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Abstract. This paper concerns a characterization of the finite perturbation property of a convex pro-
gram. When this property holds, finite perturbation of the objective function of a convex program leads to
a solution of the original problem which minimizes the perturbation function over the set of solutions of the
convex program. This generalizes an important property of least norm solutions of linear programs which
plays a key role in powerful algorithms for solving large sparse linear programs. It also generalizes a finite

termination property of the proximal point algorithm.
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1 Introduction

The motivation of this work comes from the desire to extend the finite perturbation prop-
erty of linear programs[7] to convex programs. This property, which is naturally possesed
by linear programs, plays an important role in the iterative solution of very large-scale lin-
ear programs|4, 2] and in the finite termination of the proximal point algorithm for linear
programs[8]. Basically, this property consists of the equivalence of minimizing a convex func-
tion on the solution set of a linear program to the problem of minimizing a perturbation
of the objective function of the linear program by any sufficiently small positive multiple of

the same convex function.

The paper is organised as follows. In Section 2 we derive an equivalence for the finite
perturbation property under assumed differentiability of the functions concerned. Section 3
generalizes these conditions to a nondifferentiable setting.

We shall be concerned principally with the convex programming problem
miriierg.ize f(z) (1)

where f is a lower semicontinuous, convex function defined on IR®, having values in R
and S is a closed, convex set in IR®. We write S for the optimal solution set of (1), S:=
arg minges f(z) and assume this set to be nonempty.

The notation we use is for the most part standard. The following partial list is provided
for the reader’s convenience. Superscripts are used to distinguish between vectors, e.g., z!,
22, etc. and (,) is used to denote the inner product. If K is a cone, then we define the polar
of K, by K° = {z* € R*| (x*,x) < 0,Vx € K}. If C is a convex set, then ri C is the relative
interior of the set C, N(z | C):= {z* € R*| (x*,c —x) < 0,Vc € C} is the normal cone to
Cat z € Cand T(z|C):= N(z|C)® is the tangent cone to C' at = € C'. For f:IR*— IR,
f convex, 0f(z) is the subdifferential of f at z,

Of(z):={z*| f(2) = f(z) + (z", 2 — 2} }
The symbol ||| denotes the 2-norm. For a real number A, A, denotes max{A,0}.
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2 TFinite perturbation with differentiability

We begin with a simple result which relates a solution of a finitely perturbed nonlinear
program to a solution of the original problem which minimizes the perturbation function.

Note that no convexity is needed here.

Lemma 1 Let S € IR®, f:IR* = R and assume § # S:= argmin,cg f(z). Let :IR* — R
and suppose ) # argminges 0(x). If

z € argmin f(z) + €d(z) Vee (0,¢
z€S

then & € argmin, g 0(x).
Proof Consider the following well-defined problem which is the equivalent of mingez 6()

minimize 0(z)

subject to  f(z)< f, z €S
where f: = minges f(z), and consider the associated exterior penalty function problem
min{e@(:c) +(f(z) = F+lz € S'} = min{e@(m) +(f(x)-f)l=z e S}
By assumption Z solves this penalty problem for all € € (0, €. Hence, by [5, Theorem 2.5]
zeS, f(z)<fando(@) <min{f(z)|z €S, fle)< F}
Hence & € argmin,z0(z). §

We now show that a solution of a finitely perturbed differentiable convex program is also
a solution of the unperturbed problem with a linearized objective function around any of its

solution points and which minimizes the perturbation function.



Theorem 2 Let f:IR* — R, : R* — IR, g:IR* — IR™ be convez and differentiable on IR™
and let S:= {z| g(z) <0} and  # S: = argmin,eg f(z). If

z € argmin f(z) + €0(z)  for some € >0 (2)
T€S

and § # int S: = {z | g(z) <0} then
z € argmin {6(z) | (Vf(#),z — 3) <0, g(z) <0}
for any & € S.
Proof By the Karush-Kuhn-Tucker conditions for (2), there exists u(e) € IR™ such that

)

Vf(z) + eVO(z) + u(e) Vg(Z)
(u(e), 9(2))

9(z)

u(e)

Ve € (0, € (3)

il
o o o o

AVARR VAN

By Lemma 1, Z € argmin,z 0(z). Hence Z € S and by [6, Theorem 1], V f(z) = Vf(£) and
(Vf(z),z) = (VF(£),2). But (3) are also the Karush-Kuhn-Tucker conditions for

min {6(c) | (Vf(Z),z — &) <0, g(z) <0} =min{f()| (Vf(2),z-2) <0, g(z) < 0}
Since 6 and g are convex, it follows that
z € argmin {0(z) | (VF(#),z — 2) <0, g(z) <0}
which is the result required.

We establish a sort of converse to Theorem 2 by showing that if Z minimizes the pertur-
bation function over both the solution set of the unperturbed convex program and over a

linearization of the convex program, then Z is also a solution of the finitely perturbed convex

program.



Theorem 3 Let f:IR* — IR, g:IR* = IR™ be conver and differentiable on IR™, let 0:IR™ —
IR be strongly convez and differentiable on IR™ and let

S:={z|g(z) <0}, S:=argminf(z) and z = argmin 0(z)

€S z€S

Define
LS(@): = {z] 9(z) + Vg(&)(x ~ 7) < 0}

Assume

7 = argmin {0(z) | (Vf(z),z — z) <0, =z € L5(Z)} (4)

and that S satisfies a constraint qualification. Then
% = argmin f(z) + €f(z) Ve € (0,€
€S

Proof It follows from # € S and the constraint qualification that

(Vf(z),z—2) >0 VzelS(z)
and hence that

Invoking [7, Theorem 4] we see that for all € € (0, €], for some & >0

= argmin (V f(%),z — &) + 0(z)

z€LS(z)

argmin {O(w) s € LS(3)

(VF@),e —Z) <0 }

Tt follows by (4) that Z is the unique solution of the last problem above, for € € (0, ). Since
z € S C LS(z) we have

T = a,rgn;in (Vf(z),z—z) +eb(z) Vee(0,¢
z€
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Since S satisfies a constraint qualification, Z and some u(e) satisfy the Karush-Kuhn-Tucker

conditions for this problem, namely

V(2) + eVO(z) + u(e)TVg(z) = 0
e o@) = 0| . c0.q

g(z) < 0

u(e) > 0

But these are precisely the Karush-Kuhn-Tucker conditions for
minierglizef(m) +ef(z) Vee (0,8

Hence Z € argmin, g f(z) + €f(z), for € € (0,€].

For the case when the feasible region is polyhedral, it is possible to combine the necessary
conditions for the finite perturbation property (Lemma 1 and Theorem 2) and the sufficient

condition (Theorem 3) into the following necessary and sufficient condition.

Theorem 4 Let the definitions of Theorem 3 hold with g being linear on IR®. Then
7 = argmin f(z) + ef(z) Vee (0,€
€S

if and only if

T = argensl;inQ(:c) = argmin {0(z) | (Vf(8),z —2) <0, z€ S5}

where & is any point in S.

We give the following application of Theorem 4 to the one-step temination of the proximal

point algorithm.

Theorem 5 Let f:IR* — IR be convez and differentiable on IR, let g: IR® — IR™ be linear
on IR, let ¥ € IR® and let

S:={z|g(z) <0}, 0#£S:= ara%ér}qinf(m)
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Then

z= argér;in f(z) + % “m - mﬂuz Ve € (0,€

if and only if

T = argmin ”:1; - :z:ouz = argmin {Hw - mOH2 | (Vf(£),z—2%) <0, z€ S}
z€S

where & is any point in S.

3 Finite perturbation without differentiablilty

In this section we generalize the results of the previous section to the nondifferentiable case.
We first give some elementary lemmas which will be needed in the proofs of the following

results.

Lemma 6 If S is convex and x € S then

N(z|8)=N(z|z+T(z]|S))

Proof
z*e N(z|S) < €Nz | 8)° = z°€T(z]|S)
«— (2*,u) <0, forallueT(z|S)
e (¢5,2—2)<0, forallzez+T(z|S)
> z*eN(@Ez|z=T(z|5))
L}

Lemma 7 Let A, B be convez sets and let © € A(\B. Then

N(z | A)+ N(z | B) C N(z | A(\B)



Proof Let u € N(z | A), v € N(z | B), then 0 > (u,z—=z), for all z € A and 0 >
(v,z — z), for all z € B so that

0> (u+v,z—2z) forallze ANB
giving u +v € N(z | AN B) as required. ¥
The following result extends Theorem 2 to the nondifferentiable case.
Theorem 8 Let f:IR® — IR and 6:IR® — IR be convexr functions. Suppose § # S:=

argmin,es f(2). If

T € argmin f(z) + ef(z)  for some e >0 (5)
z€S

then
z € argmin{0(z)| (v*,z2 - ) <0, z€z+T(z|95)}

for some v* € 0f(%).
Proof

(5) == 0€df(z)+ed0(z)+ N(Z|S)

= 0€v*+ed0(z)+N(Z|S5) (for some v* € 9f(Z))
= 0€%L+80(z)+N(@|S)
= 0€00(z)+L +N(E|z+T(z]|S)) (by Lemma 6)

=> 0€00(Z)+ N@ | {z| (v',e—2) <0} +N@|z+T(z]5))
(since & € N(z | {z| (v*,2 — 2) <0}))
= 7 cargmin{f(z)| (v,z—-2) <0, z€z+T(Z|S5)} (by Lemma 7)

The following lemmas are needed in the proof of Theorem 11 and their proofs are found

in the literature.

Lemma 9 ([1, Theorem 2.3]) Let A, B be convex sets with A C B. Let z € riA and
y€ A. Then N(z | B) C N(y | B).



Lemma 10 ([6, Lemma 1a]) Let S = argmin,g f(z), where S is a convez subset of IR®

and f:IR® — R is convex. Let z € 11 5. Then df(z) C Nye50f(y).

Using Lemma 10, we can define the effective subdifferential of f at z € S as

oft 0f (z): = () B5(y) # 0 (6)

yeS

The nonemptiness of eff 3f(z) follows from Lemma 10 and the nonemptiness of 11.5. We
now extend Theorem 3 to the nondifferentible case. In the theorem below, we assume that
T(z | S)is polyhedral. For the set given in the previous section, this is essentially a constraint

qualification, see for example the Guignard constraint qualification(3].

Theorem 11 Let f:IR® — IR be convez, let §: R™ +— IR be strongly convez and let S be a
convez set such that

S: = argmin f(z) and T = argmin 6(z)
z€S z€S

Assume that T(z | S) is polyhedral and
z = argmin {0(z)| (v, —2) <0, z€z2+T(z|5)} (7)

where
v  eeff of(z)(—N(z | S) (8)
Then

z = argmin f(z) + ef(z) Ve e (0,¢
zES

Proof We first prove the existence of a v* satisfying (8). Since § # 0 it follows that
11 S # 0. Therefore, take # € 1i .S so that by Lemma 10

eff 0f(z) = 9f(2)

Since # € 5 there is a v* € df(%) and z* € N(% | S) satisfying 0 = v* + z*. By Lemma 9,
z* € N(z | S) C N(z | S) so that v* satisfies (8). We take any v* satisfying (8).
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From the definition, —v* € N(Z | S) and hence by Lemma 6, —v* € N(z |z +T(z | 5)).
It follows that

(v',2—2) >0 forallzez+T(z|5)
so that
{z| (v*,2—3) <0, z€z2+T(z|95)} =argmin{(vz—-Z)|z€z+T(z]|5)}

Invoking [7, Theorem 4] we see that

(v, —Z) <0

zez+T(z|5)

argmin {H(w) } = argmin {(v',z —Z)+ eb(z) |z €+ T(z|5)},

and by (7), & is the unique solution of the last problem above for € € (0,¢]. Since 2 € S C
z+T(z|S) it follows that

T = argmin (v*,z — %) + ef(z) Vee (0,§
r€S

Therefore, for all € € (0,

0 € v'+ed8(z)+ N(z|S)
C 0f(z)+edb(z)+ N(z|S)
= O(f+ed)(z)+ N(@|5)

Therefore Z € argmin,cg f(z) + €f(z), for € € (0,€]. B
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