niversity of
Madison

NEAR-TESTABLE SETS
by
Judy Goldsmith
Lane Hemachandra

Deborah Joseph
Paul Young

Computer Sciences Technical Report #797

October 1988

NEAR-TESTABLE SETS

JUDY GOLDSMITH
Dartmouth College

LANE HEMACHANDRA
Columbia University

DEBORAH JOSEPH
University of Wisconsin - Madison

PAUL YOUNG
University of Washington

Authors?’ addresses:

J. Goldsmith:
L. Hemachandra:
D. Joseph:

P. Young:

Mathematics Department, Dartmouth College, Hanover, New Hampshire 03755.
Computer Science Department, Columbia University, New York, NY 10027.

Computer Sciences and Mathematics Departments, University of Wisconsin

1210 West Dayton St., Madison, WI 53706.

Computer Science Department FR-35, University of Washington, Seattle, WA 98195.
(1988-89: Brittingham Visiting Professor

Computer Sciences Department, University of Wisconsin
1210 West Dayton St., Madison, WI 53706.)

NEAR-TESTABLE SETS*

JUDY GOLDSMITH
Dartmouth College

LANE HEMACHANDRA
Columbia University

DEBORAH JOSEPH

University of Wisconsin - Madison

PAUL YOUNG
University of Washington

Abstract. In this paper we introduce a new property of sets which we call near-testability. A set S is near-
testable (S € NT) if the membership relation for all immediate neighbors is polynomially computable; i.e.,
if the function t(z) = xs(z) + xs(z — 1) (mod 2) is polynomially computable. The near-testable sets form a
subclass of the class, ®P (parity-P), introduced by Papadimitriou and Zachos. ®P has a complete set @SAT
which has recently been shown by Valiant and Vazirani to be hard for NP under randomized polynomial
time reductions. We prove that there is a uniform polynomial one-one reduction which takes every set in ®P
to a near-testable set, and we show that the image of ®SAT under this reduction (which we call NTSAT')
is polynomially isomorphic to ©@SAT. As corollaries we have that NTSAT is complete for both N7 and for
@®P, that NTSAT is hard for NP under randomized polynomial time reductions, and that the existence of
one-way functions implies the existence of sets that are near-testable but not polynomially decidable. We
then ask whether near-testability is preserved under p-isomorphisms. This leads to a generalization, NT*
of NT similar to those introduced by Meyer and Paterson and by Ko for self-reducible sets. With this
more general definition, NT* is shown to be closed under polynomial time isomorphisms while remaining a
subclass of @ P. We conjecture that it is a proper subclass. In fact we show that, relative to a random oracle,
the containments P C NT C NT™* C @P are proper with probability one. We also show that, relative to a
random oracle, with probability one NT and NT™ are incomparable with both NP and with coNP . Finally,
we consider the effects that the distribution and density of elements have on the complexity of near-testable
sets.

Contents.

1. Introduction——basic facts about near-testable sets

. Relating near-testability and parity testing

. Complete problems for near-testable sets

. Polynomial isomorphisms and generalizations of NT
Relativizing NT

Some additional facts about near-testable sets
Conclusions

. Bibliography

Categories and Subject Descriptors: F.1.3 [Theory of Computatlon] complexity classes
General Termas: Structural complexity theory

Additional Key Words and Phrases: near-testable, one-way functions, parity-P, self-reducible

* This work was supported in part by National Science Foundation grants DCR-8402375 and DCR-8520597,
and by a Brittingham Visiting Professorship at the University of Wisconsin-Madison.
Many of the results reported here have also been reported, sometimes in abbreviated form, in [GJY87a]

and in [He87]. This technical report also appears as University of Washington Computer Science Department
Technical Report 87-11-06.

ii

1. INTRODUCTION—BASIC FACTS ABOUT NEAR-TESTABLE SETS.

Structural complexity theory is often concerned with the interrelationship between sets in a complexity class,
(e.g., Is set S complete for class C'?), and inclusion relationships between classes, (e.g., Does P = NP?).
However, the internal properties of sets (e.g., Do all NP-complete sets have infinite polynomially decidable
subsets?) are also of interest. We are concerned here not just with the internal structure of sets, but more
specifically with the ordering structures that exist within a set and with the effect that these orderings have

on the time and space complexity of the set.

The study of sets and their associated orderings is not new. For example, the classes of Turing self-
reducible sets, p-selective sets, and p-cheatable sets have each been widely studied, and the sets in each class
have an internal partial ordering which is imposed by the nature of the “self-reducibility” the set exhibits.
Turing self-reducible sets have an internal well-founded ordering that ties the membership question for any
element of the domain to the membership question for polynomially many “shorter” elements, and the

p-selective sets impose on their domain a polynomially testable reflexive and transitive preorder.

This paper is part of a general investigation of how internal orderings affect the time and space complex-
ities of sets. In [GIY87a] we surveyed results concerning various classes of “self-reducible” sets, outlining in a
systematic way how ordering structures affect the time and space complexities of these seté. In [GIY87b&c]
we reported more fully on our own investigations of the time and space complexity of p-selective, p-cheatable,
self-reducible, and word-decreasing query self-reducible sets.

In this paper, following up the preliminary report in [GJY87a], we introduce the class of near-testable
sets, a class of sets which have a particularly simple internal ordering structure. Like many other self-
reducible sets, near-testable sets lie somewhere between P and Pspace. We originally became interested in
these sets because they are a particularly easily defined extension of P for which it seems difficult to prove

that the extension is proper.

Sets are near-testable if, in polynomial time, for any element, z, it is possible to fully relate the member-
ship question for x to the membership question for z’s immediate predecessor in the lexicographic ordering.}
Because of this very simple structure, we hope that it will be possible to analyze near-testable sets in ways
that are not possible for more complicated classes.?

This intuitive definition of near-testability is easily formalized as follows:

! Here, and throughout this paper, we use any standard polynomial one-one encoding between all strings over
some alphabet and the natural numbers so that we may speak interchangeably about strings and numbers, with
no distinctions between the two. (See, e.g., the coding of strings to numbers given in the paragraph on pages 21
and 22 of [MY-78].) In these codings, 0 stands both for the number 0 and for the empty string.

2 In [Ba87], Balcizar introduced the word decreasing query self.-reducible sets. Although our original interest
in near-testable sets was independent of Balcidzar’s work, in hindsight his definitions provide a nice motivation
for studying near-testable sets. Balcizar said that a set S is polynomial time word decreasing query (wdq) self-
reducible if there is a polynomial time deterministic oracle Turing machine M such that M° decides membership
in S and for each input z, all queries to S lexicographically precede . Near-testable sets are easier to analyze
than Balcdzar’s sets, since for near-testable sets the membership question for any given element can be reduced

1

Definition 1.1. A set S is near-testable if there is a polynomially computable function that, given £ > 0,
decides whether exactly one of x and x — 1 is in S. That is, the function

t(z) = xs(z) + xs(z —1) (mod 2)
is polynomially computable. We denote the class of near-testable sets by NT'.

Thus, with respect to our ordering on X*, we can fully relate the membership questions for z and z — 1,
where ¢ — 1 denotes time the lexicographic, or equivalently the numeric, predecessor of z. One easily sees
that if S is near-testable, then S is also, and that all near-testable sets are decidable in linear exponential
time® and in polynomial space. In addition, it is easily seen that if S is near-testable and if either S or S is
polynomially sparse, then S is in P. On the other hand, a straightforward slow diagonalization allows one to
construct sets that are exponentially (or even just superpolynomially) decidable but not near-testable. We

summarize these observations as follows.

Observation 1.2.
i) PC NT = coNT C Ezpn Pspace.
ii) If S € NT and if either S or S is polynomially sparse, then S € P.

iii} There is a set in Ezp that is not near-testable.

An important concept in the study of near-testable sets is the boundary of a set. Given a set S, the
boundary of S will be defined by

boundary(S) = {z:exactly oneof z and z ~1 € S}.

Thus the boundary of a set S consists of the first element of every contiguous sequence of elements of S and
of § with the exception of the first contiguous sequence.

We can picture a set S for which 0 € 5 as follows:
e | T | s | I | e | D ...

S (exclusive of points in its boundary) is represented by the thicker horizontal lines, S (exclusive of points
in its boundary) by the thinner horizontal lines, and boundary(S) by lines of the form “|” and “i”. Notice
that boundary(S) = boundary(S).

Observation 1.3. S is near-testable if and only if boundary(S) € P.

2. RELATING NEAR-TESTABILITY AND PARITY TESTING.

In [PZ82] Papadimitriou and Zachos introduced a class of sets parity-P, denoted by @ P, which has
recently proved useful in the study of randomized polynomial time reducibilities. We will see that the near-
testable sets form a subclass of @ P, and perhaps surprisingly, every set in ®P is one-one polynomial time
reducible, <¥, to a near-testable set.

in polynomial time to its immediately preceding neighbor.

3 Throughout this paper we will use Ezp to denote the class of sets recognizable in deterministic time 2°(™
and EXP to denote the class of sets recognizable in time gn®

Definition 2.1. A set S is in parity-P if there is a nondeterministic polynomial time Turing machine M
such that z € S if and only if the number of accepting paths in M’s computation tree for input « is odd.*

Papadimitriou and Zachos refer to @ P as “a more moderate version” of Valiant’s class number-P, (#P),
which is the class of functions, f(z), that count the number of accepting paths produced by a nondeterministic
polynomial time Turing machine on input z. Like #P, ®P is in Pspace and is thought not to be contained
in the polynomial time hierarchy. Clearly, if we could compute # P, then ®P would be no more difficult.
However, there seems to be no obvious way that distinguishing between an odd and even number of accepting
paths should help in computing the total number of accepting paths.

We next observe that the near-testable sets form a subclass of ®P.
Theorem 2.2. NT C &P.

Proof. Suppose that S is near-testable. Let us assume for the moment that 0 € 'S. We will describe a
nondeterministic parity machine, M, that recognizes S. On input z, M will guess a string lexicographically
less than or equal to z, trying to guess an element of boundary(S) and verify its guess. Note that z € §
if and only if the number of strings in boundary(S) that are less than or equal to z is odd if and only if there
are an odd number of accepting computation paths for M(z). If 0 € S, then we simply add one vacuous
accepting path to each of M’s calculations. g

The preceding proof shows the close connection between a set, the boundary of the set, and the parity
of the boundary. In fact, for any set B if we let

1 if <z: B}| i1s odd
paritys(z) = { if [{w Sziw € B}|iso

0 otherwise,
then, identifying a set with its characteristic function, it is easy to see for any set S that
(%) 0€S = S=paritypoundary(sy and 0€S= S = paritysoundary(s)-

Although it seems unlikely that all sets in @ P are near-testable, we next show that these two classes

are nevertheless very closely related.

Theorem 2.3. Everyset in ®@P is <{-reducible to a near-testable set via a polynomially invertible reduction
which has a polynomially decidable range.®

Proof. Let T € @P and let M be a nondeterministic parity machine that recognizes T. We will
give a uniform construction which, given any nondeterministic machine M running in polynomial time, p,
constructs a near-testable set S such that, if 7" is the set accepted by M when M is viewed as a parity
machine, then T' <F S.

4 This class has some similarities with the class EP defined by Goldschlager and Parberry, ((GP86]). EP is the
class of sets computable by nondeterministic Turing machines extended by an ezclusive-or operator. By adding
an exclusive-or “gate” at the root of the computation tree of a nondeterministic Turing machine, the machine can
determine the parity of the number of accepting computations. Since Goldschlager and Parberry did not require
their machines to use the exclusive-or operator, EP contains both NP and @P.

5 Notice that Theorems 2.2 and 2.3 do not guarantee that every set in @P is even polynomially many-one
equivalent to a near-testable set. We conjecture that such a strong equivalence between ®P and NT does not
hold.

Without loss of generality we may make a number of assumptions about the polynomial bound p and
the length of M’s computations® on inputs of length n:
i) that p is strictly monotonically increasing;
ii) that the function n + p(n) is invertible in polynomial time;
iii) that all computations for an input of length n have length exactly p(n); and
iv) that no computation y is in 0* or in 1*.
To construct the set S we first construct a polynomially decidable set B. S is then completely defined
by specifying that 0 € S and that boundary(S) = B. The basic idea is to let

B = {(z,y) : y is an accepting computation of M(z)},

for (,) a well-behaved pairing function. This will yield only that T is polynomially truth-table reducible
to S, so after seeing how the basic idea works we modify the definition of B to obtain T' <{ S.

First we describe a suitable pairing function. We will only be concerned about pairing elements (z,y)
where y could possibly be a computation of M on input z. Since this is the case only when |y| = p(|z]|), we
will call such a pair (z,y) relevant.

We need a pairing function that: (i) sorts the relevant pairs by their first element, so all (z, y)’s come
before all (x+1, z)’s; (ii) for relevant pairs, (z,y), is computable in time polynomial in the length of the first
element; and (iii) has a decoding function for relevant pairs that is polynomially computable in the length
of the string coding the pair. It is easily seen that these three conditions are met if we simply take (z,y) to

be the concatenation of the strings z and y.

Using this pairing function, B is obviously in P, and if we define S by requiring that 0 € § and
boundary(S) = B, then by Observation 1.3, S is near-testable.

To see that T is truth-table reducible to S, notice first that, by our final assumption about encodings
of computation paths, no string of the form z07(zD) or £17(2D) is in B. Using this and the fact that 7' is the
parity set for M’s computations, we see that for all =

zeT <— parz’tyB(a:OP(l”l)) # parityﬂ(xlp(lxl)).

But B is simply the boundary of S, so by observation (), which preceded the statement of this theorem,
we have that for z # 0
€T <= S(z0PU2D) £ 5(z12U=D),

which is a very simple polynomial time two truth-table reduction of T to S.

But we want the stronger result that 7' <{ S. To obtain this, we modify S by changing the definition of
B. Notice that if we simply doubled the number of accepting paths then on every computation tree we would
always have that parityp(z0°(2D)) = parityp(217(=D) = 0. This would make the membership test we have
given for T always come out false, but notice that if we could then always find a relevant pair (z,y) such
that ezactly half of z’s computations always preceded (z,y), then we would have that £ € T if and only if

parityp({(z,y)) = 1.

8 Here a computationis not the sequence of instantaneous descriptions which encode the complete computation
path but rather, a computation is the sequence of 0’s and 1’s that tell us which of the nondeterministic branch
points are taken as a nondeterministic Turing machine traverses a particular computation.

This requirement is easily met. We modify S by changing the definition of the boundary B to
(%) B = {(zc,y) : c € {0,1} and y is an accepting computation of M(z)}.

This definition effectively duplicates the computation paths, once for ¢ = 0 and once for ¢ = 1 so that we
now always have parityp(200°(2D)) = parityg (z117(2D) = 0. Furthermore half of B’s “accepting strings”
now lie below £107U7)) and half lie above, so we have

zeT <« parityg(mlop(""‘)) =1 <« zlo?lh g,

This gives the desired polynomial one-to-one reduction of T to S. The set S is again near-testable because
B is its boundary and B is in P.

This reduction is polynomially invertible and has a polynomially decidable range because of our as-
sumptions about p. §

Corollary 2.4. ®P # P ifand only if NT # P.

Notice that for any one-one, polynomially computable, polynomially honest function f, the set Range(f)
is in parity-P. In fact Range(f) is in the subclass of parity-P called unigue-P, which is the class of sets
accepted by nondeterministic machines that always have at most one accepting computation. It has been
shown that unique-P is equal to P if and only if every one-one polynomially computable and polynomially
honest function has a polynomially computable inverse, ([GS84]). Polynomially computable functions of this
form which do not have polynomially computable inverses are called one-way functions. Thus we have the
following corollary.

Corollary 2.5. If one-way functions exist, then NT # P.

3. COMPLETE PROBLEMS FOR NEAR-TESTABLE SETS.

The key to completeness for Valiant’s class # P is the concept of a solution-preserving reduction. A reduction
is said to be parsimonious if it preserves not only membership in a set, but also the number of witnesses that
a given element is in the set. If we define # P to be the function obtained by regarding Boolean formulas as
inputs and obtaining outputs by counting the number of satisfying assignments to the Boolean formulas, then
it is easily seen that #SAT is complete for #P provided the reductions used in the proof of Cook’s Theorem
are parsimonious reductions of sets in NP to SAT. If the proof is carefully done, then these reductions are
in fact easily seen to be parsimonious, one-to-one and polynomially invertible.” Valiant, ([Va79]), has shown
that a number of interesting sets, including #SAT, are complete for #P.

Obviously, there is a corresponding definition of ®SAT, which is the set of Boolean formulas that have
an odd number of satisfying assignments. Furthermore, because the reductions used in the proof of Cook’s
Theorem are parsimonious, the proof which shows that #SAT is <P_complete for #SAT also shows that
®SAT is <{-complete for ®P.

7 See e.g., the proof of Cook’s theorem in [MY78; Theorem 7.3.9] and also the comments in Exercise 7.3.28 of
[MY78].

Since NT' C ©P, the near-testable set to which @SAT can be reduced using Theorem 2.3 must be
<P-complete not only for the near-testable sets, but also for ®P. We call this set NTSAT 8 Intuitively,
NTSAT is just (an encoding of) the parity set obtained by a careful doubling of the satisfying assignments
for Boolean expressions.

Valiant and Vazirani, ([VV86]), have recently shown that ©SAT is of interest in the study of randomized
reductions since it is NP-hard under randomized reductions.

Definition 3.1. S is reducible to T by a randomized polynomial time reduction r if there is a polynomial
time probabilistic Turing machine computing r, and polynomial p(n) such that for all z, if ¢ ¢ S then
r(z) € T, and if x € S then Probability[r(z) € T] > p(|z])~!.

Theorem 3.2. The set NTSAT is
i) polynomially isomorphic to ®SAT,
ii) <¥-complete both for NT and for &P,
iii) NP-hard under randomized reductions,® and

iv) truth-table self-reducible via a simple truth-table of size two.

Proof. (i) By definition, ®SAT < NTSAT under the one-one, polynomially invertible function f
of Theorem 2.3. The set @SAT is a polynomial cylinder because it is easily seen to have a one-to-one
polynomially computable, polynomially invertible, padding function, pad(z, y) such that for all z and y

z € @SAT <> pad(z,y) € ®SAT.

(Simply “pad” Boolean expressions by adding useless variables. If done properly, this won’t change the parity
of the satisfying assignments for SAT'.) Also, ®SAT is <{-complete for ®P, so NTSAT <P ®SAT. These
interreducibilities between NTSAT and @SAT easily imply that the padding function for ®SAT induces a
corresponding padding function for NTSAT, so both are cylinders. It follows (see e.g., Lemma 2.4 of [MY385])
that @SAT and NTSAT are polynomially isomorphic.

(i) This follows immediately from (i) since NT C @ P, and hence NTSAT € @P.

(iii) First observe from the definition of randomized polynomial time reductions that if S is reducible to
B via a randomized polynomial time reduction and if B <§ C, then S is reducible to C via a randomized
polynomial time reduction. But @SAT is hard for NP under randomized polynomial time reductions, and
®SAT <P NTSAT.

(iv) This will follow from a careful look at the proof of Theorem 2.3.

8 Technically, NTSAT depends both on the choice of the parity machine, M, which recognizes ®SAT and on
the polynomial, p, used as an explicit bound on the run time of M. For now, any choice of M and p satisfying
Conditions (i) - (iv) in the proof of Theorem 2.3 will do. Later, when we use NTSAT in Theorem 3.2, we will
require that the machine M be chosen in a very straightforward and natural way.

9 Richard Biegel has independently constructed a set which is <% _..-complete for NT and NP-hard under
randomized reductions, (personal communication).

To this end, consider the set NTSAT derived from @SAT using the construction in the proof of Theorem
2.3. Recall that ®SAT came from a standard encoding of SAT, and that the machine M which recognized
SAT was required not to have any accepting choice sequences in 0* or in 1*. Clearly, without loss of
generality, we can assume first that the formulas in @SAT are all in conjunctive normal form, and we can
further assume by appending appropriate useless conjuncts, (e.g., “[-z;] & [zi]” for new variables z; and
z1), that the formulas used in defining @SAT have no satisfying assignments in 0% or in 1*.

Consider now the standard nondeterministic machine, M, which accepts SAT, and consider formulas
with variables z1, 23, ..., 2. The machine M runs in time which is linear in the length of the formula, and
in the proof we assumed that the computation, i.e, the list of choices of branch points, always had length
equal to the computational time of M. But in fact, if the machine M for SAT is chosen in its most obvious
way, then the relevant branch points for the nondeterministic machine always correspond exactly to the
choice of assignments for the variables 21,2, ..., z,. Thus for this simple case, in the proof of Theorem 2.3,
we can assume that the computations, i.e, the sequence of choices at the branch points, always have length
exactly n.

Returning to the proof of part (iv) of the theorem, first consider the boundary set B defined in equation
(#+) in the proof of Theorem 2.3. For any z there are an even number of relevant pairs (zc, y) that are in the
boundary set B. Thus, since we began by putting 0 € NTSAT, and since B is the boundary for NTSAT, we
must have that for all z, (z0,0°(=D) ¢ NTSAT. Thus for the first computation sequence for z, membership
in NTSAT is directly testable.

Now let F(zi1,...,Zj-1,%j,Tj+1,---,En) be any Boolean formula in conjunctive normal form as de-
scribed above. For any such formula, we made the possible computation choices of the standard nondeter-
ministic Turing machine which recognizes SAT in polynomial time and the parity machine which recognizes
@SAT correspond ezactly to the 2" zero-one valued Boolean vectors of the form by,...,b;_1,b;,bj41,...,bn,
which represent possible satisfying assignments for F(zi,...,2j-1,%j,&j41,...,2Zn). Thus in the proof of
Theorem 2.3 equation (+), we can write the inputs and computation choices which correspond to relevant
pairs for the set B in the form

F(zy, ..y Tjm1, 85, Tjg1y -, Zn), €& 01,00 b1, 85,0541, ..., b
where the b;’s and the bit ¢ are all just Boolean values. Now for this Boolean formula, F, let
F(21,.. 8=, %5, %41, .-+, %n), & b1, .., 051, 05,0541, ..., bn
correspond to any relevant pair.
If ¢ = 0 and all b; = 0, then we already know that
F(Z1y. -y Tjm1, By Tjds - Tn)y & b1y ooy bj_1, 05,0540, ..,00 @ NTSAT.

Assume next that by,...,bj_1,bj,bj41,...,bn & 0%, and that j is the first position where the bit b; = 1.
In this case,

F(21,. -y Tju1,85,Tjg1s -+, En), 6,01, .., 0521, 15,0541, ..., b € NTSAT if and only if

there are an odd number of Boolean assignments less than or equal to ¢,03,...,0;-1,1;,bj41,...,bs which
represent successful computations on F(z1,...,Zj-1,%j,Zj41,-.-,Tn)-

7

But the assignments less than or equal to ¢,0,...,0;-1,1;,b;41,..., b, are exactly those less than or
equal to

0,01, . '10j—11bj)bj+1, .o .,bn
in which the bit b; is fized at 1 together with those less than or equal to
c, 01,. . -:Oj—lybj’ 1j+1y' ‘e 1,

in which the bit b; is fixed at 0.

Therefore, we are able to see that there are an odd number of Boolean assignments less than or equal

to ¢,01,...,0j.1,15,b8541,...,b, which are successful computations on F(zy,.. Tl B, Ty, En)
if and only if the parity of the assignments less than or equal to ¢,0,,..., 0j-1,bj41,...,bs which are success-
ful computations on F(z3,...,2-1,1,%j41,...,2n) is unequal to the parity of the assignments less than or
equal to ¢,01,...,051,1;41,...,1, which are successful computations on F(z,.. 3 Ziw1,0,Z541,...,2,).
Le.,

(***) [[F(a:l,...,zj_l,a:j,:ij,...,zn),c,Ol,...,Oj_l,lj,bj+1,...,b,. € NTSAT]] >
I[F(:L']_,...,:Cj_l, 0,1:j+1,...,:l:n),c,()l,...,Oj_l,1j+1,...,1,, ¢ NTSAT <&
F(.’l:l,...,:l,‘j_1, l,a:j+1,...,a:,,),c,Ol,...,Oj_l,bj+1,...,b,, € NTSAT],

which is a standard example of a two-truth-table self-reduction of NT'SAT to shorter elements of NTSAT.

Finally, we consider the case where ¢ = 1 and all b; = 0. In this case, we know by our assumptions
on the computations that F(z1,...,2j_1,%;,%j41,...,%a),1,01,...,0;-1,0;,0;41,...,0, ¢ B. But this
implies that

F(:z:l,...,zj_l,xj,a:j+1,...,mn),1,01,...,0j_1,0j,0j+1,...,0,-, € NTSAT <=
F(:vl,...,a:j-l,zj,:vj+1,...,:z:,,),O,11,...,1,-_1,1j,1_,-+1,...,1,, € NTSAT.

This is not a self reduction since both formulas have the same length, but for the latter formula b; # 0, s0
the earlier results may be used to self-reduce

F(:L‘l, . .,:cj_l,:cj,sz, . .,.’L‘n), 1,01, . '10j-1a0j10j+1) ‘e .,On
by instead using (***) to self-reduce

F(ml,...,zj_l,a:j,z:j.l.l,...,:c,,),O,ll,...,lj_l, lj,lj+1,...,1n. ']

4. POLYNOMIAL ISOMORPHISMS AND GENERALIZATIONS OF NT.

In this section we address the question, “To what extent is the property of being near-testable preserved
under polynomial time isomorphisms?” Given the close connection between near-testable sets and their
boundaries, one might superficially expect that an isomorphism between the boundaries of two near-testable
sets would induce an isomorphism of the corresponding sets, or conversely that an isomorphism between two
near-testable sets should induce an isomorphism of the corresponding boundaries. But such expectations
fail.

Observation 4.1. For near-testable sets S and T
i) boundary(S) =P boundary(T) does not imply that S =P T and
ii) S =P T does not imply that boundary(S) =P poundary(T).

Proof. (i) If we take a very sparse polynomially decidable set, say one whose elements satisfy z < y
implies |z| < 2¥!, then this single set serves as a boundary for {wo near-testable sets, S and S. Clearly
S and S cannot be polynomially isomorphic even though they have the same boundary. Thus we cannot
expect polynomial isomorphisms of boundaries to induce polynomial isomorphisms of near-testable sets, and
no generalization of the notion of near-testability can change this.

(ii) If we ask the converse question, whether a polynomial isomorphism of near-testable sets should
imply an isomorphism of their boundaries, the answer is again “no,” but in this case the answer is less
definitive. For example, let S = {0z : z € {0,1}*} and T = {20 : £ € {0,1}*}. In this case S and T are
trivially near-testable since they are in P. Note that S =P T But the boundary of T is all of {0,1}*,
and the boundary of S contains only two elements of each length, so it is polynomially sparse. Therefore
boundary(S) #F boundary(T). § ’

Note that in our second example, the boundaries failed to be polynomially isomorphic because of the
rigidity of the underlying ordering structure which we insisted on using for our notion of “nearness.” If we had
been allowed to use reverse lexicographic ordering to measure “nearness” in the set T', then the boundaries

of S and T in the second example would have been polynomially isomorphic.

One property that distinguishes near-testable, wdq self-reducible sets, and Turing self-reducible sets is
that their definition is based on the standard lexicographic ordering of ¥*. For this reason near-testability
and other notions of self-reducibility are quite sensitive to the encodings of the set with respect to this
fixed order structure. For example these properities of sets are not necessarily closed under polynomially
computable isomorphisms (or even length preserving permutations) of £*. Thus, because of our reliance on
the canonical lexicographic ordering, the property of near-testability as we have defined it is probably not

preserved under polynomial isomorphisms.

Observation 4.2. If NT # P, then near-testability is not preserved by polynomial isomorphisms.

Proof. Since NTSAT is complete for NT, if NT # P then NTSAT ¢ P. As observed in the proof of
Theorem 3.2, NTSAT has a polynomially computable padding function, pad. Let T'= {20 : z € NTSAT}.
It is easy to see that T and NTSAT are polynomially many-one equivalent and that the padding function
pad for NTSAT can be used to induce a corresponding padding function on T. Thus both NTSAT and T
are polynomial cylinders, and, as in the proof of Theorem 3.2, it follows from Lemma 2.4 of [MY85] that
NTSAT and T are polynomially isomorphic. Thus T' ¢ P. We now show that T is not near-testable. Since
every other string is not in T, we see that ¢ € T if and only if # € boundary(T) N {X*0}. Therefore
boundary(T) € P => T € P. Thus boundary(T) ¢ P so T is not near-testable. g

Our last two observations suggest that, if we want the property of being near-testable to be more
broadly applicable and to be closed under polynomial isomorphisms, then we should relax our requirement
that “nearness” be measured only in terms of the standard lexicographic ordering of X*. Note that similar
problems arise for properties like Turing self-reducibility when the definition of the property is strictly tied

to the lexicographic ordering of £*. The situation can be remedied by allowing more general orderings

9

of £*; for example Meyer and Paterson ([MP-79]) and Ko ([Ko-83]) have given generalized definitions for
underlying ordering structures to use in defining Turing self-reducibility. We will use a similar approach to
define a broader class, NT*, that has many of the properties of NT, yet is more robust.

Basically, we would like to say that a set is in NT™ if there is some suitable polynomial ordering relative
to which the set is near-testable. To formalize this definition we must describe the properties of a suitable
ordering.

Our orderings will be tree orderings, or more precisely forests, where the minimal elements are the roots
of the trees. An element is less than an element y, ¢ < y, if £ # y and z and y lie on the same branch of a
tree with z closer to the root than y. The roots of the trees must form a polynomially decidable set, which
we will call ROOT'S. We will say that such orderings are polynomially computable if < is a polynomially
testable relation and if, for ¢ ¢ ROOT'S, the function pred(z) = the unique element y such that y < = and
forall z, 2 < £ = z < y, is polynomially computable.

In addition, to preserve some of the time and space complexity properties of NT we will require that
the ordering be ezponentially well-founded. For this we require that for some polynomial p, max{|z| : z <
£} < p(Jz]). This will imply that |{y: y < «}| < 2PU=D), and thus that for any z, the path from z back to
its root behaves reasonably like the sequence z, z -1, ..., 1.

Definition 4.3. A set S is in NT* if there exists a polynomially computable, exponentially well-founded
ordering, <g, such that

i) ROOTS N S is decidable in polynomial time, and

ii) for z ¢ ROOTS, t(z) = xs(z) + xs(preds(z)) (mod 2), is a polynomially computable function.

For a set S in NT* we define boundary(S) = {z:exactly one of z and predgs(z) € S}.

Theorem 4.4.
i) NI'C NT* = coNT* C ®P.
ii) NI" # P& NT# P« NT* £ NT.

Proof. (i) Obviously any set in NT is in NT™ since the lexicographic ordering satisfies the properties of
Definition 4.3. NT™ is closed under complements since the tree defining a set S € NT™ can be switched to
define S simply by noting that if ROOTS N S is decidable in polynomial time, so is ROOTSNS. Sets in
NT* are in ®P for basically the same reason that sets in N7 are in @P: we can design a nondeterministic
machine that on input z, guesses elements z along the branch of a tree from a root to z, checks that z <g z,
calculates y = pred(z) if z is not a root, and checks (using the polynomially computable function t) that y is
a boundary element along this path or, if z is a root, checks that z € S. Thus the computation tree for this
machine on input z has accepting paths for each element z along the branch from z to its root for which
z € S <= pred(z) ¢ S, plus one additional accepting path if the root is in S. Thus z € S if and only if
the number of accepting paths is odd.

(ii) If NT* # P, then ®@P # P, so by Corollary 2.4 NT # P. If NT # P, the image, T, of NTSAT in
Observation 4.2 is an example of a set in NT* — NT. If NT* # NT then trivially NT* # P. y

From the above result we have that P C NT™* C Pspace, as well as the following corollary.

Corollary 4.5. Every set in ®P is <{-reducible to a set in NT*.

10

One motive for extending the definition of NT was to find a superset of NT' that was closed under
polynomial isomorphisms. The next theorem shows that NT™ accomplishes this goal.

Theorem 4.6. NT* is closed under polynomial isomorphisms.

Proof. Suppose that S € NT* and ¢ is a polynomial isomorphism between S and aset T, g : T — S.
We will denote by <s, preds, ROOTSg, and ts the tree ordering, predecessor function, set of roots and
near-testability function for S. We need to define similar relations, sets and functions for T. We do so as
follows:

i) z <ry if and only if g(z) <s 9(y),

ii) predr(z) = g~! o preds o g(x),
iii) ROOT Sy = {z : g(z) € ROOTSs}, and
iv) tr(z) = ts(g()).

Clearly, the ordering <7 is polynomially computable, ROOT St is a polynomially decidable set of roots
for <7 and tp is a near-testability relation for T'. Also clearly, ROOT' St NT is polynomially decidable. To
see that <7 is exponentially well-founded, let p be the polynomial which witnesses that <s is exponentially
well-founded and let py be a polynomial which bounds the stretching and shrinking done by g. Then

max{lz]: z <7 &} < py(max{lz]: 9(z) <s 9(x)}) < py(p(py([2]))-

In addition note that
Hy:y=re} = Hy:y=<g@@} < 220D < orlealisD) g

In the calculations above, we never used the fact that the inverse, g~!(z), was unique. All we needed
to know was that, for each z, the set g~!(z) could be found in polynomial time and that its size was
polynomially related to the length of z. Therefore, if g is not one-to-one but is polynomially many-to-one
and completely polynomially invertible in the sense just described,'® then for each z we can < order the
elements of g~!(z) by simply using the natural lexicographic ordering. This yields the following observation.

Observation 4.7. NT* is closed under polynomial many-one reductions that are onto X* and have com-
pletely polynomially computable inverses.

It is also worth observing that the isomorphisms of Theorem 4.6 preserve the type of tree structures of
the underlying orderings. Thus, Theorem 3.2, (i), tells us that the standard complete set, ®SAT, for P is
polynomially isomorphic to NTSAT we have

Corollary 4.8. The standard complete set for ®P , ®SAT, is in NT* with an underlying polynomial
ordering of type (N, <).

In the proof of Observation 4.1, we observed that even for generalized definitions we should not expect
polynomial isomorphisms of boundaries of near-testable sets to imply the existence of polynomial isomor-
phisms between the sets. The converse question for NT , whether polynomial isomorphisms of sets in NT

10 Functions with this property were called strongly invertible by Allender and Rubinstein ([AR86]). Such
functions will be discussed in more detail in Section 6.

11

imply the existence of polynomial isomorphisms between the boundaries was answered negatively in Obser-
vation 4.1 (ii), but only because of the restriction to the use of the canonical ordering (N, <) in the definition
of NT. For NT™, the situation is different. In Theorem 4.6 we saw that if we have a set in N7™ based on
the exponentially well-founded tree ordering <5, then any isomorphism g provides an isomorphism of the
induced ordering <7 (as described in the proof of Theorem 4.6), and it is obvious that the boundaries under
<5 and <7 are polynomially isomorphic. We state this result as

Corollary 4.9. Given any two polynomially isomorphic sets S and T in NT*, the boundary of S is isomor-
phic to that boundary of T' which is taken with respect to the tree ordering induced by the isomorphism.

Corollary 4.8 raises the possibility that ®P = NT™*. We conjecture that the containment NT* C @P is
proper. Except for the obvious hypothesis that there exist sparse sets in @P — P, we do not have interesting
(and nontrivial) conditions which imply that the this is true, although in Section 5 we will see that with
respect to a random oracle the containment is proper with probability one.

If the containment is not proper, then NT* = {S : S <P NTSAT}, and this would say that this
generalized notion of near-testability is not just an interesting ordering property that some sets possess, but
that it defines a natural complexity class.

To prove the oracle results in Section 5, the following variation of Observation 1.4, part (ii), will be

useful.
Observation 4.10. If S € NT* and if either S or S is polynomially sparse, then S € P.

Proof. The proof is the same as for NT. Assume that S is sparse, and let p and ¢ be polynomials such
that of the elements of length less than or equal to n, at most ¢(n) € S, and of the elements preceding
z in the ordering <s none is larger than p(|z|). Then for any &, consider the 2 * ¢(p(|z])) + 1 elements
in the chain of elements that immediately precede z in the ordering <s. These elements may be split into
two subsets by enumerating them using the predecessor function and splitting them every time the near-
testability relationship tells us that we have crossed a border between S and 5. One of these subsets will
be contained in S and the other in S. Because S is sparse, the larger of these subsets is in 5. This gives
a polynomial test for membership in S. Obviously if S is sparse, then the same test works, except that the
larger of the two groups of elements in the chain of predecessors is in S. g

5. RELATIVIZING NT.

Bennett and Gill, ([BG81]), began the study of results that hold for almost every oracle. Although there
are examples of results that hold for almost every oracle yet are false in an unrelativized setting, ([Ku82]),

probability one results are sometimes considered evidence that a property holds in the “real” world.

In this section we combine relativized versions of our results above with the results of Bennett and Gill
to show that, with probability one, NT4 contains computationally difficult sets. We also show that, with
probability one, both N7'4 and NT*4 are incomparable with N P4 and with coN PA.

Theorem 5.1. Relative to a random oracle A, PA ;:e NT4A g N T"“‘;Cé @ P4, with probability one.

Proof. Bennett and Gill, ([BG81], Theorem 3), use the language

ODDA = {z: an odd number of strings of length |z| are in A}

12

to show that PP4 g PSPACE# with probability one. Since ODD# is obviously in @P4, their proof
shows that ODD4 separates PA from @P# with probability one. If we let 74 =4,; 0* N ODDA, then
ODDA =F T4, so we now have that T4 separates P from @P#4 with probability one. But T4 is sparse,
and since Observation 4.10 clearly relativizes to an oracle computation, T4 € NT*4 &= T4 € PA. Thus
NT*A g @® P4 with probability one.

Now the proof of Theorem 2.3 and hence Corollary 2.4 also relativizes, as does Theorem 4.4. Corollary
2.4 guarantees that any oracle which separates P from @P also separates P from NT. And then Theorem
4.4, part (ii) guarantees that any oracle which separates P from NT also separates NT' from NT™*. This
establishes for any oracle A for which ODD# separates P4 and @ P4,

pA ; NT4 ; NT*A i ® PA.

Since the collection of oracles A for which OD D4 separates P and ©P has measure one, this establishes the
theorem. g

These results can also be used to separate NT4 from PP# and from NP# UcoNPA. (PP is the class
defined of languages defined by Gill that are recognized by nondeterministic Turing machines with more
than half of their paths accepting.) In fact, the preceding proof directly shows

Corollary 5.2. If A is a randomly chosen oracle, then ®P4 — PP# # 0 with probability one.

Corollary 5.3. If A is a randomly chosen oracle, then
i) NTA — PP4 # 0 with probability one, and
ii) NTA — (NP4 U coN P4) # 0 with probability one.

Proof. (i) Suppose that A is an oracle relative to which @P4 — PPA # 0, and let L4 € P4 — PP4.
First, notice that if LA € @®P# and if f is the reduction described in the proof of Theorem 2.3, then
SA = f(LA) € NTA. (This follows directly from the fact that boundary(S4) € P4.) Second, notice that
if LA € PP4 and S4 <P LA, then S* is in PPA. Putting these two observations together, (i) is a direct
consequence of Corollary 5.2.

(i) Notice that for every oracle A, NPAUcoNPA C PPA. Therefore (i) implies that NT# - (NP4 U
coN P4) # § with probability one. g

The same techniques can be used to show that relative to a random oracle, A, with probability one
there are sets in NP4 and in coN P4 which are not in NT*4.

Theorem 5.4. Relative to a random oracle A,
(NPA - NT*A) # 0 and (coNPA - NT*4) # 0

with probability one.

Proof. Given a set A, define a function £(z) = the string of 0’s and 1’s of length |z| such that the
k*® bit is 1 if and only if £105~! € A. Bennett and Gill show that, with probability one, the language
RANGE34 =4o; {z : 3y[¢(y) = zzz]} is both P-immune and coP-immune; i.e., neither RANGE3# nor
RANGE34 contains an infinite polynomially decidable set. Since RANGE34 is obviously in NP4, this
shows that, with probability one, RANGE34 separates N P4 from P4. ([BG-81]; Theorem 6.)

13

But since RANGE34 is both P-immune and coP-immune, 0* must intersect both RANGE34 and
RANGE34 infinitely often. Thus, as pointed out by Bennett and Gill, 74 =4, RANGE34 N0* must
be a polynomially sparse set which is in NP4 — P4 with probability one. Since it is polynomially sparse,
just as in the proof of Theorem 5.1, T4 must therefore be in NP4 — NT*4 with probability one.

Since NT*4 is closed under complements, we may separate coN P4 from NT*4 with probability one by
using the complement of 74. g

6. SOME ADDITIONAL FACTS ABOUT NEAR-TESTABLE SETS.

In this final section we present additional results concerning near-testable sets. In Section 1 we noted that
any polynomially sparse set that is near-testable is polynomially decidable. Here we return to this theme,
first discussing the effects that the distribution and density of elements have on the complexity of a near-
testable set. Next, having observed in Corollary 2.4 that the existence of one-way functions implies that
there are near-testable sets that are not polynomially decidable, we prove a partial converse to this result.
And finally, we briefly relate P-selective and near-testable sets.

We begin this section with the observation that because near-testability is sensitive to the distribution
of elements in a set, and to density, certain sets are very unlikely to be near-testable. For instance, since the
primes (with the exception of 2) are distributed only throughout the odd integers, an odd number greater
than 3 is prime if and only if it is in boundary({primes}). Thus,

Observation 6.1. If {q : ¢ is prime} is near-testable, then primality testing can be done in polynomial
time.

Since the set of primes is known to be in ZPP, this tells us that not all sets in ZPP are near-testable
unless primality testing is in P. It should be observed that we can polynomially encode any set S into the
odd numbers, and therefore the encoded set S’ is near-testable if and only if S € P. This again points out
the how sensitive NT' (although not NT™*) is to the underlying order structure.

One can generalize the above example by replacing the set of odd numbers by any polynomially recog-

nizable set that is sufficiently dense.

Definition 6.2. Let < be any polynomial computable, exponentially well-founded ordering. We say that a
set D is uniformly dense with respect to < if there is a polynomial p(n) such that for any string z, there is
an element of D within p(|z|) ‘steps’ preceding z in the ordering <.!!

Observation 6.3. Suppose that S € NT*. If there is a uniformly dense set D such that D € P and
DNS € P, then S€P.

Proof. Suppose the polynomial p(n) bounds the number of steps from any string of length n to the
nearest element of D. Suppose also that both D and DN S can each be polynomially decided. To decide
z € S?, we enumerate the p(|z|) strings immediately preceding z, and we then run the decision procedure
for D on each of these strings. Once we find y € D, we quickly decide whether y € D NS. We then use the
near-testability algorithm to decide membership for all of the strings from y to z, including z. §

11 An inverse of this notion, that of a set being uniformly sparse in the standard lexicographic ordering is used
in [HIS85] and also (in a very strong form which we use in Theorem 6.7) in [GIY87c].

14

The preceding observations show that if certain uniformly dense sets are in NT™*, then they are also in
P. The next observation shows that if the boundary of an NT™ set is uniformly dense then the set and its
complement are many-one inter-reducible.

Observation 6.4. Suppose that S € NT* and that boundary(S) is uniformly dense w.r.t. <g, then
S <P 'S. (Thus, if S is in NP or in coNP, then S € NP N coNP.)

Proof. Since boundary(S) € P and is uniformly dense, a polynomial many-one reduction from S to S can
be defined as follows. Given z, we can find (in polynomial time) the first y <5 z such that y € boundary(S).
If y € ROOTS then z € S if and only if y € S, and for y € ROOT'S this is polynomially decidable. (Thus
as long as S is nonempty we can pick an appropriate element to reduce z to.) Else z € S if and only if
pred(y) €S. g

The results in Section 5 show that it is not likely that all sets in NP, coNP, or PP are near-testable or
even in NT*. The question of whether there are any near-testable sets that are not in P was addressed in
Section 2 where we showed that NT # P if and only if ®P # P. As pointed out there, the existence of
one-way functions implies that unique-P, and hence @P , is not equal to P. Thus if one-way functions exist
NT # P.

A natural question is whether we actually need the existence of one-way functions in order to prove
that there are sets in NT or in ®P that are not in P. One result which suggests that one-way functions
are not needed is the construction in [HH87] of an oracle relative to which one-way functions do not exist
but P4 # @P4 Our next result, however, gives a partial answer pointing in the other direction. Instead
of asking about polynomially invertible one-one functions, we instead ask about strongly invertible many-
one functions. Recall that in the proof of Observation 4.7 we used inverses of polynomially-many-to-one,
polynomially computable, polynomially honest functions. If f is such a function, let f~*(z) = {y : f(y) = z}.
Notice that if f is polynomially many-to-one, it is conceivable that, given z, we can find {y : f(y) = =z}
in time polynomial in |z|. Functions for which we can always complete the listing of all of {y : f(y) = =}
in time polynomial in |z| are called (many-one) strongly invertible. Functions for which we cannot always
completely list {y : f(y) = z} in polynomial time are said to be one-way.

Many-one, one-way functions have been studied in other contexts, and are discussed extensively in
[AR86). For example, for strong invertibility on 0*, Allender and Rubinstein prove that the following are
equivalent:

i) There is an honest polynomially many-to-one function computable in polynomial time that is not
strongly invertible on 0*.
ii) There is a polynomially sparse set in FewP — P.
iii) EX Porarse(FewP) £ RXP.
iv) There is a polynomially sparse set in P that is not P-printable.
v) There is a polynomially sparse set in Dlogspace that is not P-printable.

In this context, we have the following partial converse to Corollary 2.6. (Recall that any set which is
polynomially sparse has a polynomially sparse boundary, but the converse is not true.)

Theorem 6.5. If there is a set S € NT* — P with a polynomially sparse boundary, then there is a
polynomially-many-to-one, polynomially computable, polynomially honest function that is not strongly in-
vertible on 0*.

15

Proof. Let B = boundary(S). Let ¢(n) be a polynomial bound on the census function for B, and let <
be the underlying tree ordering used in witnessing that S € NT*. We define

f(z) = {olzl if z € B;

T otherwise.

Since S € NT*, B € P, so f(z) is polynomially computable. Since |f(z)| = |z|, f is honest. Notice
that f~1(0") has at most g(n) elements, all of length n. Suppose f~! were polynomially computable on 0*.
Given z, in polynomial time we could then compute all of f~1(0), f~1(02), ...f~1(0l#1), throwing away any
z’s found in some f~(0") (n < |z|) for which z € 0* but z ¢ B, and throwing away any z for which z £ =z.
Thus, in time polynomial in |z|, we can find all 2’s < z which lie on the boundary of S. Clearly, this would
enable us to determine membership of S in polynomial time. Thus, if S € P, f must be a one-way function.

(Notice that if S has at most one element of any given length, then f is a one-to-one one-way function.) g

The proof of the previous theorem requires not only a set in NT* — P, but one that has a sparse
boundary. Given a one-way function, Corollary 2.4 and Theorem 2.3 let us construct sets in NT — P,
however these sets do not have sparse boundaries, and we do not know interesting conditions which imply
the existence of sets in NT — P with sparse boundaries.!2 We can construct, although we will not do so
here, an oracle A relative to which there exist sets in NT4 — P4 which do have boundaries with at most

one element of any given length.

In closing, we give one more method which may construct sets that are near-testable but are not
polynomially decidable. This construction not only gives additional evidence that NT' # P, but it shows
that the combination of near-testability and P-selectivity is unlikely to guarantee that sets are decidable in
polynomial time. This is in contrast to the case for p-cheatability, since it can be shown that near-testable
sets that are (2% for k) p-cheatable are all decidable in polynomial time, ([GJY87¢]).13

To do our final construction, we need to assume the existence of very sparse sets in P that are not
P-printable.

Definition 6.6. A set S is uniformly log*-sparse if for all z and y in S, & < y implies 21#! < |y].
The existence of uniformly log*-sparse sets is discussed in [GIY87¢].

Theorem 6.7. If there is a uniformly log*-sparse set in P that is not P-printable, then there is a P-selective
near-testable set that is not polynomially decidable.

12 Recently Cai and Hemachandra have shown that every set in FewP is in @P, ([CH88]). One might hope
to use this result together with the reduction from sets in @P to sets in NT given in Theorem 2.3 to strengthen
Theorem 6.5. Unfortunately this does not seem possible because Cai and Hemachandra’s result increases the
number of accepting paths so that it is no longer polynomially bounded.

13 For information about P-selective sets, see [ST79], [S82a], [S82b], [Ko83], [GIY8T7a], and [GJY87c]. Amir,
Beigel and Gasarch have independently shown this last result for the special case of (2 for 1) p-cheatability,
(personal communication).

16

Proof. Let S be a uniformly log*-sparse set in P that is not P-printable. Define a rapidly growing
function f by f(0) = 2 and f(n + 1) = 2/(*). We will let I, be the interval of strings of length f(n) up to
length f(n + 1). From the definition of uniformly log*-sparse sets, we know that |SN I,| < 1 for each n.

Let So=S () Un{lan}, S1=S () Un{lant1}, and S3 =35 [Un{lans2}.

Then S; € P for each i, and for at least one i, S; is not P-printable. Without loss of generality, we will
assume that Sp is not P-printable.
We then define the desired set T as follows:

T = {2: 2€IaUlsnp120d WE aNSo, y<z} | {Jonsz— {f(3n+3) ~1}}.

In other words, all but the last element of I3,..2 is alwaysin T, and the last element of I3, . is always a
boundary point. If there is an element y € Ia, N Sp, then this y serves as a “breakpoint,” dividing Iz, U Iap 41
into a lefthand subinterval in 7' and a righthand subinterval in 7. If there is no such element, then both I3,
and Igp41 C T,

The boundary of T thus consists of the rightmost element of I3, 42, the element of Iz, N Sy if there is
one, plus the lefthand endpoint of I3,42 when I3, NSy = §. By the definition of the Iy’s, if y is the lefthand
endpoint of I3,42, then in time polynomial in |y|, we can test whether there is an element of Sp in I3,. Thus,
boundary(T) € P, so T is near-testable.

Assuming z < y, the following function is a P-selection function for T":

z if ¢ € Iam42 for some m,
y ifz,y € Isn Ulapme1 YU Iamyo for some m,
s@y) = z ifz € Is3mUlsmyr, ¥ € Isn U I3py1 Ulsnys for some n > mand z € T,
y ifz€I3Ulgmet, Y€ Isn Ulanp1 Ulspypo forsomen >mand c € T

Note that in the last two cases we can test € T' in time polynomial in |y|.

Finally, suppose that T' € P. Then the following algorithm P-prints So: for each k, if 0¥ € T and
0%+1 ¢ T, then there is exactly one boundary point for T of length k. The assumption that T € P thus
enables us to find this boundary point in polynomial time by using binary search. By definition of T', any
boundary point for 7" has one of three forms, and two of these, the elements of the form f(3n + 3) — 1 and
of the form f(3n + 2) simply aren’t in Sp. Any other boundary point is in Sp. Since all elements of Sy are
boundary points of T', this gives a polynomial algorithm for printing Sp, a contradiction.

Thus, T is a P-selective, near-lestable set which is not in P. g

7. CONCLUSIONS.

In this paper we have introduced the class of near-testable sets. This class is of interest because it is a class
of sets which have a particularly simple internal ordering structure and, like other self-reducible sets, near-
testable sets lie somewhere between P and Pspace. We originally became interested in these sets because
they are a particularly easily defined extension of P for which it seems difficult to prove that the extension
is proper. Our results show that there are near-testable sets that are not polynomially decidable if and only
if there are sets in @P that are not polynomially decidable. Nevertheless, we leave open the major problem
of obtaining nontrivial upper and lower bounds on the computational complexity of near-testable sets.

17

ACKNOWLEDGEMENTS.

The authors would like to thank Eric Allender, Klaus Ambos-Spies, José Balcazar, and Alan Selman for
useful discussions.

8. BIBLIOGRAPFPHY.

[AR86] E. Allender and R. Rubinstein, “P-printable sets,” submitted for publication, preliminary version
appeared as ‘The complexity of sparse sets in P,” Proc First Annual Structure in Complezity Theory
Conference, Springer-Verleg Lecture Notes in Comput Sc, 223 (1986), 1-11.

[BGS75] T. Baker, J. Gill, and R. Solovay, “Relativizations of the P =? NP question,” SIAM J Comput, 4
(1975), 431-442.

[Ba87] J. Balcazar, “Self-Reducibility,” Proc Symposium on the Theory of Automata and Computing,
Springer-Verlag Lecture Notes in Comput Sc, 247 (1987), 136-147.

[BG81] C. Bennett and J. Gill, “Relative to a random oracle A, P4 # N P4 with probability one,” SIAM
J Comput, 10 (1981), 96-113.

[CH87] J. Cai and L. Hemachandra, “On the power of parity polynomial time,” Columbia University
Technical Report, CUCS-274-87 (1987), 1-11.

[GIY87a] J. Goldsmith, D. Joseph and P. Young, “Self-reducible, p-selective, near-testable, and p-cheatable
sets: the effect of internal structure on the complexity of a set, preliminary abstract,” Proc Second
Annual Structure in Complezity Theory Conference (1987), 50-59. Also in more complete form as
University of Washington Technical Report, # 87-06-02, and as University of Wisconsin Technical
Report, # 743, 1987, 1-22.

[GJY8T7b] J. Goldsmith, D. Joseph, and P. Young, “A note on bi-immunity and p-closeness of p-cheatable sets
in P/poly,” University of Washington Technical Report, # 87-11-05, and University of Wisconsin
Technical Report, # 741, (1987), 1-13.

[GIY87¢] J. Goldsmith, D. Joseph, and P. Young, “Using self-reducibilities to characterize polynomial time,”
University of Washington Technical Report, # 87-11-11, and University of Wisconsin Technical
Report, # 749, (1987), 1-20.

[GS84] J. Grollman and A. Selman, “Complexity measures for public key cryptosystems,” Proc 25th IEEE
Symposium on Foundations of Computer Science, (1984), 495-503.

[GP86] L. Goldschlager and I. Parberry, “On the construction of parallel computers from various bases of
boolean functions,” Theoretical Computer Science, 43 (1986), 43-58.

[HIS85] J. Hartmanis, N. Immerman, and V. Sewelson, “Sparse sets in NP — P; EXPTIME versus NEXP-
TIME,” Information and Control, 65 (1985), 159-181.

[HH87] J. Hartmanis and L. Hemachandra, “One-way functions, robustness, and the non-isomorphism of
NP-complete sets,” Proc Second Annual Structure in Complezity Theory Conference, IEEE Com-
puter Society, (1987), 160-173.

[He87] L. Hemachandra, “P4 # NT4 with probability one,” Preprint, (1987).

[Ko83] K. Ko, “On self-reducibility and weak P-selectivity,” Journal of Computer and System Sciences,
26 (1983), 209-221.

[Ku82] S. Kurtz, “On the random oracle hypotheses,” 14th ACM Symposium on the Theory of Computing,
(1982), 224-230.

18

[MY78] M. Machtey and P. Young, An Introduction to the General Theory of Algorithms, Elsevier, New
York (1978), 1-264.
[MY85] S. Mahaney and P. Young, “Reductions among polynomial isomorphism types,” Theoretical Com-
puter Science, 39 (1985), 207-224.
[MPT79] A. Meyer and M. Paterson, “With what frequency are apparently intractable problems difficult?”
MIT/LCS/TM-126 (1979).
[PZ82] C. Papadimitriou, and S. Zachos, “Two Remarks on the Power of Counting,” Springer- Verlag
Lecture Notes in Computer Science, 145 (1983) 269-275.
[Ra82] C. Rackoff, “Relativized questions involving probabilistic algorithms,” J ACM, 29 (1982), 261-268.
[S79] A. Selman, “P-selective sets, tally languages, and the behavior of polynomial reducibilities on NP,”
Math Systems Theory, 13 (1979), 55-65.
[S82a] A. Selman, “Analogues of semi-recursive sets and effective reducibilities to the study of NP com-
plexity,” Information and Control 52 (1982), 36-51.
[S82b] A. Selman, “Reductions on NP and P-selective sets,” Theoretical Computer Science, 19 (1982),
287-304. .
[Va79] L. Valiant, “The complexity of enumeration and reliability problems,” SIAM J Comput, 8 (1979),
410-421.
[VV86] L. Valiant and V. Vazirani, “NP is as easy as detecting unique solutions,” Theoretical Computer
Science, 47 (1986), 85-93.

19

