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Abstract

We have developed an algebraic framework for the study of recursion. For immediate linear recursion, a Horn clause is
represented by a relational algebra operator. We show that the set of all such operators forms a closed semiring. In this
formalism, query answering corresponds to solving a linear equation. For the first time, we are able to have the query
answer expressed in an explicit algebraic form within an algebraic structure. The manipulative power thus afforded has
several implications on the implementation of recursive query processing algorithms. We present several possible decom-
positions of a given operator that improve the performance of the algorithms, as well as several transformations that give
the ability to take into account any selections or projections that are present in a given query. In addition, we show that
mutual linear recursion can also be studied within a closed semiring, by using relation vectors and operator matrices.
Regarding nonlinear recursion, we first show that Homn clauses always give rise to multilinear recursion, which can always
be reduced to vector bilinear recursion. We then show that bilinear recursion forms a nonassociative closed semiring.
Finally, we give several sufficient and necessary & sufficient conditions for bilinear recursion to be equivalent to a linear
one of a specific form. One of the sufficient conditions is derived by embedding bilinear recursion in a linear algebra.

1 Some results of this work are contained in the paper "An Algebraic Approach to Recursive Inference”, which appears in Proc. Ist Inter. Conf. on
Expert Database Systems, Charleston, SC, April 1986, and in the paper "Transforming Nonlinear Recursion into Linear Recursion”, which appears in
Proc. 2nd Inter. Conf. on Expert Database Systems, Tysons Comer, VI, April 1988.

2 Partially supported by the National Science Foundation under Grant IRI-8703592.
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1. INTRODUCTION

Thus far, with few exceptions [Zani85, Ceri86, Ceri87], recursion in the database context has been studied under the
formalism of relational calculus, which is a subset of first order logic, rather than relational algebra. A possible explanation
is that in conventional database systems, where no recursion is allowed, relational algebra has proved to be neither a good
query language nor a useful representation for optimizing database commands (although some optimization techniques are
expressed in the algebra more naturally). Recent resuits, however, indicate that, with recursion, there are several cases
where relational algebra offers advantages over relational calculus. In particular, algebraic techniques have been used o
devise new efficient algorithms for recursive query processing [Toan86a], to study several properties of recursive programs
that allow transformations of such programs into more efficient ones [Ioan86b, [oan89], and to develop a firm algebraic
framework for query optimization by simulated annealing [Ioan87]. Most of the aforementioned resuits are hard and unna-
tural to obtain in a non-algebraic setting, if at all possible. The effectiveness of the algebraic approach is based on the abil-
ity it offers to express the query answer itself in an explicit form within an algebraic structure, which is absent in the logic-
based approach. Algebraic manipulation of the query answer is thus affordable, offering useful insights into specialized

properties and efficient processing strategies of recursive queries.

In this paper, we develop an algebraic theory for the study of recursion in Horn clause programs. In order to put the
results of this algebraic theory in perspective, we shall first provide an abstraction of the query optimization process ina
database system. Given a recursive Horn clause program (or any program for that matter) and a query on one of the rela-
tions defined by it, several ways exist that can be employed to answer the query. In principle, all the alternatives need to be
considered, so that in conjunction with statistical information about the database, the one with the best performance is
chosen. An abstraction of the process of generating and testing these alternatives is shown in Figure 1.1. This process can
be seen as having three stages: rewriting, ordering, and planning. For each alternative that is sent into some stage, multiple
. alternatives are produced in that stage and sent to the next (lower) one. Each stage can be seen as operating at a different
level of representation of the original program-query pair. Proceeding from the higher levels to the lower ones, the
representation becomes less abstract and more detailed. In real systems, the stages do not have so clear-cut boundaries as
in Figure 1.1, and even if they do, the process of generating all the alternatives may involve significant interaction between

them. Nevertheless, for our purposes, Figure 1.1 is an appropriate abstraction. The three stages are analyzed below.
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Figure 1.1: Query optimizer architecture.

Rewriting: This stage produces other program-query pairs that give the same answer as the original query on the ori-
ginal program. Some of the transformations that produce the alternative program-query pairs are applicable only if the ori-
ginal program-query pair has certain properties (modules 1 to N in Figure 1.1), and some are always applicable (modules
N+1 to M in Figure 1.1). For a transformation of the former type, the original program is first passed through a decision
module ("Cond_Tester" in Figure 1.1) that tests for the appropriate properties, and if it qualifies, it is then passed through a
rewriting module. For a transformation of the latter type, the original program is simply passed through a rewriting
module. In both cases, the rewritten program is sent to the next stage. If the transformation is known to always be
beneficial, the original program-query pair is discarded; otherwise, it is sent to the next stage as well. Needless to say that
some of the rewritten programs may qualify for further rewritting based on other properties, so this process may repeat
itself multiple times. This stage works at the declarative level. Horn clause programs are transformed into other ones, and
the transformations depend only on declarative, i.e., static, characteristics of the programs. The objects manipulated at this

stage are forrulas of logic, so it can also be characterized as working at the logical level.




4-

Ordering: This stage produces orders of execution of actions for each program-query pair produced in the previous
stage. All such series of actions produce the same query answer, but their performance may very well be different. If an
ordering is known to always be suboptimal, it is discarded; otherwise, it is sent to the next stage. This stage works at the
procedural level. It takes into account procedural characteristics of the programs, and produces algorithms for answering
the query. The objects manipulated at this stage are functions accepting data as input and producing data as output, so it

can also be characterized as working at the functional level.

Planning: This stage produces detailed execution plans for each ordered series of actions produced in the previous
stage. Each execution plan specifies what indices are used, what supporting data structures are built on the fiy, iffwhen to
eliminate duplicates, and other implementation characteristics of this sort. This stage works at the structural level. Tt
specifies the implementation of processing strategies at the level of data structures, and produces complete access plans.

The objects manipulated at this stage are physical entities, so it can also be characterized as working at the physical level.

The algebraic theory developed in this paper is used to study several properties of Horn clause program-query pairs
that lead to the realization of many alternative, often more efficient, query evaluation strategies. Some of these algebraic
properties are useful in identifying alternatives at the rewriting stage and some at the ordering stage (Figure 1.1). It should
be noted that, in this paper, we put the foundations of the algebra and only present the alternative evaluation strategies that
these algebraic properties imply. We do not discuss any decision algorithms for these properties, i.e., any algorithms for
the "Cond_Tester" modules of Figure 1.1. Such algorithms for some of the discussed properties appear elsewhere
[Ioan89]. Also, we do not discuss in any detail the implications of such properties on performance and whether it is always
beneficial to alter a program based on them. Partial results in that direction are also found elsewhere [Toan86a). Further

investigation of these problems is part of our current and future research.

This paper is organized as follows. Section 2 gives several definitions of algebraic systems that are encountered later
in the paper. In Section 3, we define the set of relational algebra operators we consider in the paper and show that it forms
a closed semiring. Section 4 formulates immediate linear recursion as an algebraic problem and shows how solving an
equation provides a query answer expressed in an explicit form. In Section 5, mutual linear recursion is formulated as an
algebraic problem by embedding linear systems of Horn clauses into the closed semiring of linear operator matrices. Sec-
tion 6 provides several examples of cases where algebraic manipulation of the query answer at the rewritting stage gives
computationally advantageous results. Section 7 does the same at the ordering stage. In Section 8, multilinear recursion is

studied within the nonassociative closed semiring of relation vectors. Section 9 provides several conditions for bilinear
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recursion to be equivalent to a linear one of a specific form, some of which, however, cannot be tested in finite time. Sec-
tion 10 embeds bilinear recursion into a nonassociative algebra and describes the derivation of one more sufficient condi-
tion for linearizability that can be tested in finite time. In Section 11, we compare the algebraic approach with the logic-

based approach and discuss the merits and limitations of the former. Finally, in Section 12, we summarize our results.

2. DEFINITIONS OF ALGEBRAIC SYSTEMS

Before investigating recursion from an algebraic viewpoint, we need some definitions from algebra. In the follow-
ing, any algebraic system with set S is represented by Eg. Also, for a system S on which a partial order < is defined, limits
of sequences are defined as follows. If T is a subset of S, then b is the least upper bound of T (denoted as sup T) if for all
xeT, x<b, and for any other ¢ satisfying x<c for all xe T, the inequality b<c must hold. The greatest lower bound of T
(denoted by inf T), if it exists, is defined similarly. For a sequence (x;}, xceS, we define its limit superior as
limx; = i:zfizgxk . Similarly, we define its limit inferior as limx; = sup 'z;rgxk. The sequence (x; } converges if and only if

ﬁ—nxk = limx,. In that case, the limit of [x; ) isl = limx, = limx,. This definition is extended to convergence of a series.

k
We shall say that a series {x;) converges if the sequence (y,=Y.x;} converges. In this case, the limit of the series is
i=l

denoted by ¥ x;.

i=l
Definition 2.1: A group is a system Eg=(S ,+,0), where § is a nonempty set and + is a binary operator on S, such that

foralla,b,ceS§ the following hold:

(1) S isclosed under +, i.e.,a + beS.

(2) The operator + is associative, i.e., (@ +b)+c =a +(b +¢).

(3)  Ois an identity element with respect to +,i..,a +0=0+a =a.

(4) For all elements in §, there is an inverse element in § , i.e., there exists b such that a +b=0.

If (4) fails to hold (there is no inverse element) then Eg is a monoid. If (3) and (4) fail to hold, then Eg=(S ,+) is a semi-
group. If the operator + is also commutative, i.e., a +b =b +a for all a,beS, then the above structures are called
abelian groups, monoids, and semigroups respectively.

Definition 2.2: A field is a system Eg=(S ,+,%,0,1), where § is a nonempty set, and + and * are binary operators on §,

such that the following hold:
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(S ,+,0) is an abelian group.

(S ;*,1) is an abelian monoid, and (S - {0} ,*,1) is an abelian group.
In addition, foralla, b, ceS§ the following holds:

The operation * distributes over +, i.e.,a*(b +c)=a*b +a*c and (b+c)*a=b*a +c*a.

Example 2.1: The system E g=(R,+,*,0,1), where R is the set of real numbers, and + and * the traditional addition

and multiplication is a field. 0

Definition 2.3: A vector space over a field F, is a system Ey=(V ,+,0.F ), where V is a nonempty set, + is a binary

operator on V, such that the following holds:

)

@
€)
@
&)

(V +,0) is an abelian group.
In addition, for all ve V and 0eF, an element v is defined in V, such that for all v, weV and o, BeF the follow-
ing hold:

ov+w)=0v+ow.
(e+B)yv=av+Bv.
a@v)=(@p)v.

lv=v.

In the last condition, 1 represents the unit element of F under multiplication.

Definition 2.4: An algebra over a field F, is a system Ey=(V ,++,0,F), where V is a nonempty set, + and * are

binary operators on V, such that the following hold:

M
@

©)
@

(V +,0,F) is a vector space.

(V ,*) is a semigroup.
In addition, for all u, v, weV and 0eF , the following hold:

The operation * distributes over +,i.e., u*(v +w) =u*v +u*w and (v +w)*u =v*u +wu.
alv*w)=(@v)w=v(aw).

If associativity of * fails to hold, then Es is a nonassociative algebra.

Definition 2.5: A closed semiring is a system Eg=(S +,+,0,1), where S is a nonempty set on which a partial order <

is defined, and + and * are binary operators on S, such that for all a, b, ceS§ the following hold:

)
@)
©)]

)

3

(S ,+,0) is an abelian monoid and the operation + is idempotent, i..,a +a =a.
(8 ,*,1) is a monoid and 0 is an annihilator, i.e., then a*0 = 0*a = 0.
The operation * distributes over +,i.e.,a*(b +c)=a*b +a*c and (b +c)*a = b*a +c*a.
on k
If g;e S, i 21, is a countably infinite set, the limit 3a; of the series Y a; exists, it is unique, and it is an element of

i=1 i=1

S. Moreover, associativity, commutativity, and idempotence apply to countably infinite sums.
The operation * distributes over countably infinite sums.
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If associativity of * fails to hold, then E; is a nonassociative closed semiring. If 1 does not exist, then (S ,+,*,0) is a closed
semiring without identity. Finally, if an additive inverse exists for all elements of §,i.e., if (§,+,0) is an abelian group, then
Eg isa closed ring.

Example 2.2: The following system is a closed semiring: ({false,true} LOR,AND false true) [Aho74]. a

Inductively, the powers of an element a of a closed semiring may be defined as:

a’=1, a"=a""*a =a=*a™"!, for all n>0.

Likewise, the transitive closure of a, denoted by a ", is defined as

a’ = ia".
i=0

Note that property (4) of closed semirings guarantees the existence of a’ in §. Also note the similarity between the
definition of a closed semiring and a path algebra [Carr79, Rose86]. The only difference is that a path algebra does not
necessarily satisfy properties (4) and (5).

Definitions 2.1 to 2.4 can be found in any standard text on algebra [Hers75]. Closed semirings have been defined
elsewhere as well [Aho74, Eile74]. Our definition is the one used by Aho, Hopcroft, and Ullman [Aho74], but it is slightdy
different by being more precise in the definition of the limit of a series. Finally, some researchers have given a less general
definition of closed semirings, which requires the existence of a separate transitive closure operator instead of the existence
of the limit of all countable series [Back75,Lehm77]. Although this less general definition is adequate for our work, we

nevertheless decided to adopt the more general one.

3. CLOSED SEMIRING OF LINEAR RELATIONAL OPERATORS

Consider a fixed, possibly infinite set C. A database D is a vector D = (CpU{ERROR LR ,.R ), where CpcC is
a (possibly infinite) set, ERROR & C)p, and for each 1<i<n, R, cCj is a relation of arity a;. The implications of allowing
infinite relations in D will be discussed later. Each element of R is called a muple. Without loss of generality, we assume
that the constants in the database are typeless, and so a relation scheme is defined as a relation name together with a rela-

tion arity.

t All relations appear in bold.



-8-

Relational algebra was introduced by Codd to formally describe the operations performed on relations in a database
system [Codd70]. This paper focuses on a subset of the operators originally proposed. We are interested in the set

§ = (x, 0,, m,) of relational operators, where each operator is defined as follows:

X:  Cross product of relations.

o,: Selection of wples in a relation satisfying some constraint ¢ of the form ‘‘columnl op column2” or
“column op ¢, ceCp, with ope (=2,>,5,<]).
m,: Projection of a relation on a subset of its columns in some order specified by p.

Several other interesting relational operators can be expressed using the ones in §. Natural join, denoted by p<, is
equal to a cross product followed by an equality selection and elimination of the joined columns of one of the relations by
projection. For relations of the same arity, intersection is equal to a cross product also, followed by a series of equality
selections that compare corresponding columns of the two relations and cover all the columns of both relations, followed
by a projection on the columns of one of them. There are only two relational operators from the original proposal that are
not incorporated in this study, namely, division and set-difference. The significance of the exclusion of the latter from §

will become clear shortly.

Consider a database D = (Cp .R1,...R ,) and the set S of primitive relational operators for D . Each element of §
can be seen as a unary operator applied on some relation. This is obvious for selection and projection. For cross product,
one of the operand relations is designated as a parameter of the operator, so that the operator is applied on the other relation
alone. In this sense, an operator Ae S is a mapping A : 2% _, 2 The set 2 is the domain and the set 2% is the range of
A, ie., A takes as input relations of arity a and produces as output relations of arity 5. Operators with the same domain
are called domain-compatible and operators with the same range are called range-compatible. Likewise, if the domain of
an operator A is the same as the range of an operator B, then A is called dr-compatible to B (dr for domain-range).
Replacing every parameter relation in an operator by the corresponding relation scheme produces an operator scheme.
Clearly, the mapping from operators to operator schemes is many-to-one. In the absence of a cross product, however, an

operator coincides with the corresponding operator scheme.

Consider S=(x ,6,,%,}, the set of primitive relational operators for database D . The operator X in S is used to
represent all possible cross products, i.e., having as a parameter any possible relation in D Likewise, the operators G, T,
in S are used to represent all possible selections and projections, i.e., having as subscripts all possible ¢ ’s and p’s respec-

tively. In addition, because of the existence of operators in § that are not all appropriately compatible, we introduce a new

operator @ : L 2Co _y 7(ERROR}  The gperator  can be thought of as the error operator. Applied on any nonempty relation,
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it returns the relation (ERROR ). Applied on @, it returns O, i.e., @ = &. Note that ® is domain compatible with all
other operators, but it is range compatible with no other operator. With § as the basis set together with , the algebraic

system Ep = (R ,+,%,0,1) is defined as follows:

R The set of elements is defined as follows:
e IfAe Su{0,1,m} thenAeR.
e IfA,BeR then(A +B)eR.
e IfA,BeR then(A * B)eR.

e R is minimal with respect to these conditions.

+ For A,B domain- and range-compatible operators in R , addition is defined by (A + B)P =AP u BP. Otherwise,
A+B =
* For A,B operators in R with A dr-compatible to B, multiplication is defined by (A * B)P =A (B P). Otherwise,

A*B=a.

0 The operator O : i; 2C"’u[ {ERROR }) —> (D) can be applied on any relation and always returns the empty relation:
0P =0.

1 The operator 1: i; ZCf’u{ {ERROR }) — i;ZC"’u{ {ERROR }} can be applied on any relation and leaves the relation

unchanged: 1P =P.

Note that ®1=1w=0 and ®0=0w0=0. For notational convenience the multiplication symbol * is omitted.
Whenever AB P is used, with A, BeR and P a relation, it actually represents (A * B)P. Since + and * are associative, we
shall often omit the parentheses around them. In that case, we shall assume right associativity for them. Equality of rela-

tional operators (even outside of R ) is naturally defined through set equality as

A=B <> forall P, AP=BP.
Moreover, since + is associative, idempotent, and commutative, system Ep may be enriched in structure by a partial order

defined on R using set inclusion:

A<SB <> foral P, APCBP.
Evidently, with respect to this ordering, 0 is the greatest lower bound of R. To the contrary there is no least upper bound of

R. For the purpose of having a well defined notion of limit, we define a new operator
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u: Czc‘u[ {ERROR }} — {%C,S u (ERROR }}, which satisfies A<u, for all AeR. The operator u can be thought of as

i=l

the universal operator. Applied on any relation, it returns the set of all tuples of all arities on Cp, including the element

ERROR . Note that u is not a member of R , whereas 0 is.
Before proceeding in investigating the structure of Eg, some characteristic properties of the relational operators inR
are identified.

Definition 3.1: A relational operator AeR is linear if

(@) for all relations P, Q in its domain,A (P vQ)=AP UA Q, and
) AD=0.

Proposition 3.1: If AeR then A is linear.

Proof: Consider an operator AeR. The claim is proved by induction on k, which represents the number of times

addition and multiplication are applied on operators in § U{0,1,0} to form A.
Basis: Fork =0,AeSu(0,1,w}. It is simple to show that all these operators are linear.

Induction Step: Assume that the claim is true for all operators formed using up to k-1 multiplications and additions.
Let A be an operator that needs k such operations. The last operation is either addition or multiplication. Thus, A has one

of the following forms:

(i) A=B +C = A (PuQ)=(B +C)(PuQ)

= A PUQ)=BPLQ)LC PNQ) Definition of +
= APUWQ)=BPUBQ)U(ICPUCQ) Induction hypothesis
= APUQ)=BPUCP)UBQUCQ) Associativity of LU
=2 APUWQ)=B+C)Pu@B +C)Q Definition of +

= APUQ)=APUAQ.
A=B+C = AQ0=B+C)J
= A0=B2uCd Definition of +
= AD=0. Induction hypothesis
(i) A=BC = A(PQ)=BC)PQ)

= A (PUQ)=B(C PQ)) Definition of *
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= APUQ)=B{CPUCQ) Induction hypothesis
= APUWQ)=BCPUBCQ Induction hypothesis
= A PUQ)=APUAQ.

A=BC = A0=BC)JD

= AJ=B(CQ) Definition of *
= APZ=BQJ Induction hypothesis
= ADd=0. Induction hypothesis
In both cases, A is proved to be linear. |

Hereafter, unless otherwise mentioned, the term "relational operator” réfers to a linear relational operator.

Definition 3.2: A relational operator is monotone iff for all relations P, Q inits domainP cQ = AP cA Q.
Proposition 3.2: If a relational operator is linear then it is monotone.

Proof: PcQ =PuAQ=Q = AP uAQ)=4AQ = APUAAQ=AQ =APCAQ. a

Propositions 3.1 and 3.2 ensure that all operators in R are both linear and monotone. To the contrary, set-difference,

which has been excluded from the set of primitive relational operators S, is neither linear nor monotone.

Proposition 3.3: Let A, B, C,D R be appropriately compatible relational operators, i.e., the result of any addition

or multiplication is not . The partial order defined on R enjoys the following properties:

(@) A<A+B

b) A<B <> A+B=B

€ A<SB=A+C<B+C

(d A<B,C<D,andA,B are monotone => A C <B D

Proof: The proofs of these properties are straightforward and are omitted. For (d), Propositions 3.1 and 3.2 ensure

that all relational operators under consideration are monotone. O
Definition 3.3: A relational operator is product-only if it can be formed by applying only multiplication to elements
of Su{0,1,m}.
With the exception of 1,0, and ®, any product-only operator AeR can be brought into the following canonical form:
A =m,0,,0, - Ou(QX),ie, having no 0, 1, or @ as factors. If we denote A by A =B, -+ BBy Byyy - B, this

can be achieved as follows:
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. For all 1<k<n,if By =1,thenA =B, -+ Bg1Bryy = Bs.
° For all 1sk<n,if By =0, thenA =0.
e  Forall 1<k<n,if B, = w, and for all 1<j<n, B;#0, then A = o, otherwise A = 0.

Hence, with the exceptions of A being equal to 1,0, or @, A can be written as a product of projections, selections, and cross
products. Moreover, associativity and commutativity between such operators allow the projections and selections in A 0
be moved to the left and the cross products to be multiplied together to produce a single cross product with a larger relation,
bringing A into the canonical form A =1, G,1 G5 - * * O (QX). (For some operators, the projection, or the selections, or
the cross product may be missing.) In the sequel we assume that all such operators (and operator schemes) are expressed in

this canonical form.
Before proceeding with the theorem that algebraicaily characterizes Eg , we need to prove the following two lemmas.

Lemma 3.1: There exists a finite set of canonical operator schemes, such that any product-only operator A is equal

to an operator corresponding to a scheme in that set. t

Proof: Let A : 2% 52 be in the canonical form A =1, 0,102 ' Og (QX). Let QcCh. The arity ¢ of Q and
the number of selections k can be arbitrarily large. We shall show that A is equal to an operator in canonical form
A'=1,0,10,7 ** Ggnr(QX), with Q’cC§’, such that both the arity ¢’ of Q” and the number of selections k* are less
than certain upper bounds (which depend on a and b only). The following series of steps in the given order construct A’

from A. In every step we show what happens to the set of selections and what happens to Q.

(@) All selections between two columns of Q or a column of Q and a constant are applied on Q, producing a new rela-

tion, and then are removed.

(b) For each column col of the domain of A and each operator op, consider the following set of selections: {(col op
col;): col; is a column of Q that does not appear inp } u {(col op c;): c;eCp }. All the selections of this set involve
the same column of the domain of A, the same operator, and columns of Q that do not contribute to the range of A or

constants. Each such set is treated differently depending on the specific op .

(b1) If op is =, equality selections among the columns of Q {col;} and between these columns and the constants
(c;} are applied on Q, the columns of Q in the qualifying tuples are replaced by a single column col’ con-

taining the value of the original columns and constants (there is only one), and the set of selections is

t These operator schemes may involve relation schemes that are not present in the original database.
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replaced by a single selection of the form (col = col ).

(b2) If op is <, the columns of Q are replaced by a single column col * containing the minimum value of the origi-
nal columns and the constants {c; }, and the set of selections is replaced by a single selection of the form (col

< col”). (The same applies if op is £.)

(b3) If op is >, the columns of Q are replaced by a single column col’ containing the maximum value of the origi-
nal columns and the constants {c; }, and the set of selections is replaced by a single selection of the form (col

> col”). (The same applies if op is 2.)

(c) All columns of the original relation Q that do not contribute to the range of A are removed.

The rest of A remains unchanged. It is straightforward to verify that A” constructed as above is equal to A. An
upper bound on the number of columns of Q” can be derived as follows. Because of (c), the only columns of Q that are
kept in Q” are those that contribute to the range of A. In addition, columns in Q * are created only in (b), one for each pos-
sible column in the domain of A and each possible op. Thus, there are at most b columns of Q kept in Q” and there are at
most 5a new columns created in (b) (5 operators and a columns in the domain of A). Hence, the arity ¢’ of Q' is at most
5a+b. An upper bound on the arity of Q implies an upper bound on the number of selections that can be applied on the
cross product of Q” and the operand relation, because no selection with a constant has remained in A’. With 6a+b total

number of columns and 5 op’s, there are at most (6a-+b )? pairs of columns and at most 5(6a+b )2 possible selections.

We have shown that A’ has a bounded arity for Q’, a bounded number of selections, and a bounded number of pro-
jected columns (b to be exact). Hence, we may conclude that there is a finite number of possible schemes for A’. This

implies that any product-only operator can be reduced to one from a fixed, finite collection of schemes. a

In the proof of Lemma 3.1, note that if Cp is finite, there is only a finite number of relations that correspond to the
scheme of Q’, and therefore, there is only a finite number of operators that correspond to the same operator scheme.

Hence, there is a finite number of operators with finite relations from a given domain to a given range.

Lemma 3.2: A countable sum of operators of the same scheme in canonical form is equal to a single operator of that

scheme, whose parameter relation is the union of the relations of the individual operators.
Proof: The truth of the lemma can be seen by exchanging the roles of the domain of the operators and their parame-

ter relations in the cross product. From A = ¥ A, with Q, the parameter relation in the cross product of A, , this exchange
£=0
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produces B (\_JQ). The operator B has the domain of the operators (A, } as the parameter relation of its cross product. It
k=0

is known that A Q. is well defined, so suppose it is equal to Q. Reversing again the roles of the domain and the parameter

relation yields a single operator, which is equal to A, it has the same scheme as all the operators (A}, and it has Q as the

parameter relation of its cross product. a

We now proceed to the following theorem, which characterizes the algebraic structure of the system of linear rela-

tional operators Eg .
Theorem 3.1: The system E; = (R ,+,*,0,1) of linear relational operators is a closed semiring.

Proof: The proofs of properties 1, 2, and 3 of Definition 2.5 follow directly from the definitions of + and *. For

points 4 and 5, let {A; } be a countably infinite set of operators in R. If some A;, A; are not domain-compatible or they are

not range-compatible, or if some 4; is equal to ©, then lim 3’ A; = ®, The proof is straightforward given the definition of

B30z

limit. It makes use of the fact that u is the least upper bound of R and 0 is the greatest lower bound of R. For this patho-

logical case, points 4 and 5 of Definition 2.5 clearly hold.

Assume that all the operators (A;} are domain- and range-compatible (without any being equal to ®) and in canoni-
cal form. By Lemma 3.1, we conclude that all these operators are equal to ones whose schemes belong to a finite set R, .

By Lemma 3.2, we conclude that the sum of all operators of the same scheme is equal to a single operator. Hence,

n
A = lim Y'A; is equal to the sum of a finite set of operators, whose schemes belong to R Therefore, A is well defined

i T
and it is a member of R. Since A is equal to a finite sum of operators, points 4 and 5 of Definition 2.5 are easy conse-

quences of the definitions of + and *. ]

Note that multiplication with the set-difference operator does not always distribute over addition; if d is set-
difference and A, B two other operators then d (A + B)=d A +d B does not always hold. Including d in R would make

Eg not to be a closed semiring.

Since Ej is a closed semiring, the definitions for the n -th power and the transitive closure of a relational operator A

that is dr-compatible to itself follow directly:

A=A *A* --- *A (n times ),
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with A®=1 and

A" =Y Ak
k=0
An interesting question is whether Ey is a richer system than a closed semiring. Specificly, it would be computation-

ally advantageous if Eg were a closed ring. Unfortunately, the answer is negative.
Proposition 3.4: The system Eg = (R ;+,*,0,1) defined above on the relational operators R is not a closed ring.

Proof: In order for Eg to be a closed ring, every relational operator must have an additive inverse, i.., for every
AeR another operator BeR must exist such that A + B =0. It suffices to find one operator in R that lacks an additive
inverse. The multiplicative identity 1 serves this purpose. Assume that there exists an operator -1 such that 1 + (-1) = 0.

Then, for any nonempty relation P,

(1+C-1)P=F = Pu(-1)P =0,

which is a contradiction, since P was taken to be nonempty. a

4, IMMEDIATE LINEAR RECURSION

Consider a range-restricted linear recursive Hom clause of the form

PEMNAQEM A -+ AQea®) > PGE*), @1
where P is a derived relation, and for each i, Q; is a relation stored in the database and x’ is a vector of variables. It is
range-restricted because we require that every variable in x**" appears among the variables of x), 0<i<k. It is recursive
because P appears in both the antecedent and the consequent. It is linear because P appears only once in the antecedent.
(The dual use of *‘linear’” for a recursive Horn clause and for a relational operator in R will be justified in Proposition 4.1.)
Note that we make no assumptions about the relations being finite. This allows a non-range-restricted Hom clause to be
represented by a range-restricted one of the form in (4.1), by introducing infinite relations in the antecedent. It also allows
arithmetic functions (e.g., addition) to be represented by infinite relations. (Clearly, such functions are directly evaluable
and they are not explicitly stored.) In addition, constants can be represented by introducing singleton relations in the

antecedent. Thus, the form of (4.1) is general, and every linear recursive Horn clause can be expressed in it.

Such a Horn clause can be expressed in relational terms as follows: Let P, {Q;] be relations, PcCj, and
F@®,{Q;]) be a function on P, f:2C3->2C5. Then, (4.1) takes on the form f(P.{Q;)) <P, or equivalently

P uf(P,(Q;))=P. In addition to (4.1), consider a nonrecursive Horn clause of the form
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Q&) - P Q).

The problem of recursive inference can be stated in relational form as follows: Given fixed relations Q ,Q i,...,Q ; and func-

tion f, find P such that

@ fE@JQDcP
i QgP
(iti) P is minimal with respect to (i) and (ii), i.e., if P* satisfies (a) and (b) then P < P".

Conditions (i), (ii) and (iii) are equivalent to the following ones:

A) Quf@,Q;h=P
(B) P is minimal with respect to (A), i.e., if P’ satisfies (A) then P ¢ P’

Our goal is to find P that satisfies (A) and (B).

Proposition 4.1: Consider a function f (P,{Q;}) on P, where f 26 526 g>1. The function f represents a linear

recursive Horn clause of the form (4.1) iff it corresponds to a linear relational operator in R .

Proof: For every recursive Homn clause of the form (4.1), there is a unique underlying nonrecursive one that
corresponds to it, which is a conjunctive query [Chan77]. Every conjunctive query can be expressed as a composition of
projections, selections, and cross products and vice versa [Chan77]. Therefore, a function f, having {Q;} as parameters

and P as input, corresponds to a linear recursive Horn clause of the form (4.1) iff it corresponds to a linear operator in R . J

By Proposition 4.1, the established algebraic framework can be used to define the problem of recursive inference.

Consider a linear recursive Horn clause that corresponds to a linear operator A , so that

AP cP.

Consider some constant relation Q that is either stored or produced by some other nonrecursive Horn clause, so that

QcP.

The relation defined by the Hom clause is the minimal solution to the equation

P=APuQ. 42
Presumably, the solution is a function of Q. We restrict our attention to functions that correspond to operators in R.
Hence, P is written as P =B Q, BeR, and the problem becomes one of finding the operator B. Manipulation of (4.2)
results in the elimination of Q, so that the equation contains operators only. In this pure operator form, the recursion prob-

lem can be restated as follows: Given operator A , find B satisfying:
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(a) 1+AB =8B 4.3)
(b) B is minimal with respect to (a), i.e., 1+4 C=C = B<C.
Theorem 4.1: Consider equation (5.3a) with restriction (5.3b). Its solutionis A" .

Proof: It has already been mentioned that AeR, so it is linear and monotone. The system Ej is a closed semiring

(Theorem 3.1). Thus, A * exists and is unique for any A. First, A" is a solution of (5.3a):

1+AA" =1+A(1+A+--)=1+A +A%+--- =A".
The second equality is due to the property that multiplication distributes over countable sums. Second, A” is indeed the

minimal solution (least fixpoint) of 1 + A B =B. That is, for all operators B that satisfy (5.3a), A" <B. This is shown by

induction on the number of terms in A" = FA*.
k=0

0
Basis: Forn=0, 3 A* =1, and from (5.3a) and Proposition 3.3a, 1 <B.
k=0

Induction Step: Assume that Y A* <B for some n 20. Then

k=0
n R
TA*<B => A TA*<AB Proposition 3.3d
k=0 k=0
R
= 1+A YA¥<1+AB Proposition 3.3¢
k=0
n+l x
= YA"<1+AB Closed semiring properties
k=0
A+l
= YAk <B. : From (5.3a)
k=0

So, foralln 20, ZA" <B. Since the sequence (of the partial sums) is upwards bounded by B and is monotone, its
k=0

limit A" is also bounded by B. Hence, for any B satisfying B =1+A B,A" <B,and A" is the least fixpoint of (5.3a). [

Theo—rem 4.1, originally due to Tarski [Tars55], has been used in the study of the semantics of logic programs exten-
sively [VanE76, Apt82]. In the database context, it was first examined by Aho and Ullman [Aho79]. It is the first time
though that the solution of (4.3) is expressed in an explicit algebraic form within an algebraic structure like the closed
semiring Ex. One can now algebraically manipulate the query answer, which is represented by A" possibly multiplied
with other operators also, e.g., selections and projections, and study its behavior. Some of the implications of the manipu-

lative power thus afforded are discussed in Sections 6 and 7.
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5. MUTUAL LINEAR RECURSION

Until this point we have concentrated on immediate recursion. However, the above algebraic framework can be
extended so that it can be applied to the cases where mutual recursion exists as well. Without loss of generality, we assume
that all relations that are not derived recursively are stored in the database, i.¢., they are not produced by some nonrecursive

Hom clause.

Definition 5.1: Consider a set of Horn clauses, and let {P,P,,...,P,} be the relations in the consequents of its ele-

ments. The set of Horn clauses is called linear iff each Horn clause has at most one of {P 1,P»,....P,} inits antecedent.

Example 5.1: The following system of mutually recursive Horn clauses is linear:

Qxz)ATEy)>Pxy)
POy x)->Pxy)
P@zx)AS(zz.y)—>Qkxy)
R(x,y) - Qx.y).
To the contrary, the next one is not, because of the presence of both P and Q in the antecedent of the first Horn clause.
Pw.2)AQxz2)AT(Ey)->Pkx.y)
POy x)->P(kxy)
Pzx)AS(z,zy)—>Qxy)

R(xy)—>Qx.y). a

Note that this definition of linear is different (more restrictive) from the one given by Bancilhon and Ramakrishnan
[Banc86a]. That definition includes systems that are not linear. In particular, it includes systems that can be decomposed
into component linear systems. These can be solved in such an order that the relations produced by one component
become parameters to the next one. We believe that a more precise term for such a system is piecewise linear, and we use

the term linear according to Definition 5.1 [Cosm86].

Consider a linear system of mutually recursive Horn clauses defining relations P,,P 2P 5. Each Hom clause is
represented algebraically using a linear operator in R. Thus, a system of n equations is generated with n unknown vari-
ables P,P,,....P, and is solved as an ordinary linear system. The interaction between the Horn clauses can be arbitrarily
complex as long as the resulting system is linear. The possibility of immediate recursion is not excluded either. The sys-

tem produced is sufficiently general to give the solution for the relations concerned.
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Example 5.2: Consider the most general case for two relations P; and P, that are defined by both immediately
recursive and mutually recursive Homn clauses in a linear way. With A, B, C, and D being the appropriate linear operators

in R, the situation is represented by the following linear system:

P1=A PluB PZUQI

P2=CP1UDP2UQ2. 0

Define M, (R) as the set of nxn matrices, n 21, whose entries belong to the set of linear relational operators R . Note
that for any such matrix, all the operators in a column are domain-compatible and all the operators in a row are range-

compatible. With M, (R) as its set of elements, the system Ep, gy = (M, (R ),+,*,0,1) is defined as follows:

+ IfA =[A;;], B = [B;;] are two matrices in M, (R ), then addition is defined by A + B = [4;; + Bj;l.

* IfA =[A;], B = [By;] are two matrices in M, (R ), then multiplication isdefined by A *B =[3 AuBy;].
k=1

The matrix Q has all its elements equal to 0.

The matrix 1 has all its elements equal to 0, except the ones on the principle diagonal, which are equal to 1.

[l [~

Similarly to the situation for simple operators, the multiplication symbol * is omitted.
Theorem 5.1: System Ey, gy = (M, (R ),+,*,0,1) is a closed semiring.

Proof: It is known that matrices over a closed semiring form a closed semiring [Aho74]. Since Ej is a closed semir-

ing, one can conclude that Ey, z) is also a closed semiring. .|
Powers of matrices are defined as

A"=A*Ax - *A (mtimes),

with A® = 1, and the transitive closure of a matrix is defined as
A" =Y A%
k=0
Consider a linear system of equations like the one of Example 5.2. Using elements of M,(R), we can write it in
matrix form as

P=AP ©Q, (5.1
where P_is the vector of unknown relations, Q is the vector of stored relations, and addition © for relation vectors is

defined as
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P ®P =P, uP P2uP’, P, UP%)

Since both Ex and Ey(z) are closed semirings, the minimal solution to (5.1) can be found in exactly the same way as that
of @.2)andisP.=A" Q.

Example 5.3: Consider the linear system of Example 5.2. Written in matrix form it is equal to

HREEINE!

-pgfR

Solving the system yields

The individual solutions for P and P, are:

P,=(A+BD"C) BD'Q;vQy)

P,=D +CA"B) (CA"Q;uQ). |

The importance of the algebraic formulation of the problem should be emphasized at this point. Until now, few peo-
ple have dealt with mutual recursion in its full generality. The methods proposed for processing queries on relations
defined by a complex recursive system of Horn clauses tend to be complicated and in some cases incomplete [Hens84].
The power of the algebraic tools lies with the fact that the solution for arbitrarily complex linear systems can be expressed
in a concise way. Algebraic manipulations of this solution generate multiple equivalent expressions, some of which may
be more efficient than the straightforward implementation of the original solution. Such optimization is virtually impossi-
ble in the absence of an explicit representation of the solution, due to the complexity of the corresponding processing algo-

rithms. The level of complexity that one faces should become more clear with the following example.

Example 5.4: Consider the case of three mutually recursive relations, with no immediate recursion for any of them.

The linear system representing the situation is

P, 0 Az Al [Py Q.
Pyi=1A21 0 Ax| [Py © |Qg.
P3 A31 A32 0 P3 Q3

Solving for P, for example, yields the solution

Pi=lAn+AAn)AriAn) Ay +Ap+ApAn)Andn) An 1 Q,
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where relation Q is equal to

Q=Quv@n+AndnAnin) Qruds+ApAn)dndn) Qs
The expression is long. Nevertheless, it represents a complete solution of the linear system for P,. This was hard to
express before, if at all possible. a

6. ALGEBRAIC TRANSFORMATIONS OF LINEAR RECURSION AT THE REWRITING STAGE

In this section, we shall give several examples of cases where algebraic manipulation of an explicit representation of
the query answer yields computationally advantageous results. The results presented here affect the rewriting stage of
query optimization (Figure 1.1). The first subsection presents decompositions that are applicable to A * for a linear operator
AeR that has the form A =B +C. The second subsection presents decompositions that are applicable to A" when A has
the form A =B C. The third subsection presents replacements of A* with transitive closures of other operators. The final

subsection presents transformations of the product of A" with other operators, primarily selection and projection.

All the optimization results presented in this section depend solely on the algebraic properties of closed semirings.
Hence, the results can be generalized to mutual linear recursion as well, by simply using linear operator matrices in place
of linear operators. Moreover, unless explicitly restricted to operator schemes, all results in this section hold for both

operators and operator schemes.

6.1. Decompositions of (B+C)’

Theorem 6.1: Let A =B + C. If there exist & and [ such that

C B <B* (!, (6.1)
and either ke {0,1} or [ {0,1) !, thenA" = (B+C)" =B" C".

Proof: Clearly, A® = (8 +C)" = ¥°(B +C)'. This means that
i=0

A= Y B'CPBBCH..-BRCR (6.2)
iIJh e h\l-=0
Consider an arbitrary term D =B*C/B“C/*--- B=C’. Assume that C B <B* C', with ke (0,1} (the case of /< (0,1} is

handled similarly). We shall prove by induction on n=i,+:--+i, that D <B!C’, 720, where I =i, if k=0, or

t The condition of Theorem 6.1 can be easily tightened to C B S(14+8)C" or C B $B” (14C). For operator schemes, the two conditions are
equivalent [Sagi80], whereas for operators, the tighter condition is strictly more general. Similar comments apply to Theorems 6.2 and 6.3. We have
chosen to describe the less general condition for ease of presentation.
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[=n=ipt- -+ ifk=1
Basis: Forn=0,D =ChC/*--. Cl= = /i ¥ which is already in the desired form, with /=0.

Induction Step: Assume that the claim is true for some n 20. We shall prove it for n+1. We distinguish two cases,

k=0and k=1.

k=0 If ji+jg+ ' +jmy=0, then D is already in the desired form. Otherwise, D can be written as
D =(B"C’*---B*™)BC’*. By the induction hypothesis, we have that D < B"C’BC’=, with J#0. Applying
(6.1) with k=0 yields D <B"C’~'C' C’=, which proves our claim.

k=1 Again, if j,+jot+ - * +jm-1=0, then D is already in the desired form. Otherwise, D can again be written as
D =(B"C’---B*™"BC’=. By the induction hypothesis, we have that D <B"C’BC’, with J#0. The

result of applying (6.1) on the above formula J times is D <B™*'C'*/ C’=, which again proves our claim.

Hence, every term of the sum in (6.2) is < to a term of the form B/C’. For all I and J, the term B! C’ exists in (6.2)

already. Thus, (6.2) can be modifiedintoA” = ¥, B'C’ =B"C".
1=0J=0 ]

Corollary 6.1: If B and C commute, i.e.,B C =C B, then (B+C)’ =B" C" =C"B".

Note that Corollary 6.1 states that if B and C commute, then the separable algorithm is applicable [Naug88]. Further

elaboration on the relationship between commutativity and separability appears elsewhere [Ioan89].
Theorem 6.2: Let A =B + C. If there exist k and !/ such that

C B <B*C!,

and there exists p such that either B#=0 or C?=0, then A* = (B+C)’ =B*C".

Proof: If k <2 or | <2, Theorem 6.1 ensures the truth of the statement of this theorem as well. Assume that k=2 and
122. In (6.2), consider an arbitrary term D = B"C?'B#C/*--- BC/*. Assume that there exists p such that C?=0 (the case
of BP=0 is handled similarly). If m=1, then D is in the desired form. If not, this means that both j,21 and i,21. If j,=1,
i;=1, and m=2, i.e., if D is of the form D = B"CBC’*, then applying (6.1) yields D < B“B*C!C’, which is in the desired
form. Otherwise, either j;>2 or i,;>2 or m>2. In the first case, D is of the form D =D \C?BD,, where D and D, are
some product-only operators. In the second case, D is of the form D = D ,CB?D,. In the third case, applying (6.1) yields

either D <D ,C2BD,or D < D,CB*D,. We shall show that in all cases D=0. Equation (6.1) yields
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D,C*BD,<D,CB*C'D, and

D,CB™D,<DB*C'BD,<D,B*C'"'B*C'D,.
Replacing D (B*C'~2 by D in the latter expression yields D1CB*C'D,. Hence, whether j;22, or i222, or m >2, we have

shown that D <D ,CB*C'D,. Our goal is to prove that D,CB*C' D, =0. We shall achieve this by showing that

for all g, CB*C' <((B*C'-'y2B*C'2eCcBECE*), (6.3)
The formula to the right of < is well defined, since both k22 and /22. We shall prove (6.3) by inductionon g.

Basis: For g=0, (6.3) yields CB*C' < CB*C', which clearly holds.

Induction Step: Assume that the claim is true for some g 0. We shall prove it for g+1 by repeated applications of

6.1).

CBEC! < (BEC!-WY-2B:C!-2e CBC &+ Induction hypothesis
< ((BXCi-h2pECi-2p gkl pE-iC Applying (6.1) once
< ((BXC'TY2BE -2 gECi-IBk C!B*2CE Applying (6.1) twice
< ((BEC!T)-2BkCi-2e g Ci-lgkCi-igkclpE3c et Applying (6.1) three times
< ((BXCIhe-2BECi-g (BRI gECI BRI @I Applying (6.1) h times
< ((BECIY2BECI-2 (BECIY BRI C @Y Applying (6.1) k times

< (BECI-)2BkCI-2)8 (B CI-1)k-2gkCI-1 £ C 6+
< ((BECI-Y)F2BECI-28+1CBE C @+,

By taking an arbitrarily large g, we can construct arbitrarily high powers of C in C¢*?!. For a value of g that satisfies
(g+2)I2p, since C?=0, (7.3) yields that CB*C'=0, which in turn implies that D=0. Thus, considering all cases, either
D <B!C’, for some I J, or D=0. Hence, we may conclude thatA* = (B+C)* =B°C". ]

In Theorem 6.2, the meaning of BP=0 (C”=0) is that the data in the parameter relation of B (C) is acyclic.
Theorems 6.1 and 6.2 give sufficient conditions for (B+C)" =B"C". The next theorem gives sufficient conditions for
B+C) =B +C".

Theorem 6.3; Let A =B + C. If there exist k£ and [ such that

CB <B*or CB<C* (6.42)
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and
BC<B'orBC<C', (6.4b)
thenA* =(B+C) =B" +C".
Proof: Condition (64a) implies that the conditions of Theorem 6.1  hold Thus,
A" =(B+CY =B"C"=B" +C" +B" B C C". Assume that in (6.4b) it is B C <B' that holds (the other case is treated

similarly). Consider an arbitrary term of B* B C C",i.e., D =B‘C/,i,j21. We distinguish two cases:

I21: Clearly, (6.4b) implies that B'C/ < B-1H Ci71 < BF- 22 Ci2g ... <BHI-DI,

1=0: Similarly to the previous case, if i j then B'C/ < B~/ otherwise, if i<j then B'C/ <C/~.

In both cases, B'C/ is<toaterm of B* or C*. Thus, we may conclude that A" = (B+C)" =B" +C". |

The results of Theorems 6.1, 6.2, and 6.3 can be extended to sums of an arbitrary number of terms in straightforward
ways. Their importance lies with the fact that computing B* and C" scparately, and then either multiplying them or adding
them, has the potential of being significantly cheaper than computing (B+C )*. The main reason for this is that the latter

computation produces at least as many duplicates as the former, and often many more (the proof of this fact is omitted).

All three Theorems 6.1, 6.2, and 6.3 provide sufficient conditions for the corresponding decompositions to hold.
Clearly the theorems hold for both A, B, C being operators and A, B, C being operator schemes. Alternatively, the
theorems hold both when taking into account the database and when not. Theorem 6.2 is vacuously true for operator
schemes, since for an operator scheme B, B”=0 can only be true when B=0. Nontrivial and practical necessary conditions
for B +C) =B"C" or (B +C)" =B" +C" are hard to derive if B and C are operators. The following theorems give
necessary conditions for decompositions of operator schemes. Moreover, the condition of Theorem 6.3 for the second type

of decomposition, i.e., (B + C)" =B" + C", is shown to be necessary and sufficient.

Theorem 6.4: Consider operator schemes A, B, and C, such thatA =B +C. If A" =(B+C)’ =B" C", then there
exist k and | such that C B < B* C'.
Proof: Assume that A* = (B +C)" = B* C". This implies that (8 + C)" <B" C". Since we are dealing with

operator schemes, we can use the theorem of Sagiv and Yannakakis that every term of the sum (B+C)" must be < to a term
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of B* C* [Sagi80]. ' The operator C B isaterm in (8+C)". This yields that there exist & and / such thatC B < BC'.O

Theorem 6.5: Consider operator schemes A, B, and C, such that A =B +C. Then, A" = (B+C Y =B +C" iff

there exist k and / such that

CB <B*or CB <C*,

and

BC<B'orBC<C!,
Proof: The sufficiency of the condition for the decomposition is implied by Theorem 6.3. For the other direction,
assume that A° = (B+C)’ =B" +C". Again, we may apply the theorem of Sagiv and Yannakakis for the terms C B and
BC of (B+C)" [Sagi80]. This yields that there exist k and ! such that C B <B* or CB <C*, and BC <B' or

BC<C. O

6.2. Decompositions of (B C)"

Theorem 6.6: Let A =B C. If there exists k£ such that

CB=B*C} (6.5)

a-l
4

* &® hd (Zk
thenA* =(B C) = 3B = (™.
m=0

Proof: Clearly, A" = (B C)" = ¥ (B C)™. Consider an arbitrary term of the sum, D = (B C)™. We shall show by
m=0

(k)
inductiononm thatD =B = C™.

&l
Basis: Form=0,(B C)°=B* C°=B°C°=1.

Induction Step: Assume that the claim is true for some m > 0. We shall prove it for m+1 by an application of (6.5).

-t Py
] i

Tk
BCY*=B"= C™ = (BCY""'=BCB"™ C"

ER)
k‘

kY,
= (B C)m+l=BB =0 Cm+1

Induction hypothesis

Repeated applications of (6.5)

t Actually, the result of Sagiv and Yannakakis deals with finite sums only, but it can easily be generalized to countably infinite sums. In the sequel,
we shall refer to their result in the more general form.

% Similar results are obtained if C B =B C*.
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-
¢

Tk
= (B C)rﬂ«l-l =B CM""..

By the above induction, the claim is true for all terms of the sum of A", which is therefore equal o

el
i

. . m G
A"=@BCY=3%B"= C"
m=0 |

Corollary 6.2: If B and C commute, i.e.,B C =C B,thenA” =(BC)" = L B"C".
m=0

Proof: Replacing k=1 in Theorem 6.6 yields the desired result. 0

Note that Corollary 6.2 states that if B and C commute, the powers of B and C can be computed independently and
then the corresponding ones can be multiplied for the final result. The expectation is that computing the powers of B and
C separately will often improve performance, because B and C are likely to be operators that involve "smaller” relations
than B C, both in terms of the number of tuples and in terms of the arity. Investigation of the precise implications of such

decompositions on performance are part of our future plans.

Theorem 6.7: Let A=BC. If CB=BC and there exist K and N, K<N, such that BN =BX then

K-l N
A"=(BC) =3B "C"+(TB"C™)(CY ).
m=0 m=K

Proof: Since BX = BY, it takes an easy induction to show that

B™ =B™HW-K) for all K<m <N and all i20. (6.6)

The theorem is the result of the following transformations, which make use of (6.6):

K-1 i
A=BC) =YB"C"+ 3T B"C" Corollary 6.2

m=0 m=K
K-1 N-1 ~ )

=Y B™"C™ + ¥ B™ (T CmHEN) From (6.6)
m=0 m=K i=0
K-1 N-1 .

= Y B"C™ +(X B C™)(COY. O
m=0 m=K

With respect to operator schemes, Theorem 6.7 examines commutativity of B and C in conjunction with B being
torsion, which is a special case of uniform boundedness [loan85, Naug86]. It shows that, in such cases, the powers of B
and C can be computed separately, and for B, only a finite number of them is necessary, as in the case of computing B" .
Theorem 6.7 is related to the work of Naughton on recursively redundant predicates [Naug89a]. The relationship between

commutativity, uniform boundedness, and recursively redundant predicates is examined in detail elsewhere [Ioan89].
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6.3. Replacing A * with Transitive Closures of Other Operators
Theorem 6.8: Let A, B, C be linear operators. IfAB =B A andA C =B C,thenA” C =B" C.
Proof: We shall prove by induction on m>0 that A™ C =B™ C.
Basis: For m=0, the claim holds trivially.
Induction Step: Assume that the claim is true for some m 20. We shall prove it for m+1. We have the following:

A C =AA™C)=AB"C)=B™(AC)=B™*"C.
The second equality is by the induction hypothesis, the third equality is by commutativity of A and B , and the fourth equal-

ity is by the premise that AC=BC. From the above, we have that

A"C=Y@A"C)=YB"C)=B"C. O

m=0 m=0

Theorem 6.9: LetA =B C. Then,

A" =(BC) =1+B (CB) C. 6.7)

Proof: The following series of equations prove the theorem:
A*=(BC) =3 (BC" =1+ J(BC"=1+B (3 (CBY")C =1+B (CB)" C. a

m=0 m=l m=0

Expression (6.7) corresponds to a program that is equivalent to the original one corresponding to A". The significant
difference of the two programs is in the operator whose transitive closure is computed, namely (CB )" instead of (BC)".

Depending on what B and C are, the second algorithm may be more efficient.

6.4. Pushing Selections and Projections through A”

Theorem 6.10: Let A ,p be linear operators. If there exists another linear operator B such that

pAS<B p 6.8)
then pA”<B" p. If (6.8) holds with equality, then pA”=B" p.

Proof: Assume that p A<Bp. We shall first show by induction on m >0 that p A™<B™ p.
Basis: For m=0, the above formula is satisfied trivially.

Induction Step: Assume that the claim is true for some m 20. We shall prove it for m+1.

pA™l=(pA™A <(B"p)A Induction hypothesis
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=B™(pA)<B™ (B p)=B""p From (6.8)

Having established the above, we can proceed in proving the theorem.
pA"=p TA"<(TB™)p=B"p
m=0 m=0

The case where (6.8) holds with equality is easily seen to be true as well. O

An interesting case arises when (6.8) holds with equality and B=A. Then the above theorem states that if A and p
commute, then p can be pushed through the transitive closure of A. The most common such case is expected to be for p
being a selection. Another interesting case is when (6.8) holds with equality, p is a projection =, and B=nA, where Ay is
the same operator as A but operating only some of the columns of its input (the ones indicated by the projection 7). Again,
in some sense, applying the above theorem results in the projection being pushed through the transitive closure of A. The
above applications of Theorem 6.10 allow the query processor to take into account any selections or projections involved in

a query. Usually, such transformations cause significant improvements in performance.
Corollary 6.3: Let A be a linear operator and 7 be a projection. If tA<r then A" =n.

Proof: Assume that tA<r. From Theorem 6.10, with B=1, we have that tA" <n. By Proposition 3.3d, however,

since 1<A*, we have thatm S wA®. Hence, we can conclude that tA " =r. a

Corollary 6.3 allows for the elimination of recursion when its premises hold. The projection (r) is pushed through A

in a way that the latter disappears.

7. ALGEBRAIC TRANSFORMATIONS OF LINEAR RECURSION AT THE ORDERING STAGE

In this section, we shall present algebraic transformations of the query answer that affect the ordering stage of query
optimization (Figure 1.1). We shall show how several algorithms that have been proposed in the literature are expressed as
different parenthesizations of an algebraic representation of the query answer. In the first subsection, we shall derive
expressions that correspond to algorithms that are applicable to any linear recursive program. Practically, there is no limit
in the number of expressions that are equal to A *. We shall only present a small number of them that have been previously
proposed in the literature. In the second subsection, we shall derive expressions that correspond to algorithms that are

applicable only to recursive programs of a specific form.

As in the previous section, all the optimization results presented in this one depend solely on the algebraic properties

of closed semirings. Hence, the results can be generalized to mutual linear recursion as well, by simply using linear
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operator matrices in place of linear operators. Moreover, all results in this section hold for both operators and operator

schemes.

7.1. General Transformations of A*
Naive Evaluation [Aho79, Banc85]

This is the original algorithm proposed for the evaluation of a recursive program. Its algebraic expression is based
on the fact that 3 A™ = (1 + A)". Thus, we have that

m=0
A® = lim(1+A)™.
m s

(Recall that whenever explicit parenthesization is omitted, right associativity is assumed for multiplication.) Moreover,

each power is computed from the previous one: (1+4 Y = (1+A ) (1+A)™.

Seminaive Evaluation [Banc85]

This algorithm corresponds to the definition of A® as a series, i.e., A* = 3, A™. Again, each power is computed
m=0

from the previous one; A™* = AA™.
Smart/Logarithmic Evaluation [Vald86, loan86a]

This algorithm corresponds to the following form:

A" =TI +A%) = - 1+ A9 (A +AH (A +A).
k=0
The number of multiplications in the expression of smart is much smaller than that of seminaive (for any finite expansion of
A, itis 2*log,N for smart vs. N for seminaive), but they involve larger operators.
Minimal Evaluation [Ioan86a]

This algorithm corresponds to the following formula:

AT =TJA+AY +4%)= - 1+ A%+ A1+ A’ +AH (1 +A + 4D,
k=0

This expression has about 3 log;¥ multiplications (when seminaive needs N). Clearly, algorithms can be created that need

nlog, N multiplications for arbitrary n. They correspond to the following family of formulas:
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w A=l

A" =TI (TA").

k=0 1=0

The formulas for smart and minimal are special cases of the above for n=2 and n=3 respectively. The expression nlog,N,
which gives the number of multiplications of this formula, with n restricted to the integers, has a minimum for n=3,

regardless of the value of N. This is were the minimal evaluation owes its name.
Query-Subquery (QSQ) Evaluation [Viei86]

For a query that involves a selection, the QSQ Evaluation has been proposed by Vieille. QSQ tries to take into
account the selection as much as possible. The corresponding algebraic formula is shown below:

A" =g T A* = Y (cAH) =c+ T (cA* A
k=0 k=0 k=1

Note that the selection o is taken into account from the beginning, and that the product of ¢ with each power of A is com-

puted from the product of & with the previous one: 6A* = (cA* ) A.
Prolog [Cloc81]

The formula that corresponds to the evaluation strategy of Prolog is the same as QSQ. The difference is in details of
the planning stage, i.e., Prolog processes one tuple at a time, whereas QSQ processes one relation at a time. This is an
example of the fact that the algebra developed in this paper is not useful at the planning stage of a recursive query optim-

izer: two different algorithms are represented by the same formula at the ordering stage.

1.1. Specialized Transformations of A"

Let A=B C=C B. By Corollary 7.2, we have that A*=Y B™C™. This formula corresponds to a rewritten program
m=0

for A" that keeps track of the powers m in B and C and then multiplies the corresponding ones. There are several dif-
ferent parenthesizations of the above formula, each one of which corresponds to an algorithm that has been previously pro-
posed in the literature. The algorithms and their corresponding parenthesizations are presented below, for the case where

the product of a selection o with A” is desired, where 6B=B ¢. In that case, we have that

cA"=c Y. B™"C". (7.1)
m=0
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Henschen-Naqvi [Hens84]

According to the algorithm proposed by Henschen and Nagqvi, (7.1) is parenthesized as

GA" = 3 B™ (6C™) =0+ 3 B™ (GC™)C).
m=0

m=1

Moreover, the product of ¢ with a power of C is computed from the same product with the previous power:

oC™'=(cC™)C.
Counting [Banc86b, Sacc86a, Sacc86b]

The counting algorithm as proposed by Bancilhon et al. and by Sacca and Zaniolo corresponds to the same formula
as Henschen-Naqvi. The two algorithms are different in implementation details that belong to the planning stage of the
query optimizer, i.e., whether all the products ¢C™ are computed first, before any multiplications with B (counting), or
e&ery product is immediately multiplied with the corresponding number of B ’s (Henschen-Naqvi). This difference can be
further enhanced or can be eliminated depending on the form of duplicate elimination performed by the two algorithms. (It
has been noted elsewhere as well that counting can be thought of as an efficient implementation of Henschen-Naqvi
[Banc86b].) Thus we have another example that shows that the developed algebra is not useful in the planning stage of
query optimization.

We want to emphasize that, although Corollary 6.2 deals with the product of two operators only, its results can be
generalized to products of arbitrary number of operators, thus capturing algebraicly the results of previous work by Sacca
and Zaniolo [Sacc86a, Sacc86b]. In particular, given a set of operators {A; }, 1<i<n, that are mutually commutative, and a

set of selections {o; }, 0<i<n, such that o; commutes with all operators except 4;, the following holds:

G010z " " Ou(A1Ay - A,) = %(GIAT)(GzA’z") "+ (0, A7)0
One can now apply the counting algorithm computing the powers of each A; separately and then multiplying the
corresponding ones together. Usually, most of the selections will not be present. In the presense of multiple selections, for
each i such that o; is present, it is an interesting optimization problem to decide whether to compute o;A*! from o; A or
not.

Shapiro-McKay {Shap80]

Shapiro and McKay presented an algorithm that corresponds to the following parenthesization of (7.1):
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A" =g+a X (B@B™'C"TC).
m=1

Only two multiplications for each power of A are performed, but the selection & is not taken into account in the evaluation

of the transitive closure.
Han-Lu [Hang6]

In a performance evaluation conducted by Han and Lu, three algorithms were presented for (7.1). The first was
Henschen-Naqvi, the second was Shapiro-McKay, and the third we shall call Han-Lu. The Han-Lu algorithm corresponds
to the following parenthesization of (7.1):

GA" =g+ 3 (B™B)(6C™N)C).

ma=l

Note that not only 6 C™*! is computed from g C™ (as in Henschen-Nagvi), but also B™*! is computed from B™.

8. MULTILINEAR RECURSION

We now turn our attention to nonlinear recursion. In contrast to our approach to linear recursion, where we first stu-
died immediate recursion and then generalized to mutual recursion, we shall study mutual nonlinear recursion in its general

form directly.

Recall that D is a database and Cp is a fixed set of constants in D. Consider a set of mutually recursive Horn
clauses, and let P = (P,P,,....P,) be the vector of relations that appear in the consequents of its elements with arities
{ay,@2," * * 3, ). Again we make no assumptions about the relations in the Horn clauses being finite. Also consider a set
of n nonrecursive Horn clauses of the form

Q:-P;,
and let Q be the vector Q = (Q1,Q2..,Q4). These two sets of Hom clauses can be expressed in relational terms as fol-
lows: Consider the set of recursive Horn clauses having P; in their consequent. Let f; be the function that represents the
operations on P_that these Horn clauses express. (If there are multiple Horn clauses in that set, then f; involves taking the

union of relations.) Then, the complete set of Hom clauses takes the following functional form:

fi(_D;Ph i=1721"'9n,
Q:cPy, i=12,---n

As in Section 4, the minimal solution of (8.1) is the minimal solution of the set of equations

8.1
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fi®ouQ;=P;, i=12, - ,n 8.2)

LetP =2%x --- x 2% a;>1. Clearly, PeP. Recall that addition ®in P is defined as

g @ ?_,=(Pl UP'I,P2UP’2, ot rPn UP',.).
Define @ as the n-vector @2, ... D). Note that @ OP =P &) g =P, The system of equations (8.2) can now be written

as a single equation

P=f(®) @Q. (8.3)

The following definitions introduce some classes of functions on P. that are of specific interest to the algebraic formulation

of Horn clause recursion.
Definition 8.1: A function f : P — P is linear if

(@) Forall vectors P, P’ in its domain, f (B @P)=f () ©f (P), and
® H(2)=2.

Definition 8.2: A function g: P X P — P, is bilinear if for a given P’, g(P_P) is linear in P, and for a given P,
g(@® P)islinearin P".
Definition 8.3: A function g:P X P X --- X P — P (the domain of g is the product of P m times) is m-linear if

forall i, given Py, .., Piy, Pisty o Py 8@y, oo, Py, oo [P, is linear in P;. When m is not specified, such functions

are called multilinear.

A system of recursive equations of the form (8.3) is linear, bilinear, or m-linear, if f is linear, bilinear, or m -linear
respectively. Linear systems of recursive equations can further be put into the form shown in Section 5 and analyzed using
the properties of closed semirings. Unfortunately, this is not possible for nonlinear systems. The importance of m -linear

functions in the study of Hom clause recursion is demonstrated in the following proposition.

Proposition 8.1: If f (PP, - ,P) @Q =P is the equation representing a set of mutually recursive Homn clauses,
where f: (P)™ - P, then f is m-linear.

Proof: Clearly, the m -linearity of f depends on the k -linearity, k<m, of the individual recursive Horn clauses. Let
g be the function corresponding to one such clause, with g: P; X P;,X --- X P, — P;, where for all 0sj<k, 1<i;<n.
Given fixed Q,, "+, Q; 1.Q 41 - - Qu, consider g(Qy, - -.Q;, . Qs) as a function of Q;. Clearly, g can be
expressed as a composition of projections, selections, and cross products of Q, - -+ .Qi-1,Q 41, * - Q. Thus, in general,

g corresponds 1o an operator in R , which is a set of linear relational operators. By Proposition 3.1, g is linear in Q ;. This
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is true for all i, so by Definition 8.3, g is k-linear. Since g was chosen arbitrarily among the functions of the individual

Horn clauses, we can conclude that f is m -linear. ]

Having established the multilinearity of all recursive Horn clause systems, we proceed by showing the universality of

bilinear recursion in the vector form as we have defined it. This is achieved by the following propositions.

Proposition 8.2: A recursion consisting of only linear and bilinear terms is equivalent to one with only bilinear

terms.

Proof: Consider the following equation, consisting of only linear and bilinear terms:

P=AP &g®.P) ®0.

The linear term can always be eliminated by solving it as a linear equation with operator matrix 4 .

P=A"g®P)OA'Q=2'R.P)OQ"
Given a fixed P’, the linearity of A* and the bilinearity of g establishes the linearity of g’'(P,P) in B

g’ ® OQP)=A"g® ®QP)=A"(g@®P) Bg(QP))=A"g@P)OA'2(QR)=¢'R.E) ®g'(Q.R),

g'@P)=A"g@RP)=A"D=0.
Linearity of g (P,P") on P’ is established similarly. Hence the function g ’=A" g is bilinear. ]

Proposition 8.3: Any multilinear recursion can be reduced to a bilinear recursion.

Proof: Consider the m -linear recursive equation

Define m~1 bilinear functions g1, ... 2m-1» Whose composition is equal to f , and m 2 new vectors P, ... P, such that

.l_).l = gl(?.)?_)

P,=g,P.P))

Pr2= gm2B.P )

P=g, (BP, ) ®Q.
Clearly, the above system is equivalent to (8.4) and it is bilinear. a

Because of the generic character of bilinearity expressed in Propositions 8.2 and 8.3, we can confine our considera-

tion to bilinear recursion only of the form
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P=¢g(@®P)®Q. (8.5)

All Hom-clause derived recursions can be treated in this way. The minimal solution to (8.5) is provided by Tarski’s

Theorem [Tars55]. For its proof, a partial order on P is needed, which is definedasPcP’ < (PP, - P.cP,").

Theorem 8.1: The minimal solution of equation (8.5) is the limit of the sequence

Prn=g@®nP,) ©Q, (8.6)

i

Po=2.

Proof: Because g is bilinear, g is also monotone on either of its two arguments (by Definition 8.2 and Proposition
3.2). The following induction on m proves that (P, ] is an increasing sequence, with respect to the partial order in 2.

Basis: Form=0,itisPy=20cQ =P,.

Induction Step: Assume that, for some m 20, itis P, <P .4,. This, together with the monotonicity of g, yields

P,cP,u=>g@, P g®pnit:Pmi) = Pry CPas
It follows that (P,} monotonically converges, and its limit, which is the solution of (8.5), is equal to

im P, = JP,.
= O

For the rest of the paper, g is viewed as multiplication, i.e., g(P,Q)=PeQ. Note that e is not necessarily associa-

tive. The system Ep = (B ,8,0,0) can now be defined as follows:

The set of n -vectors of relations from Cp with arities {a,a5, - .a,].
Addition of vectors as defined above.

Multiplication of vectors defined as PeQQ =g (P, Q).

The additive identity, i.e., the n -vector of empty relations.

e ® @

The following theorem characterizes the algebraic structure of Ep.
Theorem 8.2: The system Ep is a nonassociative closed semiring without identity.

Proof: The proof is straightforward and is omitted. It depends on well known properties of sets and unions of sets

and on the bilinearity of e. a

In Ep, power is defined as

P!=P, P"=PoP*!, forall n2l.
Note that, since e is nonassociative, it is not necessarily true that P* =P*"eP,
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In this section, we established the appropriate algebraic framework to study multilinear recursion, namely the system
Ep. We have shown that any such recursion is equivalent to a purely bilinear one. In the next two sections, we investigate

various conditions under which a bilinear recursion is equivalent to a linear one.

9. EQUIVALENCE OF BILINEAR TO LINEAR RECURSION

In the sequel, since g has been represented syntactically as multiplication, the following equation will be used

instead of (8.5):

P=PeP ©Q. ©.1)
Moreover, none of the forthcoming results is of any value when e is parameterized with actual relations, so we shall always
be concerned with e being parameterized by relation schemes (i.c., the database will not be taken into account). If a bil-
inear recursion (9.1) is equivalent to a linear one, it is called linearizable. Linearizability is not known to be decidable
[Gaif87]. We restrict our attention to a specific type of linearizability. In particular, we want to derive conditions that
ensure the equivalence of (9.1) to a linear equation of the form

P=PeQ ©Q
or of the form

P=Q P ©Q. 92)
In the former case, (9.1) is called right-linearizable, whereas in the latter case it is called left-linearizable. The two cases

are completely symmetrical, so we shall mostly be concerned with left-linearizability. Note that the solution of (9.2) is

TE‘Q,k-f

k=1

Lemma 9.1: Let P denote the solution of (9.1). Then, the following holds:

P’ > FO*.
k=1
Proof: Using (8.6), we shall prove by induction on m , m 20, that

m+l

| E Q.k-
k=1

t Bdenotes a series with respectto &.
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Basis: For m=0, itis P, = Q , which is a consequence of (8.6) with Py = ©.

Induction Step: Assume that the claim is true for some m 2 0. We shall prove it for m+1. From (8.6) we have that

Prni=PnnP,, ©Q

m+l m+l
= E Q'e E Q*F ®Q Induction hypothesis and monotonicity of e
=1
2Qe EQ_" eQ = EQ_I' Monotonicity of e

k=l
Taking the limits of the two sequences, P, and $Q*, we conclude that P* o FO*. A
k=1 k=1

Intuitively, one expects that, since Ep is a nonassociative closed semiring and Ey is a closed semiring, associativity
should be sufficient to ensure equivalence of bilinear to linear recursion. Indeed, as we prove later, associativity of e is a
simple, albeit strong, condition to ensure linearizability. Linearizability, however, is ensured by a range of conditions
weaker than associativity. They are all variants of the notions of power-associativity and alternativeness. We borrowed
both terms from the study of nonassociative algebras, where they are in common use [Scha66]. We shall proceed from the

stronger (less general) to the weaker (more general) condition.

Definition 9.1: The bilinear multiplication e is called left-subalternative if, for all P,Q e P, there exists n 21 such that

P%Q cPe(:- ﬂ_’_'(_'Q.)) h 9.3)

"——-n“

and it is called right-subalternative if, for all P Q ¢ P, there exists 221 such that

PeQ?c (- (PeQ)eD) - - )eQ.

1 hmo

It is subalternative if it is both left- and right-subalternative. If n=2 and the above equations hold with equality, e is left-

alternative, right-alternative, and alternative respectively.
Theorem 9.1: If o is left-subalternative, then (9.1) is left-linearizable.

Proof: Using (8.6), we shall first prove by induction on m 20 that, if e is left-subalternative, then P , satisfies the fol-

lowing two formulas:

PnouC TEQ,", 9.4)
k=]

and
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P, o C B OQ«: - (Qexr)--), forall x. ©.5)
k=1

Basis: For m=0, (9.4) yields P, ¢ Q, which is a consequence of (8.6) with Po= 2. Similarly, 9.5) follows immedi-

ately from (8.6): Pjex c Qex.

Induction Step: Assume that the claim is true for some m > 0. We shall prove it for m+1. From (8.6), we have that

@ piox = (Bpii®B m ©Q)ex

= (B i1 ms)ox ©Qex Bilinearity of e
CPe( (Bm+1‘(__m+1“ »:-) Qe Left-subalternativeness of e
L._.n kimes —mm—2>

sEQg_(Q-( Qe+ (PO (QUEQHQe-: - @) MY ) OQer
1=1 vimes

J times =] = x times —
h Himes -
Repeated applications of induction hypothesis (9.5) and monotonicity of e

EQ___ Lol G}ox) ) ©Qex < EQ_'(Q-( “(Qex)- ) Bilinearity of e

K times 2

Similarly, we have that

Phop= | UL ) Q.

(= § JURY, EQ‘(.Q'( (QeQ) - N OQ Induction hypothesis (9.4) and monotonicity of e
=1 &y fimes —2
. e @ . .
c kEl%.;(‘%.,f‘ i Qo E%_‘( ému M N eQ Induction hypothesis (9.5)
%%:(?’Ifw QeQ)--)) Bilinearity of e

This concludes the induction step, which proves (9.4) and (9.5). Equation (9.4) implies that the solution P* of (9.1)

satisfies P* < BQ*. Together with Lemma 9.1, this implies that the solution of (9.1) is given by
k=1

P’ = BO*,

k=1
that is, it is equal to the solution of (9.2). Hence, because of the left-subalternativeness of s, the bilinear (9.1) is left-

linearizable. O
Corollary 9.1: If e is right-subalternative then (9.1) is right-linearizable.

Proof: This is the symmetric case of Theorem 9.1 and can be proved similarly. 0



-39

Corollary 9.2: If e is subalternative or alternative, then (9.1) is both left- énd right-linearizable.

Proof: This is a straightforward consequence of Theorem 9.1, Corollary 9.1, and Definition 9.1. O
The following is an example that is right-alternative, but it is not left-alternative.

Example 9.1: Consider the bilinear Horn clause

P(xz2)AP(yv)—=P(x,y)
Let e represent the function of the Hom clause. We shall show that (Q &P yeP = Qe(P eP), whereas (PeP JeQQ = Pe(PeQ)).

The Horn clauses that correspond to the above algebraic equations are

Qxz)APEzY)APO V) P&Y), (9.6)
Qx.2)APH 2 )APE YY) > P(xy), 0.7
Pxz)APEy)AQU V) > Px.y) 9.8)
Pxz)APGz2)AQUy") -5 P(x.y). 9.9)

Clearly, (9.6) and (9.7) are equivalent, whereas (9.8) and (9.9) are not. This implies that the original Horn clause
corresponds to a function that is right-alternative but not left-alternative. Nevertheless, Corollary 9.1 guarantees that it is

equivalent to a linear recursion. O
Corollary 9.3: If e is associative then (9.1) is both left- and right-linearizable.

Proof: We shall show that associativity implies alternativeness, whence by Corollary 9.2, the claim follows a for-
tiori. Associativity implies that for all P,Q . ReP,P«(QeR) = (Pe¢Q)eR. Left-alternativeness is obtained by taking P=Q
in the above formula, whereas right-alternativeness is obtained by taking Q=R . a

In addition to the various conditions related to alternativeness, linearizability is also ensured by properties related to
the notion of power-associativity.

Definition 9.2: The bilinear multiplication e is power-subassociative if, for all Pe P, and for all m, n21, there exists

k21 such that

Pmep" cP*. 9.10)
It is power-associative if k=m+n and (9.10) holds with equality.

Theorem 9.2: (9.1) is left-linearizable if and only if e is power-subassociative,
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Proof: Assume that e is power-subassociative. Using (8.6), we shall prove by induction onm , m =0, that the follow-

ing holds:

P..c EQ (9.11)
k=1
Basis: For m=0, (9.11) yields P, ¢ Q, which is a consequence of (8.6) with P, = <.

Induction Step: Assume that the claim is true for some m 2 0. We shall prove it for m+1. From (8.6) we have that

Pnn= | L eQ

c BQ'50Q' @Q Induction hypothesis and monotonicity of
k=1 1=l

= B Q'Q'eQ Bilinearity of e
k=11=1

c FQ* @0 c BO*. Power-subassociativity of e
keK k=1

In the next to last expression, K denotes some subset of the natural numbers. Formula (9.11) implies that the solution P*

of (9.1) satisfies P* < BQ*. Together with Lemma 9.1, this implies that the solution of (9.1) is given by
k=1

P’ = FO*. .12)

The right-hand side of (9.12) represents the solution of (9.2). Hence, because of the power-subassociativity of e, the bil-

inear (9.1) is left-linearizable.

For the other direction, assume that (9.1) is left-linearizable, which implies that (9.12) holds. Clearly, for all k.1,
Q*Q! cP". Hence, from (9.12), we have that for all k/,
Q*0'c BO".
m=l
The left-hand side of the above formula is a conjunctive query [Chan77], and the right-hand side is a set of conjunctive

queries. Applying the theorem of Sagiv and Yannakakis [Sagi80] yields that for all 1, there exists some m such that

Q*Q' =Q™, ie., that e is power-subassociative. m|

Corollary 9.4: If e is power-associative, then (9.1) is both left- and right-linearizable.
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Proof: Power-associativity implies power-subassociativity. Hence, by Theorem 9.2, (9.1) is left-linearizable. In
addition, power-associativity implies that Q™eQ =QeQ" =Q™*!, Thus, when e is power-associative, (9.1) is right-

linearizable as well. O

Example 9.2: Consider the bilinear recursive Horn clause:

P(x,z) AP(zwW)AR(®Y)->P(x,y).
Let e represent the function of the Horn clause. We shall show that, for all P, Q, S, PeQ)eS — Pe(). The Horn clauses

that correspond to the above algebraic formulas are

PxzNAQ@E' wHAR@EZ)SEw)AR(GY)-SPxy), (9.13)
Pxz)AQ@Ezw)ARGF)Y—>P(xy). 9.14)

Clearly, viewed as conjunctive queries, (9.14) is contained (9.13). Replacing Q and S with arbitrary powers of P yields
(PeP*)oP! < PoP*, or P¥1eP! c P**, ie., o is power-subassociative. Theorem 9.2 guarantees that the given bilinear
recursion is left-linearizable. It is easy to verify that e is not associative, so the above example establishes the usefulness of

the condition of power-subassociativity over associativity. a

By Corollary 9.4, power-associativity implies that (9.1) is both left- and right-linearizable. To the contrary, power-
subassociativity implies that (9.1) is left-linearizable only. Clearly, there is a condition similar to power-subassociativity
that implies that (9.1) is right-linearizable. The condition is called reverse power-subassociativity and it is defined as fol-

lows: the multiplication e is reverse power-subassociative if, for all Pe P, and for all m ,n 21, there exists k=1, such that

E.."‘-l_’.";("'((!;_f_’_){_)“‘)'l’

< times —F ’
It is straightforward to see that reverse power-subassociativity is implied by power-associativity.

Recently, the result of Theorem 9.2 have been made tighter by Ramakrishnan et al. [Rama39]. We shall proceed in
proving their theorem in the algebraic framework of this paper. (Although the two proofs are different, they essentially use

the same techniques.)

Definition 9.3: The bilinear multiplication e is power-left-subalternative if, for all P< P, and for all /21, there exists

m21 such that
PZ%p! cP™. (9.15)
Note that the form of (9.15) is a special case of both (9.10) and (9.3), which define power-subassociativity and left-

subalternativeness respectively. The name of the property expressed in (9.15) is due to this observation.
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Lemma 9.2: If e is power-left-subalternative, then for all Pe P and for all 21, (P.®P%" ¢ »P".

m=1
Proof: The proof is by inductionon n.
Basis: For n=1, the lemma is satisfied trivially, since P ©P 2 is a series of powers of P..

Induction Step: Assume that the lemma is true for some n 2 1. We shall prove it for n+1.

@ P2y = (P.OPe(P SR

c (PESPYHe BP" Induction hypothesis and monotonicity of e
m==1
= EP™"' © BP%P" Bilinearity of ¢
m=1 mz=]
c PP ©® FP"c BP" Power-left-subalternativeness of e
m=l meK m=1
In the above, K is a set of natural numbers. This concludes the proof of the lemma. |

The following theorem has been shown to hold.
Theorem 9.3 [Rama89] The bilinear multiplication e is power-left-subalternative if and only if it is power-
subassociative.

Proof: Clearly, if e is power-subassociative, then it is power-left-subalterative as well. For the other direction,
assume that e is power-left-subalternative. We shall prove that, for all PeP and for all £,/21, there exists m 21 such that
P*eP! = P™. The proof is by induction on k.

Basis: For k=1, the above claim is satisfied trivially, since PP’ P=p!H,

Induction Step: Assume that the claim is true for some k 2 1. We shall prove it for k+1. Let Q be defined as

=P @&P2. Clearly, for all k21, the following hold:

Pt ceer) =QF,

Pl c@erd =QF.
Hence, we have that

P*ep! cQ*eQ’ Monotonicity of e

Q" =@ ®P?%", for some n21 Induction hypothesis
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c ppP". Lemma 9.2

Thus we have shown that P*eP! < FP™. Since the left-hand side of the above formula is a conjunctive query and its
m=1

right-hand side one is a set of conjunctive queries, we can again use the result of Sagiv and Yannakakis [Sagi80] to yield

P*eP' c P™, for some m=1. This concludes the induction step and the proof of the theorem is complete. O

Power-right-subalternativeness is defined symmetrically to Definition 9.3 and results similar to those of Lemma 9.2

and Theorem 9.3 can be derived.

The results of this section on sufficient and necessary & sufficient conditions for linearizability are summarized in
Figure 9.1. Theré, an arrow from property x to property y indicates that property x implies property y. Some properties are
linked with bidirectional arrows, signifying that they are equivalent. An interesting by-product of this study is that, in Ep,
left-subalternativeness implies power-subassociativity. In general, we do not expect this to hold for all nonassociative
closed semirings. To the contrary, for all nonassociative algebras, alternativeness implies power-associativity [Scha66].

‘/’)@Kﬂ
POWER-ASSOCIATIVE

ALTERNATIVE

LEFT-ALTERNATIVE SUBAL ATIVE RIGHT-AL’ ATIVE
LEFT-SUBALTERNATIVE RIGHT-SUBALTERNATIVE POWER-SUBASSOCIATIVE REVERSE POWER-SUBASSOCIATIVE
POWER.LEFT-SUBALTERNATIVE POWER-RIGHT-SUBALTERNATIVE
LEFT LINEARIZABLB RIGHT-LINEARIZABLE

Figure 9.1: Relationship of properties of e implying linearizability.

10. EMBEDDING P IN A LINEAR ALGEBRA

Unfortunately, none of the properties that are equivalent to left-linearizability, ie., power-subassociativity and
power-left-subalternativeness, can be tested in finite time, since in general, tests have to be conducted for all possible
values of one or two integer parameters. On the other hand, left-(sub)alternativeness can be tested in finite time. In this
section, we shall derive another sufficient condition for left-linearizability, which is related to power-associativity and can

be tested in a finite amount of time as well. This is done by embedding the operations @ and e in a linear algebra. The
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main effect of this embedding is that relations are treated as multisets instead of sets. Relations may contain duplicate
tuples, and each tuple is associated with a number that indicates the number of occurrences of the tuple in the relation. In
fact, the notion of "occurrence of a tuple in a relation” becomes fuzzy, since the number associated with a tuple in a rela-
tion can be an arbitrary real number, although allowing nonintegers is only a technicality so that the embedding is realized.
If one needed to evaluate programs within the linear algebra, duplicates would have to be retained, and the processing cost
would most likely be prohibitive. As we shall see in this section, however, we shall only use the embedding to derive con-
ditions for left-linearizability. If a program does satisfy these conditions, its equivalent linear form can be executed within
the closed semiring of linear operators with no need to retain duplicates. One disadvantage of this approach is that
currently there is almost no theory on the properties of queries and programs that retain duplicates. The development of

such a theory is part of our future plans.

Recall that P;, 1<i<n, denotes the collection of all relations having the same scheme (arity) as P;, i.e., P; = =2 and
that P is defined as P = 25x - 2C" a;21. Also, define Cp =C§'x -+ x C§. Consider a relation Q with the same

arity as P;, i.e.,Q € P; or Q < C5. As such, Q can be viewed as a function Q: C5 — {0,1}, defined by

0 otherwise

Q)= {1 if the mpletxst

The reason why we want to look at Q this way is to be able to embed relations in a richer algebraic structure. The addition

operation ® defined on P can now be interpreted as a binary operator on {0,1} given by

for all teCp, . OQ))= {1 if max(P(1),QM))=1

0 otherwise

This is so, because if P (¢)=1 or Q (t)=1, then ¢ belongs to the sum of P_and Q as well.

Each P; corresponds to the space of all functions mapping C3 into (0,1}, and therefore, P. corresponds to the set
P = all functions p: Cp — (0,1}}.
We can now extend each P; by considering all functions mapping C§ into R, the set of real numbers. Each such function
will be called an extended relation. In this way, we can extend P to
= {all functions p: Cp — R},
which is well known to be a vector space over the field of reals IR [Hers75]. The appropriate addition in P” is the ordinary

addition of real numbers: for all teCp, (7 + Q")) =P’ () + Q" (t). (We use + with the understanding that it is not to

t The superscript r is for reals. It will be used to tag elements, operations, and functions of P".



-45-

be confused with + as defined in Section 3 for addition of linear relational operators.) If we define for real numbers a

1 if a>0
lal= o
0 otherwise

then

|la+b| = |a| @ |b|, whenever a,b >0.

Applying this to relations, we can use | | to map P” into P and have the relationship:
IQ"+R"[=1Q"| ®IR"|, foral Q"R e P".

Given a function f : P — P, define an extension f": P” — P" as follows:

)= %,, p@f (1), (10.1)
Le
where 1, is the indicator function
1 if s=t
L(s)= e
0 otherwise

Note that the summation in (10.1) is with respect to ordinary addition, i.e., the addition in P". Intuitively, the meaning of
f7 is that it operates on relations a tuple-at-a-time and it retains duplicates in the result. Applying| |on a relation vector

removes the duplicates.

The function f” defined by (10.1) is linear (on the vector space P") whether f is linear or not. (Observe that in
(10.1) only the values of f on single tuple vectors 1, are used.) However, f is recoverable from f " if and only if f is

linear.

Proposition 10.1: Forany A e P,let 1, € P (and 1, € P") denote its indicator function, i.e.,

1 ifteA
1,@)=

0 otherwise
Then,

FA) =117l (10.2)

if and only if f is linear.

Proof: Suppose f is linear. Then, f (14)= ¥ f(L,), while f"(1,)= ¥, f (1), and (10.2) follows by the definition
taA taA

of | |.
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Conversely, suppose (10.2) holds. Then, the definition of | | and (10.1) yield

fAO=1X70pl= Bf 1),

teA LeA

which implies that f is linear.

a

Intuitively, Proposition 10.1 says that operating on relations a tuple-at-a-time does not affect the result of applying a

function on a relation if and only if the function is linear. For a linear f, we shall continue to write it as f (p) = Ap,withA

a linear operator, and similarly for its extension, f”(p) =A"p. We now have the following relationship between A and A”.

Proposition 10.2: For all integers m and allQ" ¢ P”
[AN"Q [=A"1Q |
Proof: The proof is by induction onm.

Basis: For m=0, (10.3) yields |Q" | = |Q" |.

(10.3)

Induction Step: Assume that the claim is true for some m 2 0. We shall prove it for m+1.

[ATY™Q = 1A7 (A)"Q) =1 X (A"QNHDWA L

Lap

1A"Q WA

D

teCo

I X @A™1Q DAL
LeGo

= 1A'

™ QNI

_____AnH-l lQ_.r Io

Proposition 10.2 implies that A* can be computed from any positive power series of A",

A*=e?] or A" =|(-aA")|, a>0.

From (10.1)
Definition of | |
Induction hypothesis
From (10.1)

Induction hypothesis (twice)
O

e.g.

It is an interesting open question whether the above connection can be exploited to computational advantage or not.

Given a function g: P X P — P, define an extension g": P” X P" — P", as follows:

g po)= Y pGlo®g ()

£4eCo

As in the case of (10.1), g" is bilinear whether g is bilinear or not, but g is recoverable from g" if and only if g is bilinear.
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Proposition 10.3: For any A ,B e P, the following relationship holds if and only if g is bilinear:

g(1a,15) = 18" (14,18} 1.
The proof of Proposition 10.3 is similar to that of Proposition 10.1 and will be omitted.

The bilinear function g” on the vector space P” defines a multiplication ¢ that distributes over addition, i.e.,

(a+b)dc =adc +bdc,

ad(b+c)=ad b +adc,
It is straightforward to verify that the system (P, +,¢", @ , IR) is a nonassociative algebra without identity on the field R.

The multiplications e and ¢ define powers on P and P respectively, as follows:

a'=a, a* =aea*?, aeP,

aV=a, a®=ad a* ™D, aeP’.

Equation (10.3) implies that |a®| = |a|*. The concept of power-associativity can now be extended to & .
Definition 10.1: The bilinear multiplication & on P" X P’ is power-associative (power-subassociative) if
a® o g = g®+)  (cqt+y,
Proposition 10.4: The bilinear multiplication e on P X P is power-associative (power-subassociative), if its exten-

sion & is power-associative (power-subassociative).

Proof: Suppose ¢ is power-associative. Then, fora ¢ P, itis

amea® = Ia(m)l .la(n)l = Ia(""f a(n)l = Ia(m+n)l = g™t
For power-subassociativity, we only need to replace the next-to-last equality by <. a
Theorem 10.1: If
a®da=a® and aPd aP=a® (10.4)

then e is power-associative.

Proof: It is known that ¢, a bilinear multiplication on an algebra on a field with characteristic 0 (like R) is power-
associative if and only if (10.4) holds [Scha66]. The desired result of Theorem 10.1 follows from the above fact and Pro-

position 10.4 about the relationship of the power-associativity property in P and P". a

Theorem 10.1 provides an easy-to-test sufficient condition for left-linearizability. Two tests for small m and n are
enough to ensure power-associativity. This is a significant computational improvement over the result of Theorem 9.2,

which required an infinite number of tests. The only disadvantage of Theorem 10.1 is that the test has to be performed in




the embedded system and not the original one.

11. COMPARISON TO THE LOGIC-BASED APPROACH

As we mentioned in the introduction, the great majority of the work on recursion has been based on a first order logic
representation of recursive programs, Hom clauses in particular. In this section, we shall give a brief comparison of the
algebraic approach developed in this paper with the traditional logic-based approach. Clearly, by Proposition 4.1, every
linear Horn clause can be represented by a linear operator in R and vice versa. Similarly, every multilinear program can be
expressed as a bilinear multiplication of two relation vectors and vice versa. Thus, the two approaches are equivalent in
terms of expressive power. Their difference is in the ease with which certain properties are expressed. We claim that cer-
tain properties are fundamentally algebraic in nature and they can be studied more naturally in the algebraic framework,
whereas others are logic-based in nature and they can be studied more naturally in the logic-based framework. We shall
not attempt here to define precisely which properties are algebraic in nature and which are not, since this may enter the
realms of philosophy. Instead, we shall compare the results presented in this paper with similar ones that have been
derived within the logic-based framework, if such results exist. We shall also describe some known results in the logic

approach that do not seem to lend themselves naturally in the algebraic approach.

11.1. Strengths of the Algebraic Approach

The fundamental difference between the algebraic and the logic-based approach is the ability of the former to expli-
citly represent query answers of recursive programs (especially in the linear case), which can then be manipulated algebra-
icly. In the previous sections, we have presented several theorems that can be derived by taking advantage of this ability.
Although some of these results have been derived based on logic as well, we feel that their algebraic derivations are more

natural.

In Section 7 we have seen how the algebraic framework can be used to express several algorithms for recursive
query processing at the ordering stage. Some of these algorithms have been proposed under the logic-based framework as
well, e.g., Henschen-Naqvi, whereas others have not, e.g., Minimal. By the very nature of the ordering stage, the algebra
seems the only appropriate tool to explore the complete variety of processing algorithms. Thus, we shall not discuss the

ordering stage in any more detail, but we shall concentrate on the rewriting stage.
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11.1.1. Linear Recursion

Section 6 describes several results that can be used at the rewritting stage of an optimizer. Theorem 6.1 on the
decomposition of (B+C )" has been observed by Raniakrishnan et al. as well, who in essence used the algebraic notation
developed in this paper [Rama89]. They actually used regular expressions over rule names, but the equivalence to the alge-
bra is straightforward, since there is a one-to-one correspondence between rules and operators, and regular expressions
form a closed semiring [Aho74]. Theorems 6.2 and 6.3 are new and similar in nature with Theorem 6.1. Theorems 6.4 and
6.5 on necessary conditions for decompositions of (B+C)° make use of the theorem of Sagiv-Yannakakis [Sagi80], which

is logic-based in nature.

Theorem 6.6 on a decomposition of (BC)® is new, but its corollary ( Corollary 6.2) has been used by many research-
ers, although not with any explicit reference to the algebra behind it. An example of such a use is in the performance study
of Han and Lu [Han86], where the algorithms of Henschen-Naqvi, Shapiro-McKay, and Han-Lu were expressed in the way
that was shown in Section 7. Theorem 6.7 is also new and captures part of the essence of the sudy of Naughton on recur-

sively redundant predicates [Naug89a].

Theorem 6.8 allows the interchange of the two linear forms of transitive closure. More precisely, there are two

equivalent sets of linear Horn clauses that express the calculation of the transitive closure of a binary relation Q:

Pxz)AQ@Gzy)—>Pxy) (11.1)
Qxy)>Pxy),
and
Qxz)AP(zy)—->P(xy) (112)
QCxy)->Pkxy).

Clearly, the two programs are equivalent. Note, however, that they would not be equivalent if the nonrecursive Horn
clauses in them did not have Q in their antecedent. To take into account that fact, we shall introduce a Horn clause that
corresponds to an operator whose output is always Q for any nonempty input. The following is such a Horn clause:
I@)AQxy) >Pxy).
Using the above, and assuming that I is nonempty, (11.1) and (11.2) are equivalent to the following two programs:
Pxz2)AQ@Ey)—-»P(x.y) (11.3)

Iw)AQxy) - Pxy),
and
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Qx2)AP(Ey)>P(x.y) (11.4)

Lw)AQxy)—>Pxy).
If A and B are the corresponding operators for the recursive clauses of (11.3) and (11.4) respectively, and C is the

corresponding operator for the nonrecursive clause of both (11.3) and (11.4), it is easy to see that AC=BC, since both pro-
ducts correspond to the same Horn clause:

Tu)AQx2) AQzy) » Px.y).
Hence, the conditions of Theorem 6.8 hold, and the two programs can be interchanged. The above, together with the fact
that the bilinear version of the transitive closure program is easily proven to be associative, which implies that it can be
replaced by (11.1) or (11.2), result in the ability to modify any form of the transitive closure program with the given query

above into its most efficient form, thus capturing all possible such transformations [Beer87a].

As an example of how Theorem 6.9 may be applied, consider the following set of Horn clauses:

Puyvw ARUyw)ASwxyz)->P(x.yz2), (11.5)

Qx.y2) > P(xy2).
Rewriting (11.5) according to Theorem 6.9 yields the following program:

Quyw)ARuyw)—=>P'w)
P'w)ASWrst)AR(r ) > P()
P')AS(.x,y,2) - P(xy,2)
Note that the above program is equivalent to the original one, but has a great potential of being more efficient, primarily
because its recursive Hom clause is monadic, i.e., has arity one, where the one of the original program had arity three.

Such reductions in the arity of recursive predicates are known to significantly affect performance [Banc86c, Naug89b].

Section 6.4 provides the foundation for selection and projection pushing. As an application example of Theorem
6.10, consider the transitive closure program (11.1) with the query
P(c.y)?,
where ¢ is a constant. Assuming that o is the selection and = is the projection expressed in the above query, and that A is
the operator that corresponds to the recursive clause of (11.1), the answer of the above query can be expressed algebraicly
as oA ", Clearly, A=A g, since both products are equal to following clause:

Pxz)AQ@Ey)ax=c -P(xy)
Also, TA =ntA .7t (A . is the same operator as A but accepting as input only the columns specified by ), since both products
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are equal to the following clause:
P'(z)AQ(z.y) = P'(¥).
Thus, the conditions of Theorem 6.10 are satisfied, and noA® can be replaced by (A )" &G, which corresponds to the fol-

lowing linear program:

P'z)AQ(zy)—-P'(Y) (11.6)

Qey)-PW)
Note that (11.6) is more efficient than (11.1), since the arity of the recursive predicate has been reduced and the query

selection is taken into account right from the beginning. Transformations like those of Theorem 6.10 on selection pushing

were among the first proposed for recursive programs in database systems [Aho79, Kife85].

In the logic-based approach, projection pushing has been studied by Ramakrishnan et al. [Rama88}, who derived
several syntactic characterizations to capture the conditions of Theorem 6.10 for pushing projections and Corollary 6.4 for
elimination of (recursive) clauses. We have already seen an example of applying Theorem 6.10 in the previous paragraph.
We shall now present two examples that are essentially taken from the above work and show that applying Corollary 6.4

produces the same results. Consider the following program-query pair:

P(xu)AQau,w,z) > Pixuz)

P(xu)AQa(u,w,z) > Pi(x.uz)
Pi(x,u,2) AQa(z,y,v) > P(x.y)
Qi(x,y) > P(x.y)

P, )?
IfA, B, and C are the operators that correspond to the first three (recursive) clauses in the above program, then the whole

program corresponds to the following matrix equation:

P|_ [o A+B] |P| o |Q

P, IC 0 ]iP, g\
Solving for P and incorporating the projection 7 specified in the query yields n(C(A+B))" (see Section 5). It is easily
verifiable, however, that ©X <r, for all X< {A ,B ,C'}. Thus, by Cdrollary 6.4, t(C (A+B))" =n, and the above program can

be replaced by the nonrecursive

Qi(x.y) »P(x.y)
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P(x, )?

As a second example, consider the following program-query pair:

Pi(x,z,u) AQi(z.uy) > P(x,y)
Pi(x,w.w)AQaw,z,u) > Py(x,z,u)
P(x,v) AQs(v.z,u) > Py(x.z,u)
Qq(x,z,u) > Py(x .z ,u)

P(x, )?
IfA, B, and C are the operators that correspond to the first three clauses in the above program, then the whole program

corresponds to the following matrix equation:

P|_|0A|P ® %)

P,| " |C B] |P, Qa4l”
Solving for P and incorporating the projection 7 specified in the query yields m(AB" C) AB". Again, it is easily verifiable
that X <m, for all Xe {4 ,B,C}. Thus, by Corollary 6.4, ©(AB° C)"AB"=nAB". The above operator corresponds to the

following program, which can be obtained from the original one by removing the third clause, i.e., the one that corresponds

toC:

Pi(x,z,u) AQi(z,u,y) > P(x.y)
Pi(x,w,w)AQyw,z,u) = Pi(x,z,u)
Q4(x,z,u) > Py(x z,u)
P(x, )?

As a final comment on the merits of the algebraic approach in the study of linear recursion, we want to mention that
several other researchers have employed it in their work, although not explicitly. We have already mentioned the work on
commutativity by Ramakrishnan et al. [Rama89], and the performance evaluation by Han and Lu [Han86]. We would also
like to mention the work on magic functions by Gardarin and Maindreville [Gard86] and Gardarin [Gard87], where Horn
clauses are viewed as functions and manipulated appropriately (precisely in the way operators are), and the work on paral-
lel algorithms for transitive closure by Valduriez and Khoshafian [Vald88], where they develop algorithms based on the
fact that, for two linear operators A, B#0, if A"=A and B*=B, then for all k>0, A*<A and B*<B , which further implies

that (A +B )" =(1+A )(BA )" +(1+B )(AB)".
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11.1.2. Bilinear/Multilinear Recursion

The algebraic approach for bilinear recursion can have again several applications at the ordering stage of query
optimization. No such results have been reported in this paper, however, since they are either obvious or straightforward

extensions of results for the linear case.

For the rewriting stage, the algebraic approach has provided several results on the problem of linearizability in Sec-
tions 9 and 10. The results in the latter rely on embedding relation vectors in a linear algebra and on known algebraic pro-
perties of such structures. The logic-based approach lacks the tools that would enable similar discoveries. From the results
in Section 9, Theorem 9.3 is the most general of all and is part of the work by Ramakrishnan et al. [Rama89]. Their effort
was based on proof trees and their transformations, but essentially, a proof tree is another representation of a product in a
nonassociative closed semiring (the only difference being that the leaves of a tree are individual tuples, whereas the factors
in an algebraic product are sets of tuples, i.e., relations). For example, the corresponding tree for Q?2Q?3 is shown in Fig-

ure 11.1.
AN
Q Q
Figure 11.1: Tree representation of Q%Q?

The only other relevant work we are aware of on the problem of linearizability is that by Zhang and Yu {Zhan87].
They focus their attention to a restricted class of bilinear Horn clauses, i.e., a restricted class of multiplications e, and for
that class they provide a syntactic necessary and sufficient condition for left linearizability. It is rather straightforward to
prove (and we shall not do it in this paper) that if a Hom clause satisfies their syntactic condition, then the corresponding
multiplication e is associative, so by Corollary 9.3 it is left- and right-linearizable. Thus, for the restricted class of multipli-
cations they examined, all conditions studied in Section 9 together with the condition by Zhang and Yu are mutually
equivalent. The algebraic approach provides powerful tools to study these conditions, whereas the logic-based approach,

which was employeed by Zhang and Yu, provides syntactic characterizations of them.
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11.2. Limitation of the Algebraic Approach

The algebraic approach is limited to only addressing problems at the rewriting and ordering stages of query process-
ing and optimization. The abstraction it offers is at a higher level than is necessary for studying the details of the planning
level. In addition, even at the rewriting stage, certain transformations seem to have a nonalgebraic flavor, e.g., magic sets
and generalized counting [Banc86b, Beer87b], factoring [Naug89b], and cannot be derived algebraicly. It is hard to iden-
tify exactly what makes a property algebraic and what not. In that sense, we do not know which characteristics of the
above transformations make them unnatural to express algebraicly. One problem seems to be notational, since the above
transformations tend to produce multilinear programs from linear ones, and the appropriate algebraic structures for the two
are different. Another problem seems to be that these transformations tend to modify the structure of the original
operators/clauses. Expressing such transformations algebraicly requires specifying much detail about the operators, €.g.,
their parameter relations and the specific manipulations of their columns. We feel that this would only be a change in nota-
tion from logic to algebra that is unnecessary, since the latter, when expressing all the required details, offers no advantages

over the former.

Negation was excluded from the algebras developed in this paper, since we only deal with Hom clauses. Hence, the
current study has very little to offer in the study of programs that include it. It is conceivable that more powerful algebras
will be able to capture negation and offer insights into its properties. Embedding relation vectors in a linear algebra (Sec-

tion 10) may be a good starting point for developing such an algebraic structure, but this requires further investigation.

Finally, as we have already mentioned, the algebra does not offer any tools that can lead into deriving syntactic char-
acterizations of interesting properties of Horn clause programs (even algebraic properties). To be more precise, the algebra
should take into account the details of the manipulations of the columns of the relations in the operators in order to become
a usable tool for such work. This offers no advantage over the logic-based approach. Hence, syntactic characterizations of
such properties are likely to be based on the logic form of the operators. As examples, we shall offer characterizations of
the properties of bounded recursion [Ioan85, Naug86], linearizability [Zhan87, Sara89], commutativity of selections with

arbitrary operators [Deva86], and commutativity of arbitrary operators [Ioan89].

12. CONCLUSIONS

A significant subset of all linear relational operators have been embedded into a closed semiring. Within this alge-

braic structure, recursive inference by Homn clauses has been reduced to solving recursive equations. For a single linear
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Horn clause, the solution to the corresponding operator equation is equal to the transitive closure of the operator represent-
ing the Horn clause. This approach can be extended to multiple Hom clauses that are linearly mutual recursive. In that
case, inference is reduced to solving linear systems of operator equations, in the same manner that immediate recursion is
reduced to solving a single such equation. The ability to algebraically manipulate an operator representing the query
answer has important implications. We have presented several specialized transformations of the query answer at the
rewriting stage, which when applicable, have the potential to speed up the process of answering the query. We have also

described several general and specialized transformations of the query answer at the ordering stage.

Nonlinear recursion has also been treated similarly by embedding all bilinear recursions into a nonassociative closed
semiring. The universality of the approach has been secured by our showing that any nonlinear recursion can be reduced to
a bilinear one. We have given several conditions for a bilinear recursion to be left linearizable. All conditions are varia-
tions of two properties, namely altemativeness and power-associativity. Although alternativeness can be tested within a
closed semiring in a finite amount of time, power-associativity cannot. We have overcome this problem, by embedding all
bilinear recursions into an algebra. Within that algebraic structure, we have been able to derive a finite test for power-

associativity as well.
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