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Abstract

The combined use of binocular and new trinocular matching constraints in the Trinocular General
Support Algorithm’s (TGSA) parallel relaxation computation is shown to overcome many of the problems in
binocular stereo matching. These problems include: (1) ambiguity in matching in periodic regions, especially
when such a region is partially occluded, (2) noise matches in occluded regions, and (3) missing and erroneous
matches due to significant variations between the images. The TGSA employs cameras positioned at the
vertices of an isosceles right triangle. Matching takes place between the horizontally aligned pair of images and
the vertically aligned pair of images. Reformulated and locally-defined binocular conswraints such as
uniqueness, coarse-to-fine and fine-to-coarse multiresolution, figural continuity, detailed match and the
disparity gradierit are implemented for each matching pair. New trinocular constraints, trinocular uniqueness
and the trinocular disparity gradient, relate vertical and horizontal matches. When combined in a relaxation
algorithm these constraints help to overcome the binocular matching problems listed above. For example, the
trinocular disparity gradient provides enough information to directly resolve ambiguity in periodic regions in
many cases. The TGSA has been tested on a number of image triples to demonstrate its advantages over
previous binocular and trinocular stereo matching algorithms.
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1. Introduction

An important goal of intermediate-level computer vision is to obtain three-dimensional information about
a scene. Stereo vision, the matching of images obtained from a pair of cameras with slightly different views of
the world, plays an important role in this process. This matching converts the two-dimensional information
available in each image into a three-dimensional depth map. However, the process of determining this
matching is itself difficult and computationally intensive. For each point in an image there is a large number of
possible matching points in the other image. Usually, at most one of these matches is valid. The goal of the

matching process is to select the valid matches and eliminate the invalid ones.

Many solutions to the stereo matching problem have been proposed in the computational vision literature.
They tend to be partially successful, but they also have a number of problems. First, the algorithms tend to
produce spurious matches at certain important locations, primarily at significant occluding boundaries. Second,
they are sensitive to noise in the images, including extraneous edges and broken contours. More significant
structural differences between the images cause even greater problems. Third, they often have difficulty

producing correct matches when image features include repetitive pattems.

Our overall approach toward overcoming these problems and developing a general stereo matching
algorithm includes the following steps: (1) Design an algorithm that maiches low-level primitives using a
number of different constraints. Higher-level primitives are not used because they are hard to reliably extract in
general, and they can vary significantly between the images of a stereo pair. Thus, they can not be used as the
basis for matching without restricting the domain of images. (2) Test the low-level matching algorithm on a
wide range of images, from random-dot stereograms to real images. This will demonstrate the range of success
of low-level matching and identify the situations where it fails. (3) Extend the algorithm by incorporating new
mechanisms that overcome these remaining problems. The extended algorithm should maintain the successful

performance of the original algorithm while improving upon its weaknesses.

In designing a low-level matching algorithm as part of step (1) we proposed the General Support
Algorithm.20 It matched oriented edges using reformulated versions of a number of existing stereo matching
constraints: uniqueness, coarse-to-fine and fine-to-coarse multiresolution, figural continuity, the disparity
gradient and detailed match. The General Support Algorithm combined the constraints by using, with only one

exception, only positive constraint influences in selecting valid matches. The algorithm allowed the constraints



to interact cooperatively and in parallel to select valid matches. It was implemented using a connectionist

network.

Testing the General Support Algorithm showed that it worked well in matching a wide variety of
synthetic images and real images of both indoor and outdoor scenes. However, there were a number of
matching situations that it could not always accurately handle. These corresponded to situations that locally
defined constraints could not identify. They included: (1) partially-occluded periodic regions, (2) noise matches
an unknown disparities in occluded regions, and (3) errors due to significant structural variations between the
images.

In this paper we introduce the Trinocular General Support Algorithm (TGSA). Many of the problems
with local binocular matching can be resolved through the use of the TGSA. It employs three cameras
positioned on the vertices of an isosceles right triangle (see Figure 2). Maiching takes place between the
horizontally aligned pair of images as in the binocular case and between the vertically aligned pair of images as
well. Binocular matching constraints are implemented between each pair of matching images and, in addition,
new trinocular constraints, trinocular uniqueness and the trinocular disparity gradient, are used to specify
relations between matches in the two pairs of images. Trinocular uniqueness constrains vertical and horizontal
matches for an edge to have nearly identical disparities. The trinocular disparity gradient defines support
relations between a pair of nearby vertical and horizontal matches whose distance is less than their disparity
difference. These new constraints influence matches in the same way as the binocular constraints. As in our
binocular algorithm, the TGSA is a relaxation algorithm that integrates all of the constraints cooperatively,

positively and in parallel to select the valid matches.

The TGSA produces a higher percentage of correct matching decisions and overcomes many of the
remaining problems in binocular matching: (1) In the case of periodic regions, the trinocular disparity gradient
provides additional information to resolve ambiguities when the vertical and horizontal frequencies differ. In
addition, when the frequencies are the same, the errors can be reduced if there is vertical or horizontal
occlusion, but not both. (2) The algorithm improves the results in occluded regions by allowing matches to be
accepted through binocular support only. Thus, in cases where a feature is occluded in one of the other two
images, the correct match for that feature may be found. This produces known disparities in the occluded
region and reduces both the number and significance of noise matches there. (3) Finally, the matching

information from the third image overcomes many of the structural variations between pairs images by using




the trinocular disparity gradient.

In addition to improving the results of binocular matching, the TGSA offers an improvement over
previous trinocular algorithms. Other three-camera algorithms employ two general methods for using the
additional image. Some use it for confirmation of match disparities and require structured matching
primitives.!0-25 In this case simple, general-purpose primitives such as edges do not allow unambiguous match
confirmation because of the difficulty of matching along epipolar scanlines. To ensure that the necessary
structured primitives are reliably extracted, confirmation algorithms require restricted domains. The second
type of approach to winocular stereo involves matching between two pairs of images separately and then
smoothing together the results upon completion.b 15 Unlike the TGSA, these algorithms do not employ relations
between pairs of images during matching. Thus, they can not recover from ambiguities that cause errors in both

matching pairs. An example of this is periodic image regions that are partially occluded.

In the remainder of this section we provide definitions for both binocular and trinocular stereo, examine

prior trinocular stereo algorithms to show how our algorithm improves upon them, and outline the body of the

paper.

1.1. Definitions

There are several stages to the binocular stereo problem. These include (1) determining the imaging
geometry, (2) detecting image features for matching, (3) finding the matches between these features (the
correspondence problem), and (4) interpreting the results. The focus of our work has been the correspondence
problem in which a correct match must be selected from among the many possible matches for each feature
(matching primitive). These valid matches are identified using constraints derived from assumptions about the

continuity of surfaces as well as assumptions about the imaging geometry and image formation process.

The standard imaging geometry for the two camera stereo problem is shown in Figure 1. The lines of
sight of the cameras are normal to the center of the image plane, intersect the focal point, and are parallel to the
x-axis in the x—z plane. Given a point (xo,y¢) in one image, the epipolar scanline for (xo.,yo) is the line in the
other image containing candidate match points for (xo,y0). In our model the epipolar scanline is parallel to the
x-axis for each point. When the matching primitives have an orientation component, those primitives that are
parallel to the epipolar scanline are often ambiguous (horizontal edges in our model). In the binocular General

Support Algorithm we only matched a horizontal edge when it was relatively isolated from other horizontal
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Figure 1. Binocular stereo imaging geomeltry.

edges. Finally, the disparity of a match is the distance between the matching points in the images. It is used to

determine the depth of the scene feature corresponding to that point.

The imaging geometry employed in the Trinocular General Support Algorithm is shown in Figure 2. All
three cameras are assumed to be identical and are positioned on the vertices of an isosceles right triangle. The
lines of sight of the cameras are all perpendicular to the x —y plane. The isosceles triangle assumption ensures
that the same vertical and horizontal disparity indicates the same depth. Matches between the base image and
the right image are called horizontal matches, while matches between the base image and the top images are
called vertical matches. When we discuss the relationship between a vertical match and a horizontal match we

will refer to them as orthogonal matches.

The Trinocular General Support Algorithm is implemented using a connectionist network.
Connectionist models are motivated by the organization of the brain.5:1° They employ simple computing
elements (called nodes) and a massive interconnection network among these nodes. Each connection sends a
weighted value of the activation of one node to another node. Each node determines its activation based on its
prior activation and on the input it receives from its incoming connections. The overall computation of the
network is organized around iterative changes in the activations of the nodes. This continues until the network

settles on a solution. This style of computation is similar to relaxation labeling.?
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Figure 2. Trinocular stereo imaging geometry. The base image maiches both the top and the right images.

1.2. Prior Work on Multi-Camera Matching

Recently there has been a significant amount of interest in the use of more than two cameras for stereo
vision. The approaches described in the literature vary in the relative positions of the cameras and in the
methods for using the additional information in matching. In this section we review these approaches, highlight

some of their weaknesses, and show how the TGSA differs from them,

Most multi-camera stereo algorithms use three cameras positioned at the vertices of a triangle, usually
either an equilateral triangle, or an isosceles right triangle. Some algorithms use the additional information
simply for eliminating the horizontal matches problem.16 That is, when an edge or matching segment is
vertically oriented, its corresponding match is sought in the horizontal image; when the edge is horizontal the
match is sought vertically. While this may produce a denser set of matches, the results are limited by the
quality of matching between a pair of images. Therefore, it is susceptible to the same problems as binocular

stereo matching.



Another approach uses the third camera to confirm the validity of a match.10.25 Given a match between
two images, the disparity of that match is used to predict the location of the corresponding point in the third
image. Unfortunately, matching points may not appear in all three images because of occlusion and errors in
the positions of edges (especially those oriented along horizontal or vertical epipolar scanlines). To account for
this problem some trinocular algorithms employ more structured matching primitives.! These algorithms are not
susceptible to the problem of matching along epipolar scanlines because the primitives are two-dimensional.
However, they rely on domain-dependent assumptions (usually indoor or urban scenes) in order to allow the
matching primitives to be reliably extracted and matched. Another problem with approaches that rely on
* confirmation of the match disparity is that no matching information is obtained when a feature does not appear
in all three images. For these algorithms the reduced number of matches due to occlusions is more severe than

in binocular matching.

The final type of approach to using three cameras is to match both vertically and horizontally using an
existing stereo matching algorithm, and "smooth” the results together.% !5 This assumes that the errors arising
from the matching between each pair of images do not co-occur. In addition, it assumes that the smoothing
process will favor correct matches over errors in a given region. This is not always the case in situations such
as periodic regions where the errors tend to be systematic. Finally, this approach ignores the possibility that
weaknesses in the support between two images can often be overcome by using the third image during

matching,
1.3. Organization of the Paper

The remainder of this paper presents the Trinocular General Support Algorithm. Specifically, Section 2
describes the constraints and the computation employed in the TGSA. Section 3 presents some results of
testing the earlier binocular version of this algorithm and outlines the circumstances in which it fails. Section 4
discusses how the TGSA overcomes problems in binocular matching. Section 5 presents our empirical results.

Finally, Section 6 reviews the work and highlights additional areas of research.

2. The Trinocular General Support Algorithm

The Trinocular General Support Algorithm (TGSA) offers both an alternative to existing trinocular stereo
algorithms and a method for overcoming the errors observed in the binocular General Support Algorithm. It

does this by (1) employing binocular matching constraints both vertically and horizontally, (2) defining new




trinocular constraints between orthogonal matches, and (3) combining all of the constraints using a parallel
relaxation algorithm. Thus, when a match is occluded only vertically or horizontally but not both, it can be
accepted solely through binocular support. On the other hand, in circumstances where binocular support is

weak, noisy or inconclusive, the addition of trinocular constraints can help to resolve ambiguous matches.

The TGSA matches oriented edges at multiple resolutions. When a contour in the base image is oriented
along either the vertical or horizontal epipolar scanline, the edges along‘ the contour may have matches in only
one image (because of the ambiguity in matching edges oriented along an epipolar scanline). In the TGSA
these matches are supported through binocular constraints and though the trinocular disparity gradient. Thus, in
contrast to many prior trinocular algorithms, a primitive need not be located in all three images to take

advantage of the trinocular information in determining its match.

The remainder of this section discusses the TGSA in detail. The reformulation of some existing
binocular constraints is discussed in Section 2.1. Section 2.2 defines the two new trinocular constraints,
trinocular uniqueness and the trinocular disparity gradient. Section 2.3 describes how all of these constraints

are integrated in the TGSA and defines the connectionist network computation that implements the algorithm.

2.1. Binocular Stereo Matching Constraints

This section presents a number of stereo matching constraints that are used in the TGSA and were used in
the binocular General Support Algorithm. In developing the binocular algorithm the constraints were
reformulated based on an analysis that concentrated on the assumptions behind the constraints and their overall
statements. (See Stewart?0 for details.) Except for uniqueness, the reformulated constraints are locally-defined,
that is, they are defined as pairwise relations between candidate matches. In the binocular General Support
Algorithm we relied on the combination of the constraints to produce effective matching. In the TGSA we rely
on these same constraints, implemented vertically and horizontally, along with new trinocular constraints, to

further improve the matching results.

The next few subsections describe the binocular constraints as they are implemented between matches
from the base and right images. Implementing them between matches from the base and top images is
straightforward and requires no extra discussion here. We assume that the constraints are incorporated into an
edge-based matching algorithm. (Other types of matching primitives are not as general-purpose. Primitives

extracted using an interest operamr3 are much sparser than edges. More structured primitives such as long



contours and corners® 8 may vary significantly between images.)

In an edge-based algorithm, compatibility predicates are used to determine which edges might match. In
our case, a pair of edges, one from each image, form a candidate match if (1) they are in the same image row,
(2) their disparity is within a maximum allowed disparity determined by the minimum distance to a point in the

scene, and (3) they have compatible orientations.

2.1.1. Uniqueness

The uniqueness constraint has been used either explicitly or implicitly by nearly every stereo matching
algorithm.13 It is stated as follows: Each matching primitive in an image should match at most one primitive
from the other image. 1t is derived from the assumption that each image point corresponds to one point in the
world. Our use of uniqueness is similar to Marr and Poggio’s one-sided uniqueness.}1 We define binocular
uniqueness in terms of two separate influences on a candidate match between image edges b and r (where b is
an edge in the base image and r is an edge in the right image). The first is from the strongest of the other
horizontal matches for edge b. The second is from the strongest of the other horizontal matches for edge 7.
After matching is complete this formulation will usually enforce unique results. It also helps to select matches

in ambiguous regions.

2.1.2. Detailed Match

The detailed match constraint states that candidate matches in which the edges have similar properties are
more likely to be valid. This follows from the assumption that the images are taken from similar viewpoints, so
that edges are likely to have a similar appearance in both images. Edge comparison techniques have been used
in a number matching algorithms.2 In our formulation of detailed match, two intensity comparison measures are
employed. The first supports the match when the intensity values on each side of the edges are similar. The

second provides support when the intensities on only one side of the edges match.

2.1.3. Multiresolution Matching

Correspondence between matches at multiple resolutions provides another useful constraint. It is based
on a number of assumptions about the relationship between edges at different resolutions. It was first proposed
by Marr and Poggio,!! implemented by Grimson,” and has been used frequently since then. Our refinements of

multiresolution matching involve restricting it to a local definition, using fine-to-coarse as well as coarse-to-fine




matching, and computing it simultaneously at all levels. Specifically, in coarse-to-fine multiresolution, a match
at a given resolution supports a match at the next finer resolution when their disparities agree and when the
edges in each image are in nearly the same spatial position. This is based on the observation that the position of
a particular edge only changes locally between resolution levels.24 Fine-to-coarse multiresolution is defined
similarly. This is an important new use of multiresolution since coarse level matches often receive little support
through other constraints.22 Note that because our definition involves pairwise interactions between matches,
many matches will not receive any multiresolution support. However, they will not be eliminated either; they

may still be accepted through support from other constraints.

2.1.4. Figural Continuity

The figural continuity constraint was developed by Mayhew and Frisby.!4 It states that edges along a
contour should match edges along a similar contour in the other image. It is based on two assumptions: (1)
contours in the scene appear nearly the same in each image, and (2) contour extraction and matching can occur
cooperatively. This is the Binocular Raw-Primal Sketch (BRPS) conjecture.!# Our formulation of figural
continuity defines pairwise relations between matches. The edges in each image must appear to be part of a
contour and the hypothesized contours, as defined by the pairs of edges, must appear similarly. Because this
pairwise definition is accurate only over a limited spatial extent, we restrict figural continuity to nearby

matches.

2.1.5. Disparity Gradient and Gaussian Support

Both the disparity gradient!? and Prazdny’s Gaussian-support model'8 are based on the assumption that
objects occupy a well-defined three-dimensional volume. Both constraints assume that points from the surface
of an object appear with relatively similar disparities in an image. The disparity gradient is formally defined as
follows. Suppose that my = (by,ry) and ma = (b2, 72) are horizontal candidate matches. Also, let d (m;) be the

disparity of a match. Then the matches support each other if

fd(my)—d(@m) |
D(mnmz)

where D (m1,m5) is the distance between two matches. (The value 1 is the disparity gradient limit.) According
to this definition, nearby matches must have similar disparities. More distant matches can have a greater

disparity difference.
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The disparity gradient is much less discriminating in its definition of support than other constraints. It
often provides only weak discrimination between matches, and contrary to its assumption, it allows support
between matches across surface boundaries. To make it more discriminating we will skew the strength of the
relations it defines in favor of matches for fronto-parallel surfaces. Also, we reduce its strength relative to the
other less ambiguous constraints, i.e. multiresolution and figural continuity. Finally, because the disparity
gradient involves no orientation information, we use figural continuity to specify relations between matches for
edges that locally appear to be part of a contour. Thus, figural continuity and the disparity gradient complement

each other in their definition of support.

2.2. Trinocular Constraints

In addition to the binocular matching constraints discussed above that are implemented both vertically
and horizontally, the TGSA incorporates two new trinocular constraints. Computationally these constraints are
used in a similar manner as the binocular constraints. The only difference is that the trinocular constraints are
implemented between orthogonal matches. The new constraints are discussed in the next two subsections

below.

2.2.1. Trinocular Uniqueness

The trinocular uniqueness constraint is based on the same assumption as binocular uniqueness. In the
binocular case we assume that each edge point corresponds to one scene feature, so there should be at most one
valid match per edge. Extending this to the trinocular case, we assume that the valid matches found both
vertically and horizontally for a given edge should correspond to a single scene feature. Thus, because the

cameras are positioned on an isosceles right triangle, these matches should have the same disparity.

Using these assumptions we define the trinocular uniqueness for a horizontal match m = (b,r), where b

is the point in the base image and r is the point in the right image, as

TU, = B; x max(0, | n € Topy and Id(m)—d(n)l >€)

where Top, is the set of vertical matches for base image point b, B, is a constant that scales the strength of the
relation, d(m ) is the disparity of a match, and € is a small constant. (See Section 2.3.3.2 for a similar

statement of binocular uniqueness.) In other words, the inhibiting trinocular uniqueness for a horizontal match
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is the maximum of the vertical matches for the base image edge whose disparities differ from the horizontal
match disparity by more than a small constant. The trinocular uniqueness for a vertical match is defined
similarly.

There are several important points to note about this definition of trinocular uniqueness. First, ideally, the
constant € should be 0 to reflect the fact that the vertical and horizontal disparities should be identical.
However, because of potential errors in the position of an edge, there isa slight tolerance for minor differences
in disparity. Second, there is only one trinocular uniqueness influence on a given match, whereas there are two
binocular influences on a match. Finally, and most importantly, a large percentage of the matches have no
trinocular uniqueness. In binocular matching, edges oriented along an epipolar scanline are not matched unless
they are isolated from other horizontal edges. Empirically we found that approximately 30% of the edges in
random-dot stereograms were not matched because of this. reason Therefore, in the trinocular algorithm
approximately 60% of the edges in the base image will have only vertical or only horizontal maiches;
approximately 40% of the edges will have matches both vertically and horizontally. These are the only matches

that will be influenced by trinocular uniqueness.

2.2.2. Trinocular Disparity Gradient

The trinocular disparity gradient (TDG) is motivated by the same assumptions as the original disparity
gradient. The main assumption is that points from a surface appear at similar positions and with similar
disparities in the images. Thus, the trinocular disparity gradient defines relations between nearby, orthogonal
matches (one match is vertical and the other is horizontal) based on the relative distance between them and on

the difference in their disparities.

In defining the trinocular disparity gradient equation, we generalize the original disparity gradient. In the
latter, matches mo = (lo,ro) and my = (l1,71), where the [; are left (or base) image points and the r; are right

image points, will support each other if

I d(mo) — d(my) |
D (g, 1) <10

where d(m ) is the disparity of a match, and D is the distance between matches. This distance is computed by
taking the midpoint between the image points for each match, and measuring the distance between these

midpoints as shown in Figure 3. To obtain the distance between vertical matches we apply a similar measure.



12

/
/..
/<-m_l‘_~ D
/
/
r L l

Figure 3. The distance D between two matches in the disparity gradient is the distance between the midpoints
of the matches. In this figure the matching points in the two images are graphed in the same coordinate system.
(The distance is measured similarly for a vertical implementation of the disparity gradient in matching the base
and top images. However, the figure would be rotated by 90°.) Thus, because the lines of sight of the cameras
are parallel, the right image points appear fo the left of the left image points.

The straightforward geometric generalization of the distance relation to the trinocular disparity gradient is
shown in Figure 4. The problem with this definition is that the line segment between the points forming the

vertical match and the line segment between the points forming the horizontal match are orthogonal. When

these segments cross, the distance between midpoints is no longer an accurate measure of the desired property.

b -7
0 -
//'\
- ~ U<
~ \D

to

Figure 4. Measuring the distance between matches in the trinocular disparity gradient using a similar measure
as in the original disparity gradient. The b; are points in the base image; 71 is a point in the right image; toisa
point in the top image.
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An example of this is seen in Figure 5.

We resolve the problem by examining the distance equations. Let bo=(x0, o) and by =(x1,y1) be
points in the base image and let do and d1 be the disparities for those points. When these points and disparities

define horizontal matches, the distance between the matches is (letting Ad =do—d1, Ax=x9—x;, and

Ay =yo—y1):

Dy =VAy2 + (Ax — Ad /2)2.

If the points and disparities describe vertical matches, then the distance between the matches is:

D, = YAy — Ad /2)2 + Ax2.

There is no logical inconsistency between these two distance measures. This is because the image pairs,
including the epipolar scanlines, are rotated 900 with respect to each other. We adapt these equations to the
trinocular disparity gradient as follows. If the points and disparities above describe one vertical and one

horizontal match, then the simplest distance measure between the matches is:

D, = VAy? + Ax2.

to

Figure 5. An example where the straightforward extension of the disparity gradient distance definition is prob-
lematic. The disparity difference between these matches is quite small, but the measured distance is 0. Thus,
this distance measure does not accurately reflect the true separation of the underlying scene points. A more ac-
curate measure of distance is shown in Figure 6.
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Figure 6. The trinocular disparity gradient distance between a vertical and a horizontal match,

Because one vertical match and one horizontal match are used, the difference in disparity does not enter into

either the x distance or the y distance. This is shown geometrically in Figure 6.

The final problem in defining the trinocular disparity gradient concerns the relationship between vertical
and horizontal matches for a given point in the base image. Specifically, because the distance between the
matches is 0, the trinocular disparity gradient equation is undefined. This situation is handled by defining the
minimum distance in trinocular disparity gradient between matches to be 1. In addition to handling the
problem, it introduces a minor tolerance in the difference between the vertical and horizontal match disparities
for an edge. Note that when the disparity difference is greater than 1 for a pair of orthogonal matches for the

same edge, they may inhibit each other through trinocular uniqueness.

2.3. Constraint Integration in the TGSA

None of the binocular or trinocular constraints discussed above provides accurate matching information
in all circumstances. To reduce the false support made by the binocular constraints, we redefined a number of
them, yielding local (pairwise) definitions of each constraint. The trinocular disparity gradient is also locally
defined. Our next step is to describe the integration of these constraints in the trinocular algorithm. The
important features of this are: (1) the local definition of each constraint, (2) the cooperative, parallel integration
of a number of constraints using only positive constraint influences, (3) the combination of binocular and
trinocular constraints in a single matching network, and (4) the implementation of the algorithm in a

connectionist network.
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The TGSA is essentially an iterative, parallel, relaxation algorithm. In the algorithm, each candidate
match is represented by a node whose strength represents the strength of the support for that match. The
candidate matches are formed by pairs of compatible edges from the base and top images, and from the base
and right images. Using both the binocular and trinocular constraints, each candidate match propagates its
strength to other matches, and in turn is influenced by those matches. This is repeated until the TGSA
determines which matches are valid. Once the relaxation algorithm is complete the vertical and horizontal
disparities of the matches for the edges in the base image are smoothed together to yield a single disparity map.

(We only discuss this last part briefly at the end of Section 5.)

2.3.1. The General Support Principle

The TGSA organizes the influence of the constraints using the General Support Principle (GSP). This
principle states that, except for binocular and trinocular uniqueness, constraints are only used to support
candidate matches. We provide both theoretical and practical reasons for defining the GSP and using it to
organize the influence of the constraints. Our theoretical observation is that the constraints are derived from
assumptions about objects and their appearance in images. These assumptions lead to assertions concerning
relationships between valid matches. A more practical justification for the GSP follows from the local
definition of the constraints. Specifically, since the constraints are defined as pairwise relations between
candidate matches, there is no way to locally distinguish between the following possibilities: (1) the constraints

are outside the assumptions of the constraints, or (2) one or both of the matches are invalid.

2.3.2. Constraints Used

The TGSA incorporates all of the constraints discussed in Sections 2.1 and 2.2. Binocular constraints are
implemented between matches from the base and top images, and between matches from the base and right
images. Trinocular constraints are implemented between orthogonal matches. Uniqueness is necessary for any
stereo matching algorithm matching primitives as simple as edges since there are usually multiple candidate
matches for each edge. Trinocular uniqueness helps to ensure consistency between vertical and horizontal
matches for a given edge in the base image. The disparity gradient, trinocular disparity gradient and figural
continuity are complementary surface structure constraints. The trinocular disparity gradient relates orthogonal
matches thereby providing additional information that can resolve conflicting matches and overcome errors due

to noise. Multiresolution is most useful for identifying persistent features of the images and propagating
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support between appropriate matches for these features at various resolution levels. Detailed match is a
comparison of the properties of the two edges involved in a match. Thus, the TGSA employs structural,

hierarchical and edge-appearance constraints in matching.

2.3.3. Connectionist Implementation of the TGSA

Matching in the TGSA is implemented using a connectionist network. The network is designed so that
(1) each node represents a distinct potential match, and (2) the constraints are implemented directly in the
connections between candidate match nodes. The matching works iteratively. During each iteration each node
computes its new activation and output values. The new activation is based on the old activation, a decay rate,

the supporting input and uniqueness.

2.3.3.1. Node Activation and Output Functions

The activation of a node depends on the combined influences of the supporting constraints, uniqueness,
decay and the node’s prior activation. The supporting input to a match node, i, is a weighted, linear

combination of the constraint input, given by:
N,
I = 0; wi
i ,; j Wi

where the O; are outputs from other match nodes, and the wj; are the connection weights. Note that no
distinction is made at this level between the influences of the trinocular and binocular support constraints.

Uniqueness input for a horizontal match is given by:
U;= B max (O; | j € Base;) + B max (Ox! k € Right;)

where Base; is the set of competing matches for the base edge of match i, and Right; is the set of competing
matches for the right edge. A similar algebraic statement defines the uniqueness input to a vertical match. The

definition of trinocular uniqueness was given in Section 2.2.1. The new activation is:
Ai=(1-A; +1; +U; +TU;

where & is a decay factor and TU; is the trinocular uniqueness value as defined in Section 2.1.1. It is used to
help eliminate noise matches. The output, O;, is simply a threshold function of the activation, A;. The
activation is limited to the range [-1..1], and the output is allowed to be in the range [0..1]. When the activation

of a node reaches 1.0 it is said to be saturated, and it remains at 1.0 for the duration of the matching procedure.
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2.3.3.2. Constraint Weight Equations

As noted previously, most of the constraints are implemented locally as pairwise relations between
candidate matches or as functions of individual matches. In this subsection we consider the weight functions of
some of the constraints. (The uniqueness constraint and the trinocular uniqueness constraint are built directly

into the activation function for a match node described previously.)

For the disparity gradient, two matches, m; and m; (m; and m; are both vertical matches or they are both
horizontal matches), support each other if they are within the disparity gradient limit as defined in Section 2.1.5
and if they are within a maximum allowed distance. The weight of a connection is given as follows. Let d; ; be

the disparity difference and let D; ; be the distance between the matches. Then the weight is:

. = BASEDG 4 __c
W D; dij+c)

where ¢ =1 is a constant, and BASE DG is a parameter controlling the overall strength of the disparity

gradient. The ¢ / (disp_diff +¢) term scales the support as the disparity difference between the matches

increases.

For the trinocular disparity gradient let v; and h; be orthogonal matches that meet the definition given in
Section 2.2.2. The weight of the connection between them is defined as follows. Letd;j=ld(vi)—d(h;)l.
Then the weight is given by:

. o BASETDG « _ ¢
WD ki) dijtc)

where ¢ is used as above. (Recall that the binocular and trinocular disparity gradient distance functions differ

slightly.)

The weight equations for the other constraints are straightforward. Figural continuity is weighted

inversely by the distance between two supporting matches and is scaled using the parameter BASE_FC':

BASE FC
ii
The weights for the two multiresolution constraints do not involve a distance term and are the constants

wiyj =

BASE_COARSE_TO_FINE and BASE_FINE_TO_COARSE. The weights for detailed match are also constants

and are relatively small compared with the other constraints.
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2.3.3.3. Weight Assignment

The remaining problem in defining the network is to establish values for all of the parameters and thereby
set the connection weights. These parameters are associated with the implementation of the constraints and the
definition of the activation function, including the uniqueness parameters, B and B,, and the decay parameter, 3.
Our approach to parameter assignment involves three steps: (1) develop qualitative heuristics for the relative
values of the parameters and their approximate values, (2) use simple synthetic images representing difficult
matching problems to refine the values, and (3) fine tune the values through experimentation with random-dot
stereograms and real images. For details of the weight assignment analysis, see Stewart.2! It is important to

note that the algorithm was tolerant of minor changes in the values of the parameters.

We developed the following heuristics for the trinocular constraints. First, the trinocular uniqueness
parameter [, must be set fairly low. This follows from the observation that approximately 60% of the edges in
the base image will have only vertical or horizontal matches. For an edge with both vertical and horizontal
matches there is only minor additional support that its matches will receive as a consequence. This will be
trinocular disparity gradient input from an orthogonal match for the edge. Thus, matches for edges having both

vertical and horizontal candidates should not be penalized by strong trinocular uniqueness input.

The parameter BASE_TDG is given a similar value as BASE DG, the binocular disparity gradient
parameter. This is because both constraints gather support by searching over a small neighborhood around a
match for other matches with similar disparities. The disparity gradient searches for support from matches
between the same pair of matching images, while the trinocular disparity gradient searches for support from
orthogonal matches. The strengths of these two constraints are lower than coarse-to-fine multiresolution and
figural continuity because the disparity gradient constraints are much less discriminatory in their definition of

support.

2.4. Size of the Trinocular General Support Algorithm Network

As a final consideration in the definition of the TGSA, we examine the size of the network defined by it.
Let the number of nodes defined by the original binocular GSA be N;, and let the number of connections be Cs.
From Stewart?! we know that N, = k L M2 , where k is the number of distinct disparity values represented
in the network, L is the number of resolution levels, and the images are each M by M. In the trinocular

algorithm the number of nodes is: N, = 2* N,. This is because the number of nodes in the TGSA network is
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equal to the number of nodes in two separate GSA networks.

3. Binocular Results

The binocular General Support Algorithm was previously tested on a wide variety of random-dot
stereograms and natural images. The results demonstrated the algorithm’s success on a wide range of image
pairs. They also led to an understanding of where it failed to produce accurate results. For the most part these

problems are common to all current stereo maiching algorithms.

Figures 7 through 10 show samples of the binocular matching results. See Stewart2! for complete details.
The results of matching were recorded in two ways. First, the disparities of the matches that the algorithm
accepted were used to generate intensity images. Second, statistics were collected to determine the percentage
of correct matching decisions (finding a correct match for an edge or correctly rejecting all matches for it). For

random-dot stereograms this was done automatically. For real images it required subjective judgment. An

Figure 7. Layered stereogram matching results. The disparity found is encoded by intensity where dark points
represent large disparities. There are four layers in the stereogram. The blank areas indicate the reduced
number of matches for points that appeared in the left image, but were occluded in the right.
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example of the matching results for a multilayer stereogram is shown in Figure 7 (98% correct decisions). Two
examples of matching natural image pairs are shown in Figures 9 (98% correct) and 10 (93% correct, this was
by far the worst result). Overall, the algorithm averaged 97% correct decisions. Figure 8 graphs the percentage
of nodes with intermediate output values as a function of the number of iterations. This shows that the
binocular algorithm converged quite quickly.

In spite of the high-quality results there were still some situations that locally-defined binocular
constraints could not handle. These corresponded to problems that could not be explicitly identified using the
constraint definitions. Thus, the algorithm had to resolve the problems implicitly. The problems were the

following:

® Partially-occluded periodic regions. The constraints relied on structural or hierarchical variations in
support to disambiguate the matches for an edge. In the middle of periodic regions these variations did
not occur. Thus, the GSA relied on matching results at the boundaries of these regions to resolve the

ambiguity. The binocular uniqueness formulation was explicitly designed to help this occur.
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Figure 8. The percentage of nodes with intermediate activations as a function of the iteration number for all of
the examples in Section 3. A node is in the intermediate range if its output is between 0.25 and 0.75.
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Figure 9. Matching example with a baseball on a newspaper. The disparity results from the perspective of the

left image are shown. The algorithm made approximately 98% correct matching decisions for this example.
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Figure 10. Matching example with fruit in front of a tablecloth. The disparity results from the perspective of

the left image are shown. The algorithm produced 93% correct matching decisions here, by far the worst of any
of the real images tested. Most of the errors were caused by a significant occluding surface in front of a period-

ic pattern.
Unfortunately, when a region was partially occluded, as in the fruit image (Figure 6), the boundaries that

aligned in each image were often incorrect, and so errors occurred.

° Occluded regions. The GSA was fairly successful in eliminating matches for edges in occluded regions
(regions that appear in one image but not in the other). Examples of this are seen in the blank regions to
the left of the occluding surfaces in Figures 7 and 9. However, matches could occur between occluded

edges and noise edges that were supported strongly enough to be accepted. The main reason for this
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problem was support that crossed occluding boundaries.

® Significant structural variations between images. Structural differences caused two types of errors. First,

a correct match may not have received enough support because of the reduced similarity between the

images. Second, an incorrect match may have been accepted for an edge when the correct match was

missing.

These problems caused most of the errors that occurred in the binocular results. Of the problems,
occluded periodic regions caused the greatest difficulty because the errors appear in clusters (see Figure 10). In
the remainder of this paper we consider how the three cameras used in the Trinocular General Support
Algorithm overcome many of the above errors. These solutions arise naturally from matching both vertically
and horizontally using binocular constraints along with the new trinocular constraints that relate vertical and

horizontal matches.

4. Solutions to Problems in Binocular Matching

The Trinocular General Support Algorithm (TGSA) was designed to solve a number of the problems in
matching binocular image pairs. These include ambiguities in matching periodic regions, especially those that
are partially occluded, noise matches near occlusions, and erroneous matches when there are significant
structural differences between the images. In addition, the matching of horizontal edges is not a problem in the
TGSA since it matches both vertically and horizontally. When an edge in the base image is part of a horizontal
contour, it will have candidate matches only with edges in the top image. Instead of requiring direct
confirmation in the right image, one of these maiches may be accepted through support defined by binocular

and trinocular constraints.

The most dramatic improvement that the TGSA offers is in handling the periodic structures problem. As
the fruit example showed in Section 3, in binocular matching this problem can result in clusters of erroneous
matches near an occluding boundary. These errors arise because there are no variations in support in periodic
regions that allow the matches to be distinguished. Therefore the disparities for matches found at the
boundaries of these regions must be propagated into the interior of the region to resolve the ambiguities. When

the boundary is occluded, boundary matches may be incorrect and errors may occur.

The TGSA can overcome problems in matching periodic regions through the trinocular disparity

gradient. In a periodic region where there is either is no vertical periodicity or where the vertical and horizontal
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frequencies are not equal (e.g. a brick pattern), the trinocular disparity gradient provides stronger support for
the valid matches than it does for the invalid matches. This differential implies that the ambiguity in structural
support that appeared in binocular matching no longer exists, and the valid matches can be identified without
relying on the propagation of the disparities found at the boundaries. In addition, when the vertical and
horizontal frequencies are equivalent, the trinocular disparity gradient can help to overcome ambiguities since
region boundary matching results are propagated from all four boundaries instead of two. Thus, if only one

boundary is occluded, fewer errors are likely to occur.

The following shows how the trinocular disparity gradient establishes the differential in support
necessary to resolve the ambiguities in periodic regions. Assume that the correct disparity in a periodic region
is d and the vertical and horizontal frequencies in the region are v and h, respectively. The competing
horizontal matches will have disparities d —~ h, d and d + h, etc. The competing vertical matches will have
disparities d —v, d and d + v, etc. Through the binocular disparity gradient each of the competing disparities
for an edge on the interior of the region will receive approximately the same support. However, the trinocular
disparity gradient will support the matches at disparity d much more strongly than the others because there are
both vertical and horizontal matches with this disparity. (This assumes that 4 is not an integer multiple of v
and v is not an integer multiple of k.) The incorrect matches receive much less support through the trinocular
disparity gradient.

The TGSA also solves some of the other problems in binocular matching. In matching only the base and
right images there are a number of regions in the base image that do not appear in the right image. There are no
correct matches for edges in these regions, but in binocular matching noise matches are occasionally accepted
for them. When a third camera is added, some of these occluded regions in the base image will appear in the
top image. However, in general there are more regions in the base image that are occluded in one of the other
two images (we call these regions half-occluded). Because of this, the trinocular algorithm must be able to
resolve matches using the information available only from matches in either the right or top images. This is
accomplished through the use of binocular constraints. Thus, the TGSA finds correct disparities in half-

occluded regions and eliminates the problem of arbitrary noise matches found there.

The final problem with binocular matching involves significant appearance differences between the
images. When these differences arise from random variations, the use of the additional image can improve the

results of matching. The improvement obtained in overcoming stochastic noise through the use of many images
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Figure 11. Top, base and right images for the first trinocular example. The random-dot texture is at disparity
16 and the bars are at disparity 4. The top bar is occluded in the top image. The right bar is occluded in the
right image.

in matching has been demonstrated by Tsai.23 In the TGSA the noise variations are overcome through the use
of trinocular constraints. Trinocular uniqueness helps to suppress noise matches that occur when the correct
match is missing for an edge since the support for such matches is usually relatively weak. Because the
trinocular disparity gradient gathers support from orthogonal matches, it can strengthen matches whose support
is eroded by noise variations between binocular image pairs. This orthogonal support may also be helpful in

overcoming errors that are more systematic as well.
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5. Experimental Results

The previous section argued that the Trinocular General Support Algorithm overcomes many of the
problems inherent in binocular matching. In this section we present experiments demonstrating the TGSA’s
success on synthetic images. The first group of images, discussed in Section 5.1, presents results on matching
occluded, periodic regions. The second group of images, discussed in Section 5.2, describes the algorithm’s

performance on random-dot stereograms involving occlusions and noisy data.

The first step in testing the TGSA was designing an efficient, realistic simulation of it. The main
observation used in doing this was that matches are sparsely distributed. Thus, for a given triple of input
images, we built only those nodes that represent candidate matches, and we only defined connections (binocular
or trinocular) between these candidate matches. The nodes and connections were built based on the results of
edge detection. Edges were located using different sizes of the Marr-Hildreth edge operator.12 The initial
activation for each match was set at a base level plus any additional support from detailed match. The
simulation was allowed to run for either a given number of iterations (usually a max of 16) or until only a small

percentage (usually 1%) of the matches had outputs in the intermediate range 0.25 to 0.75.

Figure 12. Ground truth disparity for the base image.
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Figure 13. The base disparity image results for trinocular matching.

5.1. Occluded Periodic Regions

Results on two different stereograms containing occluded, periodic regions are presented in this section.
The periodic regions in the images contain multiple vertical and horizontal bars. In the first example, the bars
in the base image are occluded by a surface that is above and to the right of the region. In the second example,
the occluding surface completely surrounds the bars. The occluding regions are textured with a random-dot
pattern. Because the algorithm makes nearly 100% correct decisions within the random-dot pattern, the

matching results are not presented numerically, only pictorially.

The base, top and right images for the first example are shown in Figure 11. Figure 12 gives the ground
truth disparity for the base image encoded as intensity. (The white holes at the boundaries occur because those
points do not appear in either the right image or the top image. This is because they are either shifted off the
image by their large disparities, they are occluded, or both.) The occluding region, represented by the random-
dot pattern, is at disparity 16, while the bars have disparity 4. Because of the occluding surface, the top
horizontal bar does not appear in the top image, and the right vertical bar does not appear in the right image.

The horizontal frequency of the bars is 14 pixels; the vertical frequency is 10.

¢
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Figure 15. Top, base and right images for the second trinocular example. The random-dot texture is at dispari-
ty 16 and the bars are at disparity 4. Of the five vertical bars in the base image, the right one does not appear in
the right image. Similarly, of the five horizontal bars in the base image, the top one does not appear in the top

image.

The results of trinocular matching are shown in Figure 13 for the base image; the binocular matching
results are shown in Figure 14. In binocular matching, the interior of the region is ambiguous, so the only way
the algorithm could disambiguate the matches was to propagate the results from the horizontal boundaries of
the region. The correct matches were found on the left boundary; the incorrect matches were found on the
right. In addition, disparity gradient support from the occluding regions (disparity 16) favored the incorrect

matches (disparity 18) near the top of the periodic region.
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Figure 16. The correct disparities in the base image for the second trinocular example. The blank areas
represent points that appear in neither the right nor the top images.

The only errors in trinocular matching for the first example occurred near the upper-right comer of the
periodic region. In this area the incorrect matches (at disparity 18 vertically, and 14 horizontally) received
strong disparity gradient support from the textured surface (disparity 16). In addition, the incorrect matches at
the right and top borders received less uniqueness inhibition. The combination of these two factors caused the
errors. In the remaining part of the periodic region, the strength of the trinocular disparity gradient support for

the correct matches resolved the ambiguity and allowed the correct matches to be accepted.

The images for the second periodic-image example are shown in Figure 15. The ground truth disparity
for the base image is shown in Figure 16. The periodic region is at disparity 4; the occluding region is at
disparity 16. Note that ﬁye vertical bars and five horizontal bars appear in each image. However, all of these
bars should not be matched. The top bar and the right bar in the base image should not be matched; the bottom
bar in the top image should not be matched; the left bar in the right image should not be matched. The
remaining bars should match to yield the correct disparity of 4.

The results of matching using the trinocular algorithm are shown in Figure 17; the results using the

binocular algorithm are shown in Figure 18. As expected, the matches for bars in the binocular case were all

incorrect. There was no information in the center of the region to disambiguate the matches, so the matching
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Figure 17. The disparity results of matching using the trinocular algorithm for the base image.

D
A N

gl T ST YA
T .L.;"’;"’- 140, ,.,;,5-! T 51.-
Bl el
k

PR e
' e 2
e

Figure 18. The disparity results of matching using the binocular algorithm for the base image. None of the
disparities for the bars in the center of the image were correct.

results at the boundaries of the region were propagated inward. The disparities found at the boundaries of the
region were incorrect. Thus, the disparity 18 matches were accepted for each edge in this region. In trinocular

matching, the trinocular disparity gradient provided enough support for the correct matches in the center of the
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regions to overcome the ambiguity and resist the propagation of erroneous disparities from the boundaries. At
the boundaries of the periodic region, matches with incorrect disparities were found because the binocular
uniqueness inhibition was weak and there was additional support for these matches through the disparity

gradient from the occluding surface.

These results demonstrate the success of the TGSA in handling occluded, periodic regions. The
algorithm worked by matching vertically and horizontally using both binocular and trinocular constraints.
Trinocular algorithms that only combine results as a post-matching process can not overcome these
difficulties.® 15 In matching a triple of images such as in Figure 15, these algorithms find incorrect matches both
vertically and horizontally. When the results are combined, the disparities disagree and none of them are

correct.

5.2. Random-Dot Stereograms

In this section we present results for experiments in trinocular matching of random-dot stereograms.
These examples are intended to demonstrate the trinocular algorithm’s usefulness in handling problems due to
noise and occlusion. The test cases included stereograms with 0%, 2% and 5% noise added to each image. For

each stereogram there were three surfaces. The disparities of the surfaces were 0, 6, and 12 units.

The disparity images resulting from matching these images for both the trinocular and binocular
algorithms are shown in Figures 20 - 25. These show the advantages of the trinocular algorithm in providing a
dense and accurate set of match results even in the presence of noise. The numerical results are summarized in
Table 1. Figure 19 shows a graph of the percentage of nodes with intermediate activations as a function of the

iteration number for the three trinocular results and the binocular algorithm on the images with 2% noise.

% Correct % Correct % Correct Number of

Noise % || Decisions: | Decisions: Decisions: Unmatched
Total No Occlusion | Right Image Edges
Trinoc 0 97.6 98.5 97.9 16
Binoc 0 97.9 98.3 974 1341
Trinoc 2 93.1 94.6 94.6 60
Binoc 2 93.2 934 93.2 1482
Trinoc 5 87.9 89.3 90.1 94
Binoc 5 85.0 84.6 85.7 1528

Table 1. Matching results for stereograms in Figures 20 - 26.
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Figure 19. Graph showing the percentage of nodes with intermediate activations as a function of the iteration
number. All three trinocular examples are shown, but only the 2% noise binocular example is given.

Figure 20. Results of trinocular matching for the base image with 0% noise in each image. When an edge had
both a vertical and horizontal disparity the values were averaged. In practice, if the values disagree the value
nearer to the average in the region surrounding the edge should be used.



34

In Table 1 there are four results presented for each run. The first column shows the overall percentage of
correct matching decisions. In trinocular matching, when both vertical and horizontal matches were involved, a
correct matching decision for an edge was defined as either (1) both a vertical and horizontal correct match
were accepted, (2) a correct match was accepted either vertically or horizontally and no incorrect maiches were
accepted, or (3) no matches were accepted when there were no correct matches available. All other decisions
were counted as incorrect. Measuring the performance in this way, the results for binocular and trinocular
matching were similar except when 5% noise was added. The second column in the table shows the percentage
of correct decisions when no occlusions were involved. Perhaps the clearest indication of the improvements
made by using trinocular matching is in the third column of Table 1 which compares the results with respect to
the right image. The trinocular algorithm was superior in all examples. The fourth column shows the number
of edges which had no candidate matches. This demonstrates that a much denser set of matches is found when

using the trinocular matching algorithm.

Figure 21. Results of binocular matching for the base image with 0% noise in each image.
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Figure 22. Results of trinocular matching for the base image with 2% noise in each image.

One of the advantages of trinocular matching is that there are fewer regions that appear in the base image,
that do not appear in at least one other image. In binocular matching when a region appears in the base image
but is occluded in the right, there are no correct matches for the edges and therefore there is no known disparity
for the region. In the trinocular case correct matches and disparities may be found in such regions by matching
with the third image. The following quantifies the algorithm’s performance in half-occluded regions (regions
that appear in the base image and one of the other two images). The data are taken from the results of matching
for the stereogram with 5% noise added to each image. First, consider matches between edges in the region and
the image where they did not appear. Of the edges with candidate matches, the trinocular algorithm accepted
no matches for 81% of them. Fortunately, of the 53 incorrect matches found, 36 had the correct surface
disparity. Thus, these incorrect matches did not give incorrect disparity measures. Next, consider matches
between edges in the partially occluded region and edges in the image where the region did appear. For edges
with candidate matches, the trinocular algorithm produced 89% correct matching decisions. Of the incorrect
decisions, 11 were incorrect matches, and 24 were due to missing the correct maich. Thus, although

statistically the trinocular algorithm’s performance in partially occluded regions was not great, the errors did
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Figure 23. Results of binocular matching for the base image with 2% noise in each image.

not produce incorrect estimates of disparity. These quantitative results are confirmed by examining the
disparity image results in Figures 20-25.

The results on the random-dot stereograms demonstrate that the trinocular algorithm accommodated
noise in the images significantly better than the binocular algorithm did. In addition, because points could
match both vertically and horizontally, a denser set of matches was found. Finally, the algorithm produced

correct matches in occluded regions, although a number of erroneous matches were found as well.

As a final consideration, note that the results have been presented using raw disparity values. For the
trinocular algorithm, conflicting horizontal and vertical matches for an edge should be resolved by choosing the
disparity closest to the average disparity in the surrounding region. This is similar t©0 Ohta’s!5 post-matching
smoothing algorithm. For both the binocular and trinocular algorithms, some noise matches that could not be

eliminated during matching may be removed later through smoothing and surface fitting processes.
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Figure 24. Results of trinocular matching for the base image with 5% noise in each image.
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Figure 25. Results of binocular matching for the base image with 5% noise in each image.

6. Summary and Discussion

The Trinocular General Support Algorithm has been defined and shown to be successful in overcoming
many of the problems in binocular stereo matching through the use of vertical and horizontal matching with
both binocular and new trinocular constraints. New constraints were defined for trinocular uniqueness and the
trinocular disparity gradient. The TGSA resolved the binocular problems as follows: (1) The trinocular
disparity gradient provided additional information in order to eliminate ambiguity in periodic regions in many
cases. (2) Because the algorithm gathered support for a match both vertically and horizontally, the trinocular
algorithm performed better in the presence of noise. (3) Regions of the base image that were occluded in the
right image were matched vertically solely through information from the base and vertical images. This
provided accurate disparities in these half-occluded regions and therefore reduced the problem of noise matches
involving occluded edges. (4) The use of both vertical and horizontal binocular matching implied that the
algorithm did not rely on an edge being present in all three images in order to match it. This allowed the
algorithm to match simple edge primitives and still overcome the difficulty of matching primitives oriented

along epipolar scanlines.
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The major remaining question is to determine how well the algorithm performs when erroneous
variations between images are not stochastic. This issue requires further testing on real image data to determine

how important a concern it is and how well our algorithm performs in overcoming it.
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