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ABSTRACT

E is an extension of C++ providing, among other features, database types and
persistent objects. In a language offering persistence, there are many important
design and implementation issues which must be resolved. This paper discusses
some of these issues, comparing the approach taken in the E programming
language with other persistent systems. The basis of persistence in E is a new
storage class for variables, and physical /O is based on a load/store model of
the long-term storage layer. In addition to discussing the issues and E’s general
approach, this paper also details the current implementation.
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1. INTRODUCTION

The EXODUS Project at the University of Wisconsin has been exploring a toolkit approach to building and
extending database systems [Care85, Care86b]. The first component of EXODUS to be designed and built was the
EXODUS Storage Manager [Care86a]. It provides basic management support for objects, files, and transactions.
The E programming language [Rich87a] was originally conceived, in part, as a vehicle for conveniently program-
ming against this persistent store. E is the language in which database system code is written; that is, the abstract
data types (e.g. time), access methods (e.g. grid files), and operator methods (e.g. hash join) are all written in E. E is
also the target language for schema and query compilation; user-defined schema are translated into E types, and
user queries into E procedures. In this way, E reduces the impedance mismatch [Cope84] between the database sys-
tem and the application. Finally, the EXODUS Optimizer Generator [Grae87a, Grae87b] allows the database imple-
mentor (DBI) to produce customized query optimizers, given rules describing the query algebra. The first demons-
tration of a database system built with the EXODUS tools was given at SIGMOD-88. In the three weeks prior to the
conference, we built a relational system prototype (of course!) complete with indices and an optimizer. Most
recently, the EXTRA data model and EXCESS query language have been designed [Care88], and this system is now
being implemented with the EXODUS tools. '

The design of E has evolved considerably from the early descriptions in [Care86b]. The original intent was to
design a language for writing database system code; the resulting language [Rich87a, Rich88a, Rich88c] is an
extension of C++ [Stro86] providing generic classes, iterators, and persistence. C++ provided a good starting point
with its class structuring features and its expanding popularity as a systems programming language. Generic classes
were added for their utility in defining database container types, such as sets and indices. Iterators were added as a
useful programming construct in general, and as a mechanism for structuring database queries in particular. Per-
sistence — the ability of a language object to survive from one program run to the next — was added becauss itis
an essential attribute of database objects. In addition, by describing the database in terms of persistent variables,
one may then manipulate the database in terms of natural expressions in the language. This paper describes the

design and current implementation of persistence in E.

The remainder of the paper is organized as follows. Since E depends on the EXODUS Storage Manager to
provide the basic persistent store, we begin Section 2 with a review of that interface. The remainder of the section
introduces the E language by example, concentrating on those features related to persistence. Section 3 presents a
discussion of some of the important issues in designing and implementing a persistent language. The approaches
taken by several other systems are compared with that of E. Section 4 details the current prototype implementation
of the E compiler. Finally, Section 5 concludes with a summary and a report on our current research. An appendix

expands on the example given in Section 2, presenting other features of the E language.




2. REVIEW OF THE EXODUS STORAGE MANAGER AND E

2.1. The Storage Manager Interface

Of the components mentioned in the introduction, the EXODUS Storage Manager [Care862] is most impor-
tant to the implementation of persistence. The Storage Manager provides storage objects, which are uninterpreted
byte sequences of virtually any size. Whether an object is several bytes or several gigabytes, clients of the Storage
Manager see a uniform interface. Each object is named by its object ID (OID), which is its physical address. Two
basic operations, read and release, provide access to objects. The read call specifies an OID, an offset, and a length.
These parameters name a byte sequence within the object which the Storage Manager reads into the buffer pool.
The Storage Manager then returns a user descriptor to the client. This descriptor contains a pointer to the data in
the buffer pool, and the client accesses the data by dereferencing through this pointer. When finished, the client

returns the user descriptor to the Storage Manager in a release call. The release call also includes a flag indicating

whether the client wrote the data or not.!

It is important to understand that data requested in a read call is pinned in the buffer pool until the client
releases it. Pinning is a two-way contract: the Storage Manager guarantees that it will not move the data (e.g. page
it out) while it is pinned, and the client promises not to access anything outside the pinned range. In addition, the

client promises to release (unpin) the data in a "timely" fashion, because pinned data effectively reduces the size of

the buffer pool.? In the subsequent discussions, pin and unpin are used interchangeably with read and release.

An example of a client’s interaction with the Storage Manager is illustrated in Figure 1. A range of bytes con-
taining a struct S is embedded at offset within the Siorage Manager object having the given oid. The
read call pins that range of bytes in the buffer pool. On return, ud points to a user descriptor, whose first word con-

tains a pointer to the pinned data. The statement after the read then multiplies the x field by 10. Finally, the data is

struct S { int x; float y; 1}
USERDESC * ud;

sm_read( oid, offset, sizeof (struct S), &ud );
((struct § *) *ud) -> x *= 10;
sm_release( ud, DIRTY );

Figure 1: Interacting with the EXODUS Storage Manager

"Many details have been glossed over. For example, there are a number of other parameters in the read call, and releasing
something "dirty" is actually a different call than releasing something "clean". However, this simplified model is sufficient for
this paper.

2Actually, the EXODUS Storage Manager provides buffer groups. A buffer group is a set of pages requested by a transac-
tion and managed with a specified page replacement policy. The idea is to avoid interference in the paging characteristics of dif-
ferent transactions. Thus, if a transaction leaves data pinned, the performance degradation is largely to itself.
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released (unpinned). While the EXODUS Storage Manager is a powerful utility, it is necessary for the programmer

to learn numerous procedures and to execute many steps in order to perform even simple tasks®; this complexity is

one of the primary motivations for the E language.

The other important abstraction provided by the Storage Manager is the file. A file is a set of EXODUS
objects ordered by OID. Files are disjoint; every EXODUS object resides in one and only one file. Operations
include those to create or destroy an object within a file and to scan a file, returning each object’s OID. The current
implementation of E uses Storage Manager files and objects to realize the persistent store, although the basic
approach could be adapted to other storage systems. An interesting result of this work will be an evaluation of the
suitability of the current Storage Manager design for supporting a persistent language and insight into ways the
design might be improved.

2.2. Review of E

As noted, E is an extension of C++ [Stro86], which is itself an extension of C [Kemn78]. The essential con-

cept in C++ is the class. A class defines a type, and its definition includes both the physical representation of any

instance of the class as well as the operations that may be performed on an instance.* In C++ parlance, the former
are called data members, and the latter, member functions (a.k.a. methods). Member functions are always applied
to a specific instance; within the function, any (unqualified) reference to a data member of the class is bound to that
instance. This binding is realized through an implicit parameter, this, which is a pointer to the object on which

the method was invoked. An unqualified reference to a member x of the class is equivalent to this->x.

The example in Figure 2 is a (nonsensical, but) complete C++ program which defines and uses a bounded
stack of integers. Though not yet very interesting, it will serve as the basis for future examples. The physical
representation of a stack comprises an integer array holding the stack elements and an integer index for the current
top-of-stack. Because this representation is declared in the private section of the class definition, it is hidden from
users of the class. Following the keyword public are declarations of the methods available to users of the class.
The stack methods, of course, are those to push and pop elements, and to test if the stack is empty. The bodies of
the stack routines are elaborated following the class declaration. Consider the member function push. Note that,
as mentioned, the references to stackTop and elems are equivalent to the expressions this->stackTop

and this->elems, respectively. If the stack instance is not already full, the push routine increments the top-

¥There are 23 interface routines to the Storage Manager, although only a few may be needed for a given application. Not
shown in the above example are the (necessary) steps of initializing the Storage Manager, mounting a volume, and allocating
buffer space via the buffer group mechanism [Care86a].

“Unlike the abstraction mechanisms provided in CLU [Lisk77] or Smalltalk [Gold83], a C++ class does not necessarily
hide the physical representation of instances. It is up to the designer of a class to declare explicitly which members (data and
function) are private and which are public.
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const STACK MAX = 100;
class stack

{

int stackTop;

int elems[ STACK MAX ];
public:

stack () ;

void push( int );

int pop();

int empty () :
}; /* class stack */

stack: :stack ()
{

stackTop = -1;
}

void stack::push( int val )
{
if ( stackTop < STACK MAX-1 )
elems{ ++ stackTop ] = val;
else
printf ("stack::push: Sorry, stack is full.™);

int stack::pop()

if( stackTop >= 0 )
return elems{ stackTop -- 1;
else
printf ("stack::pop: Sorry, stack is empty.");

int stack::empty ()
{

return (stackTop == =-1);
}
stack S§;
main ()
{ while( ! S.empty() )

printf ("popped %d", S.pop() );:

for(int i = 1; i <= 10; 1i++)
S.push(i);

Figure 2: The Stack Example
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of-stack index and places the new element at that location.

In addition to the usual stack operations, notice that there is also an operation named stack. In general, a
method whose name is the same as its class is called a constructor. Constructors are intended to initialize instances
of a class and are called automatically whenever an instance is created, e.g. by coming into scope. In this example,

the constructor initializes the top-of-stack index to -1, indicating that the stack is empty.

Following the member function definitions, there is a declaration of a global stack instance, S. It is
guaranteed that the stack constructor will be called for S by the time the main program runs; the mechanism to
accomplish this initialization is described more fully in a later section. The main program itself does nothing partic-
ularly interesting in this example. It begins by popping all the elements, printihg each value that it receives. Since
the stack is initially empty, this loop does nothing. Then the integers 1 through 10 are pushed onto the stack, and the

program exits. Clearly, running this program produces no output, nor will it in any future run.

Figure 3 shows (in boldface) the changes needed to convert the example of Figure 2 into an E program in
which the stack is persistent. By changing the keyword class to dbclass and the type name int to dbint,
and by giving S the storage class persistent, the effect of running the main program is altered as follows: The

first time the program is run, no output is produced; persistent stacks also are initialized to empty. However the ten

const STACK MAX = 100;
dbclass stack
{

dbint stackTop:;

dbint elems{ STACK MAX 1;
public:

/* as before... */

}; /* class stack */

/* all methods are as before... */

persistent stack S;

main ()

{
/* as before... */
}

Figure 3: Making the Stack Persist




integer values pushed at the end of the main program are preserved when the program exits. The next time the pro-

gram is run, the first loop will pop these elements, and the user will see:

popped 10
popped 9

éééped 1

Some explanatory notes are in order. First, the role of db is explained more fully in the next section, but
briefly, it is an attribute of a type which allows objects of that type (optionally) to be persistent. Second, changing
int to dbint is not strictly necessary, since the compiler can (and does) infer this change within the context of
the dbclass. Third, in this very simple example, the class, the persistent object, and the main program are all
declared in one module. This is usually not the case, as one typically declares persistent objects in separate
modules, and then links these with the various main programs that use them. This is a very brief introduction to the
E language. For more details, the reader is referred to the Appendix and to [Rich87a]. (We note that several
aspects of the language have been improved; the full revised description will appear shortly in [Rich88a]. The
example in the appendix demonstrates all the major features of E by expanding the stack class into one which is

generic, unbounded, and uses an iterator.)

3. ISSUES IN A PERSISTENT LANGUAGE

Persistence is an attribute describing an object’s lifetime. In conventional languages, all object lifetimes are
bounded by the length of the program run. Access to long term storage is provided by extralingual constructs such
as operating system files or an embedded database system interface. The shortcomings of this approach are well
known [AtkM85a, Cope84, AtkM87]. In a language with persistence, data objects survive between program runs.
Furthermore, the programmer can manipulate the objects with normal expression syntax, i.e. physical I/O is tran-

sparent to the programmer.

Within this very broad definition of persistence, there is considerable latitude for defining precisely what it
means and how it is implemented. As might be expected, the issues are interrelated, and so a proposed solution for
one problem usually affects the possible solutions for others. The following discussion presents a number of design
considerations, and for each, outlines the solution adopted in E, comparing that solution with those taken in several
other systems. (An earlier paper [Rich87b] outlined our thinking before we had actually implemented the first pro-
totype of the system.) The major reference point for comparison is the PS-Algol language [AtkM83a] mainly
because it is one of the few systems whose implementation has been extensively described in the literature. We

defer until Section 4 a number of implementation issues specific to adding persistence to C++.

.



3.1. Persistent Handles / Persistent Name Spaces

An essential property of a language with persistence is that objects in the database may be manipulated using
the same expression syntax as for volatile objects. In order to execute such an expression, however, there must first
exist a binding between symbols in the program and objects in the persistent store. When such bindings are esta-
blished, how they are specified, and to which program symbols they apply are all important questions in determining

the nature of the "handles" a program has on the database.

In a language without persistence, long term store has traditionally been implemented by files. The persistent
name space is simply the space of file names maintained by the operating system. In this case, the program’s handle
on the database is a character string representing a file name. A runtime call to a system routine (e.g. open) estab-
lishes the binding (e.g. a file descriptor) between the program and an actual file. The program can then access the
persistent data via read and write calls. One obvious drawback of this approach is safety; since a file may be
accessed independently, there is no guarantee that the file bound to one run of the program has any relationship to

the one bound in another run, except that they have the same name.

PS-Algol [AtkM83a] was the first system to integrate persistence in a fully general (orthogonal) way. In this
language, a program’s persistent handle is, again, a character string naming an operating system file, and the actual
binding is established with a runtime call’ This time, however, the file contains a persistent PS-Algol heap, and the
open call binds the heap to a pointer in the program called a database root. The program is then free to dereference
through the root pointer to access the rest of the database. The top level object in every database (i.e. what the root
points to) is an associative index of pointers keyed on string names. By providing a character string argument to a
lookup routine, the user gets back a pointer to the object associated with the string. The persistent name space thus
comprises whatever stiings the user has stored in the index. It should be noted that these strings are not recognized
as variable names by the compiler, so there is no persistent binding between program symbols and database objects.

A program can cause an object to persist at runtime by establishing an access path to the object from the root of an

open database. When the program closes the database, all objects reachable from the root are written out to disk.®

Object-oriented database systems (OODBS) are closely related to persistent languages. In recent years, a
number of such systems have appeared both in the literature and in the marketplace. GemStone [Cope84, Maie87a]
is an OODBS based on Smalltalk [Gold83]. Its persistence mechanism has much in common with PS-Algol’s,
although it appears from [Maie87a] that all GemStone objects are implicitly persistent, not merely the "reachable”

ones. A persistent name space consists of a dictionary of <name,value> associations, where the name is a string,

SMore recent work on Napier, PS-Algol’s successor, eliminates this reference to an external object, i.e. to a file [AtkM85a].

SThis is an oversimplification. Actually, an object is written back only if necessary, i.e. if it was created or changed during
the program run.
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and the value is either an atomic value, e.g. the integer "10", or a reference to another object. The OPAL compiler
expects a list of name spaces at invocation; the compiler binds identifiers by searching these name spaces in the
order that they appear on the list. At the first occurrence of the desired name, the program variable is bound to the
corresponding <name,value> object. Since users may organize dictionaries as they wish, there is considerable

flexibility in this approach.

Vbase [Andr87, Onto87] is a new commercial product calling itself an "integrated object system.” It seeks to
blend an OODBS with the C programming language. The system presents to the programmer two languages and
their respective compilers: the type definition language, TDL, in which the one specifies classes and operations,
and the C superset, COP, in which one writes methods to implement the operations. Application programs are also
written in COP. In order to bind persistent names within a program, both the TDL and COP compilers require a
database file name as a command line argument. A Vbase database implements a global persistent name space in
which type names and instance names are resolved. It also supports a module construct, however, so that names
within a module do not necessarily conflict with names at the global level. In the current release, databases are
self-contained and disjoint; a given database contains all of the types, methods, and instances needed for its appli-

cations, and there is no sharing between databases.

The O2 system [Banc88] is another recently-developed OODB. It is very similar to Vbase in that it attempts
to integrate an object-oriented database system, O2, with a superset of the C language, CO2. (Actually, both Vbase
and O2 intend to support a set of languages, but only the C extensions have been implemented.) Like Vbase, type
definitions are written in one language, while methods are written in the C extension. O2 associates persistence with
a type extent, that is, each O2 class implicitly owns a persistent collection of objects of the class.” There are primi-
tives for applying operations to all objects in an extent, but there are no persistent handles on individual instances.

Type names are the only persistent identifiers, and there is a single global space of type names.

In E, if a variable is declared to have the persistent storage class, that variable’s name is a persistent
handle. The existing scoping rules of C++ determine the organization of the name space. That is, a name n in one
source module does not conflict with n declared in another module unless one attempts to link the two into a single
program. The binding between the name and the persistent object is established at compile time, and it remains
valid until the module is explicitly destroyed. There is no run time open call, and there are no references to external
file names. Bindings between the source code and persistent objects are maintained implicitly by the programming
environment, as described in a forthcoming paper [Rich88b]. In order to access the database, one compiles and

runs an E program which manipulates persistent objects. These objects may be declared in the same module with

"The description of O2 in [Banc88] emphasizes that the current implementation is a “throwaway" prototype, so the details
of persistent name spaces may change in future versions.
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the program, or they may be declared as extern variables. In the latter case, one must link the program together

with the object modules (.0 files) containing the desired persistent variables.

An E program may also create persistent objects dynamically. There is a predefined dbclass, f£ile, which
has, among others, operations to create and destroy objects within a file instance. Unlike operating system files,
file is actually a type in the language. One may declare variables of this type, and in particular, one may declare
persistent file variables. An object created in a persistent file will exist as long as the file does unless the
object is explicitly destroyed by a delete operation. Thus, in E, a persistent £ile is similar to a persistent heap in
PS-Algol in that it provides the means for dynamically creating and destroying objects in the database. Note that the
presence of the type f£ile does not prevent E programs from also manipulating operating system files as might be

needed, for example, in loading a database.

3.2. Orthogonality

One of the terms coined by PS-Algol is orthogonal persistence [AtkM83a], that is, the possibility that any
object can be made to persist, independent of its type or the way it is used in the program. Orthogonality is con-
venient for the programmer, who may not know in advance that a certain type of object will need to persist or that a
certain function may be passed persistent arguments. It is also convenient for the implementation of the runtime
system, since it allows for a uniform treatment of all objects. Orthogonal persistence was one of the major contribu-
tions of PS-Algol.

In systems such as Vbase and O2, there is a very clear distinction between what may and may not persist.
The type systems introduced into their C extension languages are very different from the the type system of C, and
expressions to manipulate the persistent objects rely on an embedded "escape” syntax. In both cases, the embedded
type system is object-oriented; that is, pointers are implicit in the implementation but are not directly available to
the programmer, and operation invocation follows the message-passing paradigm. While persistence is not orthogo-
nal in these systems, the separation between the underlying OODB syntax and the host language may ease the

extension of persistence to other host languages.

In E, persistence is not strictly orthogonal to type, as it is in PS-Algol, although it comes much closer than
Vbase or O2. E is intended as an implementation language for building database systems. In such systems, there
are many data structures such as lock tables which are known not to be persistent and which experience a very high
frequency of access. If a given expression is a reference to an object that may or may not be persistent, we have no
choice — short of specialized hardware — but to include a runtime check to see if the object needs to be read. This
extra checking would result in an unacceptable decrease in the performance of access to these critical nonpersistent

structures.
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Because we desired to leave the C++ subset of E unaffected, and yet enjoy all the benefits of its type system
in a persistent environment, we decided to mirror the existing type constructs with counterparts having the db (data-

base) attribute. Let us informally define a db type to be:
(1) one of the fundamental db types: dbshort, dbint, dblong, dbfloat, dbdouble, dbchar, and dbvoid.

(2) a dbclass, dbstruct, or dbunion. Such classes may have data members only of other db types, but there are no
restrictions on the argument or return types of member functions, i.e. they may accept or return non-db type

values.
(3) apointer to a db type object.
(4)  avector of db type objects.

An object may be persistent only if it is of a db type. However, a db type object need not be persistent. Note
that any type definable in C++ may be analogously defined as a db type. Furthermore, since persistence is orthogo-
nal over all db types, one can, if desired, program exclusively in db types and achieve the effect of strict orthogonal-
ity.?

Because every expression in E is typed, the compiler can statically distinguish references to (possibly per-
sistent) db type objects from references to (guaranteed nonpersistent) C++ objects. The latter case runs at no loss of
performance. Note that since db type objects need not be persistent, then a db type reference must be checked at
runtime, as discussed above. However, db types are provided with the expectation that the majority of accesses will
be to persistent objects. Nonpersistent db type objects are supported for completeness and convenience. Given that
most checks for persistence will succeed, and that such cases result in calling the EXODUS Storage Manager, the

cost of the check itself is negligible.

3.3. Representation of Objects & Pointers

Another important consideration in the implementation of a persistent language concerns the implementation
of objects on disk. How are their addresses represented? How are objects organized internally? Is there a format-

conversion as objects are brought into memory?

S-Algol [Morr82], the starting point for PS-Algol, is a heap-based language in which "the data type pointer
comprises a structure with any number of fields, and any data type in each field" [AtkM83a]. Any pointer may point

8An interesting "hack" is to define the following macros:

#define class dbclass
#define struct dbstruct
#define union dbunion
#define int dbint

// etc...
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to any structure, that is, pointers are inherently untyped. This design has two important implications for PS-Algol.

One is that performance must be affected since all pointer dereferencing is subject to run-time type checking. For

example, in the expression’

p {x), the compiler cannot know in general that p will point to a structure with a field
named x whose type matches that required in the current context. Therefore, a runtime check is included to vali-
date the expression. The other important implication is that runtime type descriptors must be available in order to
carry out this check. In a persistent extension, these descriptors must also be persistent. The efficient representation
and processing of type descriptor information thus formed a significant part of the implementation effort of PS-

Algol [Cock84, Brow85].

The heap-based nature of PS-Algol exacerbates the problem described above since we are required to do gar-
bage collection. In a persistent extension, the garbage is on disk. Not only does this present obvious performance
obstacles, but it also requires that there be enough information to do garbage collection. Because one may define
arbitrary compositions of structures, pointers, and arrays, finding all the pointers in a reachability traversal is some-
what complicated. The solution adopted in PS-Algol is to make all objects self-describing to the extent that pointers
may be located.

In contrast, E, being derived from C++, is a language in which the physical structure of objects is known (and
specified) by the programmer. Heap space is allocated and freed under explicit programmer control, and there is no
garbage collection. Furthermore, pointer is a type constructor, rather than a fundamental type, so all pointer
dereferences are type checked at compile time. Because there is no garbage collection, and because type checking
is static, there is no general need to maintain persistent type descriptors.!® We will have more to say about garbage

collection shortly.

Another way in which E differs from PS-Algol is in the representation of Lvalues (i.e. pointers). PS-Algol
recognizes two kinds of pointers, both one word in length, and distinguished by their most significant bit (msb). A
pointer with an msb of zero is called a Local Object Number (LON) and it contains the memory address of the
object it references. If the msb is a one, the pointer is a Persistent IDentifier (PID) and contains the database address
of the object. At runtime, PIDs are converted to LONs and back, as objects are moved in and out of memory (as

described more fully in the next section).

Like PS-Algol, E recognizes two kinds of pointers. Unlike PS-Algol, they are distinguishable by type at com-
pile time. Any pointer whose type is defined in the C++ subset of E is a normal C++ pointer, i.e. it is one word in

length and contains a memory address. Any pointer whose type is a db type has a different format. The Lvalue ofa

PS-Algol uses parentheses to express structure access.

10This is not to say that persistent objects are unconnected to persistent type information, only that physical descriptors are
not needed in E.
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db type object comprises an EXODUS storage object id and an offset into the object, as shown in Figure 4. This
<OID,offset> pair is called a _DBREF (which is also the name of the C structure type used to implement them).
The offset is necessary because it is possible (and quite common) for a program to produce an address which is in
the middle of a storage object. For example, one often processes an array by incrementing a pointer to each element
in turn. Also, member functions of a dbclass, like their non-db counterparts, are passed a pointer, this, to the
beginning of the class object; this object, however, may well be embedded as a member in some containing class
object. This aspect of E pointers — really, a straightforward extension of current C++ semantics — is in contrast to
PS-Algol, in which pointers are constrained to point only at "top-level" objects, i.e. to the start of an independently
allocated unit of storage. As we shall see in the next section, this difference in pointer semantics has implications
for the way in which physical I/O is realized.

One more detail concerns the representation of the address of a nonpersistent db type object. In E, "db" is an
attribute of a type, while "persistent” is an attribute optionally given to objects of that type. One may also create db
type objects on the stack or in the heap. If a function expects a db type pointer, that function should work whether
the address is of a persistent or of a nonpersistent object. To handle such cases, we construct a _DBREF with a spe-
cial OID indicating main memory, and we embed the address of the object in the offset field. Such DBREFs are
detected at runtime, and the embedded address is then used.

3.4. Physical /O

Given that the persistent objects of a program reside on secondary storage, we must decide the mechanism by
which these objects migrate in and out of main memory during a program run. We must also decide how external

addresses are mapped to internal addresses that are usable by the program. The approach pioneered by PS-Algol is

OID | offset

“

/

EXODUS Storage Object

Figure 4: The Lvalue of a DB Type
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to view the storage layer as a persistent virtual memory. A software!! check of the address format precedes each
pointer dereference. If the pointer is in PID format, an "object fault" is signaled. The object is read into memory,
giving it a valid LON address, and the pointer which caused the fault is overwritten with that LON. (Maier refers to
this pointer translation as "pointer swizzling" [Maie87b].) Once a pointer has been converted into LON format, it
will no longer cause an object fault, although every reference is still subject to the runtime check. When an object
X is written back to disk, any pointers in X which were converted to LONs must be restored to PID format. Furth-
ermore, any pointers (e.g. in other objects) which contain X’s LON must have X’s PID restored. This description is
obviously simplified, but the basic idea was used in several different implementations [AtkM83b, Cock84, Brow85].
It should be noted that this approach has much in common with LOOM [Kaeh83], which supports Smalltalk
[Gold83]. The major difference is that LOOM does not attempt to support persistence or transactions [Kaeh86].

By contrast, the model of persistent storage used in the current implementation of E views the buffer pool and
disk as the registers and main memory, respectively, in a load/store machine. That is, in order for persistent data to
be manipulated by a program, it must first be loaded into the buffers (registers). When the program is finished using
the data, it must release the buffer space (free up a register), and if the data has been written, it must inform the
buffer manager that the data is dirty (store the register). Of course, this analogy is not literal. Hardware registers
are fixed in width and in number, whereas one may pin an arbitrary range of bytes from an object, and one may pin
simultaneously as many ranges as will fit in the available buffer space. These and other differences give rise to a
number of interesting code generation problems that do not arise for conventional compilers. The prototype imple-
mentation described in this paper, however, makes a number of simplifying assumptions. For example, it is
assumed that the buffer pool is large enough to hold any and all byte ranges that might need to be pinned simultane-
ously. Also, buffer space is held only long enough to evaluate the expression needing the data. No optimization

techniques have yet been applied.

It is useful to consider some of the implications of the differences between the machine models adopted in
PS-Algol and in E. In the software virtual memory approach, I/O is transparent to the compiler, and it is easy to
generate code. The compiler simply issues instructions against the persistent address space, and the runtime system
takes care of the rest. Because the virtual memory handles object faults, objects are always loaded in their entirety.
By contrast, in a load/store model, I/O is scheduled by the compiler'?, and so code generation is more complicated.
Because the persistent storage space is byte-addressable, the compiler pins only those pieces of an object actually

needed, giving E programs the ability to work with very large objects.

UHardware implementations are also possible and, in fact, some have been designed. See, for example, [Cock87].

12Note that the machine presented by the EXODUS Storage Manager also has a cache (the buffer pool). Physical 1/O is ac-
tually scheduled by the buffer management component of the Storage Manager.
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The implementations of PS-Algol and GemStone rely on "pointer swizzling" to help regain performance.
That is, the cost of faulting on an object is amortized over the number of times the object is referenced. If a pro-
gram tends to access the same object repeatedly through the same pointer, then the amortization may be significant.
However, if the program tends to touch each object only once or twice, e.g. while traversing a graph or scanning a
relation, then the gains will be lower. In addition, the task of freeing the memory space occupied by an object is
complicated somewhat because there may be other objects in memory containing the LON (in PS-Algol terms) of
that object, i.e. its swizzled pointer. Access patterns such as graph traversal may tend to fault with high frequency,
clogging memory with objects whose pointers need de-swizzling when they are removed. In the implementation of
PS-Algol, the reclamation of buffer space is deferred until memory is used up. At that point the garbage collector

runs, and the (memory) heap is compacted, possibly forcing a subset of objects to disk [Coop88].

In E, there is no format conversion of objects as they are read into memory. Thus the space occupied by an
object can be reclaimed relatively cheaply. On the other hand, because loads and stores are generated at compile
time, we run the risk of generating poor code, e.g. by redundant fixing of data. The next version of E’s code genera-
tor will employ optimization techniques to improve overall code quality. The differences between buffer allocation
in the Storage Manager and register allocation in a hardware machine, however, make this a research problem rather
than a straightforward application of known optimization techniques. It seems likely, though, that significant speed-
ups can be achieved. The overall performance of optimized E programs relative to PS-Algol programs remains to

be seen.

3.4.1.1. Garbage Collection

We have decided not to implement garbage collection in E. This decision was based on a number of factors.
First, as already noted, in order to find all reachable objects, we would need to embed physical descriptors in
objects. Their storage and maintenance is a nontrivial task. Second, garbage collecting the disk is an expensive
operation [Butl87]. Third, and perhaps most convincingly, garbage is created in E only "by mistake.” Unlike
languages such as CLU [Lisk77, AtkR78] and PS-Algol, in which garbage is an implicit by-product of a program’s
normal execution, the loss of the "last” reference to an object in E is usually an error, and in any case, would be
inappropriate style in a systems-level programming language. Moreover, if a reference is erroneously lost to a per-
sistent object, then presumably that object is part of the database and should be restored. Even if a garbage collector
were implemented, it is not at all clear how it would distinguish these lost fragments from true garbage, nor, were
this possible, how addressability should be restored. Note that PS-Algol programs are also subject to this kind of

error, and its garbage collector will simply sweep up the lost objects.

Having argued that garbage collection is inconsistent with a language like E, we must address the problem

that garbage, if it is created on disk, will be persistent garbage. In E, as mentioned earlier, there are two ways (o
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create objects that persist. One is to compile the declaration of a persistent variable. In that case, the variable name
constitutes a persistent handle on the object. In the first implementation of E, there was no environment support; if
the object module containing the handle was destroyed without using the special removal utility (erm), the object in
the storage manager became garbage. In the environment described in [Rich88b], this kind of error is prevented;

source and object modules are subject to controlled access. That is, if one destroys a module containing the handles

of persistent objects, those persistent objects are destroyed first.

Persistent objects may also be created under program control, i.e. by invoking new_ob3J on a persistent file.
Since one can scan the file to retrieve the addresses of all the objects it contains, those objects are never technically
garbage; the address of every object allocated in a file by an E program can be recovered by an E program that
scans the file. Unfortunately, the combination of C++ semantics (which allows type casting) and the implementa-
tion of £ile as a class means that it is still possible for an E program to lose its reference to a file. We briefly con-
sidered restricting the use of files to cases where this kind of error could not occur; we rejected this approach, how-
ever, because it would have seriously diminished the usefulness of E. As argued above, garbage collection is not
the answer to this problem, either.

This discussion leads to a more general issue which, to date, has received seemingly little attention. The
problem is simply stated: programs have bugs, and if such programs are run against the database, the resulting data-
base state may be inconsistent. Note that the issue here is not whether we are able to abort a transaction (we can),
but what to do when a transaction commits having done the wrong thing. For transactions against a relational data-
base, the range of such errors is limited by what can be expressed in the query language. In many cases, the damage
can be repaired by running a compensating transaction. But in a persistent language, the range of possible errors is
much broader, including possible corruption of database structures. The erroneous creation of garbage is one exam-

ple; leaving a dangling pointer is another. In such cases, a compensating program may not even be runnable.

One approach to this problem is to minimize the probability of such errors by establishing a methodology in
which programs are thoroughly tested against either nonpersistent data or against a throwaway database. At some
point the program is "certified” bug free and is released for use against the real database. While this is a good and
useful policy in any case, nevertheless for a program of any complexity, the certification is probably a fiction. We
are still faced with the problem of what to do when things go wrong. An interesting area for future research, there-

fore, is in the development of debugging strategies and tools for a persistent environment.

3.5. Schema Evolution

The problem of supporting schema evolution is important for any system which stores long term data. Until
recently, however, very little work has been done in this area. Relational database systems, for example, typically

support only a few kinds of schema change, e.g. creating a relation, or adding an attribute. PS-Algol does not
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address the issue at all, although for that system, the problem is not as severe; structures are self describing, and all
field accesses are interpreted at runtime. Recent work in the area of object-oriented database systems has produced
a few papers on the subject. For example, Skarra and Zdonik have proposed language constructs to filter objects
between the database and the executing process [Skar86]. When a new version of an existing type is defined, the
programmer (perhaps with automated guidance) defines filtering functions which allow existing programs to deal
with objects of the new version of the type and to allow new programs to deal with objects of the existing version of

the type. As pointed out in [Penn87], this approach incurs a cost every time an object is referenced.

An alternative to filtering is object conversion. In such an approach, one first defines a set of invariants which
determines what it means for a schema to be "consistent.” Then one defines the allowable schema change operations
and, for each change, the updates that must be performed in order to preserve the invariants. This approach was
pioneered by the Orion OODB [Bane87] at MCC, and is currently being pursued in GemStone [Penn87]. The major
difference between the two is that the Orion scheme is lazy— changes are not propagated until the data is next
accessed— while the GemStone scheme is eager— with changes being propagated immediately.

For a number of reasons, E does not attempt to support schema evolution in an automated fashion,!> We do
not wish to insert a filtering layer because, as will be described, E programs access data directly in the buffer pool.
Filtering would place a procedure layer between the application and its data. We also reject an automatic update
solution because, unlike a truly object-oriented system, the physical structure of objects is much more apparent in E.
Defining the set of invariants, the possible schema changes, and the associated updates would appear to be a far
more complicated process. For example, if a class contains data members of other classes, those members are phy-
sically embedded in the object. In addition, pointers are under the explicit control of the programmer. As a result,
one may, for example, obtain and store persistent pointers into the middle of some object. Since many schema
change operations would alter the size of a class object (e.g. dropping an attribute), an automated system would
have to track down and change such pointers or leave them invalid. The former would be extremely difficult, if not
impossible, and the latter is not a solution. Note that this problem does not occur for object-oriented systems such
as Orion because pointers are completely hidden from the user and point only to "top level” objects. Finally (and
perhaps, most importantly), schema evolution is not our research interest and appears still to be an open problem. In

this instance, no solution is probably better than a partial one.

4. THE CURRENT IMPLEMENTATION OF E

In this section, we describe how db types and persistence have been implemented in the first version of the E

compiler. We begin with a macro level description of the compiler’s structure, showing how new functionality has

13This is not to say that evolving schema is impossible, only that the system will not propagate changes automatically.
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been integrated with the phases of an existing C++ compiler. We then describe the phase involving db types and

persistence, showing how declarations and expressions are processed.

4.1. Organization of the Compiler

The current E compiler is an extended version of the AT&T C++ compiler. We chose this as our starting
point for several reasons, the main one being that we had access to the source code. We did not want to start from
scratch because reimplementing the C++ subset of E was not our interest and yet would require a significant amount
of time and effort. At the time we began work on E, there were only a few C++ compilers available; the AT&T

compiler, in addition to being available, also had the distinct advantage of being quite stable.

The AT&T C++ compiler (version 1.2.1) consists of a large shell script (CC) which spawns a number of
processes, as illustrated in Figure 5. The original C++ source code is first processed by the standard C preprocessor,
¢pp. The result is then translated by the C++ front end, cfront, into C source code. This code is then compiled by
the C compiler, cc, into binary form. Although not shown in the figure, cc itself comprises a series of processes:

cpp (again!); ccom, which translates C into assembler code; as, the assembler; and 1d, the link editor.

If the result of the last step is an executable program, the compiler then performs an additional series of steps
(enclosed in dashed box in Figure 5). A C++ program may declare an object of a class with a constructor. If the
object is declared in the global scope, then the constructor for that object must be executed before the main program

runs. The extra steps in the dashed box are part of the mechanism that implements this feature.

. Other Modules
C++ Source \ e /

Other Modules

C++ ¢ C
cpp Source Cﬁ‘ on Source cc
Load
........................................................................ Module
H Executable H
] ]
; 3
H List of C Exdcutable
: nm munch cc | Exconably
i Symbols Source
1
H
'

Figure 5: The Process Structure of CC
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The majority of the work in implementing E has involved extending the source code for cfront into an E-to-C
translator called, appropriately, efront. The internal organization of efront is shown in Figure 6. Of the five phases
shown, all but "db simplify" were part of the original C++ compiler. The parsing phase builds an abstract syntax
tree of the source text. The parser consumes one external declaration at a time, e.g. one function definition or one
global variable declaration. Only a few new keywords were added to this phase in order to handle constructs related
to persistence. In addition, when this phase adds a type node to the syntax tree, where that node represents a funda-
mental db type (e.g. dbint) or a dbclass, a special flag is set in that node. In all other respects, it is like any other
type node. This fact is important for the second phase, which handles most of the type checking. Slight changes
were needed here to prevent, for example, assigning a db address to a non-db type pointer. Most other type check-
ing is handled normally, and allows, for example, assigning a dbint to an int, or adding an int and a dbfloat. The
simplification phase transforms C++ constructs into equivalent C constructs. This phase has been extended to also
handle E generators and iterators. The new fourth phase, and the one which is the concern of this section of the
paper, transforms constructs related to db types and persistence. Finally, the print phase walks the resulting C syn-

tax tree, producing C source code.

The input to the db-simplification phase is thus a C syntax tree in which certain nodes are decorated. Any
expression or object of a db type will point to a type node in which the "is db" flag has been set. Any object
declared persistent will also have this storage class recorded as part of its symbol table entry. The code generation

of this phase will therefore involve looking for decorated nodes in the syntax tree and applying tree transformations.

E Source rse E Syntax type E Syntax simplify
pars Tree check Tree “mp
Decorated
C Syntax Tree
db C Syntax . C Source N
L print >
simplify Tree
efront

Figure 6: Compilation Phases in Efront
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4.2. Transformations

This section details the transformations that are applied by the db simplification phase. It is the responsibility
of this phase to locate the types, data declarations, and expressions that involve db types, and to transform them into
equivalent C constructs. In particular, it is necessary to add the appropriate calls to the EXODUS Storage Manager
so that persistent data is accessible to the program.

4.2.1. Types

E provides a full complement of fundamental types having the "db" attribute. These types are the duals of the
fundamental C++ types: dbshort, dbint, dblong, dbfloat, dbdouble, dbchar, and dbvoid. For the purposes of assign-
ment, arithmetic expressions, and parameter passing, such types are equivalent to their non-db counterparts. A node
in the abstract syntax tree that represents a fundamental db type is not changed by db-simplification. Such a node is

simply printed by the print phase as its non-db dual.!* For example, the declaration
dbint x;

becomes

int Xx;

A node representing a function type is processed by recursively transforming the function’s return and argu-
ment types. If the function also has a function body, i.e. if it is a definition, then we apply the transformations

described in Section 4.2.3. For now, we may simply observe that the following (pointless) function

dbvoid fen( dbfloat x, dbint y )
{
X =Y

}

is transformed!’ into:
char fen( x, v )

float x;
int v
{
X = y;

}

A node representing a dbclass (or dbstruct or dbunion) is processed by recursively transforming the dbclass’s
data and function members. Although we do not show an example, it should be noted that, by the time db-simplify
sees them, classes related to generators (i.e. generators and classes instantiated from generators) have already been

transformed into an equivalent set of non-generator classes.

“The types "void" and "dbvoid" are printed as "char".

15For those more familiar with the AT&T cfront, names are still changed according to the usual rules. For the examples in
this paper, such details are omitted where possible to avoid confusion.
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So far, the transformation of types is not very interesting. The one important translation occurs when a type
node represents a pointer to some db type. Recall from the discussion in Section 3.3 that address of a db type object
is represented by an <OID,offset> pair. In the C translation of every E program is a series of typedefs culminating

in the following:

struct _DBREF {
Q1D oid;
int offset;
}s

Any type node representing a db pointer is transformed into struct _DBREF. So, for example, the declaration:

dbstruct tree_node {
tree node * left;
tree node * right;
dbint data;

}i

is printed as:
struct tree_node {
struct _DBREF left;
struct _DBREF right;
int data;
}i

For a member function of a dbclass, C, the type of this is likewise transformed, since this hastype C*.

4.2.2. Data Declarations

When the source code contains the declaration of some db type object, the correct transformation depends on
the scope of the object and its storage class. Obviously, the most interesting case is the declaration of a persistent
object. In E, an object which is declared persistent establishes a binding with a physical object at compile time. The
name of the persistent variable is then the programmer’s "handle” on the persistent object. The object is accessible

to any program in which the variable’s name is visible.

The general approach is illustrated in Figure 7. When the db-simplification phase sees the declaration of the
(db) integer, x, it asks the EXODUS storage manager to create a 4-byte object. The OID of the new object is then
introduced into the output in the form of a _DBREF structure with an initializing expression. This _DBREF vari-

able is called the companion of x, and its initializer assigns the OID returned by the storage manager with an offset

of 0.1 Note that only the companion declaration appears in the C output.

Since all EXODUS storage objects must reside in some file, the compiler first asks the storage manager to

create one file; then all persistent objects declared in the source module are created within this file. Thus,

16The interpretation of the numbers composing the OID is not important for this discussion.
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Figure 7: Compiling A Persistent Object Declaration

compiling an E source module which contains the declaration of one or more persistent objects yields both its C
translation and a file in the storage manager containing the persistent objects. This file is called the persistent

environment file, or simply, the .pe file, for the module.

If a db type object is declared external, db-simplification transforms this declaration into an external reference
to the object’s companion. For example,

extern dbint x;

becomes
extern struct _DBREF __E_x;

'This allows functions in one module to access versistent objects declared in another via the usual C++ external
reference mechanism. Conversely, it implies that if a module declares a nonpersistent db type object in the global
scope, then a companion must be generated for that object as well. As usual, the companion must be initialized with
the address of this object, which in this case, is in main memory. Such addresses use a special OID indicating "in
memory", and the actual address of the object is embedded in the offset. Thus, if the x mentioned above is simply
declared in the global scope as:

dbint x;

then the translation is:

int x;
struct DBREF _E x = { 0, 0, 0, -1, (int) &x };

The example of Figure 7 showed a persistent object declared in the global scope. Persistent objects may also

be declared locally in a block. For example,
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int counter()

{
persistent dbint x;
return x++;

}

In this case, although the object is persistent, its name is visible only within the block. Again, the object is created
at compile time, and a companion is introduced into the local scope. Here, the companion is given the storage class
static so that it need not be reinitialized every time the block is entered. The declaration in the above function

becomes:

int counter ()

{
static struct DBREF _ E x = { ... };
/* return ... */

}

For nonpersistent db type objects declared local to a block, we do not need to do anything special. A local
dbint, x, in the E source simply becomes a local int, x, in the C translation. This is because most expressions which
use x, e.g. addition, know that x is not persistent; a companion is not needed. In the case of an expression which
takes the address of x, e.g. passing x by reference, a temporary companion is constructed, as described in the follow-

ing section.

To be consistent with C++ semantics, a persistent object declared without an initializer will be initialized to
all zero bytes. Thus, the above counter function will return 0 the first time it is called. A persistent object may also
be declared with an initializer, as in Figure 8. In this example, the user has declared a persistent array of dbfloats,
specifying the first 3 elements. In such cases, the compiler interprets the expressions (which must evaluate to con-

stants) and sends the binary image of the object to the storage manager.

persistent dbfloatar[ 5]1={ 1.1,2.7,0.8 };

Figure 8: An Initialized Persistent Object
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A more complicated initialization problem arises when the program declares a persistent object of some

dbclass with a constructor. We will return to this problem shortly.

4.2.3. Expressions and Statements

Processing the declaration of persistent objects provides one part of the picture. Another part is the transla-
tion of expressions involving (possibly persistent) db type objects into regular C expressions which manipulate the
objects. This section explains these steps in some detail. The set of expressions illustrated here is representative

rather than exhaustive, and nonessential details have been omitted.

The current implementation employs a simple code generation technique. In a recursive descent of the
expression tree, we look for nodes (subexpressions) whose type is marked "db." Such nodes are locally transformed
into C expressions. If the node represents the address (Lval) of a db type object, then the translated expression will
be of type _DBREF. If the node represents the value (Rval) of a db type object, then the translated expression will

produce that value at runtime.

One of the parameters to the recursive call specifies whether the Rval or the Lval of the expression is desired.
For example, the simplest expression is the name of a variable, say, x. Suppose x is persistent and appears in the
expression (x + y). Then we must transform the subexpression x into one which reads x, references it in the
buffer pool, and (eventually) releases it. However, if x is instead part of the expression (&x), the correct action

is simply to substitute the companion, __E_x, since all that is wanted here is the address of x.

The other parameter to the transformation procedure specifies whether the data will be written by the contain-
ing expression. Continuing with the previous example, in the expression, x + y, x is used but not changed.
When we generate the read call for x, we must also generate the corresponding release call, which in this case
should specify that x is clean. However, in the assignment, x = 1, x will definitely be written; the release call
must specify that x is dirty.

In general, the release calls are not inserted into the local transformation, but are placed on a list kept by the
compiler. At some point, often at the statement level, these calls are inserted. Release calls usually cannot be
inserted locally because the result would be incorrect code. Consider again the expression x + y where x isa
persistent dbint. In order to form the sum, the expression x must be transformed into an expression which pins x
in the buffer pool, then produces x’s value. The translated code looks something like!” the following:

(<read call>, <deref expr>)

If the release call were inserted right after the read call, then the dereference would be illegal because the data has

1"In C, an expression, e, may comprise two expressions, el and €2, separated by a comma: e ::= el , e2. The expressions
are evaluated left to right, and the type and value of e are those of €2 [Kem78].
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been unpinned. If the call were inserted after the dereference, then the comma expression would no longer produce
the value of x as its result.
A third possibility is to introduce a local temporary and copy the bytes out of the buffer pool.
(<read call>, _tmp = <deref expr>, <release call>, _tmp )
The release call can be inserted as shown, with the temporary finally producing the correct value. This approach
works, and in fact is necessary in several places. In general, however, the E code generator tries to take advantage

of an important performance feature of the EXODUS storage manager: the resulting C program accesses the data
directly in the buffer pool when possible, avoiding the additional copy operation.

Because the current code generator is an initial prototype implementation, the code it produces is not yet
optimized. Local transformations usually result in more storage manager calls than are necessary, and, in fact, it is
possible to pin data in the buffer pool redundantly. For example, in the assignment, x = x + y, x is simultane-
ously pinned for both occurrences. While the Storage Manager allows such redundant pinning of data (since it sup-
pbrts sharing in general), clearly the performance of E programs will be significantly improved by eliminating such

redundancies. These and other optimizations are the subject of current study and are not discussed further here.

4,2.3.1. Names

A simple name expression forms the basis of the code generator’s recursive descent. Figure 9 shows the

transformation of a name node. If the name is of a non-db type object, no action is taken.

(name)
(_tmp.oid = _MEM_OID, J'
_tmp.offset = (int)(&name), Db type ? ng_, (name)
—tmp)
no yes T no
persistent Lval val Rval persistent
or or
extern? extern ?
l yes l yes
(_E_name) (READ(_E_name, size, &ud), **ud)

Figure 9: Transforming a Name Expression
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As outlined in the previous section, if the node refers to a persistent or external object and the Lval is desired,
then the name of the object’s companion is substituted. The result is an expression yielding the address of the
object. If the Rval is wanted, we substitute a call to the storage manager read routine, using the companion to obtain
the OID and offset, and using the object’s type to obtain the length. We also generate a release call (not shown

here) whose mode (either dirty or clean) is determined by the second parameter to this invocation.

If the node refers to a nonpersistent db type object and the Rval is needed, no action is taken. Note that this
meshes with the treatment of a nonpersistent object’s declaration. That is, if we declare and use a nonpersistent
dbint in a local scope, the translated code simply declares and uses an integer. Finally, the Lval of a nonpersistent,

db type object is generated when needed by introducing a temporary _DBREF variable into the local scope and

transforming the expression into one which first initializes the _DBREF and then produces its value as the result.'®

4.2.3.2. Dereferencing

The operators dot (.), arrow (->), and star (*) are simple to handle. Consider the pointer dereferencing opera-
tor, arrow, whose translation is shown in Figure 10. The expression on the left of the arrow results in a pointer to a
structure, and the name on the right specifies a field in the structure. Translation of this node first transforms the

expression on the left. Since we need the value of the pointer (not its address), we request the pointer’s Rval, and

((expr) -> name)

!

((exprr ) -> name)

Is (expr ) 'stype
r,c) N0, ((expr ) -> name)

== DBREF ?
yes
(tmp= (expr ) , Lyl oy, (Rval, (tmp=(expt ) .
_tmp.offset +='name’s offset, _tmp.offset +=name’s offset,
_tmp) READ( _tmp, size, &ud ), **ud )

Figure 10: Transforming an Arrow Expression

18The alternative is to initialize, at the beginning of a block, a distinguished companion for each nonpersistent db type ob-
ject declared in that block. This approach was deemed too expensive in general.
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since the expression only reads the pointer value, the release call (if generated) should specify "clean.” In the figure,
the expression resulting from this recursive descent is denoted by appending subscripts: expr, . is the expression
resulting from the transformation requesting "Rval" and "clean." If the result of transforming the pointer expression
is not an expression of type _DBREF, then the pointer was not a db pointer, and no further action is taken. Other-
wise, if the Lval of the current expression is required, as in & (p->x), then we produce a new _DBREF in which
the offset of the pointer expression is incremented by the offset of the field x in the structure. If the current
expression’s Rval is required, we first produce its Lval, and then use this _DBREF in a read call to the Storage
Manager. The size of x's type determines the length parameter for the call. The other dereferencing operators, dot

and star, are handled similarly.

One small optimization has been implemented for Lvalued expressions and is worth noting here. The illustra-
tion in Figure 10 shows that the result of the expression on the left side of the arrow is copied into a temporary
_DBREF variable. In fact, if the result of the pointer expression is already held in a temporary, that variable is sim-
ply "promoted"” to hold the Lvalue of the current expression, possibly with its offset incremented by the appropriate

amount. In terms of the illustration, this step eliminates the copy: _tmp = (expr,.).

4.2.3.3. Arithmetic Expressions

Processing arithmetic (and other) binary operators is particularly easy. As illustrated in Figure 11, we simply
transform both operand expressions, specifying the Rval and "clean" in both cases. The only slight complication
arises in handling pointer arithmetic. If, for example, after transforming the operands of plus (+), we discover that

one of them resulted in a DBREF value, then the expression represents arithmetic on a db type pointer. In a

({exprl) + (expr2))

((exprl ) + (expr2, ))

|

yes Db pointer no
| arithmetic ?
(_tmp= (exprlr,c) , ( (exprlm) + (eXpQr,) )
_tmp.offset += (expr2, ) * type's size,

_tmp)

Figure 11: Transforming an Arithmetic Expression
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((exprl) = (expr2))

|

((exprl ) = (expr2, )

Figure 12: Transforming an Assignment Expression

manner similar to the last section, we produce a new _DBREF expression in which the offset is incremented. This
time, in accordance with C++ semantics, the increment is the product of the right operand times the size of the refer-
enced type. Since pointers cannot be added, the operands in this example cannot both produce _DBREFs. How-
ever, two pointers may be subtracted, and the result is their integer difference divided by the size of the referenced
type (as described in [Kern78]). If those pointers are db pointers, the difference is formed by subtracting the offsets
in the _DBREFs.

4.2.3.4. Assignment

As a final example, assignments are triviaily handled as shown in Figure 12. To transform the left hand side
of the assignment, note that we could request its Lval, and if this produces a _DBREF, we could then insert a read
call to pin the destination of the assignment. We can achieve the same effect more simply, however, by requesting
the Rval of the left hand side; the proper read and dereference are then added automatically at a lower level. As

mentioned previously, here we must specify a dirty release for the left hand side, and a clean release for the right.

4.2.3.5. Statements

It was mentioned previously that the release call corresponding to a given read is usually not inserted into the
local expression transformation. However, there are certain situations, particularly in transforming statements,
where this insertion is necessary. Consider the return statement, and suppose a function £ simply returns the value

of x, a global persistent integer.

int £( )
{

return x;

1

Clearly, we must read x in order to return its value. It is in releasing x that we have a small problem. Obviously,
we cannot release something before it is read. Without added complexity, we also cannot release it after the return,
i.e. in the caller. Therefore, we have chosen to insert the release call within the return expression, and this requires

the introduction of a temporary. The return statement thus looks something like:
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return (read(x, &ud), _tmp = **ud, release(ud), _tmp);

Other statements containing expressions are treated similarly. For example, an if statement translates to:

if( _tmp = <transformed expr>, <release calls>, tmp )
{ ...}

We should emphasize again that such temporaries are introduced only if necessary, i.e. if the expression pins data.

Expressions involving only non-db types never suffer this overhead.

4.2.4. E Runtime Environment

Programs generated by E contain calls to the EXODUS Storage Manager. In our first implementation, E pro-
grams are actually linked with a copy of the Storage Manager. This is similar to PS-Algol, in which each program
includes a copy of the CPOMS storage level [Brow85]. Efront itself also contains a copy of the Storage Manager,
since it may need to create persistent objects at compile time. Any program that uses the Storage Manager must first
call its initialization routines, specifying which database volume(s) must be mounted. Currently, E programs use
only one volume, and its Unix file name is obtained from the environment variable, EVOLUME. Other parameters
describing the runtime context are likewise given default values in the first implemcutation. For example, most
Storage Manager calls also require a transaction id and a buffer group specifier (scc footnotes 1 and 2). For now,

programs run as a single transaction using a single buffer group.

A number of improvements will be made to this runtime environment in the near future. The Storage

Manager, along with other support routines, will run as a server.!® E programs will be dynamically loaded into the
server, rather than each containing its own copy of the Storage Manager. The association between E programs and
database volumes will be implicit because the programs themselves will be stored in the server. The EVOLUME
environment variable, currently the "weak link", will no longer be necessary. The programmer will control transac-
tions via a transaction block in the E language, and will be able to associate different buffer groups with dif-

ferent parts of the code. We are currently investigating means by which the latter may be specified.

4.2.5. Supporting Other C++ Features

So far, we have described the general scheme that we have used for implementing persistence in E. We
described our solutions to the problems of creating persistent objects, binding objects to program symbols, and gen-
erating code for expressions. This section discusses some further problems that are specific to extending the seman-
tics of C++ to the world of persistent objects. Part of the solution depends on the new environment in which E pro-

grams will be compiled and run. For this paper, we will describe certain of its features as needed.

19Tn fact, a prototype of this server ran in the SIGMOD-88 EXODUS demonstration.
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4.2.5.1. Constructors & Destructors

Earlier, we outlined how the compiler processes the declaration of a persistent object for which an initializer
has been specified. A more interesting problem arises when a persistent object is declared of a dbclass with a con-
structor. Consider again the stack class definition in Figures 2 and 3. The stack constructor initializes the top-of-
stack index to -1, indicating that the stack is empty. By definition, a constructor is called when the object is created.
Suppose, as in Figure 3, a program declares a persistent stack. Since the compiler creates the persistent object, it
would appear that the compiler must also invoke the constructor. But how is this to be accomplished? The com-
piler, that is, efront, has only the abstract syntax tree for the program. Should we write an interpreter? In general, a
constructor may call other functions arbitrarily; what if those functions are externally defined? In fact, unlike this

example, it may well be that the constructor itself has not yet been defined but only declared.

In the first implementation of E, the problem is handled as follows. Observe that is it not strictly necessary to
call the constructor at compile time. Rather, it is sufficient to ensure that the object is initialized before any program
actually uses it, and that it is initialized only once. A very slight extension to an existing cfront mechanism provides
a simple implementation satisfying these conditions. Before describing how constructors are called on persistent

objects, then, we first review the mechanism used in cfront for initializing static objects.

Consider for the moment the non-db stack implementation in Figure 2, and suppose that the stack class and
the stack S are defined in a module m separate from the main program. (The term "module” is used to emphasize
that C++ programs are usually composed of separately compiled pieces.) Any program which includes m as one of
its components must be sure to initialize S before the main program begins. In the general case, a given program
comprises a set of modules, M, each of which contains a set,‘X,,,, of objects needing initialization. The approach
adopted in the AT&T C++ compiler involves first generating, as part of the C translation, an initializer function, f,,
for each module in M. (Obviously, modules for which X,, is empty do not need an initializer. We do not consider

this case further.) The initializer function simply calls the appropriate constructor for each object in X,

fum l

constructor ( x,, argsy );

constructor ( x xi,args x %;

}

In the case of the nonpersistent stack example, the initializer for module m would look something like?®:

void _STI m() {
_stack ctor( &S );
}

The first action of every C++ main program is to call the initializer function for every module in M. We shall omit

20The actual name of the function is the name of the source file prepended with "_STI", for STatic Initializer.
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the details of how these functions are bound to the calls made by the main program. The compilation steps enclosed

in the dashed box in Figure 5 accomplish this binding.

Now, an E source module m contains, in addition to X,,, a set P, of persistent objects, each of which is of a
dbclass with a constructor. To implement the desired semantics, efront amends the initialization function, f,,, as

follows:

Im
persistent BOOL init = TRUE;
if (init) {
init = FALSE;
constructor (py, args, );

constructor (p p|, args ip; )i

}

constructor (X1, argsy );

constructor( X \x\,args ;x1

}

When f, is called for the first time, the persistent flag has the value TRUE. The flag is then cleared and construc-
tors are invoked on the persistent objects in m. If the same program is run again, or even if another program con-
taining m is run, these constructors will not be called again because the flag is itself persistent and shared by all pro-

grams that include m.

Once the basic E persistence mechanism was working, this solution was trivial to implement. Like most first
solutions, though, it has several drawbacks. First, testing the persistent flag requires a read call to the storage
manager. For a program consisting of n modules, this implies a startup cost of as many as n disk reads.?! Further-
more, a given module containing such a persistent flag will contribute one storage manager call to the startup cost of
every run of every program in which it is ever used. Ideally, we would like to pay the initialization cost once, and

thereafter incur no extra overhead.

Another shortcoming of this solution is that it does not extend to destructors. A destructor is the inverse of a
constructor. Whenever an object of a class is destroyed, e.g. by going out of scope, the class’s destructor (if it
exists) is called first. A named persistent object is destroyed by deleting the module containing its persistent handle
(companion). If that object is of a dbclass with a destructor, we should, to be consistent, call that destructor. The
solution for constructors cannot be applied here because, while a flag can identify the first time the module is used, it
cannot signal the last. Instead, there is a utility program, erm, which is used to destroy modules containing per-

sistent handles. The problem with the current erm utility is that it requires the user to specify explicitly all the object

AHowever, given that a flag resides on the same page as other persistent objects in the module, at least some of these pages
would presumably have been requested shortly anyway.
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code modules required for calling the destructors.

The above problems derive from a common source. While the first implementation of E maintains persistent
objects, it does not maintain persistent types. That is, the current system does not maintain the association between
a persistent object and its type, e.g. the code implementing its methods. The next implementation of E will operate
in the context of the new environment to which we have alluded, and it will enforce the following rule: The lifetime
of every persistent object of type T must be subsumed by the lifetime of an implementation of T. When a persistent
object, x,of type T is declared, the environment will allow the compiler to identify which implementation of T is
being used, and to bind x to that implementation. Note that this rule does not specify "the same" implementation of
T over the lifetime of x. (We wish to allow a careful user to modify an implementation without necessarily invali-

dating existing objects.)

The above rule implies that the new environment will impose somewhat more structure on the way programs
are built. Currently, for example, a source module includes (via #include) the header files containing the
definitions of needed classes. Calls to member functions of such classes are typically left unbound until the applica-
tion module and the class implementation modules are linked together. Under the new environment, source
modules will use rather than include one another. Use is a semantically richer form of include. In particular, if
several source modules all use a given source module, m, they share that module. Under #include, each would

receive an independent, inline copy of m.

Returning to the problem of constructors, destructors, and persistent objects, the new environment will enable
the compiler to verify that the declaration of a persistent object uses an implementation of the object’s type (and not
simply a declaration). The result is that the constructor for a persistent object will be called when the object is
created, eliminating the need to test a persistent flag at startup time. Similarly, when we destroy a module contain-
ing persistent objects, we can then locate and call destructors automatically. The details will be covered in
[Rich88b].

4.2.5.2. Virtual Functions

The C++ mechanism which supports "true" object-oriented behavior — the late binding of code to a method
invocation — is the virtual function. If a member function of a class is declared virtual, then the runtime calling
sequence involves indirection through a dispatch table. In the AT&T C++ compiler, there is one such table for each
class having virtual functions, and every object of the class contains a pointer to that table. Thus, the dispatch table
is a kind of runtime type descriptor, and the embedded pointer plays the role of a type tag for each object. The
amount of type information known to the compiler allows for a very fast implementation: A virtual function call

adds at most one pointer dereference and one indexing operation to the cost of a normal procedure call.
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When virtual functions are combined with persistence, the above implementation no longer suffices. Clearly,
we cannot store the memory address of the dispatch table because that address is valid only for one program run.
One approach is to make the dispatch table a persistent object. Then the addresses embedded in objects will be
valid persistent addresses. This is the solution adopted in Vbase, for example [Andr88]. For E, however, this
approach only pushes the problem back one step. The virtual functions themselves will be located at different
addresses in different programs, and so the persistent dispatch table must be filled in when it is loaded. Further-
more, it leaves unresolved the addresses of other functions that may be called by the virtual functions. Since the
actual dispatch table used in a given program is, in effect, specific to that program, there seems to be little benefit in
making it persist.

For these reasons, we have implemented a different solution. For every dbclass C having virtual functions,
the compiler generates a unique integer type tag, and every instance of C contains this tag. The dispatch tables are
still main memory objects, and in addition, we introduce a global hash table (also a main memory object) for map-
ping type tags to dispatch table addresses. This table is initialized at program startup?; for each dbclass in the
program having virtual functions, we enter its type tag and dispatch table address. The existing static initializer
mechanism described in the previous section is used to initialize the hash table. Then, to call a virtual function at

runtime, we hash on the type tag in the object to obtain the dispatch table address and proceed as before from there.

A problem that arises in this implementation is the management of type tags. Specifically, we must be able to
distinguish the first use of a type from subsequent uses; in the former case, we must generate a new type tag, and in
the latter, we must reuse the existing type tag. Obviously, name space management is a related issue, since types
that happen to have the same name are not necessarily the same type. Once again, the current solution provides an
initial implementation that will be improved in the next version. The compiler keeps a persistent table associating
type names (character strings) with tags. Before generating a new tag for a type T, the compiler searches the table.
If T’s name is found, the associated tag is used. Otherwise, a persistent counter is incremented, generating a new
tag, and a new entry is made in the table. Obviously, this solution disallows having two dbclasses with the same
name (in different programs, of course), where both classes have virtual functions. The new environment for E will

eliminate this minor restriction.
5. SUMMARY

5.1. Review

This paper has presented the design of the first implementation of the E compiler. We briefly reviewed E’s
place in the context of the EXODUS project and its client relationship with the EXODUS Storage Manager. We

2Unlike the (initial) constructor solution described above, this startup cost is negligible.
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showed by example how one declares and manipulates persistent objects in E, emphasizing the ease with which one

can convert a nonpersistent application into a persistent one.

Next we discussed at some length a number of the important issues that arise in the design and implementa-
tion of a persistent language. The topics discussed included the organization of persistent name spaces, the
representation of persistent objects and their addresses, and the management of physical /O at runtime. For each

issue covered, we presented the approach taken in E, contrasting our solution with those of other systems.

The remainder of the paper then described in detail the compiler’s current implementation. We began by
showing at a macro level how we integrated E language extensions into an existing C++ compiler. We then
described how the E compiler processes persistent object declarations, paying particular attention to how those
objects are created and initialized. Next we described the current prototype code generator which converts expres-
sions involving persistent objects into equivalent expressions involving address calculations and calls to the Storage
Manager. Finally, we described our current solutions to the special problems of handling constructors, destructors,

and virtual functions in the persistent context.

5.2. Relationship to Other Work

Like other persistent languages and object-oriented database systems, E reduces the impedance mismatch
between the programming language and the persistent store (or database system). However, E is distinguished from
other work in several ways. First, E is a direct extension adding persistence to an existing systems level program-
ming language, C++. All of the concepts and semantics of the base language have been preserved in E. The addi-
tion of db classes, for example, is really a minor syntactic extension. All of the concepts associated with C++
classes, e.g. constructors and virtual functions, are supported by E dbclasses. Also, the pointer manipulation facili-
ties familiar to C and C++ programmers are preserved in the persistent world. A db pointer may be cast, incre-
mented, etc. This aspect of E’s design contrasts sharply with Vbase and O2. Both of these systems embed within C
an interface to an object-oriented database system. In Vbase, types are defined in one language (TDL) and methods
are defined in another (COP). In O2, the CO2 language contains special type constructors and embedded "escapes”
to the distinct message passing layer of the language. In both cases, persistent types and objects are much different

from their counterparts in the host language.

Another distinguishing feature of E is in its approach to physical I/O. By viewing the storage manager as a
load/store machine, E departs from the familiar virtual memory model used in PS-Algol and elsewhere. By schedul-
ing loads and stores (pins and unpins), the E compiler realizes a number potential benefits. First, while object fault-
ing implies loading the whole object, E pins only the portion of the object accessed by the program. When objects
are small, the two methods are similar, but when objects are large, E should make significantly better use of avail-

able buffer space. This economy should be especially important in a multiuser environment. Secondly, the compile
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time scheduling of loads and stores provides the opportunity to apply optimizations. We expect to realize significant

improvements in the performance of E programs in this way.

5.3. Status & Current Research

In addition to being a learning vehicle, the current compiler provides a demonstration of feasibility of the gen-
eral approach to persistence taken in E. The db-simplification phase (and a number of supporting routines) were
designed and added to the compiler during the Spring of 1988. The E compiler runs on a VAXstation IIT under
Unix 4.3, and was an integral part of a demonstration given at SIGMOD-88. At this point, the full cross product of
dbclasses and persistence works correctly. Other features of E not covered in this paper, i.e. generators and itera-
tors, also compile correctly. A test suite developed by a student over the summer has greatly aided in debugging the

compiler (and in building our confidence in it).

The design of a new environment to support E program management is nearing completion. This environ-
ment will address several issues which are not currently well-handled. These issues include a more integrated run-
time environment, and the protection and control of source code. It will also allow a much more efficient imple-

mentation of constructors for persistent objects, as well as an equally efficient implementation of destructors.

The major research direction related to E is now in the optimization of E code. These optimizations will be
applied to a number of areas. We seek to reduce drastically the the number of calls to the Storage Manager, both
locally within an expression and globally within a procedure. The optimizations we seek are related to existing
techniques such as the elimination of unnecessary loads and stores, global register allocation, and loop optimiza-
tions. However, because the "machine" for which E is targeted (i.e. the EXODUS Storage Manager) is quite dif-
ferent from a typical hardware machine (e.g. one with a fixed number of word-sized registers), optimizing E code is
a research problem rather than a straightforward application of known techniques. For example, one potential new
optimization is called "coalescing”; if several different pieces of the same object are pinned within the same or
nearby regions of code, those separate requests could be combined into one request which pins a single spanning
range of bytes. Whether coalescing is worthwhile depends both on the distance between the two ranges within the
object and on the distance between the uses of those ranges within the program. Another important area for optimi-
zation will be processing arrays in block-at-a-time fashion, rather than one element at a time. We are looking at
techniques used in vectorizing compilers (e.g. [Padu80]) for inspiration. After an appropriate set of optimizations
have been chosen and implemented, we plan to investigate the performance of E code relative both to existing

DBMSs and to systems that rely on object faulting.
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APPENDIX: AN EXPANDED EXAMPLE

This appendix gives a flavor of the rest of the E language. The stack class definition in Figure 13 expands on
the simple example presented in the paper, illustrating three other important features of E: generic classes, iterators,
and file variables. A generic class is defined in terms of type parameters, and a specific class is instantiated from
the generic one by providing actual types for the parameters. (Formal parameters of classes may also be functions
or simple constants, although we do not show such cases here.) The main advantage to a generic class is that the
code needed to implement the class is written only once, and instantiated classes then share the generic code. An
iterator is a control construct comprising two cooperating agents: an iterator function and an iterate loop. The func-
tion and the loop play the roles of producer and consumer, respectively, in processing a sequence of values. Both
generic classes and iterators were inspired by CLU [Lisk77]. Finally, file variables, which were mentioned in the

paper, provide the E programmer with bulk storage and with dynamic creation of persistent objects.

Let us walk through this example, examining each of the new features. Class formal parameters are specified
within square brackets immediately following the class name. The stack class is defined in terms of one formal
parameter, eltype, which is the (unknown) type of the elements to be placed on the stack. As in CLU, one may
specify constraints on types used as actual parameters; in this case, any instantiating type must be a dbclass having
a print function of no arguments. This function will be used by the stack print routine to print each of the elements

in the stack.

The stack is to be implemented as a linked list. Within the body of the class specification, we first define an
auxiliary type, stkNode, which is a structure containing a data field of the element type and a pointer to the next
stack node.?? Following the definition of stkNode are the data members of stack. Eack stack instance con-
sists of a pointer to the top stack element and a file containing all the stack nodes. Here we have used the auxiliary

type to define the type of the pointer, top, and the predefined type file to define the type of stkFile.

The list of stack member functions follows the public keyword. The stack constructor initializes the top of
stack pointer to null, indicating an empty stack; the method empty simply tests for a null pointer. The push
routine takes a reference to an eltype object, creates a new node, places it at the head of the linked list, and

copies in the data value. The node is created within stkFile by invoking the file method, new obj. This

method takes a size parameter, creates an object of that size in the file, and returns a pointer to the new object.

BNote that E deviates from C++ semantics here. C++ allows nested class definitions but this is merely a syntactic device;
the nested class is exported to the scope of the containing class [Stro86]. However, in order to support formal type parameters, E
must limit their scope; eltype would be meaningless outside the scope of stack. The need to define auxiliary types, such
as stkNode, is another reason for supporting nested class scoping.

%We note that the file class used in this implementation creates essentially untyped objects; casting is then used, as in
push, to manipulate them. We are now adding to E a generic form of file, fileof [T], which contains typed objects, i.e of
type T or its subtypes.
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/k******************************************************k***/
/* Here’s the generic class def. */

#include <file.h>
dbclass stack
[
/* type parameter: any dbclass with a print routine */
dbclass eltype {
public:
void print(};
}

]
{
/* auxiliary type of stack node */
dbstruct stack_node {
stack node * nxt;
eltype data;
}:
/* class data members */
stack_node * top; // points to top element
file stkFile; // holds all the stack elements
/* class member functions */
public:
stack(): // constructor
int empty () ; // is stack empty?
void push (eltypeé&) ; // push an element
eltype pop () ; // pop an element
void print {); // print all elements
private: .
eltype * iterator elements(): // yield pointer to each element

};

/*****‘k**********‘****************'k*‘k****‘k***‘k***************/
/* Here are the stack class methods. */

stack::stack()
{

top = NULL;
}

int stack::empty()

{
return (top == NULL);
}

void stack::push(eltype& item)
{
stack_node* p;

/* create a new object in the file and put it at head of list */
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p = (stack_node¥*) stkFile.new_obj(sizeof (stack node));
p->nxt = top;
top = P/

/* assign the data value */
p->data = item;
}

eltype stack::pop()

{
stack_node*  p;
eltype ret;

if (top != NULL) {
/* save current top. Pop. Then delete (old) top. */
p = top;
top = top->nxt;
ret = p->data;
stkFile.del_obj(p);/
return ret;

else
printf ("stack::pop : Stack is empty."):
}

iterator eltype * stack::elements()
{
/* walk down list, yielding address of each data field */
for(stack_node* p = top; P != NULL; p = p->nxt)
yield & (p->data);
}

void stack::print ()
{

/* invoke iterator. call eltype::print() for each element */
iterate( eltype * p = this->elements () )
p->print ()

Figure 13: A Generic, Unbounded Stack Example

The pop routine removes the top stack element by calling the file method, del_obj; the data value in the old
top node is returned to the caller. The file del obj method takes a pointer to an object in the file and destroys
that object. Finally, in order to illustrate the definition and use of an iterator, the stack implementation includes an
iterator function, elements, which is used by the print method. The iterator simply walks down the linked
list, yielding a pointer to the data field of each node in turn. The iterate loop within print picks up each such
pointer and then invokes the print routine (of eltype) on each referenced object. Note that since the iterator is

declared private, itmay be used only by other stack methods (such as print).
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/* a class defining a memo type */
dbclass memo
{

/* some appropriate representation */

public:
memo { char* ); // constructor
void print () : // a print routine
}:

/* instantiate a type to hold stacks of memos */
dbclass memoStack : stack{ memo ] ;

/* declare a persistent memo stack */
persistent memoStack §;

main(int argc, char** argv)
{
for( int i = 1; i < argc; i++ )
{
memo m{ argv({i] );
S.push( m );

}
S.print ();

Figure 14: Using the Stack Class

A generic class is not in itself usable by an application; it must first be instantiated to a specific type. Figure
14 shows a simple program that keeps a stack of personal memoranda. We only show a skeletal outline of the
dbclass memo. It has some representation, a constructor, and a print function. The constructor takes a character
string argument forming the body of the memo. Next, we instantiate the type memoStack from the generic stack
class and declare a persistent object, S, of this type. Since the memo print function has the type signature specified
in the formal parameter section of stack, this instantiation is legal. Finally, the (simplistic) main program builds
a memo, m, out of each argument on its command line and pushes monto S. It then prints all of the memos on the

stack.
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15. Appendix 1: The Cost Functions

Query 1 (Ancestor.bf)

1.1 Naive evaluation

1.2 Semi-Naive Evaluation

1.3 QSQ, Iterative

1.4 0SQ, Recursive

1.5 Henschen-Nagvi

1.6 Prolog

1.7 APEX

1.8 Kifer-Lozinskii

1.9 Magic Sets

1.10 Counting

Query 2 (Ancestor.fb)

2.1 Naive evaluation

2.2 Semi-Naive Evaluation

2.3 050, Iterative

2.4 QS0Q, Recursive

2.5 Henschen-Nagvi

2.6 Prolog

2.7 APEX

Di(h-iﬂ).a(i) + E.gsum(E,h’-1).

=l

h
DY a(i) + E.gsum(E,h’-1).

il

h' »
E.gsum(E,h’-1) + F. 3 (’~i+1)iE"!

i=1

h’ .
(F+E).gsum(E,h’-1) + DY’ E'.gsum(E,h’~i)

i=1

(F+E).gsum(E,h’-1)

h' .
gsum(F,h") + E.gsum(EN’-1) + 3, (F*).gsum(F,h’'~i)

i=1

h, N
(F+E).gsum(E,h’-1) + DY, E'.gsum(E,h’-i)

i=1

Dia(i)+E.gsum(E,h’—1)
i=1

h' .
(F+E).gsum(E,h’-1) + DY’ E'.gsum(E,h’~i)

i=1

(F+E).gsum(Eh’-1)

Di(h—-iﬂ).a(i) + (1/E).gsum(1/E h-h’-1)

i=l

th:a(i) + (1/E).gsum(1/E,h-h’-1)

i=l

-
(1E).gsum(1/E,h-h’-1) + D. 3, (h-h’~i+1) L.(/E)!

il

h-h’
1 + (1/E).gsum(l/E,h-h’-1) + E. 3, (1/E).gsum(1/E,h~h’—i)

i=l

(D+1/E).gsum(1/E,h-h’-1)

(1/E).gsum(1/E.,h-h’-1) + zh:n(i).gsum(F,h—i)

i=l

(llE)“‘““”.(E.gsum(E,h~1)+D2h;E‘.gsum(E,h—i))

i=l
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2.8 Kifer-Lozinskii (D+1/E).gsum(1/E, h-h’-1)
H, N

2.9 Magic Sets 1 + (1/E).gsum(1/E,h-h’-1) + E. ¥, (1/E)".gsum(1/E,h—h’-i)
i=l

2.10 Counting (D+1/E).gsum(1/Eh-h’-1)

Query 3 (Ancestor.bf, Non-Linear Version)

h
3.1 Naive evaluation E.gsum(E,h’-1) + D Y (log(Wi)+1).G~1).a(D)

i=1

h
3.2 Semi-Naive Evaluation E.gsum(Eh’-1) + D Y (i~1).a(D)

=1
h’ .
3.3 0SQ, Iterative E.gsum(E,h’-1) + F. ¥ (W’—i+1)iEM!
i=1
h’ .
3.4 QSQ, Recursive F+E.gsum(Eh’-1+DY, (i-1).E'
=2
3.5 Henschen-Nagvi Does not apply.
3.6 Prolog Does not terminate.
h .
3.7 APEX E.gsum(E,h’-1) + (1/E)* (DY (i~ 1).E'.gsum(E h-1))

iml

h
+ EY (FY.(i-1).(1/E) . gsum(1/E,h-i))

i=1

h
3.8 Kifer-Lozinskii E.gsum(E,h’-1) + DY (i-1).a(i)
i=1
h
3.9 Magic Sets E.gsum(Eh’-1) + D 3 (i~1).a(1)
i=1
3.10 Counting Does not apply.

Query 4 (Same Generation.bf)

In the following expressions, h' . aowa = MINW 1511 down), AN g down = min(h,p,h o) -
4.1 Naive evaluation

Aﬁat +Tup 2. ﬂatl-Eﬂat -TﬂatZ.dawnl'Ddown- Z (hup.down "i”*'l)-aup(i)-Eziiown +
=l
L gr— .
Tup 2.flat I-Eﬁat -Tﬂat?,.down 1 -Fdawmz (Eup-Edown)x

i=l

4.2 Semi-Naive Evaluation

b .
Agar +Top2 pac1 Efiar Tar2.down1-Datown: 2 3up(D)-Edown +

il
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h'm .
Tup2 par1-Esar Tparzdown1-Faown 2, (BupEaown)'

i=1
4.3 0SQ, Iterative
0 s down+ 1) -Fpat

1 s

TupZ.ﬂatl-Fﬂat E (h,up.dawn—i+1)~Eupi +
i=1

h' spdem . .
E ‘flat -Tup 2. flat l'Tﬂat 2.down1 -Fdawn- Z (h’ up.down —i+ 1) .E,‘,p.gsum(Edow,,,l——l) +

i=1

h pivem i
Tup2 par1- Brtar - Tparz.down1 Faown 2, EipBaiown)'

izl

4.4 0SQ, Recursive
Fop.gsum(E,p,h' ;= 1) +Eyp. gsum(E, ;0" 5= 1).Top 2 ar1 Frar +

h""" . .
Tup 2. flat I-Eﬂa: -Tﬂatz.dowu 1 'Ddawn-z Elip‘gsum(Eupvh, up'l)-Eéown +
i=1
B .
Tup 2.flat I"Eﬂal -TﬂatZ.dawnl-Fdawn-Z (Eup-Edown.)1

i=1

4.5 Henschen-Naqvi
F.p-gsum(E,,h’ ,;~1) +

h' i

h (Exitp'Tup 2fa1-F fae + Tup2 par1 Bpar T fat2.down 1-Fdown-Eip-gsum(Edawmi— D)+

i=1
B o .
Tup 2. ﬂatl-E ‘flat -Tﬂaerawnl-Fdown-Z (Eup-Edown)1

i=1

4.6 Prolog

gsum(F, 0’ ,;~1) +F,,.gsum(F,p,h’ w1 Tip2 par1 Far +

hdom . .
Tup 2. flatl -Fﬂat 'TﬂatZ.den 1. E Ftip-gsum(Fup’h up_l)-F:iown +

i=1

J - .
Tup2" ﬁatl'E ‘flat -TﬂatZ.downl-Fdown-z (Eup-}-:'down)1

i=1
4.7 APEX

Fp.gsum(E,;,h’° ;~1) +E,,. gsum(E,p .0 p=1).Top2 far1 Frar +
Wdm s
Tup2 fat1-E o Tarzdown 1 Down Y,  Eiip gSUM(Bypo1’ =) Edipyn +
=1
h spdoen .
Tup2 pat1-Egat- Taarzdown1 Faown 2 Bup-Baown)’

i=1

4.8 Kifer-Lozinskii

by _
Agar +Top2 gat1 Bfar Tsar2.down1-Datown( 2 (@up(D)- Edown) +

=1

h'm \
Tup 2.flatl E ‘flat -Tﬁal 2.downl 'Fdawn' Z (Eup-Edown)1

i=1

4.9 Magic Sets . -
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Fp.gsum(E .0’ y51) +Eyp. gsum(B,, 0 ;= 1).Tip2 flar1 Friar +
H e

Tup2.par1-Efar T far2.down1 -Ddown-z El-gsum(E, b’ i) Edown +

i=1

B .
T2 a1 -Efat Tharz.down1 Faown 2, Eup-Eaown)'

i=1
4.10 Counting
F“p.gsum(Eup,h’ w— 1)+
Tup2. fat1 Frias (1+E pgsum(Eu b’ ,-1)) +

0’ spdown R
Y Tep2pariEpa-Toa 2.down1-Diaown- Eup-Edown)' +

=51

s p— R
Tup2 flat1-Bfiar Tharzdown1-Faown 2, EBupEaown)'

i=1l
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Epilogue

Recursive queries have received a great deal of attention recently, and the preceding survey does not touch
upon several interesting developments. In this epilogue, we provide some pointers to further work in this
area. In order to be as comprehensive as possible, we have chosen to present an annotated bibliography, but
even this is far from complete. However, this should provide a starting point for the interested reader. +

Projects

Two of the major research projects in this area have been carried out at MCC in Austin and at Stanford
University. An overview of these projects is provided in the following references.

K. Morris, J.F. Naughton. Y. Saraiya, J.D. Ullman and A. Van Gelder [1987], “YAWN! (Yet
Another Window on NAIL!Y),”” Bull. Data Engineering, Vol. 10, No. 4, Dec. 1987.

D. Chimenti, T. O’Hare, R. Krishnamurthy, S. Nagvi, S. Tsur, C. West and C. Zaniolo [1987], ‘‘An
Overview of the LDL System,’’ Bull. Data Engineering, Vol. 10, No. 4, Dec. 1987.

Some of the other influential efforts include projects at ECRC in Munich, the ESPRIT projects,
Honeywell-Bull, INRIA, SUNY-StonyBrook, the University of Maryland and the University of Melbourne.
The work at ECRC, ESPRIT, and the Univ. of Melbourne is surveyed in the following references.

H. Gallaire and J.-M. Nicolas [1987], ‘‘Logic Approach to Knowledge and Data Bases at ECRC,”’
Bull. Data Engineering, Vol. 10, No. 4, Dec. 1987.

D. Sacca, M. Dispinzeri, A. Mecchia, C. Pizzuti, C. Del Gracco and P. Naggar [1987], ‘‘The
Advanced Database Environment of the KIWI System,”’ Bull. Data Engineering, Vol. 10, No. 4,
Dec. 1987.

K. Ramamohanarao, J. Shepherd, 1. Balbin, G. Port, L. Naish, J. Thom, J. Zobel and P. Dart [1987],
““The NU-Prolog Deductive Database System,’” Bull. Data Engineering, Vol. 10, No. 4, Dec. 1987.

While we are not aware of any overviews of the other projects, pointers may be found in the following
references: Rohmer et al. [1986] (Honeywell-Bull), Gardarin and de Maindreville [1986] (INRIA) and
Kifer and Lozinskii [1988] (StonyBrook). Pointers to the work at Maryland may be found in the following
reference, which also provides a historical survey of the field.

J. Minker [1987], ¢‘Perspectives in Deductive Databases,””-Proc. PODS 87, San Diego.

Projects at CCA and Bell Labs have focussed on transitive closure and related path problems. The follow-
ing references provide further pointers.

U. Dayal, A. Buchmann, D. Goldhirsch, S. Heiler, F. Manola, J. Orenstein and A. Rosenthal [1986],
“PROBE- a Research Project in Knowledge-Oriented Database Systems: Preliminary Analysis,”
Technical Report, CCA-85-03, July 1985.

R. Agrawal and H.V. Jagadish [1987], ‘‘Direct Algorithms for Computing the Transitive Closure of
Database Relations,”’ Proc. Conf. on Very Large Data Bases 87.

Query Evaluation

We present brief descriptions of some recent work. Ullman [1985] presented the ‘‘capture rules’” frame-
work for planning the evaluation of a recursive query. An alternative framework, with a comparison, is
proposed in Krishnamurthy et al. [1988]. In essence, it is proposed that all strategies be implemented by
rewriting (e.g., using Generalized Magic Sets) followed by bottom-up evaluation. Testing capturability is
now similar to testing for safety, and a general testing algorithm is presented. Aly and Ozsoyoglu [1987]
presents a Petri-net based model for describing logic queries and the flow of control in algorithms for
evaluating them.

Kifer and Lozinskii [1986b, 1988] extend the original ‘‘static’’ filtering algorithm to deal with general
recursion and rules containing function symbols. They also consider the issue of safety. The method in the

+ The references for some of the papers discussed in this epilogue appear in the list of references for the survey paper.
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most general form is comparable to Generalized Magic Sets. Nejdl [1987] presents a recursive algorithm
related to QSQ. Vieille [1988] extends the QSQ method and discusses its relationship to the generalized
versions of Magic Sets and Counting. Grahne et al. [1987] consider efficient evaluation of a simple class
of programs (**binary chain programs’’) and also consider the use of their algorithm to deal with more gen-
eral programs. Sippu and Soisalon-Soininen [1988a] proposes an algorithm similar to the Generalized
Magic Sets algorithm, but such that the rules defining the ‘‘magic sets’ are simplified and separated from
the other rules. The trade-off is that the magic sets so computed may be less restrictive. Gardarin [1987]
presents a functional-style algorithm extending the results in Gardarin and de Maindreville [1986]. Sacca
and Zaniolo [1987] addresses the issue of how to adapt the Counting method to the Magic Sets method
when it is discovered that the former is not applicable. Ramakrishnan [1988] extends the Generalized
Magic Sets to deal with arbitrary programs by treating rules in which some head variables do not appear in
the body (even in the rewritten program). Such rules give rise to partial data structures, and allow the utili-
zation of partially bound arguments and of data structures such as difference lists. Haddad and Naughton
[1988] proposes an efficient way to adapt Counting in the presence of cyclic data. Marchetti-Spaccamela
et al. [1987] presents a worst-case analysis of three algorithms (Counting, Magic Sets, and a method simi-
lar to Henschen-Naqvi), and suggests a modification to deal with Counting in the presence of cyclic data.
Much of this work may be viewed as attempting to ‘‘push’’ selections through recursive rules. In Beeri et
al. [1987], this was formalized as transforming a binary chain program with a selection query into an
equivalent monadic program (i.e., all derived predicates have exactly one argument). This problem was
shown to be undecidable (since it is equivalent to testing whether a context free grammar defines a regular
language).

Sagiv [1987] introduced the notion of ‘uniform equivalence’ of programs and showed that it was decid-
able to test whether two programs were uniformly equivalent. He also considered the deletion of rules and
literals under uniform equivalence. The problem of pushing projections through recursive rules was studied
in Ramakrishnan et al. [1988]. The problem was shown to be undecidable, using the result in Beeri et al.
[1987]. Several optimization algorithms for dealing with projections were presented, including a sufficient
condition for deleting rules under ‘‘uniform query equivalence’’. Naughton [1987] introduces a class of
programs which permit efficient evaluation strategies. This class of programs generalizes transitive closure
in a natural way. Han and Henschen [1987] discusses related strategies (as part of a more general study of
how to reduce redundant computation).

Zhang and Yu [1987] presents an algorithm to obtain a linear recursive rule which is equivalent to a doubly
recursive rule, when the latter satisfies certain conditions. Ceri et al. [1986], Ceri and Tanca [1987], and
Toannidis and Wong [1988] consider algebraic formalisms for representing and manipulating recursive
queries. Toannidis and Wong [1987] considers the use of simulated annealing to deal with large access plan
spaces in recursive query evaluation. Whang and Navathe [1987] proposes an Extended Disjunctive Nor-
mal Form for recursive queries and considers evaluation strategies based on translation into this form,
which allows recognition of common subexpressions in the evaluation of multiple rules. Raschid and Su
[1986] presents an evaluation strategy based on evaluating a series of non-recursive expressions (generated
by repeatedly expanding recursive rules) in parallel. Jagadish et al. [1987] show that linearly recursive
rules can be translated into relational algebra augmented with transitive closure, but, in general, this
involves taking cross-products of relations.

H. Aly and Z.M. Ozsoyoglu [1987), ‘‘Non-deterministic Modelling of Logical Queries in Deductive
Databases,”” Proc. ACM-SIGMOD Conference, 1987.

C. Beeri, P. Kanellakis, F. Bancilhon and R. Ramakrishnan [1987], ‘‘Bounds on the Propagation of
Selection into Logic Programs,”” Proc. 6th ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, 1987.

S. Ceri, G. Gottlob and L. Lavazza [1986], *‘Translation and Optimization of Logic Queries: The
Algebraic Approach,” Proc. 12th Inter. Conf. on Very Large Data Bases, 1986.

S. Ceri and L. Tanca [1987], ‘‘Optimization of Systems of Algebraic Equations for Evaluating Data-
log Queries,”’ Proc. 13th Inter. Conf. on Very Large Data Bases, 1987.

L. Raschid and S.Y.W. Su [1986], ‘‘A Parallel Processing Strategy for Evaluating Recursive
Queries,”” Proc. 12th Inter. Conf. on Very Large Data Bases, 1986.
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G. Gardarin [1987], ‘‘Magic Functions: A Technique to Optimize Extended Datalog Recursive Pro-
grams,”’ Proc. 13th Inter. Conf. on Very Large Data Bases, 1987.

G. Grahne, S. Sippu and E. Soisalon-Soininen [1987], *‘Efficient Evaluation for a Subset of Recur-
sive Queries,”” Proc. 6th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, 1987.

R.W. Haddad and J.F. Naughton [1988], *‘Counting Methods for Cyclic Relations,”” Proc. 7th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1988.

J. Han and L. Henschen [1987], ‘‘Handling Redundancy in the Processing of Recursive Queries,”’
Proc. ACM-SIGMOD Conference, 1987.

Y .E. Ioannidis and E. Wong [1987], ‘‘Query Optimization by Simulated Annealing,”” Proc. ACM-
SIGMOD Conference, 1987.

H.V. Jagadish, R. Agrawal and L. Ness [1987], “‘A Study of Transitive Closure as a Recursion
Mechanism,”’ Proc. ACM-SIGMOD Conference, 1987.

A. Marchetti-Spaccamela, A. Pelaggi and D. Sacca [1987], ‘“Worst-case Complexity Analysis of
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Negation and Sets

The database approach to negation has differed significantly from the logic programming approach. The
notion of *‘stratification’” was proposed in Apt, Blair and Walker [1988], Naqvi [1986] and Van Gelder
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language. Shmueli et al. [1988] considers the use of rewriting to implement set terms. Kuper [1987]
presents another proposal for incorporating sets in a logic-based language, and Kuper [1988] considers the
expressive power of these (and other) proposals. A more general overview of the expressive power of
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Bounded Recursion

A set of Homn clauses is called bounded if it is equivalent to a finite number of nonrecursive ones. A recur-
sive Homn clause is uniformly bounded if it is uniformly equivalent to a finite number of nonrecursive ones.
One can easily show that a recursive Horn clause is uniformly bounded if and only if its combination with
any nonrecursive Horn clause is bounded. Thus, uniform boundedness implies boundedness, but the con-
verse is not true.

Minker and Nicolas originally gave a sufficient condition for characterizing uniformly bounded recursion
in a class of recursive Horn clauses (Minker and Nicolas [1983]). Representing a Horn clause by a tableau,
and under various restrictions on the form of the tableau, Sagiv gives necessary and sufficient conditions
for a set of Homn clauses to be uniformly bounded (Sagiv [1985]). Similar results have also been presented
in Cosmadakis and Kanellakis [1986]. Necessary and sufficient conditions for a single linear recursive
Horn clause to be uniformly bounded within an assortment of restricted classes of Horn clauses have been
presented in Ioannidis [1986] and Naughton [1986]. Naughton has also dealt with the problem of (nonuni-
form) boundedness within the same classes [Naughton 86]. Recently this assortment of classes has been
unified into a more abstract (super)class of recursive Horn clauses, where the characterization of Ioannidis
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and Naughton holds (Naughton and Sagiv [1987]). For general programs, both boundedness and uniform
boundedness have been proven undecidable (Gaifman et al. [1987], Vardi [1987]). Finally, it has been
shown that boundedness is decidable but NP-complete for programs which contain a single linear recursive
Horn clause (Kanellakis [1986] and Vardi [1988]). The boundedness problem is decidable but EXPTIME-
hard for monadic problems, and PSPACE-complete for linear monadic programs (Cosmadakis et al.
[1988]).
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Conclusions

We have attempted to provide a roadmap for the adventurous reader. The objective of the epilogue has
been to complement the survey, and work which has been mentioned in the survey has been omitted (even
work which has not been adequately discussed, e.g., the recent work on safety). Exigencies of space and
time have also precluded mention of work in other important areas, e.g., updates, intelligent query answer-
ing, the expressive power of logic-based query languages and connections to logic programming. A good
starting point in these areas is the collection of papers in Minker [1988] and the proceedings of PODS 88.

The area of recursive query processing has progressed very rapidly in the last few years, and we now have
a good insight into both the theoretical and practical aspects of the field. The area is extremely vigorous, as
evidenced by the large numbers of papers in this area appearing in recent database and logic programming
conferences. We observe however, that a critical note has recently been raised: Do we really need more
general forms of recursion than transitive closure in a database query language? (This question is raised,
for example, in Laguna Beach [1988], and partly underlies the decision of the CCA, Bell Labs and other
projects to focus on transitive closure.) This is an important question, and will not be completely settled
until the community has had the opportunity to use and experiment with some of the more expressive
recursive query languages such as LDL. While research in this area will continue to be productive, and is
interesting from a theoretical point of view and for its relevance to the field of logic programming, the
importance of general recursive query processing for database applications remains to be established. In
fact, settling this question is, in our opinion, an important research objective.
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