A NETWORK OF NEURON-LIKE UNITS
THAT LEARNS TO PERCEIVE BY GENERATION
AS WELL AS REWEIGHTING OF ITS LINKS

Vasant Honavar and Leonard Uhr
Computer Sciences Technical Report #793

September 1988

To appear in: The Proceedings of the 1988 Connectionist Models Summer School, David Touretzky, Geoffrey Hinton,
and Terrence Sejnowski (Ed.), Morgan Kaufmann, San Mateo, CA., 1988.

A NETWORK OF NEURON-LIKE UNITS
THAT LEARNS TO PERCEIVE BY GENERATION
AS WELL AS REWEIGHTING OF ITS LINKS

Vasant Honavar and Leonard Uhr

Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706. U.S.A.

To appear in: The Proceedings of the 1988 Connectionist Models Summer School, David Touretzky,
Geoffrey Hinton, and Terrence Sejnowski (Ed.), Morgan Kaufmann, San Mateo, CA., 1988.

A NETWORK OF NEURON-LIKE UNITS THAT LEARNS TO PERCEIVE
BY GENERATION AS WELL AS REWEIGHTING OF ITS LINKS

Vasant Honavar and Leonard Uhr

Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706. U.S.A.

Abstract

Learning in connectionist models typically
involves the modification of weights associated with the
links between neuron-like units; but the topology of the
network does not change. This paper describes a new
connectionist learning mechanism for generation in a
network of neuron-like elements that enables the net-
work to modify its own topology by growing links and
recruiting units as needed (possibly from a pool of
available units). A combination of generation and
reweighting of links, and appropriate brain-like con-
straints on network topology, together with regulatory
mechanisms and neuronal structures that monitor the
network’s performance that enable the network to
decide when to generate, is shown capable of discover-
ing, through feedback-aided learning, substantially
more powerful, and potentially more practical, networks
for perceptual recognition than those obtained through
reweighting alone.

The recognition cones model of perception
(Uhr1972, Honavar1987, Uhr1987) is used to demon-
strate the feasibility of the approach. Results of simula-
tions of carefully pre-designed recognition cones illus-
trate the usefulness of brain-like topological constraints
such as near-neighbor connectivity and converging-
diverging heterarchies for the perception of complex
objects (such as houses) from digitized TV images. In
addition, preliminary results indicate that brain-
structured recognition cone networks can successfully
learn to recognize simple patterns (such as letters of the
alphabet, drawings of objects like cups and apples),
using generation-discovery as well as reweighting,
whereas systems that attempt to learn using reweighting
alone cannot ever learn.

1. Introduction

There is currently a great deal of interest and
effort in developing connectionist, neuronal, brain-like
models for perception. Suitably connected networks
with one or more layers of hidden units can, potentially,
be trained using error back-propagation
(Rumelhart1986) to produce mappings from sets of
input patterns to the desired set of output patterns. Such
systems assume a fixed network topology in which the
weights associated with the links are changed as func-
tions of the error between the output produced by the
network and the output desired. While it is true that one
layer of hidden units between the input and output units
suffices, in theory, to enable the network to learn any
possible desired input-output mappings, this may not be
the most practical thing to do since the fan-in and the
fan-out required of the units is arbitrarily large. It is
desirable to restrict the connectivity of units to rela-
tively small, preferably local, receptive fields. When
receptive field sizes are limited in this fashion, multiple
layers of hidden units become necessary to learn the
desired input-output mappings. Few guidelines exist
that suggest suitable numbers of units in each layer and
good connectivity between the layers. It is therefore
important that there be appropriate learning mechanisms
with which the network can modify its own topology.

The ideal goal is a set of learning mechanisms
that generate the simplest networks (according to some
reasonable criteria of complexity) that are adequate for
the given task. One approach to reducing the size of the
target network is to incorporate an additional cost term
into the criterion function minimized by the generalized
delta rule that penalizes more complex networks
(Rumelhart1988). In this paper, we take a different
approach: The network starts with few links and a pool
of available units; New links are grown and units are

This research was partially supported by the NSF and the
University of Wisconsin-Madison.

recruited as needed. Standard error back-propagation is
used to modify the weights associated with the links.
Additional regulatory mechanisms maintain a balance
between the addition of new links and the reweighting
of existing links.

We begin by briefly describing recognition cones
as an example of connectionist networks (Honavar1987)
- networks of simple neuron-like units, structured into
successively larger modules under topological con-
straints (e.g., near-neighbor connectivity, layered
converging-diverging structure) suggested by the phy-
sics of the environment as well as the architecture of the
brain (Uhr1972, Uhr1987). We present results from the
simulation of carefully pre-designed recognition cone
networks (with no learning) that perceive objects such
as houses from digitized TV images. We outline dif-
ferent learning mechanisms that can be used in connec-
tionist networks. We then show how generation that
grows new links and recruits new units as needed, sup-
plemented by standard error back-propagation, can
develop networks satisfying certain topological con-
straints. We also present our first results of simulations
that show the discovery of recognition cone networks
that perceive simple patterns through feedback-aided
learning - results that indicate how generation plus
reweighting can improve performance substantially
over reweighting alone.

2. Recognition Cones

This section briefly describes the overall architec-
ture of recognition cones (Uhr1987, Honavarl987).
The structure described here corresponds to one that is
carefully designed (or programmed) for the task of
recognition of specific objects or that which emerges as
the result of learning - as explained later. (The
emphasis is on visual perception, although some of the
underlying principles appear to be of relevance to other
sensory modalities.)

The architecture of recognition cones is suggested
by the brain. The extremely complex human visual sys-
tem is massively parallel, shallowly serial and roughly
hierarchical, with functional organizations into larger
structures of neurons interconnected by pathways that
help to integrate diverse sources of information. Neu-
rons usually (but by no means always) interact with
near neighbors, and organize into successively larger
structures (e.g., columns, hypercolumns, areas). Space
does not permit a discussion of the human brain and
visual system here; We simply refer the reader to the
literature on these topics (Kuffler1984, Peters1986,
Uhr1986, Crick1986, Sejnowski1986).

The basic building block of recognition cones is
an adaptive neuron-like unit with a threshold or sigmoid
output function which accepts inputs from other units
via its input links, does some simple processing of the
inputs, and sends out signals over its output links to the
units into which it fires. Each unit in a given layer is
connected to a small number of units in the adjacent
layers. I.arge numbers of such units are organized, into
a layered heterarchy of converging-diverging structures
(hence the name recognition cones). It is converging
because the spatial resolution of the layers decreases
logarithmically as one moves up; It is diverging because
a unit can link to several others in the layer above. The
connectivity between layers is predominantly retinoto-
pic (but gradually departing from retinotopy as we
move up in the heterarchy).

Within each layer, each unit is linked primarily to
nearby units in a relatively small surrounding neighbor-
hood. This reflects the property of the real world that
nearby points in the scene are likely to influence each
other more than those that are farther apart. For simpli-
city, some Regularity could be imposed on the size and
shape (and to make implementations on today’s com-
puters feasible it typically is - for example, each unit
can link to its 4, 8 or 24 nearest neighbors in a square
grid) of the neighborhoods. Or the connectivity patterns
could model, albeit in a simplified manner, the structure
of the retina, the lateral geniculate and the visual cortex
(Uhr1986).

The input to the system is the image of the scene
sensed by transducers (e.g., TV cameras) at the base
layer of the recognition cones. The total system is made
of several cone-like structures emerging from the retinal
layer. There are several outputs from the system, typi-
cally, but not necessarily, from the higher levels (Figure
1 shows a schematic diagram of one such cone).
Further, there may be a rich set of additional links, e.g.,
for feedback loops, between the different layers, includ-
ing the output. (Computer simulations typically imple-
ment 2-way links, so that units can send out signals both
upward and downward.)

It is probably worth pointing out here that recog-
nition cones are closely related to Pyramids and other
hierarchical architectures and algorithms that have been
fairly extensively studied for image processing
(Uhr1983, Uhrl986a, Burt1984, Rosenfeld1983,
Dyer1987). Often the processors in a Pyramid are more
powerful than the basic functional unit of the recogni-
tion cones. Recognition cones can be thought of as
multi-apex multi-pyramids emerging from a common
base, possibly augmented with additional links between
the pyramids and decision networks at the top.

Figure 1: Recognition cones: A Converging-diverging
heterarchy of transforms (See text for explanation).

Conceptually it is useful, for our purposes in this
paper, to think of the adaptive neuron-like unit as an
abstract process that computes one or more probabilistic
or fuzzy transforms over its inputs. Such a unit typi-
cally has a small set of inputs which gather potentially
relevant information, usually over a small compact win-
dow (figure 2) e.g., a region large enough to extract a
local feature like an edge, angle, or (at a higher level
where abstracted image arrays form the inputs to the
arrays of processing units) contours, enclosures, and
other higher-level features. Thus in figure 1 each cell in
each layer has a number of such transforms. These are
schematically shown as separate planes within each
layer. A unit in a plane in layer L receives input from
an n-tuple of windows picked from the planes in layer
L-1.

1 = 111

7] t =4 11
= iy lolg -
o ki 1 01=0

-] 2411 111

- W w ol1l1
i oin 02=1

"~
N

Figure 2: A fuzzy ransform over a 3X3 neighborhood: w
is the mask of weights; t is the threshold; i, and i, are
inputs in two 3x3 neighborhoods and 01 and 0, are the
corresponding outpuls.

3. Designing Recognition Cones for Visual
Perception

This section outlines how recognition cones are
used for visual perception - the recognition of objects in

the environment - within the constraints of the overall
structures and processes described above. Results of
simulation of the recognition cones model for percep-
tion of real-world objects are briefly presented. More
detailed descriptions of the actual computer programs
are found in (Uhr1979, Li1987).

Recognition cones are given a specific structure
of transforms, as indicated by the following example
(any cascaded structure of local processes can be used
efficiently): The image is input into the retinal layer at
the base of the pyramid. It is processed there with local
smoothing (noise suppression) transforms and then by
local gradient detectors - for example, a high-resolution
difference-of-Gaussian operator. The next layer then
looks for a family of edges at several different orienta-
tions, as well as color and textural features. The next
layer combines oriented edges into corners, longer lines,
curves, etc; colored regions into contrast-corrected
larger regions; and so on. This process of successive
transformation and merging of information to detect
more and more complex features (figure 3) continues,
possibly all the way to the top, until enough information
is gathered so that specific objects are sufficiently
highly implied by the features detected. In addition,
continuing feedback from higher to lower layers
activates processes at those layers (which may serve to
gather additional evidence to confirm the implied
features).

Figure 3: Heterarchy of transforms detect increasingly com-
plex features

3.1. Performance of Pre-Designed Recognition
Cones Used for Visual Perception

Recognition cone programs that apply sets of
local fuzzy transforms, when given a small set of
transforms (such as edges, angles and curves) recognize
a variety of simple objects (squares, circles, etc.).

When given a large cnough set of carcfully chosen
transforms distributed over 4-7 layers, such programs
have demonstrated the capability to identify hand-
printed letters (with gaps, small distortions and other
forms of noise) as well as stylized hand-drawn sketches
of place settings consisting of plates, spoons, knives and
forks, and also some of the major structural features
(e.g., windows) of photographed houses (Uhr1979).

Simulations of recognition cones which combine
data-driven, bottom-up processing where many
feature-detecting transform are applied in parallel with
model-driven, top-down processes which are activated
when certain transforms respond to the image with
sufficiently high weights (Li1987) recognize complex
real-world objects such as windows, shutters, doors,
houses, etc. from digitized (grey values range from 0 to
255), high resolution (512x512) TV images of outdoor
scenes. The program was tested on three scenes, each
containing a different house (two of the scenes were
used by the programmer in determining the set of
transforms to be provided to the program and the third
was used to evaluate the generality of the transforms)
and a fourth scene containing an office building (Figure
4 shows these scenes) with good results in identifying
the building and its major structural components. Figure
5 shows some of the results (Li1987).

Thus, recognition cones, although they are highly
parallel, and also neuronal and largely connectionist -
albeit with additional more global brain-like structures,
have been shown able to handle complex vision prob-
lems at least as well as do computer vision systems that
rely on explicit serial model-matching, and are, as a
consequence, much slower and, in most cases, rather
brittle and difficult to extend to a full-blown vision sys-
tem, which must handle the much larger number of
object-classes, each with a much larger number of pos-
sible variant object-instances. Their power and extensi-
bility, along with their micro-modular ncuron-like archi-
tecture, make recognition cones an interesting test-bed
for the study of perceptual learning.

4. Learning

Learning refers 1o the acquisition of new
knowledge; the development of perceptual, motor, and
cognitive skills through instruction or experience; the
organization and integration of acquired knowledge into
effective representations; and the discovery of new
facts, theories, or ideas through observation, experimen-
tation, and thought (Michalski1983, Uhr1973).

House 1 House 2

Office building

House 3
Figure 4: Digitized 512x512 pictures of buildings that

were recognized by the multi-layered image and
model-driven recognition cones program.

Possible window areas

- Wi-6 | W10 | W11-12 | N4 N5
B (elong) 0.50 0.50 0.50 0.30 | 0.50
B (text) 0.40 0.40 0.40 0.40 | 0.00
B(left—bd) 0.60 0.60 0.60 0.00 | 0.10
B (right—bd) 0.60 0.10 0.60 0.60 | 0.30
B (window) 045 0.38 0.45 034 { 0.20
B (v—sibling) 0.60 0.60 0.60 0.00 | 0.00
B (h—sibling) | 0.60 0.60 0.60 0.00 | 0.60
B’ (window) 049 0.46 0.49 0.13 | 0.20

Figure 5: Results of identifying windows in the office build-
ing. W1 through WIi2 correspond to the 12 windows in the
office building (W7 through W9 are not shown in the table),
N4 and N5 correspond to 2 of the several regions in the scene
that do not contain a window; B (window) and B’ (window)
correspond respectively, to the evidence for a window before
and after relaxation triggered by the model-driven, top-down
processes.

4.1. Learning as Constrained Induction

Learning entails the building of usable models of
the environment in which the learner-perceiver
(whether natural or artificial) operates. Given a
sufficiently rich environment, one that captures at least
a significant portion of the great complexity and variety
present in the real world, the number of possible inputs
and the number of possible structures relating and com-
bining them is enormous (If there are N inputs, each
capable of taking V values, the number of possible
structures is V¥). Only a small fraction of these associ-
ations is meaningful in modeling the environment. This
suggests that the perceptual learning system should be
designed so that it is either equipped with - or develops
through learning - structures that enable it to detect and
respond to the features, and the relationships among
features, in the environment needed to handle the tasks
it has to perform.

Given a certain structure, or a set of structural
constraints for the development of the perceptual sys-
tem, knowledge of the environment is gained by a pro-
cess of induction (constrained by the structure of the
system) applied to the information provided by the
senses. Induction is the process by which a system
develops an understanding of principles or theories that
are useful in dealing with the environment by generali-
zation and specialization from specific examples or
instances presented to it (Michalskil983, Holland1986).
This includes the process of experimentation and
discovery, that is, the setting up of hypotheses and then
the accumulating of evidence to confirm or deny their
validity.

4.2. Basic Neuronal Mechanisms for Learning

Learning in a neuronal system may involve
modification of any of the following:

[1] The processing functions of the nodes (e.g.,
change in the threshold or output function),

[2] The weights (or transfer functions) of the links,
[3] The topology of the network, and

[4] The learning rules themselves

All are being investigated; however, this paper is res-
tricted to examining [2] and [3].

Learning by changing the weights associated with
the links can be accomplished in a neuronal network in
a number of ways including a Hebbian rule
(Hebb1949), the generalized delta rule

(Rumelhart1986), etc. Changing the topology of the net-
work involves the growth of new links, the recruitment

of new units (possibly from a pool of available units), or
the deletion of existing links. Any of these forms of
learning may or may not use feedback from a teacher or
the environment. This paper deals with networks that
learn to classify patterns when feedback tells the net-
work what the right response should have been for a
given pattern.

4.3. The Learning of Useful Transforms through
Generation and Reweighting

As noted earlier, the adaptive neuron-like unit can
be viewed as an abstract process - a transform, that
computes one or more probabilistic or fuzzy functions
over its inputs. In such a system, learning by induction
can be viewed as the generation, tuning, and retention
of a set of transforms that are adequate for the percep-
tual tasks demanded of the system. The system learns,
or is initialized with (as though by evolution) a set of
low-level transforms such as edge detectors, color
detectors, etc. What follows is a general description of
the mechanisms; A particular implementation is
explained in detail in the next section. Transforms are
modified by changing the weights of their implieds (that
is, the output links of the adaptive neuron-like units)
and their conditionals (the input links of the units)
according to one of the standard reweighting rules; and
by changing thresholds of firing or the output functions
of the units. New transforms are added by generation -
which involves the growth of new links between units
(implieds, conditionals, with appropriate weights, which
are themselves learned), or/fand new units (possibly
recruiting them from a pool of available units). Thus
the network learns - through both generation and
reweighting - a set of fuzzy transforms adequate to clas-
sify the training patterns correctly, to the desired degree
of accuracy - and, because of their probabilistic struc-
tures, the much larger set of possible instances the pro-
gram must handle, and on which it is tested.

4.3.1. The Need for the Capability to Generate New
Transforms

The input to the network represents a certain
encoding of the environment. A single layer of
neuron-like units computing fuzzy transforms over this
encoding is combinatorially explosive and not always
sufficient to produce the desired input-output mapping
(Minsky1969). Internal representations that capture
non-linear relationships between features in the input
encoding must be created to overcome this problem.
While it is true that one layer of hidden units between

the input and output layers theoretically suffices to
enable the network to learn the desired input-output
mappings, the fan-in and fan-out required of the units is
arbitrarily large. Large fan-in and fan-out imply longer
links, a higher density of links, and hence a much
greater, combinatorially explosive, cost/complexity. In
the worst case, NV¥ links are needed for N pixel input
images, each pixel taking one of V possible values, a
quite impossible number even for toy images (e.g.,
8x8), much less the 256x256 to 4092x4(092 arrays
needed for real-world images. To fend off this com-
binatorial explosion it is essential to restrict the links to
relatively small receptive fields. When receptive field
sizes are limited, multiple layers of hidden units become
necessary to compute global functions and to represent
the non-linear relationships between features in the
input encoding. It is difficult, and in practice impossible
except for trivial cases, to foresee the necessary connec-
tivity, and the number and the depth of transformations
(which corresponds to the number of layers in the net-
work if no cycling between layers is permitted) needed
for a particular task on which the network is to be
trained; this is especially true when, in dynamic real-
world environments, the task changes over time and
learning can never cease.

Only if the network has adequate initial connec-
tivity, can reweighting guided by feedback eventually
find the right set of weights that would result in cormrect
classification of patterns in the training set. Thus the
generation of new transforms is an essential learning
mechanism in networks where the necessary connec-
tivity cannot be established in advance, because no
amount of reweighting would enable such a network to
correctly classify all the patterns in its training set.

4.3.2. Modification of Existing Transforms

Feedback is used to weaken the links of the
transforms that implied the wrong thing (and, option-
ally, to strengthen those that implied the right thing), by
propagating the information from the unit or units that
made the choice, usually moving from the output layer
of the network, backward through the network, down to
the input layer. At the output layer, a node that made
the wrong choice releases a transform down-weight sig-
nal that weakens the links that fired into it from the
nodes at the next lower layer. This down-weight signal
is propagated back through the network until the input
layer is reached. Every node that receives a down-
weight signal, weakens the links that fired into it on the
training presentation. In a similar fashion, a node at the
output layer that would have been correct (had it fired)

releases a transform up-weight signal that strengthens
the links that fired into it from the next lower layer and
this up-weight signal is propagated back through the
network. This is the form of learning that has been stu-
died widely in connectionist systems, and several algo-
rithms are available for this purpose (Hinton1987).
The one we use is very similar to the generalized delta
rule (Rumelhart1986), also known as the error back-
propagation algorithm.

4.3.3. The Generation of New Transforms

The generation of a new transform is triggered by
negative feedback under certain appropriate conditions
(which will be explained later). Suppose the feedback
indicates that the system implied the wrong thing. This
is triggers the release of a transform generation signal
by units that received negative feedback, which is
transmitted to units successively in the layers below that
contributed inputs to the units in question - just as the
error signal is propagated back for reweighting. At one
or more layers, a subset of the units receiving the
transform generation signal recruit one or more unused
units from the next-higher layer by growing a link to
that unit. Growth of these links takes place without
violating the topological constraints (such as those of
predominantly near neighbor connectivity, retinotopy,
convergence, and layered organization) imposed by
recognition cones. The effect of this is to add a new
transform to the existing set. The transforms so added
participate in the learning process according to the same
principles as those described above. The conditions
under which new transforms are added through genera-
tion, instead of simply reweighting the existing
transforms, will be explained later.

4.3.4. The Discarding of Poor or Useless Transforms

Transforms get discarded either by a gradual
lowering of weights as a consequence of negative feed-
back (when the weight on the link reaches a value close
to zero, the link is broken) or by an abrupt breaking of
some of the links, under the influence of appropriate
regulatory mechanisms. The discarding of transforms
that are deemed poor or useless creates space in the sys-
tem, by freeing up units that may then be used in the
generation of new (and hopefully better) transforms to
replace them. The conditions under which it is
appropriate for the network to discard transforms are
discussed later.

4.4. Regulatory Mechanisms that Decide when to
Generate and when to Discard Transforms

A network that both reweights and generates must
somehow strike a reasonable balance between these two
learning mechanisms. If learning is restricted to
reweighting alone, the network may never be able to
achieve the desired performance level of recognition,
because of reasons outlined earlier. On the other hand,
if new transforms are generated each time negative
feedback is received by the network the essential pro-
cess of tuning of transforms by reweighting is disturbed
and the network is likely to end up with a large set of
transforms most of which are only rarely useful. Simi-
larly, discarding existing transforms has to be done
when appropriate. Regulatory mechanisms that decide
when to generate new transforms and when to discard
existing ones are therefore needed.

One possible mechanism to decide when to gen-
erate a new transform is suggested by the need to guide
(and possibly goad) the network in the direction of
developing into the simplest possible structure (accord-
ing to some criteria of complexity), that does not violate
the topological constraints placed on the network (such
as, e.g., the size of a receptive field) that is adequate to
perform the pattern classification tasks for which the
system is being trained. We call this the minimal com-
plexity heuristic. Several measures of network com-
plexity suggest themselves, e.g., the number of
transforms (number of nodes, links, or both), the depth
of transformations from input to output (number of
layers, which in turn determines the time for processing
a given input pattern).

One such regulatory mechanism, based on the
minimal complexity heuristic that decides when to add
new transforms has been implemented in the simulation
to be described below. This uses the number of
transforms in the network as a measure of complexity.
Thus, we seek networks with the smallest number of
transforms adequate for classifying the patterns in the
training set correctly. This suggests that the network
should continue to reweight existing transforms so long
as its performance is improving; and generate a new
transform when performance ceases to improve with
reweighting alone (and the network has not yet reached
the target performance). This requires the network to
have some mechanism to keep a (recent) portion of the
learning curve for each pattern class on which the net-
work is being trained. The details of implementation
are described later. Other regulatory mechanisms based
on different measures of network complexity are possi-
ble, and are being investigated.

Regulatory mechanisms are needed to decide
when to discard a transform. Discarding a transform by
breaking its input and output links may appear to be a
drastic step, but it is necessary if the network’s perfor-
mance remains consistently poor over intolerably long
periods of time (and reweighting and prior generation
have failed to give the desired improvement in perfor-
mance), or when it becomes difficult to grow new links
needed to generate new transforms, without violating
the topological constraints on the mnetwork (because
most of the allowed units and links have been used up).

Additional regulatory mechanisms may be needed
to determine where in the network to generate new
transforms (e.g., in which layer); or to decide which
transforms to discard (a transform with fewer output
links leaves the network relatively undisturbed). These
issues are interesting in their own right and deserve
further examination.

The realization of regulatory mechanisms that
guide the generation, modification, and retention of
transforms requires structures that maintain, update and
transmit information (accumulated through local com-
putations) concerning the performance of the network at
the task that it is being trained for. Such information
may include some measure of the history of the network
performance which is used to determine the nature and
the extent of changes to be made with learning, If the
system has been responding correctly most of the time
in the recent past, it perhaps should be conservative in
adding, deleting and modifying transforms as a result of
feedback. On the other hand, if the system has been
responding incorrectly most of the time in the recent
past, it should perhaps be more radical in making those
changes.

The mechanisms of reinforcement of good
transforms, and the generation of new transforms
explained above, over a period of time result in the
development and retention of sets of fuzzy transforms
that are useful for recognizing the objects in the
environment. On the other hand, transforms found not
useful will fade away, since they are negatively rein-
forced, (or, as is occasionally the case, discarded) by the
learning mechanism. Several questions remain to be
answered. For example: What is an appropriate set of
regulatory mechanisms? Can higher order control be
exercised by the network, as a function of its perfor-
mance, on the nature of the particular regulatory
mechanisms that come into play?

5. Simulation of Discovery of Recognition

Cone Networks by Generation and
Reweighting

This section describes and gives first results of a
computer simulation that uses generation and reweight-
ing of transforms, as a function of feedback, supple-
mented by mechanisms that aid the network in deciding
when to generate, in its search to discover successful
recognition cone networks.

5.1. Topological Constraints and Network Structure

The retinal layer can be set to any size for a par-
ticular run. In most of the runs made to date, this reso-
lution has been 32x32 and the first layer has been pro-
vided with a set of eight oriented edge detectors, spaced
45° apart. Pre-programmed transforms are not needed,
since the same learning algorithm can be applied to this
first layer so that these edge-detectors, and possibly oth-
ers that are useful, are learned as well. All the higher
layers of the network are initially empty; Units recruited
by the network as it generates new transforms as a result
of learning get embedded in these layers. This genera-
tion and embedding of transforms occurs without violat-
ing the topological constraints, such as near neighbor
connectivity, on the structure of the network.

Transforms (the exact number at any given time
is a function of the system’s past experience) are
applied at each location in a given layer. The outputs of
the transforms are mapped retinotopically into the next
layer. The resolution of layers goes down by a factor of
2 (giving 2x2 logarithmic convergence) moving up
from the retinal layer. A transform at any layer com-
putes a function over the outputs of one or more
transforms within a 2x2 window (except at the first
layer, where it is 3x3) at the layer below. For the sake
of simplicity, the same set of transforms is uniformly
applied at all locations in each layer. This also means
that when a new transform is learned at some location in
a layer, it is duplicated for use at all locations in that
layer. This seems logically compelling for a general-
purpose recognizer, since a transform that is useful at
some particular location is likely to be equally useful at
all locations. Space does not permit a discussion of pos-
sible neuronal mechanisms that might duplicate the
transforms learned at one location in a given layer at
other locations in that layer. It is worth pointing out
however, that such mechanisms may be implemented by
broadcasting the transform, either laterally through links
in its own layer or by passing it up through the
pyramid-like converging structure to the top of the net-
work and then broadcasting it back down to all the loca-

tions in the layer in which the transform was generated.

5.2. The Learning Algorithm and its Implementa-
tion

The network is trained by inputting images con-
taining object-instances to its retina, associated with
feedback. The system’s two basic learning mechanisms
are the reweighting of existing transforms as a function
of feedback and the substantially less frequent
discovery of non-linear relations between features at a
layer and the resulting generation of a higher level
transform that detects such interactions.

Reweighting of existing transforms as a result of
feedback follows a form of the generalized delta rule
(Rumelhart1986). Suppose the pattern class Cw is
implied by the network with a weight Ww and the pat-
tern class indicated by the feedback, Cr is implied by
the network with a weight Wy, (that is, Wy > Wy), the
total amount of reweighting is limited to
(Kx(Ww — Wg)) where K is a parameter that is related
to the learning rate. Our current implementation has K
set equal to 0.25.

Subsequent paragraphs describe the simple ver-
sion of the minimal complexity heuristic mentioned ear-
lier, that the network uses to decide when to generate
new transforms. The current implementation does not
have any mechanisms for discarding poor or useless
transforms (except that the gradual reduction in their
weights as a result of feedback means they will have lit-
tle or no effect on the recognition task).

A new transform incorporating non-linear interac-
tions between features is added by the learning algo-
rithm based on a global evaluation of the network’s per-
formance with respect to a specific pattern class. Such
an evaluation function is straightforwardly computed
using neuron-like elements. It is simply the ratio of
correct responses to the total number of training
instances of a certain pattern class averaged over a
number of presentations which we call the interval, I (I
is currently set to 10). This value is updated on every
presentation of a training example. Thus there is an
evaluation of the network’s performance with respect to
each pattern class known to the network., The values of
this evaluation function for two consecutive intervals
(previous and current) Ep and Ec are maintained, and
updated as appropriate, by the network.

A small randomly chosen, structurally near
(because of near-neighbor connectivity constraint on the
topology) subset of non-linear interactions between
features is added to the set of transforms at some of the
layers (currently, only one transform is added at the first

layer from the top where such a generation can take
place) when the pattern class indicated by the feedback
- Cp is different from the one output by the network if:

[1] The improvement in the network’s performance
with respect to the pattern class Cp over a period
of time as indicated by the difference in the
values of the evaluation function for the pattern
class Cp for the current and previous intervals is
lower than a predetermined minimum, and

[2] The performance has not yet reached the desired
level - as indicated by the value of the evaluation
function for the current interval for the pattern
class Cg.

For example, if transforms Ty and T, respond to a par-
ticular instance of pattern class C;, and if the network
responds incorrectly to that instance (that is, the
network’s response is C; where j#i), and if the two
conditions mentioned above are satisfied for C;, a new
transform that responds when both T'; and T, respond is
generated at the appropriate layer. Thus these
transforms capture important relative spatial relations -
such as for example, between a horizontal edge and a
vertical edge necessary to constitute a particular kind of
corner angle. There may be several candidates for such
an addition, in which case one of them is chosen at ran-
dom. This mechanism is easily generalized to handle
non-linear interactions across n-tuples of features
(instead of just pairs of them) at any location in a given
layer.

When a pattern belonging to a previously unseen
object-class is presented to the network during training,
an output node is recruited at the decision layer, and a
set of links grown from that node to the outputs of
transforms that responded to the example of the new
pattern class. >From then on, leaming proceeds as
described earlier.

Space does not permit a detailed discussion of
connectionist network designs that implement all
aspects of this simulation (e.g., computing and main-
taining the evaluation of network performance over
time). The functional description of such networks
(e.g., using Ep and E¢ to obtain the slope of the leam-
ing curve for a pattern class) must not be interpreted too
literally. They are best treated as first approximation
functional modules, details of which will be worked out
as through simulation and analysis.

5.3. Results of the Simulation

Networks to classify simple patterns (such as 2-
dimensional line drawings of simple objects like cups,
apples, bananas (in a 24x24 sub-array of the 32x32
retina) have been constructed by the learning program
with a few (4-12) epochs of training where an epoch
involves presentation of a few instances (3-5) from each
pattern class. Figure 6 shows a sample set of object
instances used. The metworks so constructed by the
learning program were tested with 3-4 previously
unseen patterns belonging to the pattern classes used
during learning. Test results indicate 100 percent accu-
racy of recognition on these patterns. Relatively small
numbers (10-12) of transforms discovered by the leamn-
ing program at higher layers (layers 2 through 5) were
adequate for this purpose.

The training and test runs were conducted by
randomly dividing the set of instances provided by three
volunteers into two subsets, one for training and the
other for testing. The drawings were made using the
xgremlin graphics utility on a Digital VAXstation 3200.
Figure 7 shows several instances of two of the object
classes; Binary versions of such drawings on a 32x32
grid were used in the runs.

100 percent accuracy of recognition was also
obtained with runs made using three letters of the alpha-
bet (T, D, E). Additional runs were made with six pat-
tern classes obtained by combining the two sets men-
tioned above, with similar results. Some of the results
obtained from these runs (both on training as well as
test sets) are summarized in figure 8. These results indi-
cate the feasibility of developing recognition cone net-
works through learning by generation-discovery.

TED
U»@D

Figure 6: Sample images used in the simulation of learning

When runs were repeated with learning restricted
to only reweighting (i.e., no generation was allowed) of
the eight oriented edge detectors (corresponding to a
single layer of hidden units, with local receptive fields)
the system’s performance leveled off at roughly 50-75%

-10-

Figure 7: Sample instances of two of the object classes used
in the training and test sets.

Summary of Runs
Run | Classes #oftrain- | # of test | Generation
ing in- | instances
stances / | /class
class
1 T,D,E 4 3 Off
2 T,D,E 4 3 On
3 Cup, Ap- 4 On
ple, Ba-
nana
4 T, D, E, 4 3 On
Cup, Ap-
ple, Ba-
nana
Summary of Results
Run | #oftrain- | # of | % accu- | % accu-
ing transforms | racy on | racy on
epochs generated training test set
set
1 10 0 75 67
2 6 6 100 100
3 7 8 100 100
4 12 12 100 100

Figure 8: Summary of runs (1 through 4) and the
corresponding results of simulation of learning with genera-
tion and reweighting.

success, rather than achieving 100% success. Figure 9
shows a comparison of the plots of recognition accuracy
against the number of training epochs with and without
generation on both training and test patterns in the (T,
D, E) case. This confirms the fact that non-linear spatial
interactions between lower level features often must be

detected, but cannot be, in less-than-completely-
connected networks. Generation makes it possible for
the network to discover such non-linear interactions
where necessary.

Performance on Training set

120
Gengeration Dn

100 8 Bt

20 Generation Off

£ //

40 /

204

0 2 4 6 8 10 12
Training Epochs

120 Performance on Test set
Generation On

100 ralc

AN
|/

W

Generation Off

4 6 8 10 12
Training Epochs

Figure 9: Performance on training and test patterns (T, D,
E) with and without generation (runs 1 and 2) in recognition
cones.

More extensive evaluation of the learmning pro-
gram on larger sets of more complex patterns, as well as
comparisons with other systems (with and without local
receptive fields or convergence, with varying amounts
of connectivity, with and without generation), is in pro-

-11-

gress. Space does not permit a discussion of these runs
here. A preliminary examination of the results seems to
suggest that networks with local receptive fields, con-
verging topology and the capability for generation yield
significantly better leaming than those without one or
more of these features (Honavar1988).

6. Discussion

This section discusses briefly, the impact of the
topological constraints, generation, and the regulatory
structures on learning in connectionist networks in the
context of the results presented in this paper.

6.1. Generating, Reweighting, and Discarding
Transforms

A combination of generation - a mechanism
involving growing or recruiting new links and nodes -
plus reweighting by error back-propagation appears to
yield more powerful leamning than reweighting alone in
multi-layered connectionist networks. Feedback-
triggered generation and reweighting, supplemented by
regulatory mechanisms that decide when to generate,
operating under brain-like topological constraints on the
network, produce network structures that successfully
recognize simple pattern classes, as indicated by the
preliminary simulation results presented in this paper.
The regulatory mechanisms are motivated by the desira-
bility of generating the simplest possible networks capa-
ble of accurate recognition. A more complete system
should probably have mechanisms for discarding use-
less transforms to create space for potentially better
transforms. This would have to be supplemented by
regulatory mechanisms that decide which transforms to
discard, and when. Generation and discarding of
transforms enable the network to modify its own topol-
ogy as a function of learning, in response to (possibly
changing) environments.

6.2. The Impact of the Minimal Complexity Heuris-
tic on Generalization - A Conjecture

It is tempting to speculate as to how generation
might impact on the generalization properties of the net-
work. Better generalization is considered a desirable
characteristic of connectionist networks. Related work
(Hinton1987a) seems to suggest that generalization in
connectionist networks is sensitive to the number of
hidden units. If there are many more hidden units than
needed, the network might generalize rather poorly; if
there are too few, the network may never reach the tar-

get performance desired. The minimal complexity
heuristic, that decides when to generate, forces the net-
work to reweight and tune the transforms so long as per-
formance continues to improve, before generating a
new transform (and, possibly, recruiting a new hidden
unit). Generation and discarding of transforms may be
viewed in this context as providing a dynamic mechan-
ism for regulating the number of hidden units, leading
to the conjecture that networks that generate, discard,
and reweight transforms may exhibit good generaliza-
tion properties as well. Generation makes possible the
linking up of enough units to handle a problem; minimal
generation tends toward the smallest necessary number
(given the constraints on the topology), hence better
generalization.

6.3. The Impact of the Constraints on the Network
Topology on Learning

The constraints on the network topology deter-
mine the space of possible transforms that can be
learned. It also biases the network so that the learning
of certain relations is favored. It is instructive to exam-
ine how the topological constraints in recognition cones
(retinotopic mapping, near-neighbor connectivity,
converging-diverging heterarchy) interact with the
learning mechanisms.

Retinotopic mapping and near neighbor connec-
tivity exploit spatio-temporal contiguity in the environ-
ment. This favors the discovery and learning of rela-
tions between subpatterns that are imaged onto neigh-
boring regions of the retina. For example, if the object
imaged is a chair, its sub-parts (e.g., legs, seat, back-
rest) are projected onto the neighboring parts of the
visual field with all the spatial relations between them
intact.

Since each layer fires into the next, the learning of
structure is a hierarchical, repeated operation (in the
layers as well as over several presentations of the pat-
terns). Generation ensures that successively more com-
plex non-linear relations between features in the input
encoding of patterns are discovered at higher layers, to
be assessed by the new transforms that are added. For
example, the lower layers might learn the associations
between several vertical edges more or less aligned with
each other and thus discover (learn) the concept of a
long vertical line. At higher levels, a vertical line and a
horizontal line that intersect facilitate the learning of the
more complex concept of a corner, and so on. The
effects of this are two-fold: The learning of simpler con-
cepts precedes the learning of more complex concepts
and successively more global relations are learned at

-12-

successively higher layers. This is confirmed by the
transforms generated by the network simulation, since
they exhibit these characteristics.

6.4. Self-monitoring and Self-Evaluation to Guide
Learning

Structures that maintain, update, and as appropri-
ate transmit information about the network’s perfor-
mance over a sequence of training presentations (e.g., a
portion of the learning curve for each pattern class)
enable the network to constantly monitor and evaluate
changes in its performance. Such an evaluation helps
the network to decide on particular learning strategies
(e.g., generation versus reweighting) - as indicated by
the results of our simulation. It may also be used to
dynamically alter parameters such as the learning rate
as appropriate in connectionist networks.

7. Conclusions

Connectionist networks built from simple
neuron-like units arranged in brain-like topologies can
be constructed to yield relatively good perceptual recog-
nition of complex real-world objects in large images.

The preliminary results presented in this paper
suggest the possibility of discovering such networks, by
realizing significantly more powerful and potentially
more practical learning than that given by reweighting
alone, through a combination of:

[1] Different learning mechanisms - generation,
reweighting, (and when necessary discarding) of
transforms,

[2] Regulatory mechanisms - using minimal com-
plexity heuristics, and

[3] Brain-like constraints on the network topology -
near-neighbor connectivity, converging-diverging
heterarchy.

References

Burt1984.
Burt, P. J., ““The pyramid as a structure for
efficient computation,”” in Multiresolution Image
Processing and Analysis, ed. A. Rosenfeld,
Springer-Verlag, Berlin, 1984.

Crick1986.
Crick, F. H. C. and Asanuma, C., ‘‘Certain
aspects of the anatomy and physiology of the
cerebral cortex,”’ in Parallel Distributed Process-

ing, vol. 2: Psychological and Biological Models ,
The MIT Press, Cambridge, Massachusetts, 1986.

Dyer1987.
Dyer, C. R., ““Multiscale image understanding,”’
in Parallel Computer Vision, ed. L. Uhr,
Academic Press, New York, 1987.

Hebb1949.
Hebb, D. O., The Organization of Behavior,
Wiley, New York, 1949,

Hinton1987.
Hinton, G. E., ‘‘Connectionist learning pro-
cedures,”” Technical Report CMU-CS-87-115,
Computer Science Department, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 1987.

Hinton1987a.
Hinton, G. E., ““Learning translation invariant
recognition in a massively parallel network,” in
PARLE: Parallel Architectures and Languages,
Europe. Lecture Notes in Computer Science, ed.
G. Goos, J. Hartmanis, Springer-Verlag, Berlin,
1987.

Holland1986.
Holland, J. H., Holyoak, K. J., Nisbett, R. E., and
Thagard, P. R., Induction: Processes of Inference,
Learning, and Discovery, The MIT Press, Cam-
bridge, Massachusetts, 1986.

Honavar1987.
Honavar, V. and Uhr, L., ‘*‘Recognition Cones: A
neuronal architecture for perception and learn-
ing,”” Computer Sciences Technical Report #717,
Computer Sciences Department, University of
Wisconsin-Madison, Madison, Wisconsin, Sep-
tember 1987.

Honavar1988.
Honavar, V. and Uhr, L., Generation-discovery in
brain structured networks (in preparation), 1988.

Kuffler1984.
Kuffler, S. W., Nicholls, J. G., and Martin, A. R.,
From Neuron To Brain, Sinauer Associates Inc.,
Sunderland, Massachusetts, 1984.

Li1987.
Li, Z. N. and Uhr, L., ‘*Pyramid vision using key
features to integrate image-driven bottom-up and
model-driven top-down processes,”” Systems,
Man and Cybernetics, vol. 17, pp. 250-263 ,
March 1987.

Michalski1983.
Michalski, R. S., Carbonell, J. G., and Mitchell,
T. M. (eds.), Machine Learning - An Artificial
Intelligence Approach, vol. 1, Tioga , Palo Alto,

-13-

California, 1983.

Minsky1969.
Minsky, M. and Papert, S., Perceptrons: An
Introduction to Computational Geometry, The
MIT Press, Cambridge, Massachusetts, 1969.

Peters1986.
Peters, A. and Jones, E. G. (eds.), Cerebral Cor-
tex: Vol. 3. Visual Cortex, Plenum, New York,
1986.

Rosenfeld1983.
Rosenfeld, A., ‘‘Pyramids: multiresolution image
analysis,”’ Proceedings of the Third Scandinavian
Conference on Image Analysis, pp. 23-28, July
1983.

Rumelhart1986.
Rumelhart, D. E., Hinton, G. E., and Williams, R.
J., “Learning internal representations by error
propagation,’’ in Parallel Distributed Processing
vol. 1: Foundations, The MIT Press, Cambridge,
Massachusetts, 1986.

Rumelhart1988.
Rumelhart, D. E. (Work in progress: Connection-
ist Models Summer School Lecture, 1988), 1988.

Sejnowskil986.
Sejnowski, T. J., ““Open questions about compu-
tation in cerebral cortex,’”’ in Parallel Distributed
Processing, vol. 2: Psychological and Biological
Models, The MIT Press, Cambridge, Mas-
sachusetts, 1986.

Uhr1972.
Uhr, L., ‘‘Layered recognition cone networks that
preprocess, classify, and describe,”” IEEE Tran-
sactions on Computers, vol. 21, pp. 758-768,
1972,

Uhr1973.
Uhr, L., Pattern Recognition, Learning and
Thought, Prentice-Hall, Englewood Cliffs, New
Jersey, 1973.

Uhr1979.
Uhr, L. and Douglass, R., ‘A parallel-serial
recognition cone system for perception,’’ Pattern
Recognition, vol. 11, pp. 29-40, 1979.

Uhr1983.
Uh, L., ‘‘Pyramid multi-computer structures, and
augmented pyramids,”’ in Computing Structures
for Image Processing, ed. M. J. B. Dulff,
Academic Press, London, 1983.

Uhr1986a.
Uhr, L., “Multiple image and multi-modal aug-
mented pyramid networks,”” in Intermediate

Level Image Processing, ed. M. J. B. Duff,
Academic Press, London, 1986.

Uhr1986.
Uhr, L., “Toward a computational information
processing model of object perception,”” Com-
puter Sciences Technical Report #0651, Computer
Sciences Department, University of Wisconsin-
Madison, Madison, Wisconsin, July 1986.

Uhr1987.
Uhr, L., ‘““Highly parallel, hierarchical, recogni-
tion cone perceptual structures,”” in Parallel
Computer Vision, ed. L. Uhr, Academic Press,
New York, 1987.

