. Previous Work

Commutativity or properties related to it has been rarely addressed in the past. The earliest result of which we are
aware that is related to commutativity is by Lassez and Maher [Lass84]. Their interest in commutativity was mostly
with respect to certain decompositions that can be achieved when computing the transitive closure of the sum of multiple
operators. They obtained two main results that are related to commutativity. In algebraic form, they are expressed as

folows:
B'C*=C'B"=B"+C" <> (B+C)" =B"+C",
BC=CB=B+C => (B+C) =B"+C".
The above results are easily generalized for an arbitrary number of operators.
A syntactic sufficient condition for commutativity has been presented by Ramakrishnan, Sagiv, Ullman, and Vardi
[RamaB9]. Their condition is less general than the one we give in Section 5 and, therefore, fails to be necessary and
sufficient for the class that ours is. It is always tested in polynomial time, however. Deriving this sufficient condition

was part of a study of proof-tree transformations. (Commutativity can be seen as a proof-tree transformation if operators
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are represented as proof trees.) Among other things, that study lead to an independent discovery of the above mentioned

result that if B C < C¥B?, for some k,I with ke {0,1} or I {0,1}, then (B+C)" =B* C".

Finally, Dong has examined several possible decompositions of the transitive closure of the sum of multiple opera-
tors [Dong88]. The only result that involves commutativity in a significant way can be expressed as follows in algebraic

form:
B'C*"=C"B" <> (B+C) =B"C"=C"B".
4. COMMUTATIVITY VS. SEPARABILITY AND RECURSIVE REDUNDANCY

4.1. Commutativity vs. Separability

Separable recursions have been identified by Naughton as an important class of linear recursion where efficient
algorithms can be applied [Naug88]. In this section, we shall show that the efficient separable algorithm is applicable to
the class of commutative recursions. For the sake of simplicity, we shall concentrate on two operators A; and A,. The

extensions of the results to an arbitrary number of operators is straightforward.

Theorem 4.1: Given two operators A; and A, that commute, and a selection ¢ that commutes with one of them,

the separable algorithm can be used for the computation of (A +4,)".

Proof: Let A;A,=A,A;. The transitive closure of the sum of A; and A, is given by (A4;+4,)" = A] A} [Ioan88].
Given an initial relation ¢ and a query with a selection ¢ that commutes with A, we have

6(A1+42)"q =A] (GA3)q. @4.1)

To take advantage of the selection, the following algorithm can be used to derive the query answer given in (4.1). The

variables B and C contain operators, whereas the variables R and S contain relations. Multiplication of operators is

shown explicitly for readability.

B:=g;
C:=0;
repeat
B:=B#* Az,
C:=B+C,
until C doesn’t change
R:=Cq;
S=R;
repeat
R :=A1 R;
S:=SUR;

until S doesn’t change
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The first loop actually involves manipulating relations that are parameters of the various operators. If this is taken into
account, and some small optimizations are incorporated so that, in every application of an operator inside each loop,
only the new tuples produced in the previous iteration are used, the above algorithm is precisely the one proposed for

separable recursions with full selections  [Naug88]. O

Theorem 4.1 establishes that commutativity implies the applicability of the separable algorithm for two operators.
In general, given a set of operators {A;}, 1<i <n, that are mutvally commutative, and a set of selections {c;}, 0<i<n, such
that o; commutes with all operators except 4;, the following holds:
000102+ * Op(A1+A g+ -+ +4,)" = (0141 )(0243) * - - (G,A,)00.
Usually, most of the selections will not be present. In the presense of multiple selections, it is an interesting optimization
problem to choose the order in which the various operators will be computed and the time when an operator will be

applied to the input relation.

4.2. Commutativity vs. Recursive Redundancy

The class of recursions that contain recursively redundant predicates has also been introduced by Naughton

[Naug89a]. Consider an operator A that is the product of a set of operators {A4;}, i.e., A=A14,---A,. In this case,

every term in the series A* = 3 A¥ is an arbitrary product of the A;’s. An operator A;, 1<i <n, is recursively redundant if
k=0

there is some N such that each term in the series of A" is equal to a product containing A; less than N times. The nonre-
cursive predicates appearing in A; as parameters are also called recursively redundant. Before stating the main result of
this subsection we need the following definitions. An operator B is uniformly bounded, if there exist K and N, K <N,
such that BY < BX. An operator B is torsion, if there exist K and N, K <N, such that BY = BX, Clearly, every torsion is
uniformly bounded, but the opposite is not true in general. Finally, for A=BC and AL=DE, the operator D is indepen-
dent of B if no parameter relation of D is produced from a parameter relation of B. The effect of the presense of recur-
sively redundant operators on the query processing algorithm of an operator is given by the following result, which is
actually a generalization of an earlier result on the subject [Toan88]. (Without loss of generality, we assume that all

operators have the same domain and range, so that the product of any pair of them is well defined.)

¥ The precise definition of full selections is given by Naughton [Naug88]. The key observation is that if A;A;=AA4 and 0A;=A;0, then O is
a full selection.
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Theorem 4.2: Let A=B C. If B is torsion and there exist L =1 and an operator D that is independent of B (i.e., it
depends only on C) such that
AL=BL D=D B%, @.1)
then B is recursively redundant in A*=(B C)".
Proof: Consider an operator A that satisfies the premises of the theorem. Let, K >0 and N >0, K <N, be the smal-

lest numbers such that BY =BX. Since BX =BV, clearly, the equality BX-=B™ holds. It takes an easy induction to

show that

B™ = pim+iN-KDL for all K <m <N and all i>0. 4.2

The main result follows from the derivation below:

KL-1 oo
A"=BC)Y =3 BO"+ T BO"

m=0 m=KL

E B C)"'+(Z(B (”)”)(Z(BC)'"L)

m=0
KL-1 L-1 -
= T BO"+(ZBOMH(Y B*DY™ From the first equality of (4.1)

m=0 n=( m=K

Z (B oy + ( Z BCY)( E B™:D™) From the second equality of (4.1)
m=0 m=K

Z (B CYy" + (Z BCY( Z B'"L) (ZD mH IRy From (4.2)
m=0 m=K

Z (B cy +(Z(B C)")(ZB'"LDm)(ZD‘(N“K))

m=0
KL-1 L-1 N-1 L K

=Y BO"+(TBCYH(T BCY™) (D) From the first equality of (4.1)
m=0 n=0 =K i=0

KL-1 NL-1 o
= Y BCOY"+(Y BCY)(IDIWH
m=KL i=0

m=0

KL~ NL-1

Z By +( Z B Y™ (DNRy,
m=0

Note that, since D is independent of B, BNL=1 is the highest power of B used in any term of A, i.e., B is recursively
redundant. Clearly, the above formula corresponds to a more efficient algorithm than processing A as a whole, since B is

processed only for a fixed finite number of times, i.e., N L—1, beyond which only D is processed. O
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5. CHARACTERIZATION OF COMMUTATIVITY

We now turn our attention to commutativity as expressed in a logic framework. We restrict ourselves to linear,
function-free, and constant-free recursive rules. If a variable appears in the consequent of a rule, it is called dis-
tinguished, otherwise it is called nondistinguished. We assume that the rules have the same consequent and share no
nondistinguished variables. Moreover, repeated variables in the consequent are replaced by distinct ones, while adding
the appropriate equality predicates in the antecedent. Finally, although the original task is to compute the transitive clo-
sure of two recursive rules with the same consequent, we are interested in the commutativity of the underlying nonrecur-
sive rules, i.e., conjunctive queries. Given a linear recursive rule whose recursive predicate is P, its underlying nonre-
cursive one is constructed by replacing the instance of P in its consequent by P (output), and its instance of P in its
antecedent by P; (input). However, we shall still be referring to these two predicates as instances of the recursive predi-

cate.

Given two nonrecursive rules r and s, a homomorphism f : v — s is a mapping from the variables of r into those of
s, such that (i) if x is a distinguished variable then f (x)=x, and (i) if Q (x,...,x,) appears in the antecedent of r, then
O (f (£1),....f (x,)) appears in the antecedent of s. Homomorphisms are directly related to the partial order of rules
defined in Section 2 (for the corresponding operators). In particular, s is contained in r (i.e., given any relations for the
predicates in the antecedents of 7 and s, the output relation produced by s for the predicate in its consequent is a subset of
the one produced by ), denoted by s<r, iff there exists a homomorphism f from r to s [Chan77, Aho79a]. Also, s is

equivalent to r, denoted by s=r, iff s<r and r <s.

Given two rules 7, and r,, the composite of ry with r,, denoted by r, 5, is defined as the result of resolving the
consequent of 7, with the literal of the recursive predicate in the antecedent of . We say that two rules r; and rp with
the same consequent commute, if composing r; with r, and composing r, with r; yield equivalent rules. This, in turn,
is equivalent to the existence of homomorphisms from each composite to the other. Clearly, the definition of commuta-
tivity suggests a straightforward algorithm to test it for two rules r; and r,: form the two composites r; 75 and r, ry and
test their equivalence. Unfortunately, a polynomial time implementation of this algorithm is unlikely to exist, since

equivalence of conjunctive queries is known to be an NP-complete problem [Chan77, Aho79a].
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5.1. A Sufficient Condition

In this section, we shall give a sufficient condition for commutativity that avoids producing the two composites.
The condition can be tested in exponential time, because it potentially involves testing for equivalence of conjunctive
queries. The test, however, is still more efficient than the one based on the definition of commutativity, because the
exponential part is only occasionally applied on parts of the original rules as opposed to always being applied on the

composites of the two rules.

As a notation vehicle, we shall use a version of the o-graph of a rule (which we shall also call o-graph), which

was introduced for the study of uniform boundedness [Toan85]. The o-graph of a rule is defined as follows.

(i)  There is a node in the graph for every variable in the rule.

(i) If two variables x,y appear in two consecutive argument positions of some nonrecursive predicate Q in the rule, a
static directed arc (x—>y) is put in the graph between the corresponding two nodes x,y. Also, if x appears in a
unary nonrecursive predicate Q in the rule, a static directed arc (x —x) is put in the graph. In both cases, the label
of the edge is Q. (Static arcs are shown as thin lines in all forthcoming figures.)

(iii) If two variables x,y appear in the same position of the recursive relation P in the antecedent and the consequent
respectively, then a dynamic directed arc (x—>y) is put in the graph from node x to node y. (Dynamic arcs are
shown as thick lines in all forthcoming figures.)

Several characteristics of the underlying undirected graph of the o~graph of a rule are important, e.g., connected
components. In the sequel, although they are defined for undirected graphs, we shall use them for directed graphs as

well with the understanding that we always refer to the underlying undirected graphs.

It is also important to partition the distinguished variables of a rule in the following categories (in the sequel, due
to part (i) of the definition of the o-graph of a rule, we shall use the terms variable and node indistinguishably). Con-
sider a set of variables {x;}, 0<i<n—1, n>1, such that x; appears in the same argument position of the recursive predicate
in the antecedent as X ;41ymoa» appears in the recursive predicate in the consequent (i.e., their positions in the antecedent
is a permutation of their positions in the consequent). Any such variable is called persistent and in particular n-
persistent (n is the cardinality of the set). More specifically, if no variable from the set appears anywhere else in the
rule, every variable in the set is called free n-persistent. Otherwise, every variable in the set is called link n-persistent.
All other variables are called general. Note that free n-persistent variables, n=1, are the only variables in their con-

nected component in the a-graph, connected only via arcs of the form (x; — X 41y mod n)-

Finally, we need to define some interesting subgraphs of the o-graph of a rule [Bond76]. Consider an undirected

graph G, a subset E” of its edges, and let G’ be the subgraph of G induced by E’. Let V’ be the node set of G’. Define a
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relation ~ on the edges of G—E’ by the condition that, for two edges e; and e, ¢ ~ €2, if €1 = e, or there is a walk in G
that contains e and e, but contains no node from V” as an internal node (although the walk may start or end at nodes in
V"). Itis easy to verify that ~ is an equivalence relation on the edges of G. A subgraph of G induced by the edges of an
equivalence class under the relation ~ is called a bridge of G with respect to G’. A bridge together with the part of G’
that is connected to the bridge forms an augmented bridge. In the sequel, unless otherwise noted, whenever we refer to
bridges in the o-graph of a rule, we mean its bridges with respect to its subgraph induced by the dynamic arcs connect-
ing each link 1-persistent variable in the graph to itself. This is because they play a very important role in the study of
commutativity and we refer to them continuously. Also note that an augmented bridge of the o-graph of a rule is an o

graph in itself and corresponds to a rule. Based on that, containment and equivalence of augmented bridges are defined
appropriately as containment and equivalence of the corresponding rules.
Example 5.1: The following is the o-graph of the rule

P (u,v,w,x,y,2) = P (v,u,w,w,y,2) A Q (x,y).

v
w
Q Q
u * y z
Figure 5.1: Example of an o-graph.
Variable z is free 1-persistent, variables w and y are link 1-persistent, variables u and v are free 2-persistent, and variable
x is general.

For another example, the following is the o-graph of the rule

P (v,wx3,2) =P v,y ) AQ u ) AR W)AS (x) AT (2).

Figure 5.2; Augmented bridges in an o-graph.

Variables v and y are link 1-persistent. The augmented bridges of G with respect to the graph induced by the arcs
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(v—v) and (y —>y) have been enclosed in dotted boundaries. Their corresponding rules are the following:

P (vw)~P @v) AR (W),
P (v,x,y) =P (v,u,)) A Q (v,u,7) A S (x),

P (y,2) =P 3,y) AT (2).

For a rule r, we define the function 4 from the set of distinguished variables in r to the set of all variables in r. For

O

a distinguished variable x, 4 (x) is the variable that appears in the recursive predicate in the antecedent in the same posi-

tion as x appears in the consequent. Since distinguished variables are assumed to appear exactly once in the consequents

of rules (with the potential of repeated variables being realized by equalities in the antecedent), # is a function. Note

that, if / (x)=y, then there exists a dynamic arc (y —x) in the a-graph of the rule. We may also define powers of / as
h'(x)=h(x), and A"(x)=h(h" " (x)), if h"7(x)is distinguished.

For two rules r; and r,, we define two more functions, g, on the variables of r, and g,; on the variables of r;. Since

the two rules are assumed to share no nondistinguished variable, the former is defined as

z  z is nondistinguished

g12(2)= o .
hi(z) zis distinguished

and similarly the latter. By definition, when 7, r, is formed, a variable z in a predicate of r, is always replaced by
812(2).

The following theorem gives a sufficient condition for commutativity of rules of the form specified in the begin-
ning of Section 5. Another sufficient condition for commutativity has been independently discovered and reported else-

where [Ramag9].

Theorem 5.1: Two rules r; and r, with the same consequent commute if every distinguished variable x satisfies

one of the following:

(a) «xisfree l-persistentinr, orr,

(b) xislink l-persistent in both r; and r,,

(¢) =xisfree ny-persistent, ny>1, in r; and free n,-persistent, n,>1, in ro and hy (ho(x))=h, (h,(x)),

(d) xislink n-persistent, n>1, or general and belongs to equivalent augmented bridges in both 7 and 7.

Proof: In the proof, we use the fact that commutativity of ; and r, is defined as r, r, and r, r, being equivalent,

which in turn, is equivalent to the existence of homomorphisms from each composite to the other. Recall that we
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assume that the two rules have the same consequents and share no nondistinguished variables. Given that (a), (b), (¢),

and (d) hold for r; and r,, we can partition their distinguished variables into the following vectors:

vector of the free 1-persistent variables inr;,i=1,2,

-

vector of the common link 1-persistent variables in r; and r,,
vector of the common free n-persistent, n>1, variables in the consequent of ; and r,

in |0 i)y

vector of the link n-persistent, n>1, and general variables that belong to equivalent augmented bridges in r;
and r,.

Without loss of generality, the variables in the consequents of the two rules are grouped so that the latter can be written

in the following form:

ri: Po (EI,EZ:_{:E,E) = P1@1,£1,§,h1(£),21) AS 1) AQi(w1),

rat Po (61,1_72,5,5,5) = Pr(z2.P2,8,h2(€).v2) A S (u2) A Qa(w2).
We have assumed that every rule seen as a conjunctive query is in its unique minimal form [Chan77]. This has the

implication that the augmented bridges that are equivalent in the two rules are isomorphic (i.e., they are the same up to
reordering of their nonrecursive predicates and renaming of their nondistinguished variables), so that their nonrecursive
predicates can be represented by a common S. Q; Q. represent the remaining nonrecursive predicates, i.e., those of
bridges whose general and link n-persistent variables, n>1, in one rule are free 1-persistent in the other. Finally, zy, z,,

Vi, Va2, W1, W are vectors of variables. In particular,

z3 it contains nondistinguished variables and variables from p,,
z it contains nondistinguished variables and variables from Pi
wi it contains nondistinguished variables and variables from po and S,
wa it contains nondistinguished variables and variables from p, and S,

v1,vo  they contain nondistinguished variables and variables from eand s,
uy,uy they contain nondistinguished variables and variables from ¢ and s.

Forming the two composites yields two equivalent rules:

riryt Po(P1,p2.s.c.e) = Pr(za.z; SR (R2(€)), 812002 AS (1) AS (812(2)) A Q1 (W1) A Q2(Ws),

rarit Po (gugz,g,g,_e_) =Py (22,21,8,h2(R1(€)),821 (V1)) A S (g21(1)) A S (2) A Q1(W1) A Qa(w2).

We only explain the formation of ry r,, since r, ry is formed similarly. S (u;) remains as is from r,. The vari-
ables of u, in S change according to g12(u2) to produce S (g12(12)). Q:(w)) remains as is from r;. The nondis-

tinguished variables of w, remain the same. (Since the two rules have distinct nondistinguished variable names there is
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no need for renaming.) The distinguished variables in w are all members of p; and s. Since all of them are 1-persistent
in r, they remain the same in the composition. Hence, all the variables in w, remain the same, and this produces
Q2(w»). The variables in P; from r, are formed as follows. The variables in z, are either nondistinguished or they are
free 1-persistent in r, i.e., they belong to p,, so they remain the same. The variables in p, are free 1-persistent in r,,
hence they are replaced by 4 (p5), i.e., by the corresponding variables in the antecedent of r;, which are the variables in
z;. The variables in s are 1-persistent, so they remain the same. The variables in (c) are permuted according to 4, to

give h;(h,(c)). Finally, the variables in v, are replaced by g1,(v»).

Examining the two composites we observe the following. First, the parts of them that come from augmented
bridges that are equivalent in the two rules are isomorphic. This is because when sy=s,=s, then §,5,= §,51=52. More
precisely, there is an isomorphism between the variables of u;, g12(12), and g12(v,) and those of ug, g21(11), and
g2 (vy) respectively. A straightforward renaming of their nondistinguished variables will make the two parts equal.
Second, by part (c) of the statement of the theorem, the equality /1 (h,(c))=ho(h;(c)) bolds. Third, the remaining parts
of the two composites are the same. Hence, the two composites are isomorphic, which implies that they are equivalent.

Therefore, the two original rules commute. O
Example 5.2: The following two rules commute with each other.

PO (x’y7z) - Pl (u7y7z) A Q (x’}’)

PO (x’yvz) - P] (xayav) AR (Z,)’)

Both composites are equal to the rule below.

Py (x,,2) = Pr(w,y,v) AQ (z,9) AR (x,y)

The o-graphs of the two rules are shown in Figure 5.3.

:Q(y>Q OQ_RM

X y z

<

ry ra

Figure 5.3: o-graphs of commuting rules satisfying the condition of Theorem 5.1.

Note that the condition of Theorem 5.1 is satisfied by the corresponding ¢.-graphs. |
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Unfortunately, as the following counter-example shows, the condition of Theorem 5.1 is not necessary for com-

mutativity.
Example 5.3: The following two rules also commute with each other.

Py (x,y) — P (,w) A Q (x)

Po(x,y) =P uv) AQ ) A Q )

Both composites are isomorphic to the rule below.

Po (x,y) = Pr(u) AQ () AQ W) A Q (x)

The o-graphs of the two rules are shown in Figure 5.4.

w
y v U
x € T>Q Q —Q
x y
ry ro

Figure 5.4: o-graphs of commuting rules not satisfying the condition of Theorem 5.1.

Note that in this case, the condition of Theorem 5.1 is not satisfied. O

5.2. A Necessary and Sufficient Condition

We are not aware of any necessary and sufficient condition for commutativity of rules of unrestricted form that is
computationally or aesthetically better than the condition of the definition of commutativity. In this section, we show
that the condition of Theorem 5.1 is necessary and sufficient for commutativity if we restrict our attention to range-
restricted rules, i.e., every variable in the consequent appears at least once in the antecedent as well, with no repeated
variables in the consequent and no repeated nonrecursive predicates in the antecedent. The second restriction is
enforced after all equalities have been eliminated from the antecedent. Before proceeding with the proof of the theorem,

we need the following lemmas.

Lemma 5.1: Consider two rules r, and r, with no repeated variables in the consequent that commute with each
other. Let x be a distinguished variable, with & (x)=x" and &, (x)=x", such that both x” and x” are distinguished. Then,

one of the following holds:
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(a) both i;(x”) and ho(x") are distinguished and A, (x")=h,(x"), i.e., h1(ho(x))=ho(h1(x)), Or
(b) both k;(x"") and h,(x") are nondistinguished.

Proof: Assume that the two rules have the following form:

rl: PO(X,"'):"’P](X’,"')/\"',
rat Po(n - )=Prl A

The two composites are

riras Po(x, o) =Prlgp&™), - )n -,

rary: Po(x, o) = Prlga&), - )A -
Since x” and x” are distinguished, by definition, g15(x") = h;(x”) and g5 (x") = ho(x"). If h,(x") is distinguished, due to
the homomorphisms that have to exist between the two composites, it must be £, (x”) = ho(x"), which also implies that
ho(x’) is distinguished. On the other hand, if ;(x”) is nondistinguished, due to the homomorphisms between the two

composites, 2,(x") must be nondistinguished also.
]

Lemma 5.2: Consider two rules 7, and r, with no repeated variables in the consequent and no repeated nonrecur-
sive predicates in the antecedent that commute with each other. Let {x;}, 0<k<n+1, be a set of distinguished variables
such that A1 (x)=xg41, i.e., B (x0)=x41, for 0<k<n, and x, appears in a nonrecursive predicate Q. Then, one of the

following holds:

@  holxp)=xp, 0<k<n+1, or

®)  hy()=Xgsr, ie., B5T (xg)=xg41, for 0k <n, and x appears in a nonrecursive predicate Q in .
Proof: Let h,(x;)=yi, 0<k<n+1. The relevant parts of r; and r, are given below. We include a nonrecursive

predicate Q in 75, but we shall examine both cases, when it exists and when it does not. The two different instances of

Q will be distinguished by superscripts.

rii Po(xo, X ) = Pr(ey, s )AQ g, ) A e,
rat Polo, e ) =P 00, ) AQE ) A
Composing the two rules we have
SRR Po(xo,“”1xka"‘)3“1’1(8120’0),"',gu()’k)a"')/\Ql(xo,"‘)/\Qz(gxz(z)"")/\“’7

rary: PO(XQ"..!'xk'.'"'-):_PI(Y17."5yk+l’.")AQIOO?...>AQ2(27..')A te
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Examining the two composites we distinguish two cases. If Q does not appear in r, (i.e., if we ignore Q 2y, in
order for the two composites to be equivalent, it has to be yo=xy. An easy induction on k shows that y,=x, ie.,

hz(xk)zxk, for all Ok <n+1.
Basis: For k=0, it was just shown that y 3=x,.

Induction step: Assume that the claim is true for some Osk<n. We shall prove it for k+1. By the induction
hypothesis, it is y,=x,. Hence, g12(yi)=g12(xx)=h1 (xx)=xz+1. (The second equality is due to x; being a distinguished
variable, whereas the last one is by the definition of {x;}.) Due to the homomorphisms that must exist between the two
composites in order for them to be equivalent, the instance of P, in ry7, must map to the instance of P; in 7,r; and

vice-versa. Comparing the two, we conclude that y ., = x,; (because x;,;, k<n, is a distinguished variable).

If Q appears in r,, then one of z or y, must be equal to x4. If yo=x,, we have just shown that h,(x,)=x;, for all
0sk<n+1. If z=xg, then since z is distinguished, by definition it must be g12(2)=g12(x0)=h1(x¢)=x;. Since the two
composites are equivalent, the necessary homomorphisms between them imply that yo=x;. Again, an easy induction on

k shows that y,=xp,y, i.€., Ao (xX)=x; 41, for all 0<k <n.
Basis: For k=0, it was just shown that yy=x,.

Induction step: Assume that the claim is true for some 0sk<n—1. We shall prove it for k+1. By the induction
hypothesis, it is yg=xz41. Hence, g12(0)=8 12(xx41 )= 1 (Xp41)=Xps2. By definition, since k+2<n+1, Xy is distinguished.

Hence, comparing again the two instances of P; in rr, and r,r;, we conclude that y;.; = Xg.s.
In both cases, whether r, contains Q or not, we have shown that one of (a) or (b) holds. 0

Theorem 5.2: Two range-restricted rules r; and r, with the same consequent and no repeated variables in the
consequent and no repeated nonrecursive predicates in the antecedent commute if and only if every distinguished vari-

able x satisfies one of the following:

(a) xisfree l-persistentinr, orrs,

(b) xislink 1-persistent in both r;, and 75,

(¢) xisfree n,-persistent, n;>1, in ry and free no-persistent, n,>1, in r5 and 7, (A2 (x))=hy(h; (%)),

(d) xis link n-persistent, n>1, or general and belongs to equivalent augmented bridges in both r; and r,.

Proof: Recall that we assume that the two rules have the same consequents and share no nondistinguished vari-

ables. The "if" direction of the theorem follows from Theorem 5.1.
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For the other direction of the theorem, assume that 7, and r, commute. We show that for a distinguished variable
x of 1, one of (a), (b), (¢), or (d) holds in r,, depending on the type of x. Since the theorem is symmetric in r and r,,
the variables in r, are not examined. We always consider x being the first distinguished variable in the consequent, and

we only write down the parts of the rules that are relevant to the proof. Also, unimportant variables will be denoted by

(i) x is a free 1-persistent variable: This simply states that (a) holds.

(ii) x is a link 1-persistent variable: In this case, x appears at least twice in the antecedent of r;. Since the rules
are range-restricted, this implies that there exists a set of distinguished variables {x;}, 0<k<n-+1, such that A (xy)=x¢41,
0<k<n, with x=x,=x,,1, and such that x, appears in a nonrecursive predicate Q. If this is not true, then there must exist
repeated variables in the consequent of r;, which is a contradiction. Applying Lemma 5.2 for x=x,, yields %, (x,)=x, or

ho(x,)=X,41. Since x=x,=x,,;, this implies that in all cases &, (x)=x, i.e., x is 1-persistent in 7, ((a) or (b) holds).

(iii) x is a free n-persistent variable, n>1: Since the rules are range-restricted, if x is not a free m-persistent vari-
able , m=>1, in r,, then there exists a set of distinguished variables {y,}, 0sk<n-+1, such that 2, (y;)=Yg41, 0k <n, with
X=Y,41, and such that y, appears in a nonrecursive predicate Q in ,. By Lemma 5.2, this implies that either x=h; (x) or
x=h* (y0) and y, appears in a nonrecursive predicate Q in7;. In the first case, x is a 1-persistent variable in r, and in
the second case, x is a link [-persistent, / >1, or general variable in r;. In both cases, this is a contradiction, since x is a

free n-persistent variable, n>1, in ;. Hence, x must be a free m-persistent, m=1, variable in r, also.

If m=1, i.e., it is free 1-persistent ((a) holds), then x satisfies the theorem. Otherwise, x is free m-persistent, m >1,
in r,, and we have to show that & ;(ho(x))=ho(h(x)). Since x is a free persistent variable in r; and r,, by definition,
h1(x) and h,(x) must also be free persistent variables in r; and r, respectively (h;(x) is part of the same component as x
inr;). The argument in the previous paragraph can be applied in the case of 4,(x) also and yield that s, (x) is a free per-
sistent variable in r; as well. Hence, h;(x), h,(x), and k,(h,(x)) are distinguished variables. By Lemma 5.1, k(A (x))

is also distinguished, and 2 ,(h; (x))=h,(h>(x)), i.e., (c) holds.

(iv) x is a link n-persistent, n>1, or general variable: Again, since the rules are range-restricted, this implies that
there exists a set of distinguished variables {x;}, 0<k<n+1, such that i, (x;)=xz1, 0k <n, with x=x,.;, and such that x
appears in a nonrecursive predicate Q in 7;. By Lemma 5.2, this implies that either x=h,(x), i.e., that x is 1-persistent in
75, or x=h%*1(x,), and x, appears in a nonrecursive predicate Q in 75, i.e., that x is link persistent or general in r,. We

examine the two cases separately.
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If x is 1-persistent in 75, we shall show that it cannot be link 1-persistent, i.e., it must be free 1-persistent. Assume
to the contrary that x is link 1-persistent in r,. From case (ii) for r,, we conclude that x is 1-persistent in 1, which is a

contradiction. Hence, x must be free 1-persistent in 7, ((a) holds).

If x is link persistent or general in 7, we shall show that it belongs to an augmented bridge that is equivalent to the
augmented bridge to which it belongs in r;. Recall that we examine the case where A, (x;)=xy.1, for all 0sk<n, which
implies that h,(x;)=ho(x;). Since x=x,,; is an arbitrary link n-persistent, n>1, or general variable in its augmented
bridge, we can conclude that for any such variable z in that bridge, either both k,(z), h,(z) are distinguished and
h1(z)=h,(z), or both k,(z), h,(z) are nondistinguished, i.e., the structure of 4 for the augmented bridges of zin r; and r,
is the same. Hence, if we assume that the two angmented bridges are not equivalent, there must be some nonrecursive
predicate connected (through a series of nonrecursive predicates) to a link m-persistent, m >1, or general variable in the
bridge in r; that is not connected through the same series of nonrecursive predicates to the same distinguished variable
in the bridge in r, (or vice-versa). Without loss of generality, assume that x is such a distinguished variable. Also
without loss of generality, assume that %, (x)=h,(x)=y is a distinguished variable, and that only nondistinguished vari-
ables appear in the nonrecursive predicates connected to x (except x). The other cases are treated similarly. This situa-

tion is depicted in the following two rules.

rii Po(x, o) =Py, )AR(021) AR(21,22) - AR, (Zm2:Zm 1) AR ZpogszZm) A 0
ryt Po(x, - ) =P ) AR(x2') A R,(z"1,2%) " AR (Z g2 ) A

Composing the two rules results in the following:

riry Po(x, o) =P, ) AR (32" ) ARR(Z1,2) AR (2,2 m1) A
Ri(x,21) AR(z1,22) " AR (Zme2:2m-1) ARG (Zme1,Zm) A 200,
rarir Po(e, o) =Pr( ) AR1(3,21) AR2(z1,22) ~ AR 1(Zm2,2m-1) AR (Zin1,2m) A
Ri(x,2'1) ARy(2'1,2"2) = ARp (@ .2’ ma) A -
Clearly, since y#x (x is not 1-persistent), the two composites are not equivalent, and r; and r, cannot commute, which is
a contradiction. Hence, the assumption that the two augmented bridges to which x belongs in r, and r, are not

equivalent is wrong, i.e., (d) holds. (!
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5.3. Complexity

In order to show the complexity of testing the condition in Theorem 5.2, we first need to discuss the complexity of
finding the bridges in a graph with respect to a subgraph and that of testing equivalence of range-restricted two rules
with no repeated variables in the consequent and no repeated nonrecursive predicates in the antecedent. We discuss the

two problems separately.

Identifying the bridges of an undirected graph with respect to a subgraph is very similar to identifying biconnected
components in the graph [Aho74]. The two problems have the same complexity. In particular, the complexity of identi-

fying bridges is given by the following lemma, which is provided without a proof.

Lemma 5.3: Identifying the bridges of an undirected graph with respect to a subgraph can be done in O (n+e)

time, where e is the number of edges and » is the number of nodes in the graph.

The complexity of testing equivalence of two rules with no repeated variables in the consequent and no repeated

nonrecursive predicates in the antecedent is addressed in Lemma 5.4.

Lemma 5.4: Testing equivalence of two range-restricted rules with no repeated variables in the consequent and no
repeated nonrecursive predicates in the antecedent can be done in O (plogp+a), where p is the maximum number of

predicates in the antecedents of the two rules and a is the total number of argument positions in those predicates.

Proof: Since the rules contain no repeated nonrecursive predicates, if they are equivalent, they have to be iso-
morphic. Moreover, every predicate in the one rule can map to only one predicate in the other. Thus, equivalence can

be tested as follows:

(1)  Test if the set of predicates in the antecedents of the rules are the same. This can be done by first sorting the two

sets, and then examining the predicates pairwise, traversing the two sets in order; this takes O (p logp) time.

(2) Define f such that, for any pair of literals Q(x;, ---,x,) in the antecedent of r; and Q(y;, - -.y,) in the
antecedent of 7o, f (x;)=y;. If fis 1-1 (and onto) and x;=y; when x; is distinguished, then f is an isomorphism
between the two rules, which are thus equivalent. Otherwise, they are not equivalent. This step takes O (1) time

for every variable instance, i.e., argument position, in the antecedent of the rules. Thus, this step takes O (a) time.

Adding the time complexities of steps (1) and (2) yields that the total time complexity of testing equivalence of rules that

satisfy the restrictions stated in the lemma is O (p logp+a). O
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Theorem 5.3: Commutativity of two range-restricted rules with no repeated variables in the consequent and no
repeated nonrecursive predicates in the antecedent can be tested in O (n logr + a, + a,,) time, where a, is the number of
argument positions of the recursive predicate, a,, is the total number of argument positions in the nonrecursive predi-

cates, and » is the maximum number of nonrecursive predicates in the rules.

Proof: The algorithm has the following steps.

(1) Identify the type of every distinguished variable (i.e., free 1-persistent, link 1-persistent, free n-persistent,
n>1, link n-persistent, n >1, or general), and then identify the bridges of the underlying undirected graphs
of the a-graphs of the two rules, The quantity a, + a,, is an upper bound on both the nodes and the arcs in
the graph. Hence, by Lemma 5.3, this step can be done in O (g, + a,,) time.

(2) For every link 1-persistent variable in the one rule, check if it is 1-persistent in the other. This step takes
O (1) for every link 1-persistent variable, for a total time of O (a,).

(3) For every free n-persistent variable, n >1, in the one rule, check if it is free m-persistent, m =1, in the other.
In addition, for every such variable x, test whether A, (h,(x))=h,(h,(x)) or not. This step takes O (1) for
every free n-persistent variable, n>1, for a total of O (g,) time.

(4) For every link n-persistent, n>1, or general variable in the one rule, check if it is free 1-persistent in the
other. If itis, do nothing. This step takes O (1) for every such variable, for a total of O (a,) time. If itis
not, check if it belongs in an equivalent augmented bridge in the other rule. Because the rules contain no
repeated variables in the consequent and no repeated nonrecursive predicates in the antecedent, by Lemma
5.4, equivalence of all the relevant bridges can be tested in O (n logn-+a,+a,) time,

The total complexity is given by the sum of the total times for steps (1), (2), (3), and (4), which is equal to

O (nlogn + a, + a,). O

6. SEPARABILITY AND RECURSIVE REDUNDANCY REVISITED

In Section 3, we examined commutativity vs. separability and recursive redundancy as expressed in the abstract
form of the algebra to obtain results that hold for any linear rules. In this section, we restrict ourselves to function-free,
constant-free, and range-restricted rules and use our results from Section 4 to obtain more relationships of commutativity

with separability and recursive redundancy for this class of rules.

6.1. Commutativity vs. Separability

Separable rules were defined as follows ¥ [Naug88]. Two rules r; and r, with the same consequent are separable

if

¥ The definition given in this paper can be easily extended to multiple rules (in accordance to the original definition [Naug88]). For presentation
clarity, however, we restrict ourselves to two rules.
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(1)  For any distinguished variable x, either A;(x)=x or A;(x) is nondistinguished, i=1,2.

(2) For any distinguished variable x, either both x and A;(x) appear under nonrecursive predicates in r; or
none, i =1,2.

(3) The sets of distinguished variables that appear under nonrecursive predicates in r; and r, are either
equal or disjoint.

We ignore a fourth clause that the original definition contained, since it is nonessential for the correctness of the
separable algorithm. For the case of two rules, one can take advantage of the efficient features of the separable algo-

rithm only if in clause (3) the intersection of the sets of distinguished variables that appear under nonrecursive predicates

inr, and r, is empty. With this assumption, we can prove the following lemma.

Lemma 6.1: If two range-restricted rules r, and r, with the same consequent are separable, then they only con-
tain 1-persistent and general variables. Moreover, any link 1-persistent or general variable in 7, is free 1-persistent in r,

(similarly for the variables of r,).

Proof: Condition (1) of the definition of separable rules states that for any variable x, either A;(x)=x or h;(x) is
nondistinguished, i=1,2. In the first case, x is 1-persistent in r;, whereas in the second one, x is general. If x is link 1-
persistent or general in one of the rules, say r;, x must appear under some nonrecursive predicate in r;. Otherwise, there
must exist another distinguished variable y, such that A (y)=x, which contradicts condition (1) of the definition of separ-

able rules. Hence, by condition (3), x is free 1-persistent in 7,. O
Combining Lemma 6.1 with Theorem 5.1 yields the following theorem.
Theorem 6.1: If two rules are separable then they commute, but the opposite does not hold.

Proof: If two rules r, and r, are separable, by Lemma 6.1, every variable is free 1-persistent in ry or r,, i.e., it

satisfies condition (a) of Theorem 5.1. Thus, by Theorem 5.1, the two rules commute.

The rules of Example 5.2 serve as examples of commutative rules that are not separable. They violate both condi-

tion (2) and condition (3) of the separable definition. [
By Theorem 6.1, commutativity is a strictly more general notion than separability. Nevertheless, by Theorem 4.1,

all the efficient processing algorithms for separable rules are applicable for commutative rules as well.

6.2. Commutativity vs. Recursive Redundancy

Until now, we were exclusively dealing with the bridges of o-graphs with respect to the subgraph induced by the

dynamic arcs connecting each link 1-persistent variable in the graph with itself. In the study of recursive redundancy,
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however, an important role is played by the bridges of the a-graph of a rule with respect to the subgraph induced by the
dynamic arcs connecting any link persistent variables in the graph (not only 1-persistent ones). A necessary and
sufficient condition for a nonrecursive predicate in a rule of some restricted form to be redundant was originally given by

Naughton [Naug89a]. Using a different terminology, that condition is expressed in the following theorem.

Theorem 6.2: [Naug89a] A nonrecursive predicate in a rule with no repeated variables in the consequent and no
repeated nonrecursive predicates in the antecedent is recursively redundant if and only if it appears in a uniformly
bounded augmented bridge of the o-graph of the rule with respect to the subgraph induced by the arcs connecting its link

persistent variables.

We shall give a different necessary and sufficient condition that shows the relationship between commutativity

and recursive redundancy. For that, we need the following lemmas.

Lemma 6.2: " Every uniformly bounded rule with no repeated variables in the consequent and no repeated nonre-

cursive predicates in the antecedent is torsion.

Proof: Consider a rule r that satisfies the conditions of the lemma. By definition, this implies that there are k>0
and ©>0 such that r***<r¥, i.e., there is a homomorphism f from r* to r¥**. Moreover, as Naughton has pointed out

[Naug89b], for the class of rules defined in the lemma, we can find k>0 and T>0 such that ¥ and 7*** are of the form

rk: ba,

k+t

rett: bqa,

where a, b, and g are conjunctions of predicates that mutually share no nondistinguished variables. Naughton showed
that there is a homomorphism f :r*—r*** such that f (b)=b and f (a)=a [Naug89b]. Consider r**?*. Clearly, it can be

written in the form

rk+2‘t: b qq,a,
where ¢ is isomorphic to ¢’. The properties of @, b, and g in r* and 7***, and the isomorphism of ¢ and ¢’ guarantee that
no nondistinguished variable is shared between any two of a, b, g, and ¢’. Based on this and the existence of f, we can

define two homomorphisms fy:r*t*—r¥*2% and f,:r*+*° 57 a5 follows:
1 2

* Similar results are easily provable for the class of recursions examined by Ioannidis [Toan85].
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fi@@)=a.f1(b)=b,f1(q)=q
f2(@)=a.f2(b)=b,[2(9)=4.f2(q")=q

rk+2’c

The existence of f; and f, imply that r**% = , 1.e., that r is torsion. |

In the following, for a given rule » (corresponding to some operator A) and L>1, I is the set of the link persistent
variables in r (4), G; is the subgraph of the o-graph of r (4) induced by the dynamic arcs connecting the variables in /,

and G¥ is the subgraph of the o-graph of ¥ (AL) induced by the dynamic arcs connecting the variables in I as well.

Lemma 6.3: Let A be an operator corresponding to a rule with no repeated variables in the consequent and no

repeated nonrecursive predicates in the antecedent.

(@ Forall L>1,11is the set of link persistent variables of A,
(b)  There exists L>1 such that all variables in I are link 1-persistent in A~

Proof: Part (a) is obvious. For (b), clearly, any link L, -persistent variable x in A is link 1-persistent in Al

Choose L=lcn{1{Lx}, the least common multiple of {L,}. Itis easy to see that all link persistent variables in A are link 1-
xe
persistent in AL, and that no other variable satisfies that (because of (a)). [l

Lemma 6.4: Let A be an operator corresponding to a rule with no repeated variables in the consequent and no
repeated nonrecursive predicates in the antecedent. Consider L>1 as defined by Lemma 6.3 (b). A bridge in the o-

graph of A with respect to G, generates one or more bridges in the o-graph of AL with respect to G¥.

Proof: Consider two arcs (z;—z,) and (w;—w,) in the a-graph of A that belong to different bridges with respect
to G;. Let (z;"—>z,") and (w;’—>w,’) be the arcs generated by (z;—>z,) and (w;—w,) respectively in A%, k>1. If
(z1"—z,") and (w,’—w,") are not connected in the o-graph of A¥, then vacuously they belong to different bridges with
respect to G¥. If they are connected, the walk that connects them must correspond to a walk that connects (z;—>z,) and
(w;—w,) in the a-graph of A, which by definition passes through at least one link persistent variable x of A, since the
two arcs belong to different bridges. Thus, the walk connecting (z,"->z,") and (w,—w,") must pass through at least
one of the variables that replace x in A’, for some [ <k. Since x is link persistent, however, it is only replaced by link per-
sistent variables as well. Thus, the walk connecting (z;"—z,") and (w, "~»w,") must pass through one of those variables
as well. In the o-graph of A%, all those variables are link 1-persistent. This implies that (z;"->z,") and (w;"—w,")

belong to different bridges with respect to G¥. O

We can now proceed to the main result of this subsection. (Without loss of generality, we assume again that all

operators have the same domain and range, so that the product of any pair of them is well defined.)
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Theorem 6.3: Let A=B C be an operator corresponding to a range-restricted rule with no repeated variables in the
consequent and no repeated nonrecursive predicates in the antecedent. Then, B is recursively redundant in A*=(B o) if
and only if B is uniformly bounded and there exist L =1 and an operator D that is independent of B (i.e., it depends only

on C) such that

A*=BtD=D B*.
Proof: By Lemma 6.2, if B is uniformly bounded and the corresponding rule contains no repeated variables in the
consequent and no repeated nonrecursive predicates in the antecedent, B is also torsion. Thus, the if part of this theorem

is given by Theorem 4.2.

For the only if part, assume that B is recursively redundant. By Theorem 6.2, the nonrecursive predicates in B
belong to a set of uniformly bounded augmented bridges in the o-graph of the rule with respect to G;. Let Iy (Io) be the
distinguished variables in the bridges of B (C) excluding those in /. Thus, i/l forms the set of all distinguished
variables, whereas INp=Iz\[-=I-I=. The a-graph of B can be constructed as follows: in the o-graph of A, keep the
augmented bridges containing the nonrecursive predicates of B (i.e., its parameters) unchanged, remove all remaining
arcs, and introduce dynamic arcs so that the remaining distinguished variables (/) become free 1-persistent. Clearly, B
is uniformly bounded. By Lemma 6.3, there exists I,=1 such that all link persistent variables in A are link 1-persistent in
AL, Moreover, by Lemma 6.4, BX (excluding the free 1-persistent variables of /) corresponds to some set of aug-
mented bridges in the o-graph of A% with respect to GF. Let D be the operator that corresponds to the set of the remain-
ing augmented bridges in the o-graph of AL, The o-graph of D can be constructed as follows: in the o-graph of AL,
remove all arcs from the (nonaugmented) bridges that correspond to B, introduce dynamic arcs so that their dis-
tinguished variables (/) become free 1-persistent, and keep the rest of the graph unchanged. By the way D was defined,
AL=B% D. Moreover, the distinguished variables in I or in I are free 1-persistent in at least one of BX and D, whereas
those in I are link 1-persistent in both B and D. Thus, by Theorem 5.2, B and D commute. This implies that for
range-restricted rules with no repeated variables in the consequent and no repeated nonrecursive predicates in the

antecedent, the condition of Theorem 4.2 is necessary and sufficient for recursive redundancy. I

Example 6.1: Let A be the operator corresponding to the rule

P (w.x,3,2) — P (x,w,x,u) AQ (x,u) AR (x,9) AS (1,2).
The a-graph of A is shown below:
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Figure 6.1: o-graph of rule with recursively redundant predicates.

The roles of B and C are played by the following rules:

B P (w,x,y,2) = P (x,w,x,2) AR (x,y),

C: P (w,x,y,2) = P (w,x,y,u) AQ (w,u) A S (1,2).

Clearly, A=BC and B is uniformly bounded (it has no nondistinguished variables). The nonrecursive predicate R is
recursively redundant according to Theorem 6.2 and its augmented bridge with respect to Gy is enclosed in dotted boun-
daries in Figure 6.1. Theorem 6.3 is satisfied for this example for L=2. The rules corresponding to operators A%, B2,

and D are shown below:

A?: P (w,x,3,2) =P Wx,w, Y AQ W u Y AR W, x) AS (', u) AQ (x,u) AR (x,9) A S (1.2),
B2: P (w,x,y,2) :— P (w,x,w,2) AR (w,x) AR (x,)),
D: P w.x,9,2) =P wx,7,u) AQ W, u YA S (" ,u) AQ (x,u) A S (u,z2).

Again, one can verify that A2=B2D. The o-graphs of B? and D are shown below:

B2 D

Figure 6.2: o-graphs of commuting rules B2 and D,
where A=BC, A%?=B2D, and B is recursively redundant.

Variables w and x are link 1-persistent in both B2 and D, whereas 7y is free 1-persistent in D and z is free 1-persistent in
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B?. By theorem 5.2, B% and D commute, i.e., Theorem 6.3 is satisfied. O

7. CONCLUSIONS

We have investigated the role of commutativity in query processing of linear recursive rules. Using the algebraic
structure of such rules, we have identified commutativity as the essence of many properties that give rise to important
classes of recursive rules, i.e., separable rules and rules with recursively redundant predicates. For separable rules, in
particular, we have shown that commutativity is a strictly more general notion than separability, while it still allows the
efficient separable algorithm to be applicable. Focusing on rules that contain no functions and no constants, we have
given a sufficient condition for such rules to commute. We have also shown that the condition is necessary and
sufficient when the rules are range-restricted and contain no repeated variables in the consequent and no repeated nonre-

cursive predicates in the antecedent. In that case, the condition can be tested in polynomial time in the size of the rules.

Commutativity emerges as a key property of linear recursive rules for which efficient algorithms can be applied.
This paper is a first step in the investigation of its power. We believe that there is much more work to be done in this
direction. Some problems we plan to study in the future are the following: characterize commutativity in more general
classes of rules than the one studied in this paper; investigate the relationship of commutativity and one-sided recursion;
investigate the relationship of commutativity and several optimizations proposed for the magic sets and counting algo-
rithms (e.g., there seems to be a strong relationship between commutativity and the semijoin optimization [Beer87]);
examine ways to take advantage of partial commutativity, i.e., when the transitive closure of a product of operators is to
be computed, only a subset of which are mutually commutative; and examine ways to take advantage of commutativity

appearing in some higher power of an operator.
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