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ABSTRACT

This paper considers the efficient evaluation of recursive queries expressed using
Horn Clauses. We define sideways information passing formally and show how a query
evaluation algorithm may be defined in terms of sideways information passing and con-
trol. We then consider a class of information passing strategies that suffices to describe
most query evaluation algorithms in the database literature, and show that these strategies
may always be implemented by rewriting a given program and evaluating the rewritten
program bottom-up. We describe in detail several algorithms for rewriting a program.
These algorithms generalize the Counting and Magic Sets algorithms to work with arbi-
trary programs. Safety and optimality of the algorithms are also considered.

1. Introduction

The evaluation of recursive queries expressed as sets of Horn Clauses over a database has
recently received much attention. Consider the following program:

ancX,Y):—parX,Y)
anc(X,Y) —parX,Z),anc(Z,Y)

and let the query be
Query : anc (john ,Y)?

Assume that a database contains a parenthood relation par. Then the program defines a
derived relation describing ancestors, and the query asks for the ancestors of john. A well
known strategy for evaluating logic programs is the bottom—up strategy. It serves to define
the least fixed point semantics, and is known to be complete [Lloyd 84]. While the strategy is
reasonably efficient when the query does not contain instantiated variables [Bancilhon 85],
this example shows that it is very inefficient when bindings for some variables are given in the
query. The reason is that it computes the complete anc relation and then applies selection to
it. Thus, all ancestors are computed, even though only the ancestors of john are needed. A
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top —down strategy (as used, for example, by Prolog), may do much better by computing only
the ancestors of john. The first rule computes the nodes reachable from john in one step.
Then the second rule generates the same query for these nodes, and the first rule is used again
to find the nodes reachable in two steps, and so on.

There are two modes of information passing in the evaluation of a query. The first is
unification. Given a constant in a goal, unification with a rule head will cause some of the
variables in the head to be bound to that constant. These bindings are valid in the rule’s body
as well. (This is normally seen as part of top-down evaluation.) The second mode is
sideways information passing . Given bindings for some variables of a predicate, we can
solve the predicate with these bindings and thus obtain bindings for some of its other vari-
ables. These new bindings can be "passed" to another predicate in the same rule to restrict the
computation for that predicate. In the example above, in the top-down evaluation, unification
with the query binds X in the second rule to john; these bindings are passed from the rule‘s
head to the base predicate par. The values obtained by evaluating par with these bindings are
then passed to anc, to generate yet another subgoal.

Several strategies have been proposed for evaluating recursive queries expressed using sets of
Horn Clauses (rules). ([Henschen and Naqvi 84], [Kifer and Lozinskii 85], [Lozinskii 85],
[McKay and Shapiro 81], [Rohmer and Lescoeur 85], [Sacca and Zaniolo 86a], [Van Gelder
86], [Vieille 86], etc. See [Bancilhon and Ramakrishnan 86] for a comprehensive survey.) The
main thrust of the above strategies is to improve efficiency by restricting the computation to
tuples that are related to the query. They all use information passing in some form, but they
also use other ideas, intended, for example, to avoid repeatedly computing the same fact,
using the same derivation, several times. However, so far there is no uniform framework in
terms of which these strategies may be described and compared, and the basic ideas that are
common to these strategies remain unclear.

It is our thesis that each of these strategies has two distinct components - a sideways informa-
tion passing strategy (henceforth abbreviated to sip) for each rule (or even several such stra-
tegies per rule) and a control strategy. A sip represents a decision on how information gained
about tuples in some predicates in a rule is to be used in evaluating other predicates in the
rule. The control strategy implements this decision, possibly using additional optimization
techniques. Thus, a given sip collection may be implemented by several control strategies,
and a given control strategy may be used to implement distinct sip collections. In particular,
we show that simple bottom-up evaluation may be used to implement a wide class of sip col-
lections by first rewriting the given set of Horn Clauses and.then evaluating the rewritten set.

To what extent is it justified to claim that the collection of sips and the control strategy are dis-
tinct, possibly independent, components of a query evaluation strategy? The research reported
here can be seen as a step towards answering this question. We provide a formal definition of
a sip. Then we present several program transformation strategies that can be applied to an
arbitrary (Horn Clause) program and a query to produce a program that is equivalent to the
given program with respect to the query, and that uses the bindings in the query to direct the
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computation, and hence is usually more efficient. Each of these transformations uses a collec-
tion of sips that are attached to the rules of the given program. In a sense, the sip collection
serves as a definition of what facts are relevant to the given query. Each transformation pro-
duces a program that computes only these facts. The fact that the transformed programs use
information passing, yet can be computed bottom-up, shows that there is no inherent relation-
ship of information passing to top-down evaluation, thus supporting the claim that sips and
control are independent. The transformations are generalizations of strategies that have been
proposed in earlier work, namely the Magic Sets and the Counting strategies [Bancilhon et
al. 86], but which, as presented there, were of quite limited applicability. We note that the
notion of a sideway information passing graph has been introduced previously, although it is
less general than our definition [Kifer and Lozinskii 86]. The work reported in [Van Gelder
86] can also be viewed as supporting our claim that information passing and control are to a
large extent independent, although this claim is not explicit there.

The paper is organized as follows. Notation and definitions are introduced in the rest of this
section. We define sips in Section 2, and describe how a query and a collection of sips are
used to obtain an adorned program from a given program in Section 3. The transformation of
a program into an adorned program is the first step in each of the strategies presented here. In
Sections 4 through 7, we present a number of algorithms for rewriting the adorned program,
making further use of the sip collection, into an equivalent program whose bottom-up evalua-
tion implements the sip collection. We describe an important optimization of some of these
algorithms in Section 8. We discuss optimality and safety in subsequent sections, before con-
cluding with a discussion of the various methods presented in earlier sections. Readers who
are not familiar with previous versions of the methods described in this paper may prefer to
omit Sections 6-8 in the first reading.

1.1. Basic definitions and notation

A Horn Clause, or rule , has the form

Po(io) - pl(fl)"",pn(fn)

where each p; is a predicate name, and each f, is a vector of terms involving variables and/or
constants. The :~ symbol stands for ’implies’, the commas stand for "and’, the part to the left
of :— is the head of the rule, and the part to the right is its body. We assume that rules satisfy
the following well formedness condition:

(WF) Each variable that appears in the head of the rule, also appears in its body.

A rule with an empty body is a fact. By (WF), a fact contains no variables (it is ground). A
query is a rule without a head. We will assume here that a query is a single predicate
occurrence, with some of its variables possibly bound to constants. Our methods generalize to
multiple-predicate queries.

We use the following conventions. A predicate occurrence is a predicate name followed by a
list of arguments, in the right hand side (body) of a rule. Where no confusion is possible, we
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simply use ‘predicate’ for ‘predicate occurrence’. An argument is a term, where a term is a
constant, a variable or an n-ary function symbol followed by n terms. We use upper case
letters for variable names, lower case letters for predicate names, and numerals or lower case
letters for constants. A query is written as ¢( - - - )? The notation q (¢, X)? is used to denote
the fact that some of the positions in the query are bound to constants, while others contain
variables. No specific ordering is implied.

A program is a finite set of rules, P ={ry, ..., r,}. A database D is a finite set of finite rela-
tions. A tuple ¢ in a relation p can be viewed as a fact p (¢), and conversely, a fact can be
represented as a tuple of a relation. Hence P (D is a Logic Program. Without loss of gen-
erality, we will assume that P contains no facts - all facts are part of the database D . Predi-
cates that name database relations are called base predicates; all other predicates are called
derived . Recursion :ists when derived predicates in a program depend on each other as well
as on base predicates. A program can be transformed so that it contains no base predicate as a
head of a rule, and we will so assume.

Given a program-query pair (P, Q =q(cC, X )) and a database D, the result of applying (P, Q)
to D, which we also refer to as the answer for the query on D, is the set of bindings to the
vector of variables X that make the query expression true with respect to the program and the
given database. The problem that we discuss in this paper is how to evaluate efficiently the
answer of a query against a database.

Note that although our approach is somewhat different from that of the Logic Programming
community, the basic theory is still applicable. Since P (D is a program in the Logic Pro-
gramming sense, basic results like the definition of semantics in terms of least fixed points,
that is the completeness of bottom-up evaluation, hold. The separation of program from data-
base allows us, however, to consider equivalence of programs with respect to all possible data-
bases. Two programs with queries (P, Q) and (P, Q") are equivalent, if for every database
D, P (D and P D produce the same answers for their respective queries. In other
words, we can view a program with a query as defining a function from databases to finite
relations. Two programs with queries are equivalent if they define the same function.

By the completeness of the bottom-up approach, the answer for a query can be computed as
follows: We start with the database relations, and with empty derived predicates. The values
for the derived predicates are computed in stages. In each stage, we add to each derived predi-
cate all the tuples whose membership in it is implied by the program, given the values for the
predicates in the previous stage. The sequence of values of the derived predicates is monoton-
ically increasing, and its limit is the final values for these predicates. The answer is obtained
by applying the appropriate selection to the query’s predicate. Notice that the sequence is
infinite, and when the program contains function symbols, the limit may differ from the union
of any finite prefix of the sequence. However, each fact that belongs to the limit is obtained
after a finite number of iterations.

It follows from this discussion that for each fact that belongs to a derived predicate, there
exists a finite derivation tree, that describes how it is derived from base facts using rules of
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the program. Let p(c) be a fact in the derived predicate p. Then the tree has p (¢) at its root,
the leaves are base facts, and each internal node is labeled by a fact, and by a rule that gen-
erates this fact from the facts labeling its children. A base fact may be viewed as a derivation
tree of height one.

We will assume one more restriction on the from of rules. In a given rule, two variables are
called connected if they have occurrences in the same predicate. This is extended in the obvi-
ous way to connection through a chain of variables, where each adjacent pair shares a predi-
cate. Similarly, two predicates are connected if they each contain one of a pair of connected
variables.

Connectivity is an equivalence relation (both on variables and predicates). The set of predi-
cate occurrences in a rule is therefore the union of connected components. One of these con-
tains the rule’s head. Other components, if they exist, are actually existential subqueries, that
are solved independently of any bindings for the rule’s head variables. Information passing
strategies are limited in scope to a connected component. Since we are primarily interested in
information passing, starting at the head, we assume, without loss of generality:

(C) The predicate occurrences of a rule form a single connected component.

2. Sideways Information Passing

A sideways information passing strategy, henceforth referred to as a sip, is an inherent com-
ponent of any query evaluation strategy. Informally, for a rule of a program, a sip represents a
decision about the order in which the predicates of the rule will be evaluated, and how values
for variables are passed from predicates to other predicates during evaluation. Sip strategies
for the various rules of a program are not enough to specify an evaluation strategy. A control
component that specifies, for example, whether to obtain all solutions for a goal when it is first
called, or whether to obtain them one at a time (as for example in Prolog) is required. Control
is a separate, often independent, component; here, we only discuss sips.

Intuitively, a sip describes how bindings passed to a rule’s head by unification are used to
evaluate the predicates in the rule’s body. Thus, a sip describes how we evaluate a rule when
a given set of head arguments are bound to constants. Consider, for example, the ancestor
query presented in Section 1. The first argument is bound to john, and by unification, the
variable X in the second rule is bound to john. We can evaluate par using this binding, and
obtain a set of bindings for Z . These are passed to anc to generate subgoals, which in this case
have the same binding pattern. This is in fact the way in which a top-down strategy like Pro-
log would compute this query.

Generalizing from this example, we may say that the basic step of sideways information pass-
ing is to evaluate a set of predicates (possibly with some arguments bound to constants), and
to use the results to bind variables appearing in another predicate. The order in which predi-
cates are solved and the bindings are passed is determined as a consequence of the control
strategy in top-down methods. We try to separate this order from the flow of control, leading
to the definition of a sip as a labeled graph, below. ’
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Let r be a rule, with head predicate p (8), and let 8° denote a subset of 0, that we assume will
be bound in invocations of the rule. Let p,, be a special predicate, denoting the head predicate
restricted to its bound arguments. Thus, the arguments of p, are 6. (If no bindings are given,
that is, 6? is empty, then p,, is a 0-ary predicate, the constant FALSE. In such a case, we may
consider it not to exist at all, as far as the following discussion is concerned.) If a predicate
appears in r’s body more then once, we number its occurrences, starting from 0. (The
numbering is just to identify the positions in the rule. It is irrelevant when unification with
heads of other rules is considered.) Let P (r) denote the set of predicate occurrences in the
body. A sip for r is a labeled graph that satisfies the following conditions:

1. Each node is either a subset or a member of P (r) \) {Pp}.
2. Each arc is of the form N — ¢, with label , where N is a subset of P(r)\ {py}, qis a
member of P(r), and 7 is a set of variables, such that

(i) Each variable of x appears in N.
(ii) Each member of N is connected to a variable in X.

(iii) For some argument of ¢, all its variables appear in . Further, each variable of
appears in an argument of ¢ that satisfies this condition.

These two conditions define the nature of nodes and arcs of a sip. They are explained below.
The following condition provides a consistency restriction on a sip. For a graph with nodes
and arcs as above, define a precedence relation on the members of P (r) \_ {p,} as follows:

(i) pp precedes all members of P (r).
(ii) A predicate that does not appear in the graph, follows every predicate that appears

in it.
(iii) If N — q isan arc, and ¢’e N, then g" precedes q.
We can now state the last condition defining a sip:

3. The precedence relation defined by the sip is acyclic, that is, its transitive closure is a partial
order.

An alternative and equivalent formulation is:

3°. There exists a total ordering of the predicates of P (r) \ {ps} in which pj, is the first, such
that for each arc, all predicates at its tail precede the predicate at its head, and such that the
predicates that do not appear in the sip follow all others. ]

We explain the meaning of such a graph, by first explaining how the computation of a rule
uses one arc, then dealing with the complete computation of the rule. Assume we want to use
the rule r, with some arguments of the head predicate bound to constants. The special node
p, may be thought of as a base relation with positions corresponding to the bound arguments
of the head predicate. Each tuple in it corresponds to the vector of bindings that is given for
these arguments. (Intuitively, for those familiar with Prolog, each tuple contains the vector of
constants for the bound arguments in some call of this adorned predicate.) An arc labeled ¥
from a set of predicates N to a predicate ¢ means that by evaluating the join of the predicates
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in N (with some arguments possibly bound to constants), values for the variables in 7 are
obtained, and these values are passed to the predicate ¢, and used to restrict its computation.
Thus, for each such arc, the variables in its label must be bound when the goals corresponding
to the predicates in N are solved, and any control strategy that implements the sip must ensure
this. This explains condition 2(i).

As stated above, we separate the issue of control from the sip. Thus, we allow predicates to be
computed (for given bindings) all at once, or in stages. We can imagine a box associated with
each predicate in which its tuples are collected. For an arc N —q, with label X, attach a filter
that performs a join of the tuples in the boxes of the predicates of N, and for each qualifying
tuple, its projection on  is sent along the arc. (Note that if arguments are complex terms with
function symbols, then the arguments are evaluated, and these are converted into values for
the variables before the join is performed. See [Ullman 85] for details.) A predicate in N that
is not connected to a variable of 7 does not serve any useful role in the join; such predicates
are excluded by condition 2(ii).

In general, there may exist several arcs entering a predicate ¢ . The tuples arriving along these
arcs are joined , and the resulting tuples passed as bindings for the evaluation of ¢. A binding
for g is useful, however, only if it is a binding for an argument of ¢. That is, the methods
described in this paper all treat an argument as free, if one or more of its variables are not
bound, even if some other variables in it are bound. (In this decision, we follow [Ullman 85].)
This explains condition 2(iii).
The evaluation of a rule proceeds as follows. Each node with no arcs entering it is evaluated
with all arguments free. (An exception is the special predicate py; it is treated as a base predi-
cate and the tuples in it are those supplied for 8” by unification.) A predicate with arcs enter-
ing it is evaluated only for values supplied through arcs. Finally, when all predicates have
been evaluated, they are joined, and the result is projected on the variables of the head predi-
cate p, to be returned as a result. (This join, like the evaluation of the predicates, can be per-
formed in stages, as the tuples are generated, or all at once, when all tuples become available.)
The third condition ensures that the sip denotes a consistent strategy for passing information
through the predicates in the body. Thus, we disallow sips according to which two goals make
a cyclic assumption about a variable being bound, that is, each assumes that the variable is
bound by the other.
We emphasize that the above discussion of the interpretation of a sip is to be understood as an
abstraction that conveys what is done rather than how it is done. For example, Prolog does not
explicitly create special predicates p; to store bound head arguments, nor does it explicitly
evaluate the joins we mentioned. These operations are, however, implicit in the way Prolog
maintains variable bindings through unification and backtracking.
Example 1: Consider the following rules:

sg(X,Y) :- flat(X,Y)

sg(X,Y) - up(X,Z1), sg.1(Z1,22), flar(Z2,Z3), sg.2(Z3,Z4), down(Z4,Y)

Query: sg(john,?) |
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This is a non-linear version of the same-generation program [Bancilhon et al 86]. We have
numbered the sg occurrences in the second rule for convenience. The earlier versions of the
Magic Sets and Counting algorithms fail to rewrite the above rules.

Given the query, the natural way to use the second rule seems to be to solve the predicates in
the indicated order, using bindings from each predicate to solve the next predicate. This infor-
mation passing strategy may be represented by the following sip:

{sgn} >x up; {58y, up} —>z158.1 @
{sgn,up, sg.1} 5z, flat;
{sgn,up,sg.1,flat} —z358.2
Observe that in this sip, each set at the tail of an arc contains also predicates appearing in pre-
vious sets. Another sip that seems to represent the same order of information passing steps is:

{sgn} —x up; {up} —z158.1 (Im

{sg.1} -z, flat ; {flat} —z358.2

(1

The difference between the two sips is that in the first, as we proceed from left to right, we
carry along the bindings for all variables that have been computed so far. (This is implied by
the contents of the arcs’ tails and labels.) In the second, "past" information is not used. For
the example as given, this does not seem to matter. The difference can be illustrated as fol-
lows. Assume that in the example a variable W is added to the predicates up and flat. The first
sip can be changed by adding W to the label of the arc entering flat. This is possible since a
predicate containing this variable appears at the tail of the arc. For the second sip we can not
make such a change to the arc label, unless we add the predicate up to the tail.i If the second
sip is not changed, we can actually compute flat with Z2 bound and obtain some W values
that are not compatible with the W values produced by the 'evaluation of up. The incompati-
ble values will be dropped only by the final join of all body predicates.

Intuitively, it seems that methods that use all the available information are more efficient. For
our purposes here, we have found it desirable to provide a definition that is as general as possi-
ble, so as to include as many strategies as possible in our framework.

To allow for the convenient representation of sips in which all previous binding information
is used, we introduce compressed arcs, denoted ->->. Such an arc implies that the set at its tail
consists of all predicates that appear there and also of all their predecessors in the partial order
defined by the sip. However, the set N must still satisfy conditions 2(, ii).

Example 1 (continued): the sip (I) can be represented in compressed form as follows:

1 If we choose to always pass all available information, then we can omit the labels altogether, since they can
be deduced from the heads and tails of the arcs. Then, the change in the sets of artributes would not change
the first sip at all.
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{sgn)} =—xup;  {up} 5—z158.1 (1)
(sg.1} =—zo flar ; (flat} 5—7358.2
[
A sip in which all arcs are compressed is called compressed. We can either view such a sip as
an abbreviation, or we may view it as a sip for which the semantics of evaluation includes
remembering past information.

So far, we had arcs entering both base and derived predicates. The information passed along
an arc is indeed important for both types, but for somewhat different reasons. A base predi-
cate is always directly evaluable. Binding information is used as a selection condition (which
may have a considerable influence on the method, as well as on the size of the result). Bind-
ings passed to derived predicates influence the computation by restricting the subqueries that
are generated. In this paper we are interested in binding propagation and how it can be used to
improve the efficiency of evaluation in the presence of recursion. Our transformations make
no use of bindings passed to base predicates. We therefore generalize our notation to allow
more succint representation of sips, in which only arcs entering derived predicates are
represented.

Instead of a set at the tail of an arc, we now allow an ordered pair of sets; the second set con-
tains only base predicates. We use the notation Ny; N, --> ¢ .The meaning is that the predi-
cates in N, are evaluated and joined. This provides bindings used in the evaluation of the
base predicates in N,. (The variables that are bound can be deduced by looking at the variable
sets of N, and N,.) Then the join of Ny N, is used to produce bindings passed along the
arc.

Example 1 (continued): The sip (I) may now be written as follows
{sgn; up} =z, 58.1 (IV)
{sgy,up,sg.1; flat} —z358.2
Note that replacing the semicolon with a comma in the first arc would produce a different sip,
in which up is evaluated with no bindings. The sip (I) can be written now as follows:
{sgn; up} —z1 8.1 V)
{sg.1; flat} —z358.2
¥

In the sequel, when compressed arcs are used, preceding pre'dicates (of predicates in the tail of
a sip arc, according to the ordering induced by the sip) are to be added to the first component
of the tail.

2.1. Partial Sips

Our definitions open the way to consider relationships between sips, in particular, when can
one sip be considered to be "better” than another? As a special case, we can distinguish
between full and partial sips. A partial sip is a sip that does not always propagate all available
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information. A sip G is contained in a sip G’ if for each arc N — ¢ is G, with label %, there
exists an arc N' — ¢ in G’, with label 7/, such that N ¢ N’ and % < . The containment is
proper if at least one tail, or one label of G is properly contained in the corresponding tail or
label of G’ or if G’ contains arcs that do not exist in G . A sip is partial if it is properly con-
tained in another sip. We note the following special cases of partial sips:

1. Not all predicates appear as heads in sip arcs. (Recall that each predicate is connected to the
head by a chain of variables, so in principle, it is always possible to pass information to it.)

2. An arc label does not contain all variables that appear in tail predicates and that can cover
arguments of the head. (This implies that there is a free argument in the head that could have
been bound using goals that were solved before it.)

3. The sip is not compressed. (Otherwise, we do not use the smallest possible set of bindings
for the bound arguments.)

Example 2: Consider the sip for 1::: second rule in the previous example. It is a full sip, but it
becomes partial if we modify it as follows:

(sg? s up} —>z158.1
{flat} —z358.2
The tail of the second arc is a base predicate. This arc does not depend on the bindings for the

head predicate. It uses values from the base predicate, flar to restrict the computation of sg. 2,
but these values are independent of the bindings known for the head predicate. []

3. The Adorned Rule Set

An adornment for an n-ary predicate p is a string a of length n on the alphabet {b, f}, where
b stands for bound and f stands for free. We assume a fixed order of the arguments of the
predicate. Intuitively, an adorned occurrence of the predicate, p?, corresponds to a computa-
tion of the predicate with some arguments bound to constants, and the other arguments free,
where the bound arguments are those that are so indicated by the adornment. For example,
p”bf corresponds to computing p with the first two arguments bound and the last argument
free. If p (X, Y, Z) appears in the head of a rule, then we expect the rule to be invoked with X
and Y bound to constants. If p(X, f (X,Z), W) is the head of a rule, then the rule will be
invoked with X and f (X, Z) bound to constants. Note that since bindings refer to arguments
(positions) of p, if X is bound but Z is not, then f (X .Z) is considered to be free. For brevity,
we often refer to an argument in a position designated as bound (free) by the adomment as a
bound (free) argument.

Let a program P and a query g (C X) be given, where € is the vector of bound arguments and

X is the vector of free arguments. q is called the query predicate. We construct a new,

adorned version of the program, denoted by P%_ In the construction we replace derived

predicates of the program by adorned versions, where for some predicates we may obtain

several adorned versions. For each adorned predicate p?, and for each rule with p as its head,

we choose a sip and use it to generate an adorned version of the rule (the details are presented
{
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below). Since the head of a rule may appear with several adornments, it follows that we may
attach several distinct sips to versions of the same rule, one to each version.

The process starts from the given query. The query determines bindings for ¢, and we replace
g by an adorned version, in which precisely the positions bound in the query are designated as
bound, say ¢¢. In general, we have a collection of adorned predicates, and as each one is pro-
cessed, we will mark it, so that it will not be processed again. If p? is an unmarked adorned
predicate, then for each rule that has p in its head, we generate an adorned version for the rule
and add it to P%?; then p is marked as processed. The adorned version of a rule contains addi-
tional adorned predicates, and these are added to the collection, unless they already appear
there. The process terminates when no unmarked adorned predicates are left. Termination is
guaranteed, since the number of adorned versions of predicates for any given program is finite.

Let r be a rule in P with head p. We generate an adorned version, corresponding to an
(unmarked) adorned predicate p?, as follows. The new rule has p? as a head. Choose a sip s,
for the rule, that matches the binding a. So, the special predicate p, is the head p restricted to
arguments that are designated as bound in the adornment a. Next, we replace each derived
predicate in the body of the rule by an adorned version (and if this version is new, we add it to
our collection). We obtain the adorned version of a derived predicate in the body of the rule
as follows. For each occurrence p; of such a predicate in the rule let x; be the union of the
labels of all arcs coming into p;. (If there is no arc coming into p;, let ; denote the empty
label.) We replace p; by the adorned occurrence p*, where an argument of p; is bound in g;
only if all the variables appearing in it are in ;. (For a predicate occurrence with no incoming
arc, the adornment contains only f ’s. For our purposes here, we do not distinguish between a
predicate with such an adornment and an unadorned predicate.) The arguments of the predi-
cates in the new rule are the same as in the original rule. Since the adornments attached to a
rule’s predicates are determined by the sip that was chosen, the sip is attached to the rule.

Example 3: The following is the adorned rule set corresponding to the non-linear same gen-
eration example, for the sip of example 1, as presented in generalized notation (IV) with arcs
entering only derived predicates:

1. 5g (X,Y) :- flat(X,Y)

2.5¢% (X,Y) - up(X,Z1), sg¥f (Z1,22), flar(Z2,Z3), sg ¥ (23,Z4), down(Z4,Y)

Query: sgbf (john,Y)?
We will use these adorned rules to illustrate the rule rewrite algorithms presented later. Note
that if we use the partial sip of example 2 instead, we obtain the same adorned program. The
difference between the sips will only become significant in the next stage of the transforma-
tion. (It is not the case, however, that all sips for the same rule generate the same adorned ver-
sion.) []

Thus, in general, it is important to remember the sips that were used to generate the adorned
program, since they are used in the following transformations.
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Note that a single adorned version of a rule is chosen for each adorned version of the head
predicate. Thus, all goals whose binding pattern matches the adornment in an adorned head
predicate are solved using the same adorned version of the rule, chosen at compile time. This
does not cover dynamic strategies that choose a sip for a goal at run time, that is, allow two
goals with the same binding pattern to be solved with different adorned versions of the rule.

Given an unadorned program, an adorned predicate p® can be viewed as a query form. It
represents queries of the form p ()), in which all arguments corresponding to b ’s in adornment
a are assigned constants. The same view holds for an adorned program, except that now p?is
both a predicate name and a query form that represents a class of queries on itself. Keeping
these slightly different viewpoints in mind, we can now consider the equivalence of adorned
and unadorned programs.

For programs P, and P, (where each may be adorned or unadorned), and a query form p?, we
say that (P, p®) and (P,, p?) are equivalent, if for any assignment of constants to the argu-
ments of p (or p?, for an adorned program) that are bound in @, the two programs produce the
same answer for the resulting queries onp (p?).

Theorem 3.1: For each p? that appears in P%, (P, p?) and (P%, p?) are equivalent.

Proof: First, we note that for each rule of P%¢, if the adornments are dropped, we obtain a rule
of P. It follows that if a rule of P%? is applied to some facts to produce a new fact, then the
unadorned version of the rule can be applied to the unadorned versions of those facts to gen-
erate the new unadorned fact. Thus, it is straightforward to convert a derivation tree in p
into a derivation tree in P for the same fact.

In the other direction, we note a simple invariant in a bottom-up computation of P and P
All the adorned versions in P% of a predicate in P contain the same set of tuples within each
iteration, and this is the same set contained in the corresponding unadorned predicate in P. l

a

We can now state the main result of this section, namely that our transformation preserves
equivalence.

Corollary 3.2: (P, ¢ (T, X)) and (P%, q°(C, X)) are equivalent.

Proof: The proof follows from the definition of program-query form equivalence. []

4. Generalized Magic Sets

Henceforth, we only consider the adorned set of rules, P The next stage in the proposed
transformation is to define additional predicates that compute the values that are passed from
one predicate to another in the original rules, according to the sip strategy chosen for each
rule. Each of the original rules is then modified so that it fires only when values for these
additional predicates are available. These auxiliary predicates are called magic predicates
and the sets of values that they compute are called magic sets. The intention is that the

+ We thank one of the referees for pointing out a simplification in the original proof.
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bottom-up evaluation of the modified set of rules simulate the sip we have chosen for each
adorned rule, thus restricting the search space.

Consider, for example the ancestor example of Section 1. assume that for the second rule we
choose the following sip

{anc; par} —z anc.1

The adorned program then is:

anc” (X,Y) :- par(X, Y)

anc¥ (X, Y) :- par(X, Z), anc¥ (Z,Y)

Query: anc (john, Y)
We want to restrict the computation only to the ancestors of john. Let magic_ancbf be a new
predicate, of arity one, in which we intend to store the values for which anc needs to be com-
puted. We start with

magic_anc? (john)
Next, from the second rule we have that if we need to compute the ancestors of say, X, and
par(X, Z) holds, then we will need also to compute the ancestors of Z. Hence we have

magic_anc” (Z) :- magic_anc® (X), par(X, Z)
Finally, to make the second rule fire only for the appropriate values, we change itto

anct (X, Y) :- magic_anc® (X), par(X,Z), magic_anc¥ (Z), anc* (Z,Y)
(We will see later that a simpler transformed rule suffices.) It can now be seen that in a
bottom-up computation the rule will not fire unless X and Z are first computed to be in the
magic predicate, and that this happens only for ancestors of john (and for all of them).
The transformation to be described follows the same general ideas. It consists of the follow-
ing.
1. We create a new predicate magic_p® for each p? in P _(Thus, we create magic predicates
only for derived predicates, possibly only for some of them.) The arity of the new predicate is
the number of occurrences of b in the adornment a, and its arguments correspond to the
bound arguments of p?.
2. For each rule r in P, and for each occurrence of an adorned predicate p in its body, we
generate a magic rule defining magic_p® (see below). (Note that an adorned predicate may

have several occurrences, even in one rule, so several rules that define magic_p“ may be gen-
erated from a single adorned rule.)

3. Each rule is P® modified by the addition of magic predicates to its body.

4. We create a seed for the magic predicates, in the form of a fact, obtained from the query.
The seed provides an initial value for the magic predicate corresponding to the query predi-
cate. Using our notation above, the seed is magic_q°®(C).

We now explain the second step in more detail. We use the following notation. Greek letters
(possibly subscripted) are used to denote argument lists. If % denotes the argument list of a
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predicate p“, then xf (xb) denotes y with all arguments that are bound (free) in adornment ’a’
deleted. Consider the adorned rule:

r: pY:- 109,950y, ....q2®,)

Let s, be the sip associated with this rule. Assume that the predicates in the body are ordered
according to the sip, as per condition 3’. (Those that participate in the sip precede those that
do not, and the predicates in the tail of an arc precede the predicate at the head of the arc.)

Consider g;. Let N --> gq; be the only arc entering g; in the sip. We generate a magic rule
defining magic_qf* as follows. The head of the magic rule is magic_g; (6") Ifg;,j<i,isin
N, we add g; ’(6 ;) to the body of the magic rule. If g; is a derived predicate and the adorn-
ment a; contains at least one b, we also add magic_g; ’(9”) to the body. If the special predi-
cate denoting the bound arguments of the head is in N, we add magic_p (x ) to the body of
the magic rule.

If there are several arcs entering ¢;, we define the magic rule defining magic_q in two steps.
First, for each arc N; --> ¢; with label y;, we define a rule with head label_g; _j(x;). The
body of the rule is the same as the body of the magic rule in the case where there is a single
arc entering ¢; (described above). Then the magic rule is defined as follows. The head is
magic_qf* (9,-”). The body contains label_q; _j (x;) for all j (that is, for all arcs entering ¢;).

In the third step, we modify the original rule by inserting occurrences of the magic predicates
corresponding to the derived predicates of the body and to the head predicate, into the rule
body. In principle, the magic predicates can be inserted anywhere in the rule, but it helps to
understand how they interact with the other predicate occurrences by considering specific
positions for the insertions. The position for the insertion of magic_p a(x%) is at the left side
of the rule’s body, before all other predicates. The posmon for insertion of magic_g; (9 ) is
just before the occurrence of ¢*. Inwitively, magic_g{* (0 b ) computes the values that may be
passed to g from the left during evaluation of the rule. Insertion of magic_g serves as a
guard. In a bottom-up evaluation, the rule does not fire, unless the appropriate values are first
computed in magic_gf. The occurrence of magic_p® serves the same purpose for the rule’s
head.

Example 4: Using the sips presented in Example 1 (IV), the Generalized Magic Sets strategy
rewrites the adorned rule set corresponding to the non-linear same generation example into the
following set of rules. (The rule numbers refer to the adomeg rule set. Further, we simplify the
rules by discarding some unnecessary occurrences of magic predicates from the rules. Propo-
sition 4.2 describes when this can be done.)
magic_sg o (john) [Seed; from the query rule]
magic_sg¥ (Z1) :- magic_sg¥ (X), up(X,Z1) [From rule 2, 2nd body literal]
magic_sg ¥ (23) :- magic_sg" (X), up(X,Z1), sg b (71,72), flat(Z2,Z3)
[From rule 2, 4th body literal]
sg¥ (X,Y) :- magic_sg¥ (X), flat(X,Y) [Modified rule 1]
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sg¥ (X,Y) :- magic_sg® (X), up(X,21), sg¥ (21,22),
flat(Z2,23), sg ¥ (23,Z4), down(ZA4,Y) [Modified rule 2]
If we apply the transformation to the partial sip (V), we obtain instead
magic_sg ¥ (john) [Seed; from the query rule]
magic_sg¥ (Z1) :- magic_sg” (X), up(X,Z1) [From rule 2, 2nd body literal]
magic_sg¥ (Z3) :- magic_sg¥ (1), s (21,72), flax(22,23)
[From rule 2, 4th body literal]

sg? (X,Y) - magic_sg¥ (X), flat(X,Y) [Modified rule 1]
sg? (X,Y) :- magic_sg¥ (X), up(X,Z1), sg ¥ (Z1,22), flar(22,Z3),
sg¥ (23,74), down(Z4,Y) [Modified rule 2]

Let P™8 denote a program obtained from P % by the transformation above. We now consider
the correctness of the transformation. There is a factor we need to consider first. For the given
query, we have a seed definition for the magic sets. If we choose a different query with the
same query form, the same magic predicates, magic predicate definitions and modified rules
will result, but the seed will be specific to the query. Therefore, let us consider the seed not to
be a part of P™8 . We say that (P p®) and (P™8, p?) are equivalent if the two programs pro-
duce the same results for every instance of the query form p?, if the corresponding seed is
added to P™8 .

Theorem 4.1: Let P%, P™ be as above, and let p® be a predicate that appears in P%  Then
(P, p?) is equivalent to (P8, p?).

Proof: One direction is simple. Each rule of P8 that is derived from a rule of P%  is more
restrictive than that rule, since it has additional predicates in its body. It follows that any
answer produced by P™ for a query can also be produced by P,

The other direction is proved by induction on the height of derivation trees of facts in P%.
The basis of the induction is the set of derivation trees of height one. These are simply base
facts, and they are also derivation trees for P™¢. Consider now a derivation tree of height n,
and assume that the rule used to derive its root is the following

r. pa(X) - qtlu (el)a qu(OZ): s e }q:”(en)
Let the instance of the rule at the root be

pee) - g (c1), q57(c2). - . -, 4n"(cn) (AD)
The corresponding rule instance in P"™ has the form
p®(c) :- magic_p®(c®), Q1. s O (MG)

where each Q; is either a pair of predicates

magic_gf*(c?), qf(c:);
or a single predicate
g (c;)
(The second case occurs when Q; is either a base predicate or a derived predicate with an

i
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adornment containing only f ’s, or it is a derived adorned predicate, but we have chosen to
omit the corresponding magic predicate.) By the induction hypothesis, there exist derivation
trees in P™ for the derived predicate occurrences in the body of the rule, since each of them
is the root of a derivation tree of P% tree of height less than n. Note however, that for each
such derivation tree the (new) seed used in it should correspond to the fact being derived. For
the fact ¢ (c;), the seed is magic_q* (c,-b). Since these seeds are not known a priori, to rely
on the induction hypothesis, we have to show that they can be derived in P™¢ augmented with
the seed for the original query. This will also show that all the facts in the body of the rule
instance (MG) above are derivable in P™%, from which it follows that the fact p®(c) is deriv-
able as well.

The proof is by induction, where the induction is on the position of the predicate occurrence in
the rule body. For magic_p®, the fact that is to be derived is magic_p* (c?). However, note
that p®(c) is an answer for a query that is an instance of p?. The seed for that query is, by
assumption, given to us. It is precisely the desired fact, magic  p° (c?). We see now that each
of the other magic facts that we need, magic_g* (¢?) (for each i such that g; is derived), is
derivable. Indeed, fori = 1, if ¢, is derived, then

magic_q$' (x}) - magic_p® (")
is a magic rule defining magic_q$'. It follows that magic_q{’ (c’{ ) = magic_p° (c?) is deriv-
able. For i > 1, (if ¢; is derived), we use the fact magic_p“ (c?) and the induction hypothesis
to show the existence of a derivation tree for gf(c;), j <i, and thus derive the fact
magic_q{*(c;). [l
In constructing the magic rules and the modified rules, we added a number of magic predi-
cates to the body. We now prove an important lemma which shows that in each rule some of
these magic predicates may be dropped without loss of information. That is, the sets of values
computed by the magic predicates remain unchanged, and the number of firings of the
modified rules remains unchanged.

Consider an adorned rule and a sip for it. Let us define p => ¢ as follows. If the sip contains
an arc N --> ¢, and N contains p, thenp =>q. If p =>/ and ! => g, thenp =>¢. (We can-
not have p => g and ¢ => p simultaneously because the sip induces a total ordering.) Let us
define the order of q to be the length of the longest chain ¢; => g;+; => ... => q. The order is
0 if there is no such chain.

Consider the set P™8-%"° that is obtained from P™ by repeated applications of the following
transformation:

Let 7 be an adorned rule and let 7’ be a (magic or modified) rule generated from r. If the body
of r’ contains occurrences of both magic_p® and magic_p{, and p; => p;, then delete the
occurrence of magic_p¥.

We have the following proposition.

Proposition 4.2: Let P™ and P™-%* be as above, and let p? be a predicate that appears in
P™  Then, (P™, p?) is equivalent to (P™8-%, p?). []
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The previous lemma tells us that we may drop some occurrences of magic predicates while
passing only the information indicated by the sip. We have stated the above lemma without
proof since a simpler and stronger result can be shown to hold, as observed in [Balbin et al.
87).

Proposition 4.3: Let r be arule in P, and let r’ be a (magic or modified) rule in P™8 that is
obtained from r. Let p, denote the bound arguments of the head of r in the sip associated
with r. Then, a magic predicate in the body of r’ can be deleted unless it corresponds to p;,.

[

The intuition is that the magic literal in the rules defining a predicate ¢“ already achieves the
restriction that is obtained by adding the corresponding magic predicate to an occurrence of
q®. The rewriting algorithm is simplified in [Balbin et al. 87] by not introducing any of the
redundant magic predicates.

5. Generalized Supplementary Magic Sets

The Generalized Magic Sets algorithm for rewriting a set of adorned rules succeeds in imple-
menting a given set of sips, but it suffers from the drawback that many facts are evaluated
repeatedly. If p => ¢ in some adorned rule, then the evaluation of magic_q repeats much of
the work done in evaluating magic_p; and further, the evaluation of the modified rules repeats
the work done in evaluating the magic sets.

Consider the non-linear same-generation example presented earlier (Example 4). The join of
magic _sg b and up in the first magic rule is evaluated again in the second magic rule. Further,
every join in the second magic rule is evaluated again in the second modified rule defining
sg¥ .

We now present another algorithm for rewriting a set of adorned rules. This algorithm is
motivated by the drawback of the previous algorithm, and by the observation that much of the
duplicate work can be eliminated if we store intermediate results that are potentially useful
Jater. We store these results in special predicates called supplementary magic predicates, fol-
lowing Sacca and Zaniolo [Sacca and Zaniolo 86], who used essentially the same idea in gen-
eralizing the versions of the Magic Sets and Counting algorithms presented in [Bancilhon et
al. 86].

The algorithm is as follows. We first order the predicates in the body of each adorned rule
according to the total ordering induced by the sip associated' with that rule.

For each adorned rule:

1. We introduce a number of supplementary magic predicates , supmagic], associated with
this rule, and define them using supplementary magic rules.

2. For each occurrence of an adorned predicate p? in the body of the adorned rule, we gen-
erate a magic rule defining the magic predicate magic - p? if the sip associated with r

+ This was also pointed out by one of the referees.
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contains anarc N -->p.

3. We generate a modified rule from the adorned rule by replacing some of the predicates in
the body by a supplementary magic predicate.

Finally, we create a seed for the magic predicates, in the form of a fact, from the query.
Consider the adorned rule:

r: p?0 - 970,458y, ...,q5"(6,)

Let the body predicates be ordered in accordance with the sip ordering, and let g,, be the last
body predicate that has an incoming arc in the sip. We generate m supplementary magic
rules. The first supplementary magic rule is:

supmagic’ (¢;) :- magic_p® (x")
where ¢, is the set of variables that appear in arguments of xb .
Supplementary magic rule i,i=2 tomis:

supmagicl(¢;) :- supmagic{_y (9; 1), ¢{<1 (8; 1)
where ¢; is the set of variables that appear in arguments of ¢;_, or 6;_;.

In generating the supplementary magic rules, the following simple optimizations may be
applied. We may discard from ¢;, i = 1 to n, all variables that do not appear in any arguments
of y or 8;, j=1ton. Also, the supplementary magic rule defining supmagic? (¢;) may be
deleted if we replace every occurrence of this literal in a rule body by magic  p? (x?), where
p2(%) is the head of the adorned rule r.

We generate a magic rule defining magic_g{* if the sip s, contains an arc N -->g;. (In gen-
erating the predicate name magic_g*, we exclude any subscripts of ¢; introduced for the pur-
pose of distinguishing different occurrences of the same predicate.) This magic rule is:

magic_qf* 87) :- supmagicl(®;)
The modified rule corresponding to r is:
p° ) - supmagicy, ®n), 4" On), - - -» 4a" (5)
Finally, if the query is ¢ (1), we also add a magic rule corresponding to it, to act as the seed:
magic_g*™")
Thus, in addition to auxiliary ‘‘magic’’ predicates associated with each adorned predicate, we
also define auxiliary *‘supplementary magic’” predicates associated with positions in a rule.

Example 5: Continuing with the same generation example, the Generalized Supplementary
Magic Sets algorithm produces the following rules by rewriting the adorned rules according to
the given sip. (The rule numbers refer to the adorned rules.)
magic_sg bf (john) [From the query rule]
supmagic # (X,Z1) :- magic_sg¥ (X), up(X,Z1) [From rule 2]
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supmagic32 X,Z2) :- supmagic22 (X,Z1), sg b (71,22) [From rule 2]

supmagic } (X,Z3) :- supmagic # (X,22), flav(22,23) [From rule 2]

sg¥ (X,Y) :- magic_sg® (X), flat(X,Y) [Modified rule 1]

sg¥ (X,Y) :- supmagic } (X,Z3), sg% (23,24), down(Z4,Y) [Modified rule 2]

magic_sg o (z1) :- supmagicz2 (X,Z1) [From rule 2, 2nd body literal]

magic_sg b (73) :- supmagic Z (X,Z3) [From rule 2, 4th body literal]
1

Let us denote by P*# ™™ any program obtained by this transformation.

Theorem 5.1: Let P P*#~™& be as above, and let p® be a predicate in P%. Then
(P™, p?)is equivalent to (P*# ™8, p?).

Proof: As in the previous case, the proof in one direction is simple. The other direction is
proved by induction on the height of derivation trees of facts in P% _ The proof is similar to
the previous proof. It suffices to note that the seeds have the same form as in the previous
case, and that the seed for ¢/ (c;) can be obtained by first generating supmagic/(d), where d
is a vector of constants, and then using the auxiliary rule magic_q{(..) :— supmagic!(..) to
generate the required seed magic_q{*. []

The Alexander strategy, described in [Rohmer and Lescoeur 85], is essentially the General-
ized Supplementary Magic Sets strategy, although they only consider Datalog.

6. Generalized Counting

Counting is a further elaboration on the theme of restricting the search by auxiliary predicates.
Using magic predicates, we were able to restrict the invocation of a predicate to values that
were reachable from those given in the query. The new idea here is to keep track of which
rules and which predicate occurrence in each rule were used to reach a vector of values that is
now used in the invocation of a predicate. This is done using indices that essentially encode
the structure of the computation used to generate a fact. These indices allow us to perform cer-
tain powerful optimizations in some cases. The Counting method was in fact originally
presented [Bancilhon et al. 86, Sacca and Zaniolo 86a] with these optimizations as an integral
part of the transformation. (Like the Magic Sets method, the original version was of restricted
applicability, and for example, could not handle the same generation example that we have
used as a running example.)

We have chosen to separate the indexing feature of the method from these further optimiza-
tions in order to show the underlying relationship of this method to the Generalized Magic
Sets method. In this paper, therefore, the Generalized ‘‘Counting’> method refers to only a
part of the transformation usually associated with this name. The optimizations that comprise
the second part of the transformation (and provide the raison d’etre for the elaborate indexing
mechanisms introduced in this section) are presented in a separate section (Section 8). Before
that, we also show how the Generalized Counting method (essentially Generalized Magic Sets
with indices) can be refined by using auxiliary ‘‘supplementary’’ predicates, just like the Gen-
eralized Magic Sets method.
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Since computing these indices represents additional work, we expect these methods to be used
only when the further optimizations described in Section 8 are applicable. (The indices by
themselves do not provide additional selectivity.)

We now describe the Counting transformation. We first replace each adorned derived predi-
cate p® in the adorned rules, where a contains at least one bound argument, by an
indexed version of this predicate, p_ind?, that has three new arguments. These arguments are
used for constructing indices, and we assume that they are the first three arguments. Note that
the adornment a refers only to the non-index fields. For each rule 7 in P

1. For each occurrence of an adomed predicate p? in the body of the adorned rule, we gen-
erate a counting rule defining the counting predicate cnt_p® if the sip associated with r con-
tainsanarc N -->p. _

2. The rule is modified by the addition of counting predicates to its body.

Finally, we create a seed for the counting predicates, in the form of a fact, from the query.

Before each of these steps is explained, let us consider how the rules and predicates used in a
derivation may be encoded in a predicate, together with the derived value(s). Assume we have
m tules’ I, numbered ro 10 7,,_;. Then the sequence of rules used in a derivation can be
represented by a sequence of numbers, each in the range [0 .. m—1]. Any standard encoding
can be used to represent such sequences by numbers. We will use the encoding that represents
the sequence ig, i, ....ix by the value (.((igxm) +i)xm + ..)xm + i;. In other words, given
a number that represents a sequence, to concatenate an element to the sequence we multiply
by m and add the element. The last element is the remainder modulo m, and previous ele-
ments can be obtained by repeated use of the modulus operation. A similar encoding is used
for predicate occurrences. Assuming that there are at most ¢ occurrences of predicates in any
rule’s body, we use ¢ as the base for the encoding. T2 These two encodings occupy the second
and third positions of the counting predicates. The first position is used to record the number
of rules that were applied so far (starting from the seed). (Note that this number can be com-
puted from the encodings; it is convenient to have an explicit representation for it.)

We now describe each step of the Counting algorithm in detail. It is understood in the follow-
ing that the index fields are omitted from arguments of base predicates and adorned predi-
cates p® where a contains no bound arguments.

Consider the adorned rule:
ri:p® 00 - 97 (81,9502, ..., 47°(8,)
We generate a counting rule defining cnt_q_ind} if the sip associated with r; contains an arc’

N -->q;.The head of the counting rule is cnt__q_indj"' (I +1,K xm+i H xt+j,0 }’). If g, isin N,
we add q_ind® (I +1,K xm+i H xt+k ;) to the body of the counting rule. If ¢, is a derived

+ 1,2 We call a rule an exit rule if all the predicates in its body are base predicates. We need to
encode only non-exit rules. Similarly, we need only keep track of invocation of derived predi-
cates. For clarity, we do not use these optimizations in our examples.
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predicate and the adomment a; contains at least one b, we also add
cnt_q_ind@* (I +1,K xm+i Hxt+k ,02) to the body. If the special predicate denoting the bound
arguments of the head is in N, we add cnt_p_ind 4(I,K HxP) to the body of the counting
rule.

The modified rule corresponding to adorned rule r; is:

p ind®( K HIty):- cnt_p_ind®( K HIt;x), q_ind§' I+1.K xm+i H+1,8,)
s q ind® (I +1,K xm+i H+n 8,)

If there is no arc entering g; in the sip, the three index fields in the modified rule given above
are omitted. Further, we could add the counting predicates corresponding to the predicates q j"'
to the body of the modified rule, but we have a lemma (see below) which tells us that they are
unnecessary, and so we have omitted them altogether for simplicity.

Finally, if the query is ¢%(n), we add the fact cnt_g_ind (0,0,0m?) to serve as the seed for
the counting predicates.

Example 6: Continuing our running example, we present below the rewritten rules produced
by the Generalized Counting method.

cnt_sg_ind? (1+1, k¥2+2, h*5+2, Z1) =- cnt_sg_ind% (1, k, h, X), up(X,Z1)
[From rule 2, second body literal]
cnt_sg_ind® (1+1, k*242, h*5+4,Z3) - cnt_sg_ind"” (1, k, h, X), up(X,Z1),
sg_ind” (I+1, k*2+2, h*5+2, Z1,72), flaw(Z2,Z3)
[From rule 2, fourth body literal]

sg_ind” (@1, k, 1/5,X,Y) - ent_sg_ind¥ (1, k, h/5, X), flat(X,Y) [Modified rule 1]
sg_ind¥ (1, %, b/5,X,Y) - ent_sg_ind® (I, k, W/5, X), up(X,Z1),

sg_ind® (I+1, k*2+2, h+2, Z1,72), flat(Z2,Z3), |

sg_ind® (I+1, k*2+2, h+4, Z3,74), down(Z4,Y) [Modified rule 2]
cnt_sg_ind 5 (0, 0, 0, john) [From the query rule]

(

Let us denote a program obtained from P% by the transformation above by P*¥  We now
need a convention for comparison of the queries in P% and P°"™. We will say that
(P p?) is equivalent to (P, p_ind®) are equivalent if for any vector 0 of appropriate
arity, with constants in the positions bound by a, the program-query (P, p®(0)) has the
same set of answers as the program-query pair (P°*™, p_ind®(,K, H, 8)), for any values of
I,K,H. (Note that we are not restricting attention to queries with a triple of 0’s. We need
arbitrary triples for the induction hypothesis of the theorem below. Intuitively, it should not
matter which numerical values are supplied with the query, so this is not a real generaliza-
tion.) We will also use the same conventions as in the previous sections, regarding seeds. We
now have the following theorem.

+ We assume that there is at most one such arc. The generalization to the case where there are
several such arcs is similar to that in the Generalized Magic Sets strategy.
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Theorem 6.1: Let P and P®¥ be as above and let p? be a query form. Then P* p)and
(PC°“*, p ind®) are equivalent.

Proof: Again, one direction is simple, since each rule of P°** is more restricted then the
corresponding rule of P 44 The other direction is proved by induction on the height of deriva-
tion trees of facts in P2,

Derivation trees of height zero are base facts, and are also derivation trees of PO For a
derivation tree of height n, assume the rule used in P% 1o derive its root is the rule

ri PP - 91 (8,95 (©2), ..., 45" (6,)
and the instance of the rule that is used is

p_ind®(c) = q_ind{' (cy) ,...q_indy"(cp)
By the induction hypothesis, there exist derivation trees in P*“¥ for the extended versions of
the derived predicate occurrences that appear in the body, for any values of the numerical tri-
ples that may be added. Here again, we have to show, however, that appropriate seeds can be
generated first. Let us consider the case where p_ind”(I, K, H, c¢) is the instance of the root
for which we want to show the existence of a derivation tree. The seed,
cnt p ind®(d,K,H, c?) is by assumption given to us. We now prove by induction on the
position of a predicate occurrence in the body that the appropriate seed for each predicate,
which is an instance of the corresponding counting predicate, can be generated. The details
follow the line of the proof of Theorem 4.1 and are omitted. []

Let PS™-P" be defined similarly to P™8-°P*, We have the following lemma that allows us to
delete unnecessary occurrences of couting predicates from rule bodies.

Lemma 6.2: Let P and P - be as above, and let p? be a predicate that appears in P,
Then, (P, p?) is equivalent to (P“-%* , p?).

Proof: The proof is similar to the proof of Proposition 4.2 and is omitted.  []

7. Generalized Supplementary Counting

The Generalized Counting algorithm suffers from duplicate work since, like in the General-
ized Magic Sets algorithm, several the bodies of several rules contain the same joins. We use
the same idea - of eliminating this duplication by storing potentially useful intermediate
results - to define the Generalized Supplementary Counting method.

The algorithm is as follows. We first order the predicates in the body of each adorned rule
according to the total ordering induced by the sip associated with that rule. We also replace
each adorned derived predicate p? in the adorned rules by an extended version of this predi-
cate, p_ind?, that has three new arguments. These arguments are used for indices, and we
assume that they are the first three arguments. Now, for each adorned rule:

1. We introduce a number of supplementary counting predicates , supcnt], associated with
this rule, and define them using supplementary counting rules .

2. For each occurrence of an adorned predicate p? in the body of the adorned rule, we gen-
erate a counting rule defining the counting predicate cnt_p? if the sip associated with r con-
tains anarc N -->p.
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3. We generate a modified rule from the adorned rule by replacing some of the predicates in l
the body by a supplementary counting predicate and appropriately indexing the remaining
predicates.

Finally, we create a seed for the counting predicates, in the form of a fact, from the query.

We now explain each of the above steps in detail. It is understood in the following that the
three index fields are omitted from arguments of base predicates.

Consider the adorned rule:
r pY:- 970,950y, ...,9.°(,)

Let the body predicates be ordered in accordance with the sip ordering, and let g, be the last
body predicate that has an incoming arc in the sip. We generate m supplementary counting
rules. The first supplementary counting rule is:

supent’ (I K H ;) - cnt_p_ind®(I K H xP)
where ¢, is the set of variables that appear in arguments of xb , and I, K and H are running
indices.
Supplementary counting rule j, j = 2 to ms:

supent!(I K H ,0;) - supcnt]_y (I K H .0;_1), q_ind{} I+1.K xm+i Hxt+j-1,8;_)
where ¢; is the set of variables that appear in arguments of ¢;_; or §;_;.

In generating the supplementary counting rules, the following simple optimizations may be
applied. We may discard from ¢;,j=1 to m, all variables that do not appear in any arguments
of 4 or §;, k = j to m. Also, the supplementary counting rule defining supcnt] (I K H ,0;)
may be deleted if we replace every occurrence of this literal in a rule body by
cnt_p_ind®( K H ,xb ), where p? (%) is the head of the adorned rule r.

We generate a counting rule defining cnt_q_ind{" if the sip associated with the adorned rule
contains an arc N --> g;. (In generating the predicate name cnt_q_ind?, we exclude any sub-
scripts of ¢; introduced for the purpose of distinguishing different occurrences of the same
predicate.) This counting rule is:

cnt_q_ind® (I +1,K xm+i Hxt+j 8)) - supcnt[( K H 0;)
The modified rule corresponding to r; is:
p_ind®( K ,H,x) - supentl,(I K H b,), q_indar [ +1.K xm+i Hxt+m 0y,), . .., q_indy"©,)

(Note that none of the predicates following g_ind," contain index fields. This follows from
the fact that no sip arc enters any of them, and so they have no bound arguments.)

Finally, if the query is ¢%(n), we also add a counting rule corresponding to it, to act as the
seed:

cnt_q_ind®(0,0,0m%)
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Example 7: The same non-linear same generation query is rewritten as follows by the Gen-
eralized Supplementary Counting algorithm.
supcnt? (1, k, b, X,Z1) :- cnt_sg_ind™ (I, k, h, X), up(X,Z1) [From rule 2]
supent2 (I, k, h, X,Z2) :- supcnt 3 @1, k, h, X,Z1), sg_ind™ (1+1, k*2+2, h*5+2, Z1,72)
[From rule 2]

supcnt} 1, k, h, X,Z3) :- supcm‘32 (@, k, h, X,Z2), flat(Z2,23) [From rule 2]
sg_ind” (I, k, h, X,Y) :- ent_sg_ind% (I, k, h, X), flat(X,Y) [Modified rule 1]
sg_ind® (1, %, h, X,Y) :- supent 7 (I, k, h, X,Z3),

sg_ind™ (I+1, k*2+2, h*5+4, Z3,Z4), down(Z4,Y) [Modified rule 2]

cnt_sg_ind® (1+1, k*2+2, h*5+2, Z1) - supcnt 3 (I k, h, X,Z1)
[From rule 2, second body literal]
cnt_sg_ind® (I+1, k*2+2, h*5+4, Z3) - supcnt § (1, k, h, X,Z3)
[From rule 2, fourth body literal]
cnt_sg_ind b (0,0, 0, john) [From the query rule]
Let us denote by P*?~™ any program obtained by this transformation.
Theorem 7.1: Let P%¢ and P*#~°™ be as above, and let p? be a query form. Then P%,p%)
is equivalent to (P~ p?).
Proof: As in Theorem 6.1, the proof in one direction is simple. The other direction is proved
by induction on the height of derivation trees of facts in P The proof is similar to the previ-
ous proof. [}

8. Further Optimizations of Counting Methods

We now present some optimizations that may sometimes be used in further rewriting rules
produced by the Generalized Counting or Generalized Supplementary Counting Strategies.
They do not apply to the Magic Sets strategies since they rely on the indices generated by the
Counting strategies. As we remarked earlier, since computing the indices represents an addi-
tional overhead, we expect the Counting methods to be used only when the optimizations
described in this section are applicable. The improvement can be considerable, as the analysis
in [Bancilhon and Ramakrishnan 87] indicates.

Consider the rewritten program produced by the Counting method for the same generation
example (Example 6).
If we examine the second rule defining cnt_sg_ind o .

cnt_sg_ind® (I+1, k*2+2, h*5+4,Z3) - cnt_sg_ind" (I, k, h, X), up(X,Z1),

sg_ind®? (1+1, k*2+2, h*5+2, Z1,72), flat(Z2,Z3)

we find that it is equivalent to the following rule:

cnt_sg_ind® (I+1, k*2+2, h*5+4, Z3) - sg_ind™ (I+1, k*2+2, h*5+2, Z1,22), flat(22,Z3)
The deleted literals influence the rest of the rule only by joining with the first (non-index)

argument of sg_ind b _ which is Z1. However, we can identify every value for Z1 for which
this join succeeds using only the joins on index fields, by construction of the indices. Thus,
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deleting these literals does not change the tuples computed for cnt_sg_ind 5 . and the two rules
are equivalent.

This observation leads to our first optimization.

Lemma 8.1: Consider a rule  in the given program, with an arc N — g in the corresponding
sip. Consider the modified rule produced from r by the (Supplementary) Counting method, or
the (supplementary) counting rule generated from this sip arc. Denote this rule r,.

If no variable appearing in a predicate in N' (or an associated counting predicate) appears out-
side N in r,, except possibly in bound arguments of q_ind@, then all predicates in N (and
their counting predicates) may be deleted from the given rule.

Proof: The predicates in N (and their counting predicates) represent a join with the bound
arguments of ¢_indg* . By construction of the counting predicates, the projection of N that par-
ticipates in this join is a subset of the counting predicate for q_ind®. The indices identify the
subset that belongs in this projection. Since only facts that agree with the tuples in this count-
ing predicate are computed in g_indg*, the join with the predicates in N is satisfied for every
tuple in g_ind@, with the appropriate index values. We may therefore delete the predicates in
N from the rule. []

The intuition behind the above lemma is as follows. The deleted literals’ only purpose is to
provide values for the bound arguments of 6. This is done in the counting rule for the
corresponding counting predicate. Thus they may be dropped in the given rule.

If the variables in N appear outside N, the deleted literals still play d role in the modified rule,
and deleting them is not correct (if we do so, we will generate some tuples that might be ruled
out by the deleted literals). For example, if the body has:

... b1(X,2), b2(2), p(X,Y), ...

and X is bound in p by an arc {b1} —y p, then the literal b1(X,Z) is needed in the modified
rule to effect the join on Z.

We reproduce below the rewritten rules for the same generation example (from Example 6)
with the modifications allowed by the previous lemma.
cnt_sg_ind® (I+1, k*2+2, h*5+2, Z1) - cnt_sg_ind™ (1, k, b, X), up(X,Z1)
[From rule 2, second body literal]
cnt_sg_ind™ (I+1, k*2+2, h*5+4, Z3) - sg_ind® (I+1, k*2+2, h*5+2, 71,72), flat(Z2,Z3)
[From rule 2, fourth body literal]
sg_ind™ (1, k, W/5,X,Y) :- cnt_sg_ind” (I, k, W/5, X), flar(X,Y) [Modified rule 1]
sg_ind® (1, k, b/5, X,Y) :- cnt_sg_ind” (I, k, W/5, X), up(X,Z1),
sg_ind™ (141, k*2+2, h+2, Z1,22), flat(Z2,Z3),
sg_ind¥ (I+1, k*2+2, h+4, 23,Z4), down(Z4,Y) [Modified rule 2]
cnt_sg_ind b (0, 0, 0, john) [From the query rule]
1
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Let us again examine the second rule defining cnz_sg_ind b We observe that a further optimi-
zation is possible - we can replace Z1 in the body literal sg_ind Y by an anonymous variable.
The value in this argument does not influence the rule since the variable Z1 does not appear
anywhere else in the rule. What is important here is that only tuples of sg_ind Y that have cer-
tain values in this argument should be used to join with flaz. This is ensured by the indices
since they identify the appropriate sg_ind Y facts.

This leads to our second optimization.

Lemma 8.2: Consider a rule in the rewritten set of rules produced by the Counting or Supple-
mentary Counting method, either before or after applying Lemma 8.1. Consider a predicate
q_ind@® in the body. If for each variable in a bound argument of ¢_ind &, the variable does not
appear anywhere else in the rule, then the bound arguments of ¢_ind{* in that occurrence may
be designated as anonymous variables.

Proof: If each of the deleted arguments is a (distinct) variable, then none of them represents a
join with any other predicate in the rule. Since we are only interested in the free arguments,
and the values in the free arguments of a given tuple are determined by the indices, the value
in the bound argument is not a constraint on the values in the free arguments. So, we may drop
the bound arguments without changing the set of tuples computed by the rule. If one of these
arguments is a constant, or if the same variable appears in two bound arguments, then it is
necessary to observe that the counting predicate for q_ind is computed using these restric-
tions. Thus, every tuple with the appropriate indices will have the same constants in the
corresponding argument places, and identical values in argument places corresponding to the
same variable. []

If Lemma 8.2 applies to every occurrence of an adorned predicate ¢_indg* in the rewritten set
of rules, we may conclude that the values for these arguments are not needed. We may drop
these arguments, that is, decrease the arity of ¢_indg", in all rules of the program. In particu-
lar, the bound arguments may then be dropped from the heads of those rules with this adorned
predicate (g_ind*) in the head.

Now assume that some of the variables in bound arguments of ¢_indg" in a body of a rule
appear in the bound arguments of the head of the rule. Then, it appears that we cannot omit
these arguments. Assume that the head predicate is ¢_ind/’. It may be the case that the same
phenomenon happens with the bound arguments of q_ind®, where it appears in the body of
another rule. Namely, in that other rule the bound arguments are only needed for the bound
arguments in the head. We thus obtain a chain of justifications for the need to keep arguments
in predicates. If the chain “‘closes’’ by arriving again at q_ind;", then, intuitively, the support
is circular and we can drop all of these bound arguments.

Let us call a maximal set of mutually recursive predicates a block.

Theorem 8.3: (The Semijoin Optimization) Consider a block B of mutually recursive
(adorned) predicates in the rewritten set of rules produced by the Counting or Supplementary
Counting method. Suppose the following conditions hold for every predicate p in B, in every
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rule defining a predicate in block B:

1. No variable in a bound argument of (a body literal) p appears anywhere else in the rule,
except possibly in bound arguments of the head, or in some other bound arguments of the
same literal p, or in arguments of predicates in N, where there is an arc N — p in the
corresponding sip.

2. For each arc N — p encountered in (1), the variables appearing in N (or in associated
counting predicates) appear nowhere else in the rule, except possibly in bound arguments
of p_ind®.

Then, all the bound arguments of the predicates in B may be deleted (that is, their arities are

decreased) and for each rule defining a predicate in B, and each arc N — p encountered

above, the predicates in N may be deleted from the rule.

Proof: First, we note that Lemma 8.1 can be used to remove the predicates of N, for each arc
N — p that satisfies the conditions of the theorem. Now, what remains is a collection of argu-
ment positions that are bound positions of the predicates in B, such that the values assigned to
them cannot changed the values in any argument position outside this collection (of bound
arguments of predicates in B). They can only affect the set of values in the bound arguments
that occur in some tuple along with a given set of values for the free arguments. That is, if we
generate all possible tuples for predicates in block B using these rules, and then take the pro-
jection of the free argument positions, the result is identical to first deleting all bound argu-
ments from these rules and then computing all tuples. Since we are only interested in values
that appear in free arguments, we can therefore delete the bound arguments entirely. []

We refer to the above optimization as the semijoin optimization, because the intuition essen-
tially is that we perform a sequence of joins proceeding from one direction and at each stage
projecting out unnecessary columns. Since the join is recursively defined, we can only do this
by taking advantage of the indices.

Example 8:

The semijoin optimization applies to all occurrences of sg_indbf in the rewritten rules pro-
duced by the Generalized Counting algorithm. In particular, it applies to the second
occurrence of sg_indbf in modified rule 2. So we delete all body literals to the left of this
literal in optimizing the above rules using the semijoin optimization:
cnt_sg_ind¥ (I+1, k*2+2, h*5+2, Z1) :- cnt_sg_ind™ (I, k, b, X), up(X,Z1)
[From rule 2, second body literal]
cnt_sg_ind” (I+1, k*2+2, h*5+4, Z3) - sg_ind® (I+1, k*242, h*5+2, Z2),
flat(Z2,23) [From rule 2, fourth body literal]
sg_ind® (I, k, 1/5,Y) :- cnt_sg_ind% (I, k, /5, X), flat(X,Y) [Modified rule 1]
sg_ind® (I, k, 1/5,Y) :- sg_ind® (I+1, k*2+2, h+4, Z4), down(Z4,Y)
[Modified rule 2]
cnt_sg_ind¥ (0,0, 0, john) [From the query rule]
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It is possible to reduce the number of indice: a some cases. The first index can be recovered
from the other two, and is only included for -.onvenience. Further, if in each rule, there is at
most one occurrence of a given derived predicate, then we do not need the third index, which
encodes which predicate occurrence in a rule body was expanded. Similarly, if there is only
one recursive rule, the second index, which encodes the number of the recursive rule used to
expand a literal, can be omitted. These refinements are straightforward, and we do not discuss
them here.

9. On the Power of Magic

In this section, we present some results characterizing the Generalized Magic Sets rule rewrit-
ing algorithm with respect to other strategies for implementing a sip. Recall our assumption
(Section 1) that the predicates in a rule form a connected component. This is, effectively, an
assumption that we begin each computation by first evaluating, for each rule, the components
that are not connected to the head. If the component can be satisfied, we delete it from the rule
body, else we discard the rule. This seems to be a reasonable assumption about how an intelli-
gent strategy would work, and the results in this section are subject to it.

Our main result concerns the optimality of the Generalized Magic Sets strategy, in the sense
that it implements a given sip by computing a minimal number of facts. We first define the
class of strategies for which this claim of optimality is made. Essentially, this definition seeks
to capture the work that must be done to establish that every answer has been computed; and
to preclude strategies that behave like ‘‘oracles”, in that they work with knowledge other than
the logical consequences of the rules and the facts in the database. It also limits consideration
to strategies that follow the given set of rules, as per the given collection of sips, and only util-
ize fully bound arguments.

Accordingly, we define a sip-strategy for computing the answers to a query expressed using a
set of Datalog rules, and a set of sips, one for each adornement of a rule head, as follows. We
use the notation p (¢ X) to denote a query with predicate name p , a list of bound arguments ¢,
and a list of free arguments X. We assume that a strategy constructs queries, and for each
query it constructs answers by computing facts. The set of queries and the set of facts gen-
erated during a computation must satisfy certain conditions, which express the fact that the
startegy follows the sips in computing the answer.

A sip-strategy takes as input
i.  Aquery,and

ii. A program with a collection of sips, where for each rule, there is exactly one sip per head
adornment.

The computation must satisfy the following conditions:
1. Ifp(¢c.X)?isaquery,andp (T .d) holds, then p (¢,d) is computed.

2. Ifp(c X)?isa query, then for every rule with head predicate p, a query is constructed
for every predicate in the rule body according to the sip for the rule.
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A sip-strategy is initially called with the given set of rules, the facts in the database, and the
given query. The first condition requires that it computes all answers to each query that it
generates. The second condition describes how answers are generated for a query. For every
rule head matching the query, we invoke the rule, thus determining an adornment, and select-
ing a sip to follow. Next, the rule’s body is evaluated. For every body literal, subqueries are
generated according to the sip. That is, each subquery contains values for the bound argu-
ments that are passed through the sip arcs entering the node corresponding to that literal. For
each subquery generated, there is a set of answers. These are used to pass bindings, as per the
sip, to create additional subqueries. By combining the answers to all these subqueries, we gen-
erate answers for the original query involving the rule head.

In defining adornments and passing bindings, an argument must be considered bound if all
variables in it are bound, and an argument is considered free if any variable in it is free. The
latter restriction essentially limits us to the class of strategies that make no use of partially
instantiated arguments. The strategy commonly used by Prolog is an example that does not
belong in this class. However, if we consider only Datalog programs, this distinction does not
arise, and our definition of a strategy includes all methods that infer facts solely by following
the rules.

A sip-optimal strategy is defined to be a sip-strategy that generates only the facts and the
queries required by the above definition for the predicates in the program. Sip-optimality does
not imply that facts and queries are not generated more than once, or that the computation is
efficient in the resources that it consumes. However, we do believe that it is an important pro-
perty of a strategy.

We have the following theorem.

Theorem 9.1: Consider a query over a set of connected rules P, where a sip is associated with
each adornement of a rule’s head. Let P™ be the set of rewritten rules produced by the Gen-
eralized Magic Sets method. The bottom-up evaluation of P™ is sip-optimal.

Proof: Denote the collections of queries and facts in conditions 1 and 2 in the definition of a
method by Q and F respectively.

Let us consider a bottom-up computation of P™¢. First, we need to define the facts generated
in such a computation. We use the following definition. The magic seed is a generated fact.
Suppose that f 4, ... f,, are generated facts corresponding to derived predicates in the body of
arule, and g, ... , g are facts in base predicates in the body, such that the body is satisfied
and generates the fact f for the head. Then f is also a generated fact.

It remains to show that every fact generated for a predicate in a bottom-up computation of
P™ is an answer to a query in Q, or denotes a query in Q. More precisely, we claim that for
each generated fact, if it is a magic fact magic_p(c) or a fact pl(c ), then there exists a
query p* € X)? in Q

The proof is by induction on the number of steps needed to derive the fact. This number is 0
for the seed. If a rule with derived facts f 4, ... , f,, (and possibly some base facts) in the body
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is used to derive a fact f , then the number for f is the maximal number for any of the f; plus
1.

For the basis of the induction, we have the seed, magic_q* (¢'), which corresponds to the given
query.

Suppose the claim holds for all facts generated in N or fewer steps. Consider a fact f, gen-
erated using a rule r with derived facts f 1, ... , f,, in the body that are all derived in N or
fewer steps. If the head of this rule is a non-magic predicate p?, then one of the f;, say fy,
must be magic_p® (), and the fact f must be p?(c ,d). By induction, since magic_p®(¢)is a
fact generated in N or fewer steps, it corresponds to a query p° (Z",X_ )? in Q. The fact f, which
is derived in N+1 steps, also corresponds to this query.

If the fact f is a magic fact magic_p®(C), then consider the adorned rule in P%, sayrl,and
sip N -> p, that generated the magic rule r defining magic_p®. By construction of the magic
rule, if ¢ is a predicate in N, and corresponds to the literal q®\(theta) in r 1, then q°1(0) and
magic_q° 1(gb) appear in the body of r '. Since each of thei'facts f; corresponds to a query in
Q) or an answer to a query in Q, by the hypothesis, it follows by construction of the magic rule
that ¢ must be passed into the node denoting p according to the sip. By condition (2) in the
definition of a method, the query p? (¢ ,17) must be in Q, This completes our proof. []

We consider the significance of the result. First, our definition tries to capture the intuitive
idea of a strategy that evaluates a program using a given sip collection. A method that does
not generate some of these queries or facts cannot be considered as using the given collection
of rules and sips. For if it does, then there must be a stage in the computation (corresponding
to the missing queries or facts) where it is *‘guessing’’, or using an oracle. A strategy may
generate additional queries, or facts, in addition to those that must be generated by conditions
1 and 2, and then we have good reason to consider it inferior to the Generalized Magic Sets
strategy.

We remark that there exist methods in the literature that are sometimes better than General-
ized Magic (e.g. [Chang 81, Henschen and Nagqvi 84]) in terms of the number of distinct facts
generated. These usually work only for certain classes of programs, and do not proceed by
invoking subgoals using the program rules and sips. Given, say, special knowledge about the
form of rules, these methods do not follow the rules, but rather use special techniques. For
example, in the ancestor example, one may use an infinite expansion, expressing anc as the
union of powers of par. This infinite union can be evaluated in finite time, by using a suitable
halting condition. Thus, no query on anc is generated. If john has n ancestors, then such
methods compute only »n facts, namely the relationships of john to his ancestors, whereas our
meth computes n? facts, the relationships of each ancestor to his/her ancestor For methods that
are generally applicable, our notion of a sip-strategy seems reasonable. Such methods include
QSQ [Vieille 85], Extension Tables [Dietrich and Warren 85], Apex [Lozinskii 85], Static and
Dynamic Filtering [Kifer and Lozinskii 86, 87], Prolog (on Datalog programs) and several
parallel evaluation strategies proposed in the logic programming literature (on Datalog pro-
grams) [Kale 86, etc.] Thus, our definition of a method is sufficiently general to include a
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significant class of proposed strategies.

In the definition above, we have not included details of the implementation We make no
claims about the number of times a fact is (re)computed, and in fact, it is in this area that the
approach must be refined. The other variants of the Magic Sets and Counting strategies
presented in this paper attempt to address this issue. We also do not consider the differing
costs of inferring a fact or generating a subquery under different evaluation strategies.
Depending on the implementation, a strategy may ‘‘generate queries’’ by introducing auxili-
ary predicates and computing additional facts in these predicates. This is the case for the Gen-
eralized Magic Sets method. Thus, the cost of generating a subquery is one fact inference. In
other implementations, subqueries may be generated by maintaining a variable environment,
as, for example, in Prolog. These quite different costs associated with the generation of a
subquery (and, similarly, the generation of a fact) are not captured in the notion of sip-
optimality. As an approximation, we may choose to simply count the number of facts pro-
duced, and ignore other costs. This favors strategies such as Prolog since the cost of generat-
ing queries is not measured, at the expense of strategies like Generalized Magic Sets, which
generate additional facts (the facts in magic predicates) in order to generate subqueries. This
was, in fact, the approach taken in [Bancilhon and Ramakrishnan 87], and the results of that
study indicate that the number of magic facts is, in general, a small fraction of the generated
facts.

We note that any method proceeding according to a given collection of sips must evaluate all
queries in Q and all facts in F, and the Magic Set method does not generate any facts that do
not correspond to queries in Q or facts in F. Since the convergence of the fixpoint evaluation
of the rewritten program is assured if this set of facts is finite, we have the following corollary.

Corollary 9.2: Consider a query over a set of connected rules P, where a sip is associated
with each rule. Let P™8 be the set of rewritten rules produced by the Generalized Magic Sets
method. The bottom-up evaluation of P™8 is safe if any safe method exists for evaluating P
according to the associated sips. ]

Let 5, and s, be two sips for a given rule. We say that 5, > 5, if for every arc N -->p in s,
with label 7, we have an arc M -->p in s, with label ¢, where N < M andy < ¢.Sos,isa
partial sip, and s, is a (partial or full) sip that does all the information passing in s, (and possi-
bly more). For a given set of bound arguments in the head of the rule, a full sip is thus a sip §
such that for every possible sip s, with the same set of bound arguments in the head, 51 > 5.
We have the following lemma.

Lemma 9.3: Given a connected rule, and two sips s and s, for this rule, the set of facts com-
puted by a sip-optimal strategy for s; is contained in the set of facts computed by a sip-
optimal strategy for s, if s, > 5.

Proof: Let us denote the set of facts and queries generated using sip s;, i = 1,2, by Fi and Qi
respectively. By examining the subqueries generated from the given rule using either sip s, or
55, we show that for every subquery q“l(c_‘TX_I_)? generated using s,, there is a subquery
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q“z(ﬁﬂ)? generated using s, where the set of bound arguments in a 2 is a subset (possibly
a proper subset) of the set of bound arguments in a1, and the values of the bound arguments
in ¢ 2 are identical to the values of the corresponding arguments in c1. LetN1— g be the arc
entering ¢ in s, and let N2 — g be the arc entering ¢ in s, and let the labels be ¢, and ¢,
respectively. If the set of arguments of ¢ bound by the variables in ¢, is strictly larger than the
set of arguments bound by the variables in ¢,, then the set of bound arguments in @2 is a
proper subset of the set of bound arguments in a 1. The converse cannot be the case since §, >
5. Further, since every predicate in N, also appears in Ny, each vector of bindings, say v 1,
for variables in ¢; computed using s, has a corresponding vector of bindings, say v2, com-
puted for the variables in ¢, using s, such that v2 is a projection of v 1. Thus, if a magic fact
magic_q“l(c—'—f) is generated using s, a magic fact magic_q“z(c_'—f) is also generated if the
computation is carried out using s,. The corresponding subqueries are therefore added to Q1
and Q2 respectively.

Since every fact that is an answer to q“l(cTT,f_l—)? is also an answer for q“z(é_f,f(—f)?, this
concludes the proof. []

10. Safety

We now consider the issue of safety, that is, does the bottom up evaluation of the rewritten
rules terminate after computing all answers? In the previous section, we observed that this is
indeed the case for the Magic Sets method if there exists any safe implementation of the pro-
gram according to the given sips. Thus, the rewriting algorithms we discussed are really
orthogonal to the issue of safety. The problem of safety can thus be stated at the level of sip
collections, and this provides a more general approach to safety. However, this does not tell
us whether such a program exists. (Also, such a result does not hold for the Counting method
due to the fact that the index fields may grow indefinitely - for example, if the data contains
cycles.) In this section, we present some sufficient conditions for recognizing that the bottom
up evaluation of a rewritten set of rules is safe.

We first present a generalization of the safety condition described in [Sacca and Zaniolo 86b].
The binding graph of a query is defined to be a directed graph whose nodes are adorned predi-
cates p®. We draw an arc [r;, j] from p{' top§® if p{' is the head of the ith adorned rule and
p$? is the jth predicate in the body. The root of the graph is the query node ¢°.

We define the length of a term t, denoted Itl, to be 1 if t is a’constant, and to be the sum of the
lengths of the arguments of t plus 1, if t is an n-ary term f (¢, . . ., ). This allows us to com-
pute the length of constant terms. If variables are present, we can express the length of the
term in terms of the lengths of these variables. In general, we have no information about the
length of a variable X, except that IXI 2 1. For example, IX.XI = Xl + Xl +1 =2 X1+ 1.
Thus, in general, IX.XI 2 3.

Let (p%' , p%?) be an arc in the binding graph. The arc length of this arc is defined to be the
difference between the total length of the bound arguments in p{* and the total length of the
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bound arguments in p4*. The length of a path is defined to be the sum of the lengths of its
arcs.

We have the following theorem.

Theorem 10.1: The Generalized Magic Sets and Counting algorithms terminate after com-
puting all answers if the length of every cycle in the binding graph associated with the query is
positive.

Proof: This result is established for the Magic Sets and Counting algorithms in [Sacca and
Zaniolo 86b]. The above generalization of their result covers sips that could not be handled by

those rewriting algorithms. The proof is a straightforward extension of their proof, and is
omitted. []

Often, we have some information on the upper bound of the length of a variable. For example,
if b is a base relation containing only constants, and b (X ) appears in the body of a rule, IX| =
1.If b is a base relation containing terms, we may know that the size of terms in b is less than
some number n. In that case, X! < n. This kind of information is often critical in determining
safety, as pointed out by Sacca and Zaniolo.

Now consider the case when queries are expressed over Datalog rules. The above theorem
does not apply since all cycle lengths become 0. We have, however, the following theorem.

Theorem 10.2: The Magic Sets strategies are safe for Datalog programs.

Proof: This follows immediately from the fact that the number of all possible facts that can
be constructed using the constants in the query and in tuples of base predicates is finite. Thus
the number of possible derived and magic facts is finite. []

The above theorem does not hold for the Counting strategies. It is well known that the Count-
ing strategies may not terminate if the data is cyclic, since the same value may be computed
periodically at several levels (of indexing).

There are also some Datalog rules for which the Counting strategies will not terminate,
regardless of the data. Consider a Datalog program. Construct the binding graph for the query.
Construct an argument graph from the binding graph as follows. Consider an arc p$ - p?
in the binding graph, with label [r;, j]. If a variable X appears in the mth argument of p, and
the nth argument of p,, and these are bound arguments, then add the arc p{' (m) — p5t(n)to

the argument graph. The adorned query predicate is the root. We have the following theorem.

Theorem 10.3: The Generalized Counting and Generalized Supplementary Counting stra-
tegies will not terminate for Datalog programs with cyclic reachable argument graphs.

Proof: This follows from the observation that the magic fact corresponding to the query is
repeatedly generated with monotonically increasing indices by traversing some cycle in the
argument graph. The reader is referred to the non-linear ancestor example. []
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11. Discussion

We have presented the following rule rewriting strategies:

1. Generalized Magic Sets (GMS)

2. Generalized Supplementary Magic Sets (GSMS)
3. Generalized Counting (GC)

4. Generalized Supplementary Counting (GSC)

We have also presented an important optimization called the semijoin optimization.

In this section, we discuss their relative merits informally. The main point we make is that for
each of these strategies, with or without semijoin optimizations, there is some set of rules and
data such that it is the best strategy. Therefore, we need to consider all of them in deciding on
a rule rewrite strategy.

In the following discussion, we refer to the strategies ¢, their acronyms. GMS suffers from
the fact that it duplicates the work it does in computing the magic sets when computing the
corresponding predicates (that is, when firing the modified rules). GC suffers from the same
drawback.

This problem is addressed in GSMS and GSC by storing all results that are potentially useful
later on. Thus, they tradeoff additional memory (and possibly, increased lookup times) for the
time gained in avoiding some duplicate firings of rules.

GC and GSC refine the notion of a relevant fact by essentially numbering the magic sets. This
means that they avoid many unnecessary firings by starting at the query node and working
outwards. They do this at the cost of maintaining a system of indices (and of course, are appli-
cable only for a restricted set of data and rules).

The semijoin optimization offers two benefits. It reduces the number of joins (by deleting
some literals) in the optimized rule, and reduces the width (number of arguments) of the
optimized predicate. It is a powerful optimization that could significantly improve perfor-
mance. If the semijoin optimization is not applicable for an occurrence of an adorned predi-
cate, it might become applicable if we consider some of the bound arguments to be free. (For
example, if there is a variable in a bound argument of a body literal that also appears to the
right of the literal, the conditions for applying the semijoin optimization are violated. If we
consider the argument to be free, this violation is removed.) This might lead us to choose a
partial sip: We use a less restrictive counting set (which leads to more duplicate firings of
rules), and in exchange, we obtain the benefits of the semijoin optimization.

We now consider an important problem associated with GC and GSC. The indices essentially
encode the path in the derivation tree by which a fact is inferred. If there are 7 recursive rules
and [ literals per rule, in the worst case, there are (r./)" derivation paths of length n. Since the
same fact could be generated using different derivations, there could be a large number of
facts that agree on the non-index fields but have differing values in the index fields. This has
two important consequences. First, the number of facts inferred could be much larger than that
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for the Magic Set methods (or even Naive). Second, if there are two facts that differ only on
the index fields, there could be a cycle in the data, thus leading to an unbounded number of
such facts. (On the other hand, there might be just two distinct and acyclic paths to the same
fact, but in general it is not possible to distinguish the two cases.) It may thus be appropriate to
use Counting only when there are no pairs of facts that disagree only on the index fields, that
is, there is a unique derivation for each fact in the corresponding Magic Sets program.
(Further, under these conditions, we would expect Counting to improve on Magic Sets only if
several counting facts are produced by the same derivation path. To see this, consider a simple
example: If each counting fact generates m facts as ‘‘answers’’, and there are n counting facts
generated by a given derivation path (i.e. the same values in the index fields), then m.n facts
in the Magic Sets version are represented by the n counting facts and m facts with the same
indices in the corresponding adorned predicate.) This issue is addressed further in [Sacca and
Zaniolo 87]. Another approach is to use a dynamic encoding of paths instead of the static
encoding of index fields tht we have used. Vieille has suggested such a scheme in [Vieille 88],
in conjunction with a different evaluation method, where (in effect) each magic fact is given a
unique identifier when it is generated (along with a pointer to the magic fact that was used to
generate it). Each non-magic fact is given the same identifier as the magic fact that was used
to generate it. Finally, properties such as commutativity of rules can be used to reduce the
number of paths that must be encoded.

Finally, in GMS and GG, in the rules defining the cnt and magic predicates, we may drop
some of the literals in the body (so long as the remaining literals contain all variables that
appear in the head) without altering the correctness of the rewriting algorithm. This would
cause us to compute a larger relation for the corresponding cnt or magic predicate, that is, be
less selective about the rules we fire subsequently. However, if the increase is not significant,
it might be worthwile to drop some of the literals to save on the number of joins.

There are many possible variations of the rewrite strategy, and it is important to understand
how to choose between them. This is an important problem that needs to be addressed.

An important issue is the generalization of these algorithms for dealing with negation in rule
bodies, and we address this in [Beeri et al. 87]. The problem is also studied in [Balbin et al.
871.
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Appendix: Examples

14. The Problems

1. The ancestor example:
aX,Y) - p(X,Y)
aX,Y) :- pX,2), a(Z,Y)
Query: a(john,?)

2. Non-linear version of the ancestor example:
aX,Y) :- p(X.,Y)
a(X,Y) :- aX,2), a(Z,Y)
Query: a(john,?)

3. Nested version of the same generation example:
pX,Y) - bl(X,Y)
pX,Y) :- sg(X,Z1), p(Z1,22), b2(Z2,Y)
sg(X,Y) :- flat(X,Y)
sg(X,Y) :- up(X,Z1), sg(Z1,Z2), down(Z2,Y)
Query: p(john,?)

4. List Reverse:
append(V, [], VI[]) :-
append(V, WIX, WIY) :- append(V.X,Y)
reverse([], []) :-
reverse(VIX, Y) :- reverse(X,Z), append(V,Z,Y)

Query: reverse(list, ?)

15. The Adorned Rule Sets

The following are the sets of adorned rules for each of the example problems. The

literals in each adorned rule have been ordered so as to make the rule canonical.

The ancestor example:
1.a” X,Y) :- pX,Y)
2.a% X.Y) :- pX,2),a (Z,Y)
Query: atf (john,?)
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Non-linear version of the ancestor example:
1.a¥% (X,Y) - pX,Y)
2.a¥ X,Y) - a” X,2), a¥ (2,Y)
Query: a? (john,?)
Nested version of the same generation example:
1L p7 X,Y):- b1X,Y)
2. p¥ X.Y) - sg¥ (X,21), p¥ (21,22), b2(Z2,Y)
3. 52 (X,Y) :- flatX,Y)
4. sg¥ (X,Y) :- up(X,21), sg¥ (21,22), down(Z2,Y)
Query: p¥ (john,?)
List Reverse:
1. append®™ (v, 11, VI :-
2. append® (V, WIX, WIY) :- append®® (V.X,Y)
3. reverse™ ({1, []) -
4. reverse® (VIX, Y) :- reverse bf X,Z), append bef (V,Z2,Y)

Query: reverse bf (list, D

16. Generalized Magic Sets (GMS)

We present the rewritten set of rules for each of the example problems, using the Gen-

eralized Magic Sets algorithm.

16.1. Ancestor

magic_a" (Z) :- magic_a¥ (X), p(X,Z) [From rule 2]
a¥ (X,Y) :- magic_a¥ X), pX,Y) [Modified rule 1]
a¥ (X.Y) :- magic_a¥ X), p(X,Z), a¥ (Z,Y) [Modified rule 2]
magic_a 5 (john) [From the query rule]

16.2. Non-linear Ancestor

magic_a bf (X) :- magic__abf X) [From rule 2, first body literal; can be deleted]
magic_a bf (Z) - magic__abf X), a X,2) [From rule 2, second body literal]
a¥ (X.Y) :- magic_a¥ (X), pX,Y) [Modified rule 1]

2 (X,Y) :- magic_a¥ (X), a¥ (X,2),a% (Z.Y) [Modified rule 2]
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magic_a ¥ (john) [From the query rule]

16.3. Nested Same Generation

magic_p¥ (Z1) :- magic p¥ (X), sg% (X,Z1) [From rule 2]
magic_sg ¥ (X) :- magic p b X) [From rule 2]
magic_sg bf (Z1) :- magic_sg bf X), up(X,Z21) [From rule 4]
p¥ X,Y) :- magic_p¥ (X), b1(X,Y) [Modified rule 1]
p¥ (X.Y) :- magic_p¥ X), sg¥ (X,Z1), p¥ (21,22), b2(Z2,Y) [Modified rule 2]
sg¥ (X,Y) :- magic_sg¥ (X), fla(X,Y) [Modified rule 3]
s (X,Y) :- magic_sg¥ (X), up(X,Z1), s¢% (Z1,22), down(Z2,Y) [Modified rule 4]
magic p ¥ (john) [From the query rule]

16.4. List Reverse

magic_append bbf (v X) :- magic_append bof (v, WiX) [From rule 2]
magic_append bof (v,Z) :- magic_reverse b (VIX), reverse ¥ (X,Z) [From rule 4]
magic_reverse o (X) :- magic_reverse bf (VIX) [From rule 4]
append®® (v, [1, VI[]) :- magic_append®® (V, 1) [Modified rule 1]
append®™ (V, WIX, WIY) :- magic_append®® (V, WIX), append®™ (V.X,Y)
[Modified rule 2]
reverse? @0, D) :- magic_reverse bf (1)) [Modified rule 3]
reverse® (VIX,Y) :- magic_reverse bf (VIX), reverse bf X,2),
append®™ (V,2,Y) [Modified rule 4]
magic_reverse b (list) [From the query rule]

17. Generalized Supplementary Magic Sets (GSMS)

We present the rewritten set of rules for each of the example problems, using the Gen-

eralized Supplementary Magic Sets algorithm.

17.1. Ancestor

supmagic ! (X) :- magic_a¥ (X) [From rule 1]
supmagic 12 (X) :- magic_a b (%) [From rule 2]
supmagicz2 (X,Z) :- supmagic 12 X), pX,2) [From rule 2]
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a¥” (X,Y) :- supmagic } (X), pX,Y) [Modified rule 1]
a¥ X.Y) :- supmagic? (X,Z), a% (Z,Y) [Modified rule 2]
magic_a b (Z) - supmagic22 X,Z) [From rule 2]
magic_a ¥ (john) [From the query rule]

These rules may be optimized. The rules defining supmagicl1 (X) and supmagic 12 X)
may be omitted if we replace occurrences of these literals with magic_a Y (X). The
optimized rules are given below. This optimization is discussed in the text, and in sub-

sequent examples, we will always perform this optimization.

supmagic 2 (X,Z) :- magic_a” (X), p(X,Z) [From rule 2]
a¥ (X,Y) :- magic_a" (X), pX,Y) [Modified rule 1]
a¥ (X.,Y) :- supmagic? (X,Z), a% (2,Y) [Modified rule 2]
magic_a b (z) .- supmagicz2 X,2) [From rule 2]
magic_a 5 (john) [From the query rule]

17.2. Non-linear Ancestor

supmagic22 (X,Z) :- magic_a ¥ X), a¥ (X,2) [From rule 2]
a” X.Y) :- magic_a®¥ (X), pX.Y) [Modified rule 1]
a¥ (X,Y) :- supmagic? (X,Z), a¥ (2,Y) [Modified rule 2]
magic_a” (X) :- magic_a¥ (X) [From rule 2, first body literal; can be deleted]
magic_a bf (Z) :- supmagicz2 (X,2) [From rule 2, second body literal]
magic_a 5 (john) [From the query rule]

17.3. Nested Same Generation

supmagicz2 (X,Z1) :- magic_p b (X), sg? (X,Z1) [From rule 2]
supmagic # (X,Z1) :- magic_sg % (X), up(X,Z1) [From rule 4]
p¥ X,Y) :- magic_p¥ (X), b1(X,Y) [Modified rule 1]
p¥ (X,Y) :- supmagic} (X,21), p¥ (Z1,22), b2(Z2,Y) [Modified rule 2]
sg bf (X,Y) :- magic_sg bf X), flat(X,Y) [Modified rule 3]
sg¥ (X,Y) :- supmagic3 (X,Z1), sg¥ (21,22), down(Z2,Y) [Modified rule 4]
magic_p® (Z1) :- supmagic  (X,Z1) [From rule 2]
magic_sg¥ (X) :- magic_p¥ (X) [From rule 2]

magic_sg bf (Z1) :- supmagi(:é1 X,Z1) [From rule 4]
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magic_p ¥ (john) [From the query rule]

17.4. List Reverse

supmagicf (V,X,Z) :- magic_reverse b (VIX), reverse bf X.,Z) [From rule 4]
append®™ (V, [1, VI[1) :- magic_append® (V, 1) [Modified rule 1]
appendbbf V, WIX, WIY) :- magic__appendbbf V, WiX), appendbbf V. X,Y)

[Modified rule 2]
reverse® ({1, [1) - magic_reverse” ([1) [Modified rule 3]
reverse® (VIX,Y) :- supmagic § (V,X,Z), append® (V.Z,Y) [Modified rule 4]
magic_append® (V X) :- magic_append® (V, WIX) [From rule 2]
magic_append bef (v,Z) :- supmagici1 V.X,Z2) [From rule 4]
magic_reverse ¥ (X) :- magic_reverse ¥ (VIX) [From rule 4]
magic_reverse b (list) [From query rule]

18. Generalized Counting (GC)

We present the rewritten set of rules for each of the example problems, using the Gen-

eralized Counting algorithm.

18.1. Ancestor
cnt_a_ind? (I+1, k*242, h*2+2, Z) :- cnt_a_ind™ @,k h,X),pX,.Z) [Fromrule?2]
a_ind” (1, k, b2, X,Y) :- cnt_a_ind¥ (I, k, 1/2, X), p(X,Y) [Modified rule 1]
a_ind” (I, k, /2, X,Y) :- cnt_a_ind¥ (I, k, h/2, X), p(X.Z),

a_ind® (I+1, k*2+2,h+2,Z,Y)  [Modified rule 2]
cnt_a_ind ¥ (0, 0, 0, john) [From the query rule]
The only occurrence of a_ind b is in the second modified rule, and the semijoin optim-
ization applies. Thus, we have:
cnt_a_ind® (I+1, k*242, h*2+2, Z) :- cnt_a_ind™ (I, k, h, X), p(X,Z)  [From rule 2]
a_ind®” (4, k, 0/2, Y) :- cnt_a_ind® (I, k, h/2, X), p(X,Y) [Modified rule 1]
a_ind” (I, k, h/2, Y) - a_ind¥ (1+1, k*2+2, h+2, Y) [Modified rule 2]
cnt_a_ind ¥ (0, 0, 0, john) {From the query rule]
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18.2. Non-linear Ancestor
We generate the following rule:
cnt_a_ind” (I+1, k*242, h*2+1, X) :- cnt_a_ind™” (I, k, h, X)
[From rule 2, first body literal]

So the counting strategy does not terminate in this example either.

18.3. Nested Same Generation

cnt_p_ind® (I+1, k*4+2, h*3+2, Z1) :- cnt_p_ind® (1, k, h, X),

sg_ind® (I+1, kK*4+2, h*3+1,X,Z1) [From rule 2]
cnt_sg_ind® (I+1, k*4+2, h*3+1, X) :- cnt_p_ind® (1, k, h, X) [From rule 2]
cnt_sg_ind” (I+1, k*4+4, h*3+2, Z1) :- cnt_sg_ind% (I, k, h, X), up(X,Z1)

[From rule 4}

p_ind” @, k, /3, X,Y) :- ent_p_ind¥ (1, k, b/3, X), b1(X,Y) [Modified rule 1]

p_ind” (@, k, /3, X,Y) - cnt_p_ind% (I k, /3, X), sg_ind% (1+1, k*4+2, h+1,X,Z1),
p_ind® (I+1, k*4+2, h+2, Z1,72), b2(Z2,Y) [Modified rule 2]

sg_ind” (I, k, 0/3,X,Y) :- cnt_sg_ind” (I, k, h/3, X), flat(X,Y) [Modified rule 3]

sg_ind®™ (I, k, 0/3,X,Y) :- cnt_sg_ind” (1, k, h/3, X), up(X,Z1),

sg_ind? (I+1, k*4+4, h+2, Z1,22), down(Z2,Y) [Modified rule 4]

cnt_p ind ¥ (0, 0, 0, john) [From the query rule]

We can verify that the semijoin optimization applies to all occurrences of p_ind Y and
sg_ind b in the above rules. Thus, applying the semijoin optimization, we have the
optimized set of rules:
cnt_p_ind® (I+1, k*4+2, h*3+2, Z1) :-

sg_ind (I+1, k*4+2, h*3+1, Z1) [From rule 2]
cnt_sg_ind® (1+1, k*4+2, h*3+1, X) :- cnt_p_ind% (I, k, h, X) [From rule 2]
cnt_sg_ind® (I+1, k*4+4, h*3+2, Z1) :- cnt_sg_ind™ (I, k, h, X), up(X,Z1)

[From rule 4]

p_ind” (I, k,0/3,Y) :- cnt_p_ind¥ (I, k, h/3, X), b1(X,Y) [Modified rule 1]
p_ind” @k, 0/3,Y) :- p_ind% (1+1, k*4+2, h+2, 22), b2(Z2,Y) [Modified rule 2]
sg_ind® (1, %, 1/3,Y) - cnt_sg_ind¥ (I, k, 1/3, X), flat(X,Y) [Modified rule 3]

sg_ind™ (I, k, 1/3,Y) - sg_ind® (I+1, k*4+4, h+2, 72),
down(Z2,Y) [Modified rule 4]



cnt_p_ind% (0, 0,0, john) [From the query rule]

18.4. List Reverse
cnt_append_ind®Y (I+1, k*4+2, h*2+1, V.X) :- cnt_append_ind®¥ (1, k, h, V, WIX)

[From rule 2]
cnt_append_ind® (I+1, k*4+4, h*2+2, V,Z) :- cnt_reverse_ind” (I, k, h, VIX),
reverse_ind bf (I+1, k*4+4, h*2+1, X,Z) [From rule 4]
cnt_reverse_ind bf ({+1, k*4+4, h*2+1, X) :- cnt_reverse_ind b 1, k, h, VIX)
[From rule 4]
append_ind® (1, k, b/2, V, [1, VI0)) :- cnt_append_ind® (@, k, b/t, V, [1)
[Modified rule 1]
append_ind® (I, k, b/2, V, WIX, WIY) :- cnt_append_ind% (1, k, h/2, V, WIX),
append_ind® (1+1, k*4+2, h+1, V.X,Y) [Modified rule 2]
reverse_ind b (1, k, h/2, [0, [1) :- cnt_reverse_ind b (1, x, h/2, [1) [Modified rule 3]
reverse_ind” (1, k, b/2, VIX, Y) :- cnt_reverse_ind” (I, k, b/2, VIX),
reverse_ind® (I+1, k*4+4, h+1, X,Z), append_ind® (I+1, k*4+4, h+2, V,Z,Y)
[Modified rule 4]
cnt_reverse_ind bf ©, 0, 0, list) [From the query rule]

19. Generalized Supplementary Counting (GSC)

We present the rewritten set of rules for each of the example problems, using the Gen-

eralized Supplementary Counting algorithm.

19.1. Ancestor

supent L (I k, h, X) - cnt_a_ind®™ (1, k, h, X) [From rule 1]
supent (L k, h, X) - ent_a_ind®” (1, k, h, X) [From rule 2]
supcntz2 Ik, h, X,Z) :- supcnt12 (I, k, h, X), p(X,Z) [From rule 2]
a_ind” (I, k, h, X,Y) :- supcnt { (I, k, h, X), p(X,Y) [Modified rule 1]
a_ind¥ (I k, h, X,Y) - supcnt? (I k, h, X,Z), a_ind"” (I+1, k*2+2, h*2+2, Z,Y)
[Modified rule 2]
cnt_a_ind™ (I+1, k*242, 0%2+2, Z) :- supent 3 (I, k, b, X,Z) [From rule 2]

cnt_a_ind bf (0, 0, 0, john) [From the query rule]
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These rules may be optimized. The rules defining supcntl1 (X) and supcntl2 (X) may be
omitted if we replace occurrences of these literals with magic_a 5 (X). The optimized
rules are given below. This optimization is discussed in the text, and in subsequent

examples, we will always perform this optimization.

supcnt3 (1, k, h, X,Z) :- cnt_a_ind¥ (I, k, h, X), p(X,Z) [From rule 2]
a_ind¥ (@, k, h, X,Y) :- cnt_a_ind¥” (I, k, h, X), p(X,Y) [Modified rule 1]
a_ind® 1,k h, X,Y) :- supcnt 2 (L k, h, X,2), a_ind¥ (I+1, k*2+2, h*2+2, 2,Y)
[Modified rule 2]
cnt_a_ind® (I+1, k*2+2, h*2+2, Z) :- supcnt (1, k, h, X,Z) [From rule 2]
cnt_a_ind ¥ (0, 0, 0, john) [From the query rule]

The only occurrence of a_ind b is in the second modified rule, and the semijoin optim-

ization applies. Thus, we can further optimize the rules to:

supcnt22 Ik, h,X,Z) :- cnt_a_ind b (1 k, h, X), p(X,Z) [From rule 2]
a_ind” (4, k, 0, Y) :- cnt_a_ind® (1, k, h, X), pX,Y) [Modified rule 1]
a_ind” @, k, h,Y) :- a_ind¥ (I+1, k¥2+2, h*2+2, Y) [Modified rule 2]
cnt_a_ind® (I+1, k*2+2, h*2+2, Z) :- supent 3 (I, k, h, X.Z) [From rule 2]
cnt_a_ind 5 (0, 0, 0, john) [From the query rule]

We note that the first (non-index)argument of the supcnt predicate may now be
dropped.

19.2. Non-linear Ancestor
We generate the following rule:
cnt_a_ind® (I+1, k*242, h*2+1, X) :- cnt_a_ind™ (1, k, h, X)
[From rule 2, first body literal]

So the supplementary counting strategy does not terminate in this example either.

19.3. Nested Same Generation
supent2 (L, k, h, X,Z1) :- ent_p_ind” (I, k, h, X),

sg_ind® (I+1, k*4+2, h*3+1, X,Z1) [From rule 2]
supcnt 2 (1, k, h, X,22) :- supent3 (I, k, h, X,Z1),

p_ind” (I+1, k*4+2, h*3+2, Z1,72) [From rule 2]
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supcnt$ (1 k, b, X,Z1) :- cne_sg_ind® (1, k, h, X), up(X,Z1) [From rule 4]
supent$ (L k, h, X,Z2) :- supene 3 (L k, h, X,Z1),
sg_ind bf (I+1, k*4+4, h*3+2, Z1,22) [From rule 4]

p_ind” (I, %, b, X,Y) :- cnt_p_ind” (1, k, h, X), b1(X,Y) [Modified rule 1]
p_ind® (1, k, h, X,Y) :- supent (L k, h, X,Z2), b2(Z2,Y) [Modified rule 2]
sg_ind® (1, k, h, X,Y) :- cnt_sg_ind" (I, k, h, X), flat(X,Y) [Modified rule 3]
sg_ind” (1, k, h, X,Y) :- supent3 (I, k, h, X,Z2), down(Z2,Y) [Modified rule 4]
cnt_p_ind® (I+1, k*4+2, W*3+2, Z1) :- supcnt § (I, k, h, X,Z1) [From rule 2]
cnt_sg_ind® (I+1, k*4+2, 0*3+1, X) :- cnt_p_ind™ (I, k, h, X) [From rule 2]
cnt_sg_ind® (I+1, k*4+4, h*3+2, Z1) :- supcnt 3 (1, k, h, X,Z1) [From rule 4]
cnt_p_ind ¥ (0, 0, 0, john) [From the query rule]

The semijoin optimization applies to all occurrences of sg_ind 5 and p_indbf in the

above rules, and thus we have the optimized rule set:

supent2 (1, k, h, Z1) :- sg_ind™ (1+1, k*4+2, h*3+1, Z1) [From rule 2]
supent 2 (L k, h, Z2) :- p_ind® (1+1, k*4+2, h*3+2, Z2) [From rule 2]
supent$ (I k, h, Z1) :- cnt_sg_ind¥ (I, k, h, X), up(X,Z1) [From rule 4]
supcnt$ (I k, h, Z2) :- sg_ind™ (1+1, k*4+4, h*3+2, 72) [From rule 4]
p_ind® (@1, k, h,Y) :- cnt_p_ind® (1, k, h, X), b1(X,Y) [Modified rule 1]
p_ind® (1, k, h,Y) :- supent§ (I, k, h, Z2), b2(Z2,Y) [Modified rule 2]
sg_ind” (L k, b, Y) :- ent_sg_ind% (I, k, h, X), flarX,Y) [Modified rule 3]
sg_ind” (I, k, b, Y) :- supcnt§ (I, k, h, Z2), down(Z2,Y) [Modified rule 4]
cnt_p_ind® (1+1, k*4+2, h*3+2, Z1) :- supcnt 3 (L k, h, Z1) [From rule 2]
cnt_sg_ind® (1+1, kK*4+2, 0*3+1, X) :- cnt_p_ind™ (I, k, 1, X) [From rule 2]
cnt__sg_indbf (I+1, k*4+4, h*3+2,71) :- supcntf I,k,h,Z1) [From rule 4]
cnt_p_ind bf (0, 0, 0, john) [From the query rule]

19.4. List Reverse
supent$ (1 k, h, V,X,Z) :- cnt_reverse_ind” (I, k, h, VIX),

reverse_ind® (I+1, k*4+4, h+2+1, X,Z) [From rule 4]
append_ind® (1, k, h, V, [1, VI[]) :- cnt_append_ind® (I, k, 1, V, [])
[Modified rule 1] append_ind® (1, k, h, V, WIX, WIY) :-

cnt_append_ind®¥ (I, k, h, V, WIX),
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append_ind® (I1+1, k*4+2, h+1, V.X,Y) [Modified rule 2]
reverse_ind bf (L k, h, [1, [) :- cnt_reverse_ind o1,k h [ [Modified rule 3]
reverse_ind” (I,k, h, VIX,Y) :- supcnt 3 (I k, h, V,X,Z),

append_ind®® (1+1, k*4+4, h+2, V,Z)Y) [Modified rule 4]

cnt_append_ind® (I+1, k*4+2, h*2+1, V,X) :- cnt_append_ind®? (I, k, h, V, WIX)
[From rule 2]
cnt_append_ind® (1+1, k*4+4, h*2+2, V,Z) :- supcnt 3 (I, k, h, V,X,Z)  [From rule 4]
cnt_reverse_ind bf (I+1, k*4+4, h*2+1, X) :- cnt_reverse_ind bf d, k, h, VIX)
[From rule 4]

cnt_reverse_ind bf (0, 0, 0, list) [From query rule]






