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1 Introduction

In this paper we shall be concerned principally with the general programming problem
minimize é(z) (1)

where ¢ is a lower semicontinuous function defined on IR”, having values in IR and S is a
closed set in IR™. For the most part we will be concerned with the convex program, where

we assume further that ¢ and S are convex. In this case, ¢g, defined by

¢s(z):= ¢(z) + bs(z)

is a lower semicontinuous closed convex function, since the indicator function of the set S,
g, is respectively closed and convex if and only if S is closed and convex. Thus (1) can

be rewritten as

minigmize ds(x) (2)

We write S for the optimal solution set of (1), S: = argminges #(z). We shall frequently

require this set to be nonempty, in order that a projection operation onto this set is well-

defined.

The principal concern of this work is a property that we call weak sharp minima.
The motivation behind this definition comes from the literature where the idea of a sharp
minimum or the equivalent notion of strong uniqueness has been used. The name
sharp minimum, due to Polyak[11], is the subject of one of his papers[10]. References to
strong uniqueness abound in the literature of approximation theory, for example [9], [4]

and [1]. The definition is as follows.

Definition 1 A function ¢ defined on a set S is said to have a sharp minimum atz € S

if there exists an o > 0 such that
#(z) — ¢(z) > allz —Z|| forallz €S,

where ||-|| represents some norm on IR™.



The essential idea is that we can place a norm function underneath ¢, which touches ¢
at  and has a strictly positive slope. Perhaps the principal shortcoming of the concept
of a sharp minimum is the implied uniqueness of the solution of the problem. This im-
mediately rules out one of the most fundamental problems of optimization, namely linear
programming. In contrast, our new concept of a weak sharp minimum, which we define
below, avoids this serious difficulty.

We quickly describe our notation. All vectors are column vectors and given a vector «,
we denote its ith component by z;. We say ¢ > 0 if one has z; > 0 for all . For a given
scalar \, we define (A);:= max{0,A}. If z € IR®, we write x4 for the vector whose ith
component is (z;)4. Superscripts are used to distinguish between vectors, e.g., !, 22, etc.
We use (,) for the inner product. If K is any set, we define the indicator function of that

Seta QpKa as

0 ifzekK

vrlo)= oo fzg K

and

cone K:= {uz |z € K, > 0}

The distance function, d(-, K'), is defined by
d(z, K):= inf{||z —y|| | y € K}

where ||-|| represents a given norm. If K is a closed convex set in IR, then given z € IR,

we write Pr(z) for the projection of z on K
Pr(z): = argmin{||z — z|| | z € K}
and the normal cone of K at z is given by
Ng(z):= {z* | (z*,y —z) <0 Vy € K}

B represents the closed unit ball in IR™.



2 Subgradients and weak sharp minima

The following is our central definition.

Definition 2 Let S be the non—empty optimal solution set of (1). We say that ¢ has a

weak sharp minimum (on S) if for some norm on IR™ there exists an o > 0 such that

for allz € S
¢(z) — ¢(Ps(z)) 2 ||z — Ps(z)]

where Pg(-) is the projection onto S under the given norm.

Note that the definition holds independently of any convexity assumptions on S and
¢, provided that the projection is well defined. Furthermore, we note that for any norm

#(Ps(p)z) is a constant for every « € S, so we can rewrite the above using

¢:= ¢(Ps(z))

Our first task is to show that this definition is independent of the choice of norm on the

space IR®. This essentially relies upon the equivalence of norms in finite dimensional spaces.

Lemma 3 ¢ has a weak sharp minimum (on S) <>

$(z) — ¢ > Pallz — Ps(a)ll, for some B >0
Proof It follows from the definition that
#(2) = 2 By o — Ps(a)],
for some norm ||||,. Hence
$(2) = § 2 Bovor |2 — Pos(2)], > Braz |2 — Pas(a)]

by the equivalence of norms on IR® and the definition of the projection operator. i



We recall the definition of a sharp minimum (given by Definition 1) in order to motivate
Definition 2, and the term “weak” sharp minimum. The following lemma, which is easy

to prove, gives the connection between these properties when the function ¢ is convex.
Lemma 4 Suppose that ¢ is a convez function defined on a convezr set S.

(a) ¢ has a sharp minimum at T on S

(b) z is the unique minimum of ¢ on S, that is arg melgqﬁ(a;) = {z}

(c) 0 € int9¢s(Z)
(d) ¢ has a weak sharp minimum on S

(e) ¢ has a weak sharp mintmum on S and arg minges ¢(z) = {7}

Then
(a) <= () = (b)
and

(e) = (a) = (d)

We now prove a generalization of the above result for a weak sharp minimum. In the

sequel it is assumed that ||-|| = ||-||;.- In this section, ¢ and S are convex, and we assume

S is nonempty. We use the following notation

0¢s(S):= | 0¢s(x)

z€S

To generalize the subgradient condition given above, we introduce the following set
Ks: = cone{z — P3(z) | z € R"}

The use of this set enables us to ignore the directions of recession of the optimal solution
set. The following lemmas are essentially technical in nature. They are useful in the proofs
of the main results of this paper and show more clearly how K3 relates to our problem.

The first lemma gives a characterization of the projection operator.
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Lemma 5 Let C be a non-empty, closed convez set in IR® and p € C. Then

(z—p,c—~p) <0 forallce C < p= Pr(z)

An easy corollary of this result is

Corollary 6 A necessary and sufficient condition for the linear functional (z*,-) to attain

its supremum over S is that z* € K.
Furthermore, when S is compact, the following holds
Lemma 7 If S is compact then Kz = IR™

Proof Clearly, K C IR™ For the converse, let y € IR™. The function (y,-) is continuous

and hence, by compactness of S, the problem

maximize (y, 2)

has a solution z* € S. Let Z = z* 4y, so that it remains to prove z* = P3(z). However,

{y,z*) > (y,2) for all z € S, so that
(z—2*,2—2*)<0 forallze S

implying that z* = Pg(Z), by Lemma 5. 8

We can now relate the distance function given in the introduction to the set K.

Lemma 8

d(y,S) = sup {(z",y) —¥5(z")}

«*€B[ Kz



Proof By [13, page 146]
d,8) = supila",y) = ¥3(e")

= sup {(e%,y) — ¢5(z*)}
:I:*EBHKS‘

We now show the reverse inequality. Let y € IR® and define z: = y — Pg(z). It follows from
the definition that d(y,S) < ||z|| and

sup {(e*9) — 93} > <

(L“"EBﬂKS

the last inequality following from Lemma 5. &

The main result of this section follows. We relate the definition of a weak sharp mini-

mum to the subdifferentials of the optimal solution set.

Theorem 9 ¢ has a weak sharp minimum on S if and only if there ezists € > 0 with

(B[ Ks) € 9¢s(5)

Proof (=) Suppose that ¢ has a weak sharp minimum (on S§). Let z* € BN K3z It

follows from the definition of a weak sharp minimum, that Vy € S

d(y) > ¢+ ad(y, S)

and hence

¢s(y) = ¢+ ad(y,S) Yy



where the distance and indicator functions are defined in the introduction. By Lemma 8

¢s(y) > ¢+ ady,S)

= ¢+o sup ((z",y) - $3(z"))
2*€B[Kz

and since ¢* € BN K3

¢s(y) = ¢+ a((z”,y) — ¥5(z))

= ¢+ a((z*,y) — sup (z", 2))
z€S

However, by Corollary 6, the supremum is attained at a particular point # depending on

z*. Thus
¢s(y) = ¢+ a((z",y) — (27, 2(z")))
and since Z(z*) € 5, it follows that
¢s(y) 2 ¢s(2(z7)) + ({az™,y — 2(z")))
Hence az* € 0¢s(Z(z*)) C 9¢s(S). Now z* arbitrary in B K5 implies a(BNK3) C

8s(S).
(<) Suppose that (B K3) C intd¢s(S) and let z € S. This means that

Vz* € BN Ks 3z € S suchthat ez* € 945(7)

Hence, for all y
¢s(y) 2 ¢ + (ea”,y — Z) (3)
which gives
0 > (z%y—Z) Yyes
and hence ¥%(z*) = (z*,Z). It now follows from (3) and the linearity of (,) that for all y
¢s(y) = ¢+ ((ea*,y) — (e2™, 7))
= ¢+ e({z*,y) — ¥5(z*))
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so that, for all y

¢s(y) = ¢+ esubnenni,((a*y) — ¥5(2*))
= $+ed(y,9)

by Lemma 8. Since z € S, we find ¢(z) > ¢ + €|z — Ps(z)]. n

Corollary 10 If S is compact then a weak sharp minimum is equivalent to

0 € int ¢s(3)

3 Penalty functions with empty feasible sets

Consider the constrained minimization problem

minimize #(z)

_ (4)
subject to z € S:=XoNXy

where X and X; are subsets of IR™ and ¢: X — IR. We propose to prove a series of results
concerning the application of penalty functions to (4), with the minimum of assumptions,
much in the spirit of Mangasarian[6]. In particular, the aim will be to remove the standard
assumption of feasibility of the problem, that is to say that the feasible set, S, may be
empty.

A well-known approach to solve an optimization problem is to use a penalty function
and to minimize a combination of the objective function and a penalty parameter multiplied
by some function which penalizes the constraint violation, increasing the penalty parameter
to infinity in order to obtain a solution to the original problem. It is contended here that
this approach may not necessarily be the best manner of treating the problem, especially
for an ill-posed problem for which the feasible region may be empty. More precisely, one
should try to find the point which minimizes the objective amongst those points which
minimize the constraint violation, since this approach will give an answer which may be

of some use in the case of an empty or nearly empty feasible set. However, in this section,
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we show that under relatively few assumptions, this is indeed what the penalty method
produces.

To this end, we associate with (4), the classical exterior penalty problem

minimize P(z,a):= ¢(z)+ aQ(z) (5)

:BE.XQ

where « is in IRy, and @: X — IR, is a penalty function for S, that is, Q(z) = 0 for
z € S and Q(z) > 0, otherwise.

Lemma 11 Suppose that for some o* > 0, P(z,a*) 1s bounded below on Xo. Then

inf () > —oo

Proof If S = 0, then the result is trivial. Otherwise, assume there exits a sequence
{z'} C S, such that lim;_ ¢#(z) = —oco. However, on S, Q(z) = 0, so that this sequence

means that P(z*,a*) is unbounded below, which is a contradiction. &

The following elementary but very useful monotonicity result is found in [6]. The

statement of the proposition given here is simplified by the observation made in Lemma 11.

Proposition 12 Let ' € X, be a solution of

minimize P(z,a;)

zeXo
for i =1,2 with as > ay > 0. Then
Q(z') > Q(z?)
p(z!) < ¢(2?)

P(z',a1) £ P(2?,0a3)



The following theorem goes some way to proving the result that we outlined in the
introduction of this section. However, there is no guarantee here that the sequence {z'}
converges, or even has an accumulation point — this will be considered later in this section.
Furthermore, the inequality given by (6) may be strict, and we have to wait until we have

described the concept of sharp penalty functions in order to make this an equality.

Theorem 13 Let {a;} be an increasing unbounded sequence of positive numbers and let

{z*} be a corresponding sequence of points in Xo\ S such that
—00 < P(z%,@;) = min P(z, o).
€ Xo
If we define Q: = lim; .o, Q(2*), then

Q = inf Q(a)

z€Xg

Further, if we let
Xoi={z € Xo| Q(z) £ Q}
and assume Xg # 0 then

— oo < lim ¢(a') < inf ¢(e) (6)

Proof It follows from Proposition 12 that the sequence {Q(z')} is nonincreasing and
bounded below by 0, and hence converges to some Q > 0 and Q(z!) > Q, for 1 = 1,2,....
Clearly Q > inf,ex, @(z), so we suppose that Q > inf,cx, Q(z) and obtain a contradiction.
Let € = Q — infyex, Q(z) > 0. By the definition of infimum we know there exists T € X,
such that Q(z) < @ — €/2. Then, for all 7, by the definition of z*

$(e') + :Q(z") < $(z) + 2iQ()

which implies that
«i(Q(z") — Q(z)) < ¢(7) — #(2)
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and so

aiz < a(Q - Q)

N e

< ai(Q(z) - Q(a))
< 4(z) - ¢(a?)
But Lemma 11 shows that #(z') is bounded below, so that ¢(z) is unbounded above, a

contradiction.

For the final part of the theorem we note from Proposition 12 that the sequence {¢(z¢)}

is nondecreasing. For any € > 0, pick z(e) € Xq such that
$(a(e)) < inf §(z)+e
Then
et inf ¢(z)>4(z(e) = Pla(e),a) — i@
> P(z',a;) — aiQ
= ¢(2') + aiQ(z) — i@
> ¢(a’)
Thus ¢(z°) < infacx, 6(z) 50 that {$(c)} converges to ¢ and ¢(z%) < ¢ < infaex, ¢(z). B

Note that if the feasible set .S, is nonempty, then the following lemma shows that the
results of Mangasarian|[6] can be recovered as special cases of the theory which is presented

here. The proof is trivial and is omitted.
Lemma 14 If S # 0 then Xg = S.

The following lemma clears up a loose end in Theorem 13. We specify a condition on @
which guarantees that either Xq # 0 or the sequence {z'} does not have an accumulation
point. In the latter case, there is really nothing left to do; it would seem that the choice

of penalty function was not a good one.
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Lemma 15 Suppose that Q is lower semicontinuous. Then either the sequence {z'} given

in Theorem 18 has no accumulation point, or Xq # 0.

Proof Suppose {z'} has an accumulation point Z. Then, by lower semicontinuity
‘nf T Y > _
inf Qy) = lim Q(z") 2 Q(2)

which implies that Z € Xg. &

We can also prove a stronger result in the case that the sequence {z‘} has an accu-
mulation point, namely that the accumulation point actually solves the original problem.
In fact we show that the accumulation point does exactly what we had hoped for in the

introduction to this section, it solves

m1&1}r{r;1ze é(z)

Theorem 16 Let {a;} be an increasing unbounded sequence of positive numbers and let

{z*} be a corresponding sequence of points in Xo \ S such that
P(s, ) = mip P(z, o)

with an accumulation point T € Xo and hence Xg £ 0. If ¢ and Q are lower semicontinuous

at T, then Q(Z) = Q, and T solves

mia?ei.,r\{l;,ize é(z) (7
Furthermore,
Jim 0, (Q(%) - @) = 0 ®

where {z%} is a subsequence converging to T € X,.
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Proof Let {z%} be a subsequence converging to Z € X,. It follows from Theorem 13

and the lower semicontinuity of @ that

0 = lim(Q@") - Q)

v

Q) -Q
> 0

Hence Q(Z) = Q and € X. We invoke Theorem 13 again and the lower semicontinuity
of ¢ to give

4@ < Jim 6(=%) < inf 4(2)
Since T € Xg, it follows that T solves (7). To establish (8) we note that
0o > P(:z:if,a,-j) — P(Z, ay;)
= ¢(z") — ¢(2) + a;,(Q(eY) — Q)
Hence

$(z) — (z") > ay(Q(z9) - Q)
> 0

If we let j — oo and recall that ¢ is lower semicontinuous at T we conclude that
lim o, (Q(e) = Q) = 0
J—ro0

as required.

4 Proximal point and weak sharp minima

The notion of a proximal point was introduced by Moreau[8] and has been extensively
analysed by various researchers. In the sequel we give a brief description of the algorithm.

We proceed to extend some of the results found in the literature on the finite termination of
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the algorithm to the case where the problem being considered has a weak sharp minimum.
It is assumed throughout that S is a non-empty closed convex set and that ¢ is a proper
closed convex function. It is easy to see from the definition of the subdifferential 8¢ that
T is an optimal solution of the general convex programming problem (1) if and only if
0 € 8¢s(z). Therefore, the minimization problem (1) can be solved by finding a solution
of a generalized equation 0 € d¢g(z). It was shown by Brézis [3] that provided ¢g is a
proper closed convex function, then the subdifferential is a maximal monotone operator

and the resolvent, Jy, defined by
Iy = (I + \9¢s)™*
is a contraction and single—valued. Furthermore
0 € 9¢s(z) < z = J)z for some A >0

The minimization problem (1) has thus been transformed into the problem of finding a
fixed point of the resolvent J, of the subdifferential O¢s. For any given starting point z°,
the proximal point method generates the following sequence of iterates {z‘}, obtained by

the relation

gt = J,2' (9)

where {);} is a sequence of positive numbers with \; > A > 0, for all 5. In fact, z**! is the

optimal solution of

e . 1 P12
minimize ¢(z) + 53 |z — 2|

which is equivalent to

mi%}rﬁize ds(z) + 5-1;; |z — SUZHZ (10)

since the minimizer of (10) must satisfy

0 € gs(a™) + 1(a ~ o)

15



and hence z**! satisfies (9). Furthermore, z**! is unique by the strong convexity of the

objective of (10), and a little algebra shows that
:Cz'+1 + )\ivz’+1 — :Ei (11)
where vt € 8¢g(zi*t!). The following property follows easily from the above definitions.

Lemma 17 (a) |[v’]| is non-increasing fori=1,2,...

(b) If S # 0 then for any z € S

, 2 , 2 8 2
o+t ==+ ot o] < [t ]

Proof (a): By monotonicity of the subdifferential, we see
0< <vi+1 _ vi,wi+1 _ xi>

so that using (11)

0< <vi+1 _ vi) __)\ivi+1>

Hence
o < o] ]
so that
v < [
(b): Let z € S. Then by (11)
g o

Thus

. 2 . . . 2 N 2
”m’“ — z“ + 2\ <v’+1 -0,z — z> + A2 ”v’“” = ll:c‘ — z”

16



but by monotonicity, and 0 € 9¢(z)
(v = 0,2 —2) > 0

so we get

, 2 . 2 . 2
=4 = 2|+ 2t o] < [t - <]

as required. ®

We are now able to prove the following lemma which is important for the proof of the

ensuing theorem.

Lemma 18 For any A > 0, let y = A(z — P3(z)) and suppose that y € d¢s(w) for some
w € S. Then y € 8¢s(Ps(2)).

Proof We note that
y € 9¢s(w) = ¢s(z) —ds(w) > (y,z—w) VzelR®
and therefore
w,Ps(z) €S = ¢s(z) — ¢s(Ps(2)) = (y,&—w) VzeR™

Now it follows from Lemma 5 that (z — Ps(z), w — Ps(z)) < 0 so that multiplication by
A > 0 gives (y,w — Pg(z)) < 0. Hence for all z € IR®

¢s(z) — ¢s(Ps(2)) > (y,z —w) + (y,w — Ps(2))

= (y,z — Pg(2))
that is, y € 0¢s(Ps(z)). ¥
Theorem 19 Suppose Je > 0 such that
e(B[)Ks) C 9¢s(5)
If |w| < € and w € O¢s(z) then z € S.
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Proof Let ¢ > 0 be chosen so that (BN Kg) C 9¢s(S). We choose w with ||w|| < € and
w € ¢s(z).

Let us assume that z # Pg(z). We proceed to obtain a contradiction. Define

_ oz = Ps(2)
== Ps(2)]

so that y € (BN Kg). It then follows that 32¥ € S with the property that y € 9¢s(z?).
The monotonicity of 8¢g gives that

0<(z—2%w—y)

from whence it follows that

S (z—2%2—Ps(2)) = (z—2%y)

Iz — Ps(=)Il
< (o - #w)
< e = 2| ol
Hence
ol 2 22tz Lol

Iz = Ps(2)] ||z — 2|

The result now follows using Lemma 18 which enables us to take z¥ = Pg(z) and hence

derive the contradiction ||w|| > e. The proof is now complete since this gives z = Ps(z). &
The following result is the central one of this section.

Corollary 20 Suppose Je > 0 such that
(B[ Ks) C 94s(5)

Let {\;} be any positive sequence which is bounded below and let z° € IR™. Then the

prozimal point algorithm terminates in a finite number of iterations.
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Proof Let A\; > )\ > 0 for the given sequence. Then for any z € S we have from
Lemma 17 that the sequence {||z¢ — z||} is bounded and hence converges. If we invoke the

lemma again for ¢ = 0,..., N and sum, the following inequality results
N+1 R A i1 |2 0 2
ot =2 + o at o[ < o 4
Using the above observations, it is clear that

vi+1]]2 <M

N
>

1=0

so that
X o (V4 1) < M

by non-increasing property of ||[v*]| given in Lemma 17. Hence, there exists a sufficiently
large but finite N such that

N+41|/? M 2

“U “ < (N +1) <€

where € is given in Theorem 19. It then follows from Theorem 19 that z™V*! is in the

solution set. ¥

The following relationship between the solution of the proximal point method and
the previous iterate is an aid to understanding the algorithm. It states that, in fact,
the proximal point algorithm terminates with the closest point in the solution set to the
last non-optimal iterate. This result should add some clarification to the naming of the

proximal point algorithm, since it attempts to find the minimizer of ¢ on S which is

proximal to z’.

Theorem 21 Suppose that the prozimal point algorithm terminates in a finite number of

iterations, k say. Then z* = Pg(z*~1).

19



Proof Note from the definition of the proximal point algorithm that, for all z € IR®
¢s(z) — ¢s(z*) > <v’°,:c - $k>
Substituting Pg(z*~1) for z, we get
0> <v’°, Pg(xk‘l) - a:k>
and since A\p—1 > 0 we see that
0> <:1:k—1 — z* Pg(zF1) - a:k>

Lemma 5 gives

0> <xk“1 — Pg(zF 1), 2F - Pg(mk“1)>
so by adding the above inequalities we get
0 > (of — b2k — Pg(a*1)) + (7 — Py(ab), 0 — Ps(a* ™))
- -]
and hence z* = Pg(zF1). n

The next two theorems provide a strong link between the subgradient condition asso-

ciated with a weak sharp minimum and the proximal point algorithm.

Theorem 22 Suppose de > 0 such that
e(B ﬂ Kg) C 9¢s(S)

Then for any given z°, the prozimal point algorithm terminates in one iteration for a

sufficiently large choice of M.

20



Proof Let ¢ > 0 be chosen so that ¢(BN K3) C 0¢5(S). We assume that z! # Pz(z?).
Define

_ (' = P5(°))

 let = Ps(2)]|

so that y € (BN K3), and hence that for some z¥ € S, y € 8¢s(z¥). The monotonicity of
O¢s gives

0< <:c1 — 2,0t — y>
from whence it follows that
<:171 - zy,y> < <3:1 - zy,v1>

|=* = ] "]

IN

Hence

i ) (z! — 2¥, 3! — P3(z)) _.
l' ll 2 21 — Pg(z0)| ] — 2| (12)

the last equality by taking z¥ = Pjs(z) which is possible from Lemma 18. Now choose
A > d(z° S)/e. By Lemma 17 we see that

o = PstaO "+ 37 o' < o = Pt
so that
ot~ Pste)]" < T, )P =22 o'
< we-xeff
< 0

The last inequality follows from (12). But this is a contradiction and so z! = Pz(z°). n

Corollary 20 and Theorem 22 are generalizations of the corresponding results first

obtained for linear programs by Polyak and Tretiyakov[12].
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Theorem 23 Suppose that the prozimal point algorithm terminates in one step for any

z° € IR™ and that 0¢s(S) is compact. Then Je > 0 such that
(B Ks) € 965(5)
Proof Let

y = :EO - Pg(mo)
[|z° — Ps(z®)||

for some z°. We show 3\ with e 9¢s(S) for all A > ). The hypothesis of the theorem

guarantees the existence of A(z?) with
P3(z%) = z' = 2° — A\(2®)!(2?)
However, by properties of the proximal point algorithm,
v'(2%) € 8s(a?) = 0ds(Ps(2°)) C 0¢s(S)

Since 8¢s(S) is compact, it follows that, for every z°, generated as above, |[v}(2°)|| < M

which gives

1

0 —
P =
1 _
> e =
- M A

Hence, for all A > A

L = v1(2°) € 9¢5(5)

>

The result now follows easily. &

Corollary 24 If prozimal point terminates in one iteration for any z° € IR® and S is

compact then 0 € int dds(S).
Proof 9¢s(S) is compact by [13, Theorem 24.7] and K5 = IR® by Lemma 7. &
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5 Perturbations and weak sharp minima

In this section, our interest lies primarily with the perturbed problem P(e) defined as

follows:

mir;%rgize () + ef(z) (13)
where f:IR®™ — IR and € is a nonnegative real number. For convenience we define the
optimal solution set of (13) as S(€). The following result is elementary and easy to prove.
Lemma 25

e>0

_ _ = & € argmin f(z
TeSk)CS zeS (=)

Proof Suppose to the contrary that Z ¢ argmingcg f(z). Then there is some § € S such

that f(7) < f(z). However, for every z € S,
¢(Z) + ef(Z) < 4(z) + ef().

In particular, since § C S, ¢(z) + ef(Z) < #(7) + €f(§), so that Z,7 € S implies ef(z) <

ef(7)- This is a contradiction since € > 0. ¥

The converse result needs more work and relies upon the notion of a weak sharp mini-
mum. We shall need another definition, which will prove to be a central property through-

out the thesis.

Definition 26 For the problem
minimize é(z)

and for a perturbation function f, the associated perturbed problem (13) is said to have the
finite perturbation property if there ezists a positive € such that for all e € (0, ¢

5, =5(e)C5

where Sy: = argminges f(x).
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The proof of the following theorem is adapted from Mangasarian and Meyer[7].

Theorem 27 Suppose that ¢ is a convez function on S, and that ¢ has a weak sharp
minimum on S. Let ¢(z) + €* f(z) be bounded below on S for some ¢* > 0. Then the finite
perturbation property holds provided that any of the following is true:

(a) A local Lipschitz property is satisfied by f, namely there ezist positive numbers k and
K such that

f(Ps(z)) — f(z) < K ||z — Pg(a)|| for x € S and ||z — Ps(z)| <k (14)

(b) f is convez on some open convez set containing S, and S is compact

(c) f is strictly convez on some open convez set containing S

Proof Let Z € argmingez f(z). We will first establish that Z € S(e) C S for sufficiently

small € > 0 under hypothesis (a) by showing that for sufficiently small € > 0

¢(@) +ef(z) < $(z)+ef(e) forzeS\S (15)
and
#(z)+ef(z) < ¢(z)+ef(z) forzeS (16)

Inequality (16) holds because Z minimizes f on S. To establish (15), let z € S\ S; thus
z # Pg(z), and we consider the two following cases.

Case 1: 0 < ||Ps(z) — z|| < k. The strict inequality (15) follows for € € [0, a/K) since

e(f(z) — f(z)) < e(f(Ps(z))— f(z)) (definitions of Z and Ps(z))
< K|Ps(a)—a|  (by (19) and o - Ps(z)] < k)
< al|Ps(z) ~ | (e € [0,a/K) and z # P3(x))
< #(z) — ¢(Ps(z)) (by weak sharp minimum)
= ¢(z) — ¢(7) (definition of Ps(z))
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Case 2: ||P3(z) — z|| > k. Let v be such that
)+ eflz)y>v+1>v
for z € S, so that f(z) > v/e* — ¢(z)/e*. By defining
p 1= —v[e+ @)+ @)/ > 0
and noting that ¢(z) = ¢(Ps(z)) for all z € S, we have that
f@) = f(2) < [4(2) = $(Ps(a))l/e +p forzesS

Since || P3(z) — z|| > k, it follows that

@)= f(@) < [8(z) = $(Ps(@))]/e" + (o/k) & = Ps(a)]
and so, forz € S

@) = f2)] < Z[#() - (Ps(a))] + 22|l = Ps(o)] (17)

Consequently for v small enough, that is, v € [0, ak/p], the last term of (17) is less than

or equal to a ||z — Ps(z)||. Therefore, for such v

@) - f@)] < L[4(2) - (Ps(2))] + alle — Ps(o))
Y _
< |1+ 216 - 4@
the last inequality coming from the weak sharp minimum assumption on ¢. If we let

S A
(1+9/e)

then, for sufficiently small ¢, (15) follows in this second case as well.
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Now note that by choice of k, hypothesis (b) implies (a) (see Theorem 10.4 of [13]),
so that the proof will be completed by showing that the result holds under hypothesis (c)

even when S is not compact. Let
T=A{z||z-z|| <k}

where k is some strictly positive number, let S’ = SN T, and let 5’ = § N T. Note that S’
is a compact convex set and that S’ is the set of optimal solutions of mingeg: #(z), so that
the preceding arguments imply that there exists an € > 0 such that z € S'(¢) C §’ for
e € [0,¢'] where 5(¢) denotes the solution set of mingesnr #(z) + ef(z). By the convexity
of ¢(z) + ef(z), & € 5'(e) implies that Z € S(e) (since a local solution of P(e) must also
be a global solution), and by strict convexity it follows that S(e) = {z}. Thus S(¢) C §

for € € [0,¢'], and since & € S(e), the theorem is established under hypothesis (c).

The following theorem and corollary connects the perturbation results obtained in this

section to the results obtained for the proximal point algorithm in the previous section.
Theorem 28 Let z° be given and let

2

)= zle =

Then the prozimal point algorithm terminates in one step for sufficiently large \ provided

that the finite perturbation property (Definition 26) holds.

Proof f is strictly convex implies that argmin,cz f(z) = {Ps(z°)}. Hence 3 > 0 such
that for all € € (0, ]

P3(z°%) € S(e) = arg 1;(2%1(]5((1}) o4 -;-”cc - 330“2
Thus for all A > 1/€
Ps(z%) € argmm¢ z) + ”x -z ” = {z'}

Hence, 2! = P5(z°), as was required.
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¢ convex and S closed convex
minimizezes ¢(z) has a weak sharp minimum

(Definition 2)

Theorem 27
¢ + e¢f bounded below Theorem 9

Theorem 9

The finite perturbation property holds,
i.e. there exists a finite € There exists € > 0 with
such that for all € € [0, €) e(BNK3z) C 845(5)
T € argminges f(z) = 7€ S()C S

Theorem 23
O¢s(S) compact

Theorem 28 Corollary 20

Proximal point algorithm terminates in a
finite number of iterations

-zt

Figure 1: Connection between various results

Corollary 29 Under the hypotheses of Theorem 27, the prozimal point algorithm terma-

nates in one step for sufficiently large A.

Proof Use Theorem 27 and Theorem 28 ¥

Figure 1 summarizes briefly the results given in the previous sections.
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6 Sharp penalty functions

We now assume that
§={z € IR"| g(x) < 0}
is a closed, convex (by convexity of g) but possibly empty set. The property of a weak sharp
minima is closely related to the exactness of penalty functions in constrained optimization.
We shall briefly discuss the connection between these concepts in this section.
In order to motivate our discussion, we consider some related notions which are found

in the literature.

Definition 30 A4 set of constraints, g(z) < 0, is called sharp if there is a positive number

a such that for each z there is a p with g(p) <0 and ||z — p|| < a|lg(z)+||-

Note that the equivalence of norms on IR™ ensures that the property of being sharp does
not depend on the norm used. Brady|[2] gives conditions under which a set of constraints

is sharp. The name sharp constraints is justified by the following lemma.

Lemma 31 Suppose g is a closed, convez function. The set of constraints g(z) < 0 is

sharp if and only if the problem
minimize [g(z). | (18)

has a weak sharp minimum.

Proof The optimal solution set of (18), S, is closed and convex. If problem (18) has a
weak sharp minimum, then take p = Pgs(z), which exists by the definition, and the result
follows easily. Conversely, suppose that the constraints g(z) < 0 are sharp. Then S is
nonempty and it follows that the projection operation onto this set is well-defined. Thus,

since p is in the optimal solution set, it is immediate that

le — Ps(z)]| < lz - pll

IN

allg(z)+]]
a(llg(@)+ )l — lg(Ps(z))+ ]

28

IA



and so (18) has a weak sharp minimum.

Although this observation identifies a large class of problems with weak sharp minima
(in fact any set of constraints which has a condition constant leads to a problem with a
weak sharp minimum) the definition of sharp constraints is too restrictive for our purposes
since it implies the problems being considered are feasible. This leads to the following

more general definition.

Definition 32 Suppose we have a closed, convez set, S, which may be empty. We define
e penalty function for S to be any function, Q, satisfying

(a) Q(z) =0 forallz € S
(b) Q(z) >0 forz ¢ S

We say that Q 1s a sharp penalty function for S if
minimize Q(z), (19)
zeXo
has a weak sharp minimum.

We note that Xy is some subset of IR®. This is a weaker notion than sharp constraints

as the following lemma shows.

Lemma 33 Suppose g 1s a closed, convez function and the set of constraints g(z) < 0 is

sharp. Then Q(z) = ||g(z)+] is @ sharp penalty function.

Proof Clearly Q(z) as defined above is a penalty function. Since g(z) < 0 are sharp

constraints, the result follows from Lemma 31.

However, the sharp penalty function is precisely the notion which is needed in order to
make the inequality (6) in Theorem 13 an equality. The penalty problem under consider-

ation is

minéipize P(z,a):= ¢(z) + aQ(z)
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Theorem 34 Let {a;} be an increasing unbounded sequence of positive numbers and let

{z*} be a corresponding sequence of points in Xo \ S such that

—oo0 < P(z*,a;) = min P(z,a;)
If we define Q: = lim;_,., Q(z'), then

¢ = inf Q(z)

z€Xo

Further, if we let
Soi={z € Xo| Q(z) < Q}

and assume Sg # 0 and ¢ is Lipschitz continuous on Xo, that 1, IK > 0
[¢(y) — ¢(z)| < K ||y — =]

for all z,y € Xy and the penalty function Q s sharp, then
lim ¢(z") = inf ¢(z)
T OO mESQ

Proof The first part of the Theorem is a restatement of Theorem 13. It therefore only
remains to prove equality in the last statement of the theorem. By the definition of weak

sharp minimum, we have

u ot = Ps,(a%)] < Q) — Q(Ps, ()

Hence, by the Lipschitz continuity of ¢ we see that

$(Ps,(2) — d(a*) < [(") — $(Ps, (=)

AN

K

AN

K, o =
(@) - @)
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This inequality, coupled with the fact that PgQ(CL‘i) € Sg leads to the inequality
K ~ - ; :
¢(z*) + ;(Q(ﬂf’) — @) 2 ¢(Psp(")) 2 nf ¢(z)
z€5q
By Theorem 13, lim;_,., Q(z*) = Q, so taking the limit leads to the conclusion that
lim ¢(z) > inf ¢(z)
1+ 00 xeSQ

The equality now follows from Theorem 13. n

We now perturb the penalty function by the objective function ¢. For ease of notation

we will assume that Xo = IR®. Consider the problem
mir}si]r}%ize Q(z) + eg(z) (20)

with assumed optimal solution set, Sg(€). The following is an immediate corollary to

Theorem 27.

Theorem 35 Let Q be a sharp penalty function for S. Suppose that one of the following
holds for the function ¢:

(a) the local Lipschitz property, namely there ezists positive numbers k and K such that
¢(Ps,(z)) — ¢(z) < K “:c — qu(m)l‘ whenever ”x - ng(w)“ <k

(b) ¢ is convez on IR® and Sg is compact

(¢) ¢ 1s strictly convez on IR™

and that Q + €*¢ is bounded below on IR™ for some €* > 0. Then there exists an € > 0 such
that for all € € (0, €]

Sa(¢) = Sq(e) € Sq
where So(¢): = arg minges, ¢(z). (i-e. the finite perturbation property holds for this prob-

lem.)
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The following theorem gives the result that we have been promising, that is, the sharp

penalty function property is an exact penalty.

Theorem 36 Suppose that one of the conditions (a), (b) or (c) of Theorem 35 holds
for the function ¢, and suppose that @ is a sharp penalty function for S. Let {a;} be an

increasing unbounded sequence of positive numbers and let {z*} be a corresponding sequence

of points in IR™\ S such that
—o0 < Pz, a;) = gélling(w,ai)
Then there exists &, such that for all a > @&, the corresponding z* solves

minimize ¢(z)
z€SQ

Proof Since
P(s,05) = ai(Q(a) + —4(x))

is bounded below on IR®, it follows that @ + €*¢ is bounded below on IR® for ¢* = 1/a;.

Thus invoking Theorem 35, we see that there exists an € > 0 such that for all e € (0, €
Sa(¢) = Sq(e) € Sq
where Sg(¢): = arg minges, ¢(z). Thus
z' € arg min P(z,1/¢;)
= o €arg min[é(e) + Q)
<= 1’ € 59(¢) = So(ei) = arg min[Q(e) + eid(2)]
Hence a; must only be larger than 1/ in order to give z* € Sp(¢) as was required. &

The following corollary is an immediate consequence of Lemma 14.
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Corollary 37 IfS # 0, then for all @ > @ the corresonding x* is a solution to the original
problem (1).

Finally, we give an example which shows we have extended the idea of a sharp constraint

to the case where the feasible region may be empty. Consider the following example

minimize é(z)

subject to  g(z) =2, +3 <0

Let Q(z) = ||g(z)+||, so that @ is a penalty function for g(z) < 0. Problem (19) has a

weak sharp minimum since Sg = IR_ and thus for z > 0,
Q(2) — Q(Pr_(z)) = o +3| =3 =a| = ||z — 0]| = ||& — Pr_(2)]

We see that @Q is a sharp penalty function (even though the constraints are not sharp).
We consider the objective to be ¢(z): = ||z||, so that arg min,es, ¢(z) = {0}. The theory

then guarantees that 0 € Sg(e) for sufficiently small €, which is true in the example since

for all e > 0, Sg(e) = {0}.

7 Related notions

In this section we show some further examples of problems with weak sharp minima, in
addition to those we have previously mentioned, which have been mainly associated with

condition constants.

The first example is that of linear programming. In the appendix to their paper[7],
Mangasarian and Meyer prove that any linear programming problem has a weak sharp min-
imum. They also prove a theorem very similar to Theorem 27 for the linear programming
case when ¢(z) is taken as pz for some p € IR® and S = {z | Az > b} for some A € IR™*®
with b € IR™ Using the linearity of ¢ they show that hypothesis (¢) of Theorem 27 can
be weakened to just convexity of f.

We have seen that the notions of weak sharp minimum, finite perturbation property and

finite convergence of the proximal point algorithm are equivalent in the convex setting. If
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we remove the restriction of convexity, then, in certain cases, we can still recover the finite
perturbation property which will prove to be useful in our computations. In particular,

Mangasarian and Meyer|[7] have proved the following result:

Proposition 38 (Mangasarian and Meyer|[7])
Let S = {z € IR* | g(x) < 0,h(x) =0} and

minggize () (21)

have a nonempty set S of local optimal solutions satisfying a constraint qualification. Let
7€ S and define ¢ = ¢(&) and N as the open ball around & satisfying ¢(z) > ¢(&) for all

z € NNS. Let ¢, g, h and f be differentiable on S and let the nonlinear program

minimize f(z)
zeSNN (22)
$(z) < &

subject to

have a Karush-Kuhn-Tucker point (%,0,3,7) € R¥™+ktl Then there ezists an € > 0
such that for each € in (0,¢€] there exists a (@,7): [0,€] — R™* such that (z,u(e),7(¢)) is

a Karush-Kuhn—Tucker point for the perturbed problem
minierglize é(z) + ef (z)
and Z 15 also a local solution of the nonlinear program (21).

Proposition 39 (Mangasarian[5])
Suppose h is linear and ¢ and g are concave at T. Then (22) has o Karush—-Kuhn-Tucker

point.

Using the above results, the following corollary is immediate.

34



Corollary 40 Suppose h is linear and ¢ and g are concave. Then (21) has the finite
perturbation property around every local solution, i.e. for each local solution of (21), there

exists a set N and a positive € such that for all € € (0, €]
S;=8()(\NC SN

where Sy = argmingezny f(2).

8 Conclusions

The notion of a weak sharp minimum has been introduced and used to unify a number of
important concepts of mathematical programming. In particular, we have shown it to be
the fundamental property needed in the finite termination of the proximal point algorithm,

exactness of penalty functions and for the finite perturbation property to hold.
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