On the Deterministic Complexity of
Factoring Polynomials over Finite Fields

Victor Shoup

Computer Sciences Technical Report #782

July 1988

On the Deterministic Complexity of Factoring Polynomials over Finite Fields

Victor Shoup*
Computer Sciences Department
University of Wisconsin-Madison

Madison, WI 53706

July 21, 1988

1. Summary

In this paper, we present some new deterministic algorithms for factoring polynomials over finite
fields that are asymptotically faster than many commonly known deterministic factoring algorithms.

First, some notation. Let logz = log, z, and L(z) = logzloglogz. To suppress logarithmic
factors, we will occasionally use the expression z¢ to denote a fixed, but unspecified, polynomial in
log .)

Let p be a prime number. Our main result is a deterministic algorithm that factors polynomials
in Z,[X] of degree n using O(p'/?*¢n?+¢) operations (+,—, X, /) in Z,. This improves upon the
running time, with respect to both n and p, of many previously known deterministic factoring
algorithms.

Using Berlekamp’s deterministic algorithm (Berlekamp [1968, ch. 6]) in conjunction with fast
algorithms for polynomial arithmetic, polynomials over Z, of degree n can be factored determin-
istically with O(n3 4 pn?t¢) operations in Z,. Our algorithm improves upon Berlekamp’s method
by a factor of nearly n by avoiding a null space computation, and by a factor of nearly p'/2 by
proving that a brute-force search through all of Z,, is not necessary.

Camion [1983a] discusses some factoring methods, but the worst case running time of Camion’s
deterministic factoring algorithm is no better than that of Berlekamp’s.

Ben-Or [1981] and Cantor and Zassenhaus [1981] give probabilistic algorithms that use
O((logp)n®*¢) expected operations in Z,. The use of randomness in these algorithm is essential

in improving upon the running time, with respect to n as well as p, of Berlekamp’s deterministic

* This research was supported by NSF grants DCR-8504485 and DCR-8552596

1

algorithm. At least for small values of p, the running time our algorithm is competitive with that
of these probabilistic algorithms, even though ours avoids the use of randomness.

Other work on factoring polynomials over finite fields includes Berlekamp [1970], Camion
[1983b], Lazard [1982], McEliece [1969], Rabin [1980], and Ronyai [1987].

In addition to a general factoring algorithm, we present two algorithms that are of use in
special situations. Suppose we are given a polynomial over Z, of degree n that is the product
of r distinct monic irreducible polynomials of degree d (n = dr). Then we can extract a single
irreducible factor of this polynomial with O((logp)d!*ent*e 4 pt/2+enlte) operations in Z,, and

we can extract all of the irreducible factors with O(p/2+edl+enl+¢) operations in Z,.

2. New Factoring Methods

We will make use of the following results concerning the complexity of performing arithmetic

operations on polynomials.

Lemma 1. Let R be a commutative ring with unity such that either 27! € R or 37! € R. Let F

be a finite field.

(1) Multiplication of two polynomials in R[X] of degree < n can be performed using O(nL(n))
operations (+,—, % only) in R.

(2) Let ay,...,a, € R. Then the coefficients of (X — a1)---(X — a,) € R[X] can be computed
using O(nL(n)(logn)) operations (+,—, X only) in R.

(3) Let f and g be polynomials in F[X] of degree < n, g # 0. Then f mod g can be computed
using O(nL(n)) operations in F'.

(4) Let f,g1,.-.,9k be polynomials in F[X] such that deg f < n and deggy + ---+ deggr < n.
Then f mod gi,..., f mod g can be computed using O(nL(n)(logk)) operations in F.

(5) Let f and g be polynomials in F[X] of degree < n. Then the greatest common divisor of f

and g can be computed using O(nL{n)(logn)) operations in F.

(1) follows from Schdnhage [1977]. See also Cantor and Kaltofen [1987] for a more general
multiplication algorithm that works over any ring R. (2) follows from (1) by a divide and conquer
method (see Borodin and Munro [1975, p. 100]). (3) follows from (1) by a Newton iteration scheme
(see Borodin and Munro [1975, p. 95]). (4) follows from (3) by a divide and conquer method (see
Borodin and Munro [1975, p. 100]). (5) follows from (1) by an algorithm described in Aho, Hopcroft
and Ullman [1974, pp. 303-308].

We will also make use of the following number theoretic lemma.

2

Lemma 2. Let p be an odd prime, and let a,b € Z,, such that a # b and

x(ab) = x((a+ 1)(b+1)) = --- = x((a + M)(b+ M)) = 1,

where x is the quadratic character on Z,. Then M < p'/2logp.

Proof. Let k = [£logp]. Let N be the number of solutions (z,yo, ..., yk-1) in ZE+1 to the system

of equations

(z+a+i)z+bdb+i)=9y? (i=0,...,k-1).

We will first show that
N < p+4 p2(2%k — 1) +1). (1)

Now, for fixed ¢ € Z, the number of y € Z,, satisfying the equation y? = ¢ is precisely 1+ x(c).

Therefore,
k-1
N=)Y TJ[a+x((z+a+i)(z+b+1i)))

T€Z, 1=0

k—1

D> x(H(w+a+i>e"<m+b+z‘>e-’> .
0<eg,en8p~-1<1 T€Z, =0
In this last expression, the term corresponding to e¢g = --- = ex—1 = 0 is p. To bound the

other terms, we use the result that for any polynomial h € Z,[X] that has m distinct roots and is

not a constant multiple of a perfect square, we have

S x(h(@)] < (m — 1)pt? (2)

r€Z,

(see Schmidt [1976, p. 43]).

Now let eg,...,ex~1 be fixed, and suppose that I > 0 of the e;’s are nonzero. Put h(X) =
[Tiso (X +a+ 6% (X +b+1)=.

To make use of (2), we must show that h is not a perfect square. Suppose that it were. Then

for distinct 4y,...,%; between 0 and k — 1, we would have
a+i=b+1, atia=b+iz, ..., a+t1=0b+1%, a+i=0+1.

Summing, we havela+ Y, 4, = b+, i,. But this implies that la = [b, and since 0 < [< p, we

can cancel, obtaining a = b, a contradiction. Therefore, h is not a perfect square, and (2) holds.

3

‘We have
Lyg
N < 1/2 () 20— 1
<p+p ; 1)()
=p+ p/2(2F(k — 1)+ 1).
This proves (1).

Now, the number of € Z, such that
x((z+a+i)z+b+i))=1 (1=0,...,k-1)

is at most N/2%. The worst possible case is when all such z are bunched together near zero. So we
have M < N/2* + k. By (1), we have M < p/2* + p'/2(k — 1 4+ 27%) + k. Since k = [Llog p], we
have M < p'/? 4+ Lp'/2logp+ Llogp + 2. The right hand side of this inequality is asymptotic to
1p'/?log p, and is less than p'/?logp for p > 16. For p < 16, p'/?logp > p, and so the lemma is

trivially true. m

Let f € Z,[X] be a polynomial of degree n that we wish to factor. As in Ben-Or [1981] and
Cantor and Zassenhaus [1981], we first perform distinct degree factorization. That is, we construct
polynomials f(1, ..., (" where (¥ is the product of all distinct monic irreducible polynomials of
degree 7 that divide f. We can do this as follows. We first compute X P~ X mod ffori=1,...,n.
This can be done using O((logp)n®L(n)) operations in Z,. Then, for i = 1,...,n, we do the
following: put f() = ged(f, X' — X); while ged(f, X?' — X) # 1, replace f by f/ ged(f, X?' — X).
This requires O(n?L(n)(logn)) operations in Z,. Thus, the total number of operations in Z,
required to perform distinct degree factorization is O(n?L(n)(logn + logp)). The correctness of
the algorithm follows immediately from the fact that X P — X is the product of all distinct monic
irreducible polynomials over Z,, of degree j | ¢ (Ireland and Rosen [1982, p. 84]).

In the sequel, we assume that f € Z,[X]is a polynomial of degree n, and is the product of r > 1
distinct monic irreducible polynomials fi,..., fr, each of degree d (n = rd). Let R = Z,[X]/(f)
and let x = X mod f be the image of X in R. Let §; be the natural homomorphism from R onto
Ri = Z,[X1/(fy).

The well-known Berlekamp subalgebra B of R is defined by B = {a € R : a? = a}. Equiva-
lently, we have B = {a € R : 0;(a) € Z,, for each i = 1,...,r}. Following Camion [1983a], we call
a subset S C B a separating set if for any 1 < 1 < j < r there exists s € S such that 6;(s) # 0;(s).

We consider the problem of constructing a separating set S. We first discuss two approaches

used by others.

Berlekamp [1968, ch. 6] uses as a separating set a basis for the Berlekamp subalgebra B. This
can be done by computing a basis for null space of the matrix of the Z,-linear map on R given
by &+ aP — a. The matrix can be constructed with O((log p)nL(n) + n?L(n)) operations in Z,.
The null space of the matrix can be computed with O(n?®) operations in Z, using an algorithm

described in Knuth [1981, p. 425].

Another way to construct a separating set is described in Camion [1983a]. For o € R, let
T(a)=a+a? + -+ a?~". Camion shows that § = {T(z), T(z?),.. ., T(z??~1)} is a separating
set. S can be constructed with O((log p)dnL(n) + d*nL(n)) operations in Z,.

We now describe our method of constructing a separating set. We compute g(Y) € R[Y] where
g(¥Y) = (Y —2)(Y — zP)--- (Y — 2P"™"). This can be done using O((logp)d) operations in R to
compute the powers of z, and O(dL(d)(logd)) operations in R to compute the coefficients of g(Y).
This gives a total of O((log p)dnL(n) + dL(d)(logd)nL(n)) operations in Z,.

Suppose g(Y) = go+ 1Y + -+ + ga_1Y 41 4+ Y2, where the g;’s are in R. We claim that
the set of coefficients S = {go,...,94-1} is a separating set. To prove this, we first show that
g%(Y) = fi(Y). To see this, let z; = 6;(z). Then z; is a root of f;, and the other roots of f; in
R; are 2?,. ..,wqu. But ¢% (V)= (Y —z)(Y - 2D)-- - (Y - w?dhl) = fi(Y). Now, to show that
the coefficients of g(Y') form a separating set, let 1 < ¢ < j < r be given. Then since f; and fj are
distinct, one of their coefficients differ. Suppose that the coefficient @ of X* in f; is different from
the coefficient b of X* in f;. Then 6;(gx) = a and 6;(gx) = b, where a and b lie in the ground field
Z,, and a # b.

Given a separating set .5, the usual way to deterministically factor f is, more or less, as follows.
We construct finer and finer factorizations U C Z,[X] — Z,, consisting of monic polynomials with
[lucp v = f. Initially, we put U = {f}. Then, for z = 0,1,...,p— 2 and s € S we replace U by
Refine(U, s+ z), where for any polynomial g, Refine(U, g) = U, ey {gcd(u, g),u/ ged(u, g)} — {1}.
If degg < n, then Refine(U, g) can be computed with O(nL(n)(logn)) operations in Z, by first
computing ¢ mod u for each u € U, and then computing ged(g mod u,u) for each w € U. Thus, f
can be completely factored with O(|S|pnL(n)(logn)) operations in Z,.

For small p, the method described above is adequate; however, for large p, the running time
becomes prohibitive. We now describe our method for deterministically factoring f, given a sepa-
rating set .S, that runs faster for large values of p (we assume p > 2). Initially, we put U = {f}.
Then, for 2 = 0,1,..., until |U| = r, we execute the following procedure: for each s € S, replace U

by Refine(U, (s + 2)(P~1)/2 — 1), and then replace U by Refine(U, s + 2).

5

For any fixed value of z, the cost of the above procedure is O(|S|nL(n)(log p+log n)) operations
in Z,. To determine the total cost, we must obtain a bound on the number of different values of z
which are tried before a complete factorization is of f is obtained.

Suppose that for some 1 < ¢ < j < 7, the above procedure has been applied for z =0,..., M,
and that f;f; | u for some v € U. Since § is a separating set, there is an s € § such that
0i(s) = a, 0;(s) = b, where a and b are distinct elements in Z,. It follows that x((a + 2)(b+2)) =
1for 2 = 0,...,M, where x is the quadratic character on Z,. By Lemma 2, we must have
M < p'/2(logp). Therefore, given a separating set S, we can deterministically factor f with
O(|S]p*/*(log p)nL(n)(log p + log n)) operations in Z,.

In some applications, only a single irreducible factor of f is required. We describe a recursive
method to do this efficiently given a factoring set S. First, we find an element s € § that is not
a constant. Then, for z = 0,1,... we compute ged(f,s + 2) and, if p is odd, ged(f, (s + 2)(r-1)/2)
until one of these is a nontrivial divisor g of f. Finally, we replace f by g or f/g, choosing the one
of smaller degree, reduce each element of § modulo this new value of f, and invoke the method
recursively. Using this method, we can extract an irreducible factor of f using O(|S|nL(n) +
p*/?(log p)nL(n)(log p + log n)) operations in Z,.

Combining our new method of constructing a separating set § with our new method of factoring

f given S, we obtain

Theorem 1. Let f be a polynomial over Z, of degree n that is the product of r distinct irreducible
monic polynomials of degree d (n = dr). Then a single irreducible factor of f can be extracted

deterministically with
O(dnL(n)(logp + L(d)(logd)) + p'/*(log p)n.L(n)(log p + log n))
operations in Zyp, and all of the factors of f can be extracted deterministically with
O(dL(d)(logd)nL(n) + p*/*(log p)dnL(n)(logp + log n))

operations in Zy.

Combining Theorem 1 with the distinct degree factorization algorithm, we obtain
Theorem 2. Polynomials over Z,, of degree n can be deterministically factored with

O(n?L(n)?(logn) + p'/2(log p)n? L(n)(log p + log n))

operations in Zp,.

We conclude with a couple of open questions.

6

Open Question 1. Can the bound in Lemma 2 be significantly improved?

Of course, if M = O((logp)°) for some constant ¢, then factoring polynomials could be done
deterministically in polynomial time. No one has been able to prove such a bound, even assuming
the Extended Riemann Hypothesis.

In Bach and Shoup [1988, Theorem 3.2], it is shown that if k¥ = [log p], then the number of
pairs (a,b) € Z2 such that x(ab) = x((e + 1)(b+ 1)) =--- = x((a+ k- 1)(b+k—1)) = 1is at
most p(log p)?. This shows that M < logp for the vast majority of possible choices of ¢ and b.

Burgess [1963] has shown that for any fixed nonlinear polynomial ¢(X) with integer coefficients
that is the product of rational linear factors and is not a perfect square, the maximum number
of consecutive integers z having the same value of x(#(z)) is O(p'/%(logp)). Unfortunately, the
constant implicit in the big-O depends in a fairly horrible way on #(X). For this reason, Burgess’
result does not seem to help us in answering our question.

Berlekamp [1970, p. 732] observes that the maximum number of consecutive quadratic residues
or nonresidues mod p is O(p'/4(logp)3/?). This observation, however, does not by itself imply
anything regarding the deterministic complexity of factoring, as has been mistakenly concluded by

some authors.

Open Question 2. Can we factor polynomials of degree n over GF(p') deterministically with

O(p'/**¢(nl)?t€) operations in Z,.

In factoring polynomials over GF(g), where ¢ = p!, we can easily adapt our method of con-
structing a separating set if we use as the Berlekamp subalgebra B’ = {@ € R : a? = «}. This
gives rise to a deterministic factoring algorithm that uses O(gn?*¢) operations in GF(q). However,
to achieve the time bound in Open Question 2, we would like to use as the Berlekamp subalgebra
B ={a € R:a? = a}. Our method for constructing a separating set in this situation breaks down

if any of the roots of the polynomial to be factored are conjugate over Z,, but not over GF(q).

References

A. Aho, J. Hopcroft and J. Ullman [1974]. The Design and Analysis of Computer Algorithms,
Addison-Wesley.

E. Bach and V. Shoup [1988]. “Factoring polynomials using fewer random bits,” Computer Sciences

Technical Report No. 757, University of Wisconsin—Madison.

M. Ben-Or [1981]. “Probabilistic algorithms in finite fields,” in Proceedings of the 22nd Annual
IEEE Symposium on Foundations of Computer Science, pp. 394-398.

7

E.

K.

R.

Berlekamp [1968]. Algebraic Coding Theory, McGraw-Hill.

. Berlekamp [1970]. “Factoring polynomials over large finite fields,” Mathematics of Computation,

Vol. 24, No. 111, pp. 713-735.

. Borodin and I. Munro [1975]. The Computational Complexity of Algebraic and Numeric Prob-

lems, American Flsevier.

. Burgess [1963]. “On Dirichlet characters of polynomials,” Proceedings of the London Mathe-

matics Society, Vol. 3, No. 13, pp. 537-548.

. Camion [1983a]. “Improving an algorithm for factoring polynomials over a finite field and con-

structing large irreducible polynomials,” IEEE Transactions on Information Theory, Vol. 29,

No. 3, pp. 378-385.

. Camion [1983b]. “A deterministic algorithm for factorizing polynomials of F,[X],” Annals of

Discrete Mathematics, Vol. 17, pp. 149-157.

. Cantor and E. Kaltofen [1987]. “Fast multiplication of polynomials over arbitrary rings,” De-

partment of Computer Science Technical Report No. 87-35, Rensselaer Polytechnic Institute.

. Cantor and H. Zassenhaus [1981]. “A new algorithm for factoring polynomials over finite fields,”

Mathematics of Computation, Vol. 36, No. 154, pp. 587-592.

Ireland and M. Rosen [1982]. A Classical Introduction to Modern Number Theofy, Springer-
Verlag.

. Knuth [1981]. The Art of Computer Programming, Vol. 2 (2nd edition), Addison-Wesley.

. Lazard [1982]. “On polynomial factorization,” in Computer Algebra, J. Calmet, ed., Lecture

Notes in Computer Science No. 144, Springer-Verlag, pp. 126-134.

McEliece [1969]. “Factorization of polynomials over finite fields,” Mathematics of Computation,

Vol. 23, pp. 861-867.

M. Rabin [1980]. “Probabilistic algorithms in finite fields,” SIAM Journal on Computing, Vol. 9,

L.

No. 2, pp. 273-280.

Ronyai [1987]. “Factoring polynomials over finite fields,” in Proceedings of the 28th Annual

IEEE Symposium on Foundations of Computer Science, pp. 132-137.

W. Schmidt [1976]. Equations over Finite Fields, Springer-Verlag Lecture Notes in Mathematics

A.

No. 536.

Schonhage [1977]. “Schnelle Multiplikation von Polynomen iiber Kérpern der Charakteristik 2,”

Acta Informatica, Vol. 7, pp. 395-398.

