Jniversity of
Madison

A Generalization of Lovasz’s
Sandwich Theorem

Giri Narasimhan
Rachel Manber

Computer Sciences Technical Report #300

October 1988







A GENERALIZATION OF LOVASZ’S SANDWICH THEOREM

Giri Narasimhan* Rachel Manbert

Computer Sciences Department
University of Wisconsin-Madison
Madison, Wisconsin-53706.

October 18, 1988
ABSTRACT

For a graph with G(V, E) with n vertices, let wi(G) be the size of the largest induced
subgraph that can be covered with k cliques. Define a k—multicoloring of G to be a
coloring of its vertices such that each vertex is assigned a set of k colors, and two adjacent
vertices are assigned disjoint sets of colors. Let x(G) be the minimum number of colors
needed for a valid k—multicoloring of the graph G.

We present a polynomial-time computable function 9;(G) which satisfies the following
inequality:

wi(G) < 9(G) < xk(G).

Thus 9x(G) is sandwiched between two NP-hard parameters, namely wi(G) and xi(G).
This generalizes Lovasz’s Sandwich Theorem [Lov86], which demonstrates a polynomial-

time computable function J(G) satisfying the following inequality:
w(@) < I(G) < x(G),

where w(G) is the size of the largest clique of G, and x(G) is the chromatic number of G.

* Research Supported By A Grant From Wisconsin Alumni Research Foundation.
T Research Supported by an NSF grant # DMS-8702930
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1. Introduction

The term ”sandwich theorem” was coined by Lovasz to describe a theorem that asserts
the existence of a polynomially computable function that is bounded between two NP-
Hard graph parameters [Lov86]. Lovasz presents a sandwich theorem that exhibits a

polynomially computable function 9(G) that is bounded between the chromatic number
x(G), and the clique number w(G) [Lov79]. That is,

w(G) < 9(@) < X(G).

A sandwich theorem provides polynomially computable bounds on the graph parameters
involved, as well as a polynomial time algorithm to compute these parameters for classes
on which they agree. Indeed, Lovasz’s sandwich theorem leads to a polynomial algorithm
to compute the chromatic number (and the clique number) for perfect graphs *.

In his monograph [Lov86], Lovasz states that it would be interesting to find other
sandwich theorems. We present here a new sandwich theorem which can be viewed as a
generalization of Lovasz’s theorem. The parameters involved in our theorem are wg(G),
which is the size of the largest induced subgraph that can be covered with k cliques, and
xk(G), whose definition follows. The k-chromatic number of a graph G, xi(G), is the
minimum number of colors needed to color the vertices of a graph such that each vertex is
assigned a set of k colors and every two adjacent vertices are assigned disjoint sets of colors.
Note that x1(G) = x(G) and w1 (G) = w(G). Moreover, xx(G) = kw1(G) > wi(G). We
define a function 9x(G) and show that it is polynomial time computable via the Ellipsoid
Method f, and that

wi(G) S 9(G) < xk(G), for1 <k <n.

Thus, our sandwich theorem provides a polynomially computable bound 9; for wi and
for xx. The function Ji(G) is related to the spectra of a family of matrices associated
with the graph G. Spectral properties of graphs are related to several graph parameters
[CDST79]. For example, the largest eigenvalue of a graph is at least as large as its chromatic
number [Wil67]. We show here that for every positive integer k, the sum of the k largest
eigenvalues of a graph G is at least as large as wg(G). This result, interesting in its own
right, plays a vital role in the proof of our sandwich theorem.

Let G = (V, E) be a simple undirected graph with vertex set V = {1,2,...,n}. We
define the adjacency matric A(G) = (aij) of G as follows: a;; = 1 if either ¢ = j, or

* A graph is perfect if for every induced subgraph H, x(H) = w(H).
1 see for ezample [Lov86].




¢ and j are adjacent. Otherwise a;; = 0. We note that our definition of the adjacency
matrix differs from the common definition since A(G) is defined to have 1’s along the main
diagonal. Consequently, the eigenvalues of the adjacency matrix as defined here are shifted
by 1 from the eigenvalues of the adjacency matrix defined with zeros along the diagonal.
We use the term "spectrum of a graph” to denote the spectrum of its adjacency matrix
as defined above. All the matrices in this paper are real and symmetric, and hence their
spectra consist of real numbers. Thus, we may assume that A\; > Ay > ...)\,. This is a

standing assumption in this paper.

2. A Generalization of Wilf’s Inequality

Wilf [Wil67] showed that the largest eigenvalue of the adjacency matrix of a graph (with
ones along the diagonal), is at least as large as the chromatic number of the graph, which
in turn is at least as large as the size of the largest clique in the graph. We generalize this
result. We show that the sum of the k largest eigenvalues of the adjacency matrix is at
least as large as the size of the largest induced subgraph of G that can be covered with k
cliques. Our proof is based upon the well known Cauchy Inequality [HG51], (also known

as the Interlacing Theorem).

The Interlacing Theorem : Let A be a Hermitian matrix and let A(*~1) be the prin-

cipal submatrix of A with rows and columns 1,2,...,n — 1. Then
As(A4) > A, (AD) > X044 (A).

for1<s<n-—1.

Lemma 1: Let A = (a;j) be_ a real, symmetric n x n matrix. Then
k k
Za,‘i < Z Ai(A), VE<n.
=1 i=1

Proof : Let A(¥) be the principal submatrix of A with rows and columns 1,2,...,k.

Denote its eigenvalues by ,\§’°’, /\gk), ceey AE), By the interlacing theorem we have

AFFD > A > A > > AR > Ak,
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Using the fact that the sum of the eigenvalues of a matrix equals its trace, we get:

AR

E

ai; =

g==1 =1

/\(_k+1)

-

t==1

k
< oA
i=1
k
=) Ai(4). u
=1

Note that since simultaneous permutation of the rows and columns leave the spectrum
unchanged, ZLI Ai(A) is at least as large as the sum of the k largest diagonal elements

of A. We also note that Lemma 1 follows from the following theorem of Ky Fan.

Lemma 2: [Fan49] Let A be a Hermitian matrix. Then Zf=1 Ai(A) is the maximum

of Z?__:I(A:c j»Tj), when k orthonormal vectors z; (1 < j < k) vary in the space.

Lemma 1 follows from Lemma 2 when we let z; be the vector with all components 0 except

for the j-th component which is 1. We next state an elementary result in linear algebra.

Lemma 3 : [ND77] For a real, symmetric matrix A there exists a non-singular, or-
thogonal matrix P, such that PT AP = diag(A1(4), A2(4),..., Ax(4)).

Theorem 1 : Let G(V, E) be a graph with adjacency matrix A. Then
k
> M(4) = wk(@), VEk<n,
i=1
where \;(A) is the i** largest eigenvalue of A and wi(G) is the size of the largest induced

subgraph of G that can be covered with k cliques.

Proof . Let H be the largest induced subgraph of G that can be covered with

cliques, C},C5,...,CL. The cliques C{,C},...,C} are not necessarily vertex disjoint. By
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reducing the size of some of the cliques we obtain the collection of vertex disjoint cliques
C1,Cs,...,Ck of sizes ¢1 > ¢2 > ... 2 cg. It follows that wi(G) = }:Ll ¢;. With no loss
of generality we assume that the vertex set of H is {1,...,h}. Let Ay be the adjacency
matrix of the induced subgraph H. Clearly Ay = A(®). Let A’ be the adjacency matrix

of a graph G’ composed of k disjoint cliques of sizes ¢y, ¢, ...,ck. Then,
Je, O 0
|0 J?Q 0
where J;; is a square matrix of all ones of order ¢;. Since the cliques Cy,Cs,...,C) are

disjoint, we can label the vertices of G such that

Jc1 Aia ... A

Aar Je, ... Ak
o

At Arz ... Jg

The spectrum of J, is {c;,0,...,0}. By Lemma 3, there exist matrices P; of order ¢; such
that PTJ,, P; = diag(c;,0,...,0) fori=1,... k. Let

P 0 0

0 P 0
P= .

0 0 ... P

It follows that the diagonal elements of PT Ay P are the same as the diagonal elements of
PT A'P, which are the eigenvalues of A’. Since \;(4') = \i(J;) =c¢; fori =1,...,k, we
have:

k k
> Xi(Am) = Z Xi(PT Ap P)

=1
> sum of the k largest diagonal elements of PT Ay P

k
= sum of the k largest diagonal elements of PTA'P = Z ¢i = wi(G).

=1



Finally, since Ay is a principal submatrix of A, it follows from the Interlacing Theorem
that \;(A) > Ai(Ap) fori=1,...,k. Thus

k
Y A(A) > (@), VE<n n

=1

3. The Sandwich Theorem
We refer to the next Theorem as ”Lovasz’s Sandwich Theorem”.

Theorem 2 [Lov86] :  For any graph G, there exists a polynomial-time computable

function J(G), which satisfies the following inequality :

w(@) <9(G) < x(G).

The function J(G) is defined as the minimum of the largest eigenvalues of matrices
related to the adjacency matrix of G. More precisely, let A(G) be the set of all real
symmetric n X n matrices A = (a;j) for which a;; = 1if i = 5 or if ¢ and j are adjacent
in G and whose largest eigenvalue satisfies A\; < n. The elements of A corresponding to
non-adjacent positions are allowed to be arbitrary real numbers provided that the matrix
remains symmetric. We say that a position ¢ in row p is a fized position if byy = 1 for
every matrix B = (b;;) in A(G). Thus, ¢ is a fixed position in row p either if p = ¢ or if
(vp,vg) € E(G). The function 9(G) is defined as

I(G) = min{\(4) : A € AG)}.

The parameter 9(G) was first introduced in [Lov79] where it was used to estimate the
Shannon Capacity of Cs. Later it was shown to be polynomial time computable via the

Ellipsoid Method [GLS81].
We define here a set of functions 9x(G) which generalize J(G).

k
I(G) = min{z M(A): A€ AG)}, for1<k<n.

i=1

Lemma 4: Let B € A(G). Then || Bl < n?.
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Proof : Let B = (b;;) € A(G). By Lemma 3 we can write B = PTDP, where P = (p;;) is
an orthogonal matrix and D = diag(A1(B),...,An(B)). Hence b;; = Y r_; Ae(B)pirpjs.
Using the fact that ) 7, A\i(B) = Trace(B) = n, we get \;(B) > M(B) = n —
22 Ai(B) 2 n—(n = 1)A1(B) for all i. Since trivially A\;(B) < n, we have |\;(B)| < n?.

Hence

|bij] =

> A(B)pikpi
k=1

n
<n? ) Ipacllpje
k=1

r Y /n 5
< (z |p,-k|2> (Z |pjk|2> i
k=1 k=1

It follows that there exist a matrix B € A(G) such that 9;(G) = Zf::l Ai(B). Note that
91(G) = 9(G). We also note that Lemma 2 provides a min-max characterization for the

functions J;. We use these functions to generalize Theorem 2 as follows:

Theorem 3: Forany graph G, there exist polynomial-time computable functions 9x(G)
which satisfy the following inequality:

wr(@) < 9k(G) < xk(@), for1 <k <n.

Theorem 3 generalizes Lovasz’s result since for k£ = 1,w(G) = w(G) and xx(G) = x(G),
and in this case the function 9,(G) = J(G).

The proof of Theorem 3 follows from Theorems 4, 6 and 7 below. In Theorem 4 we
show that 9;(G) is a tighter upper bound for w(G) than the one provided by Theorem 1.

Theorem 4 :  For any graph G, wi(G) < 9x(G), for 1 < k < n.

Proof : We claim that Theorem 1 can be refines as follows. For every matrix B € A(G),
k
> M(B) 2 wi(G), for1<k<n.
i=1

The claim can be verified by following the steps in the proof of Theorem 1 replacing 4 by
B, and A(®) by B(®, The proof of the theorem now follows. N

Let ax(G) denote the size of the largest subgraph of G that can be covered by k
independent sets in G. Then & k(@) is also the size of the largest induced k-partite subgraph
in G or equivalently, the largest induced k-colorable subgraph of G. The problem of
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computing ax(G) has been recently considered for special classes of graphs [MN87, SL87,
YL88]. We note that wi(G) = ax(G) where G is the complement of G. The next Corollary
provides a polynomially computable upper bound for ai(G).

Corollary 5: a(G) < 9k(G), for 1 <k < n.

Theorem 6 below establishes the relation between 9 and x. Before we prove Theorem
5, we show that k—multicoloring a graph is equivalent to a regular coloring of a modified
graph. Define the Composition of two graphs G1(Vi, Ey) and Go(Va, E2) to be the graph
G(V,E) = G1[G3] such that V = Vi x V, and ((zi,yi),(zj,y;)) € E if either z; = z;
and (yi,y;) € Eq, or (z;,z;) € E;. Given a graph G, let G*¥) = G[K}], where K} is the
complete graph on k vertices. A k—multicoloring of G can be converted into a coloring
of G(¥) by assigning the set of k distinct colors given to vertex v; to the k vertices in G;.

Since this process is reversible xx(G) = x(G*)).
Theorem 6 : For any graph G, 9x(G) < xx(G), for 1 <k < n.

proof: The graph G(*) can be considered as the graph obtained by replacing each vertex
v; in G by a graph G; = K}, and then adding the appropriate edges. Each of the k vertices
in G; are similar in the sense that they are adjacent to the same set of vertices outside of
Gi, besides being adjacent to each other. This fact is reflected in the structure of every
matrix B in A(G(*)) in that two rows corresponding to similar vertices have the same set
of fixed positions. This implies that if we replace a row B corresponding to vertex in G;
by a convex combination of rows corresponding to vertices in G;, the new matrix is still in
AGH,

It follows from the definition of ¥ that 9(G(*)) = X;(B') for some matrix B' € A(G(*)
of order nk. Moreover, by Theorem 2, A;(B') < x(G(®). 1t is known that \; (B) is a convex
function of the entries in B [Fan49]. This fact, together with the discussion above imply
that there exists a matrix B” € A(G®) such that A;(B”) = A(B') = 9(G*)) and the
rows and columns corresponding to the similar (and mutually adjacent) vertices within
each G; are identical. Consequently, B” can be divided into n sets of k rows (columns)
such that each of the rows (columns) in a set is identical. Since B” is symmetric, we can
simultanousely permute its rows and columns (or relabel the vertices of G®)) such that
the resulting matrix B has the following property. B can be divided into n? blocks where
each block is of size k x k and all the entries within a block are equal.

" Now consider the n x n symmetric matrix A obtained from B by replacing each k x k
block in B by any entry from that block (the entries are all equal). Clearly, B € A(G).
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It i1s obvious that if

e=(z1,...,2p)
is an eigenvector of A, then
" —
e = (CL‘11,...,.’I)lk,.’L‘zl,...,flJzk,...,:I,'nl,...,wnk)
is an eigenvector of B where
Tiy=xi J=1,...,k i=1,...,n.

Consequently, if A1(4),...,A.(A) are the n eigenvalues of A, and A(B), ..., Ank(B) are
the nk eigenvalues of B, then they are related as follows:

Ari-1)4i(B) = kXi(4), j=1,... k.

In particular, A;(B) = kA;(4). Now,

k
9k(G) < Y Xi(4) < kA (4) = Mi(B) < X(GP) = xx(G). W

g=]
Theorem 7 : For every graph G, 9;(G) can be computed in polynomial time for
arbitrary k.
Proof :  The proof that 9x(G) can be computed in polynomial time is very similar to

Lovasz’s proof that ¥(G) can be computed in polynomial time [Lov86]. It was proved by
Ky Fan [Fan49] that for all n X n Hermitian matrices A4, the functions

k
u4) = S N(A), k=1,..n,
i=1

are convex. For a fixed k and a rational matrix B € A(G), the convex function ¢r(B) can
be minimized over the affine subspace A using the ellipsoid algorithm, provided we can find
a ball or cube about which we know a prior: that it contains the minimum [Lov86]. Lemma
4 guarantees the existence of such a ball. Since ¢x(A4) can be computed in polynomial time

for each rational A € A, 9x(G) can be computed in polynomial time. &

4. Discussion



For perfect graphs the function 9(G) coincides with w(G) and with x(G). This fact is the
essential ingredient in the polynomial-time algorithm to compute w(G) and x(G) for perfect
graphs [GLS81]. Unfortunately, we cannot use the polynomially computable function
9%(G) in the same manner to compute its bounding parameters for perfect graphs because
xk(G) and wi(G) are not equal on perfect graphs. For example, for the complete graph
G = K,, which is a perfect graph, xt(G) = kwi(G) = kp. In fact, in this case the class
A(G) consists only of the adjacency matrix A(G), and hence wi(G) = 9k (G) = p. These
facts leave us with two open problems.

One open problem is to classify graphs for which wi = x. For example for Cyp, the
simple cycle of length 2p, we have xx(Cap) = wi(C2p) = kp, k < p. Another example
where equality holds is for trees that have a matching of size k, in which case wy = xr = 2k.

The other open problem is to identify classes of graphs for which the functions 9 &k 2
1, can be used to compute either one of its bounding parameters in polynomial time.
For example, the function xx(G) is polynomial time computable for perfect graphs since
xk(G) = x(G®) = kx(G) = k¥1(G). In contrast, when k is arbitrary, computing wi(G)
for perfect graphs is an NP-Hard problem. This follows from the fact that it is NP-Hard
to compute wi(G) (for k arbitrary) for the class of chordal graphs [Yan87]. We believe
that 9% provides a tighter bound for wi than for xx. We have already seen that although
xe(Kp) # wk(Kp), it is the case that Ik (Kp) = wi(Kp). It will be interesting to identify
classes of graphs for which wi(G) = 9x(G) since for these graphs this equality will provide
a polynomial algorithm to compute wg.

Finally, we propose one last open problem. We know that ¢; is an integral valued

function for perfect graphs. Is 9y integral valued on perfect graphs for k > 17
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