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1. Introduction.

We present theoretical results on the deterministic complexity of factoring polynomials over
large finite fields. This problem can be solved in random polynomial time, but it has no efficient
deterministic algorithm, even if a powerful assumption such as the Extended Riemann Hypothesis
(ERH) is made. However, various authors have shown under this hypothesis that fast deterministic
algorithms exist to either factor special polynomials or to factor polynomials over special finite
fields. Our purpose in this paper is to enlarge the latter category.

Concerning special polynomials, the following is known. Schoof [16] showed that X? — a can
be factored modulo p deterministically in time polynomial in |a| and log p; if the ERH is true, then
the time can be reduced to a polynomial in log |a| and log p [2]. This result has been generalized in
two directions. Taking a Galois-theoretic approach, Evdokimov [7] showed under the ERH that any
polynomial in ZZ[X] with a solvable Galois group can be factored mod p in deterministic polynomial
time; this extends results by Huang [9] and Adleman, Manders, & Miller [2]. Considering the
number of factors, Ronyai [14] showed under the same hypothesis that any polynomial modulo p
with a bounded number of irreducible factors can be factored deterministically in time bounded by
a polynomial in its degree and log p.

Concerning special fields, the first fact to note is that only the characteristic matters, as
Berlekamp [4] showed that factorization of polynomials over a finite field of p™ elements reduces
deterministically in polynomial time to factorization over the prime field of integers modulo p. He
also showed that the time to factor f modulo p could be bounded by a polynomial in deg f and p
(see [19] for the best current bounds on this time). One of the present authors [8] showed that if
the ERH holds and p -1 has only small prime factors — in this case we say that it is smooth — then
polynomials can be factored modulo p by a deterministic polynomial time algorithm. Extensions
of this result were found by Mignotte & Schnorr [12] and Ronyai [15].

In this paper we show that, assuming ERH, polynomials over fields of characteristic p such
that p+ 1 is smooth can be factored quickly; this answers a question posed in [8]. More generally,
we show this to hold for fields such that for some fixed e and k, pe(5=1) 4 ... 4 pe + 1 is smooth (the
dependence on k and e is not burdensome). Precise statements of our results can be found in the
last theorems of sections of 4 and 5. Our results have the consequence that without any hypotheses,
a deterministic polynomial time algorithm exists to factor polynomials modulo Mersenne primes.

This complements the known results on primality testing and integer factorization, to wit:
smoothness of ®,(p), the kth cyclotomic polynomial evaluated at p, leads to fast algorithms to

either prove p prime [11] or remove it as a factor from another number n [3]. The natural question
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to ask is if the smoothness of ®(p) could help factor polynomials modulo p; this was also raised
in [8] but we are presently unable to answer it.

We hasten to point out that our results are purely theoretical, and are directed toward the
question of whether there is a deterministic polynomial time algorithm to factor polynomials over
finite fields. For this reason we do not attempt to find the most efficient implementations of
our methods. For practical purposes the randomized algorithms of Berlekamp [5] and Cantor &
Zassenhaus [6] suffice to factor polynomials over any finite field.

The main features of our algorithm can be summarized as follows. Using standard techniques,
we reduce the problem to that of factoring a polynomial modulo p. We then construct an extension
field of the integers modulo p, together with elements that generate the kernel of the norm homo-
morphism. We need the ERH to show that this part is efficient, but it has to be done only once for
a given prime. We then factor the polynomial over this extension field, using a process reminiscent
of Pohlig & Hellman’s algorithm [13] for computing indices; if the group of norm-1 elements has
smooth order then this last part takes polynomial time.

Specifically, we use the ERH to get time bounds for solving the following problems: find an
irreducible polynomial mod p, factor cyclotomic polynomials mod p, and construct an isomorphism
between two realizations of a finite field.

The rest of this paper is organized as follows. Section 2 collects the algebraic results and
notation that we need. All of the main ideas in our algorithm occur already when considering p+1;
consequently we discuss this case in detail in sections 3 and 4. We present generalizations to other

polynomials in p in section 5.

2. Notation and Background.

IF, will denote a finite field containing ¢ elements. If & > 1, then by a model of IF,x we shall
mean a field of the form IF,(a), where o is the root of a polynomial of degree k, irreducible over
IFp; such a model could be given concretely by specifying the polynomial and p. Although any
two models of IF, are isomorphic, there is no known deterministic polynomial time algorithm to
construct the isomorphism, although Evdokimov [7] has shown that the existence of such a method
follows from the ERH.

The Galois group of IF /IF, is cyclic of order k and generated by the Frobenius automorphism

o:z — z9. We can easily decide if an element of IF i is in IF, by seeing if o(z) = 2. If 2 € [P,

1

then N(z) = 27 '+-+9+1 denotes its norm, and T(z) = 2?7 4 ... 4 29 4 2z its trace. Both N

and T map IF » onto IF,; in addition, T' is IF,-linear.
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The multiplicative group of any finite field is cyclic, and this fact implies Hilbert’s “theorem
90:” an element of I+ has norm 1 over IF, if and only if it has the form y/y° for some nonzero
y in IFx. The elements of norm 1 form a (cyclic) subgroup of order g-1 4 ...+ ¢+ 1 in the
multiplicative group of IF',.

IF,[X] denotes the polynomial ring in one indeterminate over IF'y; if o is an automorphism of
IF,, welet o act on IF;[X] by transforming coefficients but leaving X untouched. Using this device,
the definitions of norm and trace extend to polynomials as well. If the coefficients of f belong to
the fixed field of o, then this automorphism acts on IF [ X]/(f).

&, will denote the rth cyclotomic polynomial; if » is prime then
& (X)=X""14 -+ X+ 1.

We shall let C,, denote a cyclic group of order m. If m = mq---m, is a relatively prime

factorization, then

with the projection onto the ith component given by 2 — gmimi,

By the ERH we mean the following statement: the L-function attached to a Dirichlet character
of a number field K has no zeroes in the half plane Re(s) > 1/2. This has the consequence that
prime ideals that do not split in certain extensions of K can be found quickly; see [7] and [9] for
more details on implications of the ERH.

For positive integers n, we let Si(n) denote the largest prime factor of nF~1 4 ... 4 1; thus

S5(p) is the largest prime factor of p+ 1.

3. Constructing Quadratic Extensions.

This section gives an algorithm to find a model of IF,2, together with an element outside the
subgroup of rth powers for each prime 7 dividing p + 1. While techniques to do this are readily
available in the literature, the precise result we shall need seems not to be. Assuming ERH, the
algorithm’s running time is bounded by a polynomial in log p and the largest prime factor of p+ 1.
Lemma 3.1. An isomorphism between any two given models of IF ;2 can be found in deterministic
polynomial time.

Proof. Using the quadratic formula we can assume the two models to be K; = IF,(y/a3), 7 = 1,2.
The a;’s must be quadratic nonresidues mod p. We use the Tonelli-Shanks algorithm [17] (which
runs in deterministic polynomial time when given a quadratic nonresidue) to find a number ¢t € IF,

with 12 = ay/as. An isomorphism between Ky and K, is then given by /a1y =t ,/az. m
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Algorithm 3.2.
Input: p, an odd prime; r, a prime divisor of p + 1.
Output: K, a model of IF2; 7, an element of K — K.

Let m = 2r.

Let L = IFp(a) be a model of IFpm.

Let T denote the trace from L to IF .

Choose i, 0 < i < m, so that 7 = T(a?) ¢ IF,,.
Let K = IF,(7).

Let ¢ be a root of ®,; if ¢ ¢ IF,, adjoin ( to K.
Let B=a+Ca? +...+ (" 1a?" 7,

Return K and n = 7.

Theorem 3.3 [ERH]. Algorithm 3.2 correctly constructs I and 5. It runs in time polynomial in
r and log p.

Proof. We first show correctness. The trace is an IF,-linear mapping from L onto IF2, hence one
of the basis elements o' will have its trace 7 in IF2 - IFp. Since r | p+ 1, IF,2 must contain a
primitive rth root of unity (. Now o generates IF,m over IF,2, which is a cyclic extension whose
degree 7 is relatively prime to p. § is the Lagrange resolvent, and by a classical theorem of algebra
[20, §55], A7 is in IF )2 and B generates IF,m over IF,2. It follows that 7 is in IF,2, but not an rth
power.

As for the running time, we must check that all the field-theoretic constructions can be done
in polynomial time. The construction of I can be done with the algorithm of Adleman & Lenstra
[1], which assuming ERH finds an irreducible polynomial of degree m over IF, in time bounded
by a polynomial in m and logp. The construction of K uses linear algebra to find the minimal
polynomial for 7. Finally, we can factor ®, over IF,, quickly under the ERH with the algorithm of
Huang [9]. If &, splits completely we take one of its roots as ¢, otherwise the factors must be of
degree 2, and we use lemma 3.1 to express ( in K. m
Theorem 3.4 [ERH]. To construct a model of IF 2, together with a non-rth-power for every prime
r dividing p + 1, requires time polynomial in S2(p) and log p.

Proof. Factor p+ 1, then run algorithm 3.2 using each prime r dividing p+ 1. Combine the

models using lemma 3.1. m

4. Factoring with Quadratic Extensions.

In this section we give an efficient algorithm to factor a polynomial over a finite field of

characteristic p when p + 1 is smooth. The algorithm requires a model of IF,2, together with
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certain generators for the norm-1 group of this field. First we need a purely algebraic result.

Lemma 4.1. Let K and L be fields, with L = K(¢). Let o be a nontrivial automorphism of L
fixing K. Define ¢ : IF; — K by ¢(z) = (z 4+ t)/(z +t°). Then ¢ is 1-1.
Proof: Choose z and y in K, and assume that (z + t)/(z + t°) = (y + t)/(y + 7). Clear fractions,
subtract common terms, and rearrange to find that z(t — t°) = y(¢ — t). Since ¢ generates L/ K,
t#t%,s0z=y. M

Using standard techniques, the problem of polynomial factoring over any finite field of char-
acteristic p can be reduced deterministically in polynomial time to factoring over the prime field,
and even to finding roots of squarefree polynomials that split completely over the prime field [4,

5]. This latter problem is the one we shall actually solve.

Hence consider a polynomial f € IF,[X] of degree [, with distinct roots in IF,. We assume
available a model of IF,2 as IF,(7), where T satisfies an irreducible quadratic equation, together
with non-rth-powers in IFp2 for each prime r dividing p + 1. Our algorithm actually splits f in
IF ,2[ X]; since f has all its roots in IF;, any factor thus found must lie in IFp[X].

Algorithm 4.2.

Input: f, a polynomial in IF,[X] with distinct linear factors; IF,(7), a model of I}z, and for each
prime 7 dividing p+ 1, an element n € IF (1) — IFp(7)".

Output: A nontrivial factor of f.
Choose a nonconstant u(X) € IF,[X]/(f(X)).
Replace u(X) by u(X)+ 7 (so now u € IF2[X]).
Let d(X) = u(X)/u(X)? mod f(X) (if u(X) is not a unit we immediately split f(X)).
For each prime r dividing p+ 1:
Find s so that r° || p+ 1.
Let n ¢ 7z, and let v = pP=D/r" =47
Set v(X) = d(X)P+D/™ mod f(X).
Fori=0,...,8s—1:
Let w(X) = »(X)" """ mod f(X).
If w(X) € IFp2 (a constant) then:
Find e; such that (% = w(X).
Replace v(X) by o(X)/ver.
Otherwise, find j, 0 < j < r, such that ged(v(X) — ¢J, f(X)) splits f(X).

Theorem 4.3. If f € IF,[X] has distinct linear factors, then algorithm 4.2 finds a nontrivial factor
of f. Tts running time is bounded by a polynomial in log p, deg f, and Sa(p).

Proof. The norm-1 group in IF,: is isomorphic to [],.Crs, with the projection onto the rth
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factor given by z — 2(P+1)/7° Since 7 is not an rth power, v generates C,, and ( is a primitive
rth root of unity.

Let f1(X),..., fi{X) be the factors of f(X); fori = 1,...,1, let d; denote d(X) modulo f;(X).
Since u(X) is not constant, applying the Chinese remainder theorem and lemma 4.1 (with the
Frobenius automorphism of IF 2 /IF,) shows that two such d;’s, say d; and d, must be distinct.
There is thus some r such that their projections v; and vy into C,s are distinct. Since 7 is a

generator, any element of C,. has a representation

eoterrttes Tt

5

with 0 < e; < 7; choose the least ¢ such that these “digits” of v; and v, disagree. Then when the

inner loop is entered at step 7, we will have
eDpip...
v = v(X) mod f1(X)= 7"

Vg = ’l)(X) mod fg(X) = 7952)7'i+“'

with egl) # e?). Then

e$1>,’,5—1 EEI)

wy = w(X) mod fy(X) =7 —¢

and

(D a1 )

we = w(X) mod fo(X) =% = (&

so the last line of the algorithm will split f. =
Theorem 4.4 [ERH]. Let S2(p) denote the largest prime factor of p 4 1. There is an algorithm
with the following property: when presented with a polynomial f € IF,:[X] of degree n, it factors
fin O(kn - So(p) log p)°™) steps.

Proof. Combine theorem 4.3, the results of the last section, and the remarks on factoring
polynomials over extension fields. m

A curious consequence of this is the following.
Corollary 4.4. There is a deterministic polynomial time algorithm that factors polynomials over
IF,, when p is a Mersenne prime (i.e., of the form 2¢ — 1 for an odd prime s).

Proof. As p+ 1 = 2%, the only thing to check is that we can deterministically construct a
model of IF 2 together with a nonsquare. Hence let f(X)= X 2 _2(»*1)/2X — 1. The discriminant
of f is a quadratic nonresidue mod p, and if 7 is a root of it, then 7%’ = —1, so 7 is not a square

(see [10]). Hence the required model is IF,(7). m
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No one has shown that there are infinitely many Mersenne primes, but this seems likely from

density considerations (see [18], p. 197).

5. Extensions.

In this section we discuss the modifications that must be done to replace p+1 by ¢F~14+.. .41,
when ¢ = p®. We shall present algorithms and theorems but merely sketch how the proofs should
be changed. We first review Evdokimov’s results:

Lemma 5.1 [ERH]. An isomorphism between any two given models of IF, can be found deter-
ministically in time bounded by a polynomial in logg. Furthermore, if f € 7ZZ[X] is a polynomial
with a solvable Galois group, then f can be factored over IFy in deterministic polynomial time.
Proof. See [7].

We next need an analog of theorem 3.3 to produce a model of IF;x together with an non-rth-
power for every prime r dividing ¢*~! +---4 ¢+ 1. As before we can reduce this to the construction
of a separate model for each 7, and the algorithm to do this is given below.

Algorithm 5.2.
Input: ¢, an odd prime power; r, a prime divisor of ¢5~1 4+ ... 4+ ¢ + 1.
Output: A model K of IFx together with 7, an non-rth-power.

Let m = kr, and construct L = IFy(a), a model of IFgm.

Let T denote the trace from L to IFg.

Choose %, 0 < @ < m, so that 7 = T(at) generates Iy /IF,.

Let K = IF (7).

Let ¢ be a root of &,; if ( ¢ IF,, adjoin ( to K.

Let 8= a+ Cad" 4 -+ (T=1ad" "7,

Let n=f".
Theorem 5.3 [ERH]. To construct a model of IF ., together with a non-rth-power for every
prime r dividing ¢*! + --- + ¢ + 1, requires time polynomial in k, Si(¢) and loggq.
Proof. The proof goes through like that of theorem 3.4, provided that irreducible polynomials can
be generated quickly and roots of unity found quickly in this relativized setting. As for the first
problem, to construct an irreducible polynomial of degree m over IF,, it suffices to construct an
irreducible polynomial of degree em over IF, and then find an element o whose relative trace to I,
is contained in no smaller subfield. Then o will have degree m over IF;, and using linear algebra
we can find a relation between 1, ,...,a™, which gives its minimal polynomial. Using lemma 5.1,
we can identify this model of IF; with any given one. As for the second problem, if r is prime then

the r-th cyclotomic polynomial has a cyclic Galois group, so lemma 5.1 certainly applies. m
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Algorithm 5.4.

Input: f, a polynomial in IF,[X] with distinct linear factors; IF,(7), a2 model of IF» together with
a non-rth-power 7 for each prime divisor r of ¢g*=1 4+ ... + ¢+ 1.

Output: A nontrivial factor of f.
Choose a nonconstant u(X) € IF,[X]/(f(X)).
Replace u(X) by u(X) + 7.
Let d(X) = u(X)/u(X)? mod f(X).
For each prime r dividing ¢*~1 4 .+. 4+ ¢+ 1:
Find s so that r¢ || ¢*" 1 +---+ ¢+ 1.
Let n ¢ 7., and let v = pla" =0/ ¢ =g
Set v(X) = d(X)(¢" T H-+e+D/T" mod £(X).
Fori=0,...,8~1:
Let w(X) = »(X)” """ mod f(X).
If w(X) € IF,+), then find e; such that (% = w(X) and replace v(X) by v(X)/~="".
Otherwise, find 7, 0 < 7 < 7, such that ged(v — {7, f) splits f.

-1

Theorem 5.5. Algorithm 5.4 splits f, in time polynomial in %k, logg, deg f, and Si(q).
Proof. Like that of theorem 4.3; left to the reader. m
Theorem 5.6 [ERH]. Let Si(m) denote the largest prime factor of mk=1 4 ... 4+ m+ 1. There
is an algorithm with the following property: when given positive integers k¥ and e, it factors any
degree n polynomial over a finite field F of characteristic p in O(ke - nSg(p®) log | F|)°() steps.
Proof. Reduce the problem to that of factoring a squarefree polynomial f into distinct linear
factors over IF',. Then construct a field with ¢ = p® elements using the algorithm of [1], and use

algorithms 5.2 and 5.4 to factor f over IF,. m
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