Measurement and Prediction of Contention in
Multiprocessor Operating Systems
with Scientific Application Workloads

G. E. Bier
M. K. Vernon

Computer Sciences Technical Report #767

May 1988

+ To appear in Proc. 1988 Int'l. Conference. on Supercomputing, St. Malo, France, July 4-8, 1988,

Measurement and Prediction of Contention in Multiprocessor Operating
Systems with Scientific Application Workloads

George E. Bier
Mary K. Vernon
University of Wisconsin - Madison
1210 W. Dayton St.
Madison, WI 53706
Abstract
This paper examines the effect of contention for a single shared semaphore protecting critical
regions in a multiprocessor operating system on system performance as the number of processors increases.
A simple queueing model is used to make predictions as a function of the expected demand for the sema-
phore by each processor. Measurements are then presented for 2 and 4 processor configurations of the
CRAY X-MP running an experimental version of UNICOS. The measurements indicate that demand is
highly dependent on the workload, and that contention can be somewhat higher than predicted by the
model due to process scheduling effects and request interdependencies. One interesting point which is

revealed in the measurement results, is that the UNIX scheduler gives preferential treatment to jobs that
make frequent requests for the semaphore.

1. Introduction

Recent increases in the processing power of supercomputers for numeric applications have been
achieved partially by increasing the number of processors in the machine. Current systems scale to 2-4
processors, and designs for the near future scale to 8, 16 or perhaps even 64 processors. Unfortunately,
there are factors that limit how much benefit is gained by each additional processor. In particular, conten-
tion between processors for shared resources can cause performance degradation. Contention can manifest
itself in many ways. For example processors might compete for memory, for a shared bus, or for i/o dev-
ices. In this paper we examine contention for a software shared resource, the operating system. To our

knowledge this issue has not previously been studied in any detail.

Operating system contention exists because of critical regions, regions of code that require
exclusive access. On a uniprocessor system, only one user process can generate an operating system
request at a time. Although the possibility for contention between a user process and system process exist
(due to interrupts), there is no need to provide protection between user processes. On a multiprocessor,

processes on different processors can make operating system requests concurrently. When this occurs,

This work was supported by CRAY Research, Inc., and by the National Science Foundation under grant number DCR8451405.

there is a possibility that requests will have to wait. If the waiting time cannot be filled by running a dif-
ferent process on the processor, then the waiting time decreases the computing power and thus the

throughput of the system.

The redesign of an operating system is a formidable task that requires substantial performance
pay-offs to justify the effort. It is known that scientific applications typically spend much less time using
operating system services than general-purpose data processing and interactive workloads (perhaps 5-15%
as compared with 40-50% in a typical UNIX environment [PaMa86, BaBu84, Fede84]). For these reasons,
the trend in numeric supercomputers has been to port a uniprocessor operating system to the multiprocessor
environment by identifying and protecting all the critical regions with a single semaphore. "System tuning"
is then used to minimize time spent in critical regions. The disadvantage of this method is that the critical

regions are not optimized for parallel execution.

This paper investigates the performance implications of having a single semaphore protecting the
critical regions in supercomputer operating systems. We first develop a model of contention that assumes
requests occur at random times. The model indicates that if each application spends 5% of its time execut-
ing critical sections of the operating system, then the degradation in processing power due to operating sys-
tem contention is about 10% with 16 processors. We then present some preliminary measurement data that
indicates actual demand is highly variable, and that process scheduling and interdependencies in the
requests for the operating system semaphore can lead to somewhat larger decreases in processing power

than the model predicts.

2. A Simple Model of Contention

We make the following assumptions in developing a simple analytical model of operating system
contention. The first assumption is that requests occur randomly. That is, there is no interdependency in
the times at which different processors request the semaphore. Second, the interrequest time for the sema-
phore from each processor has the same mean. This assumption implies that there is no statistical differ-
ence between the applications executing on each processor. Third, requests are assumed to use a single

shared semaphore, and are handled first-come first-serve. Finally, the duration of the semaphore holding

time is exponentially distributed with a specified mean value for all processors.

The only input to the model is the operating system demand per processor. The demand is the per-
centage of execution time a processor spends executing critical regions. If the mean interrequest time is

denoted by Z and the mean duration is denoted by X, then the demand is:

demand = —%— * 100% 1)
x+2Z

The queueing model in Figure 2.1 is used to model the system just described. The delay center at
the top of the diagram models the time a processor executes between requests for the semaphore. The
server at the bottom is the operating system semaphore. Each customer in the model represents a processor
executing application processes. The results of the model depend only on the ratio of semaphore holding
time to the interrequest time. This ratio can be computed from the input parameter, demand, defined

above.

Performance measures computed from the model include the mean time a request spends waiting
for the semaphore (W), the average utilization of the semaphore (U), the mean number of processors exe-
cuting in user mode (n), and the throughput of the system (A). We are primarily interested in the average

effective computing power of the system. Effective computing power can be calculated from the number of

interrequest time

O
'S

semaphore queue

Figure 2.1: Queueing Model of Operating System Contention

CPUS (V) and the measures from the model using the formula:

Effective Computing Power = N — A X W 2

Alternatively, effective computing power can be calculated by n +U. However, we will find the above

formula more useful for the measurements studies reported in section 3.

64 e e e P 1%
3] 1 1 1 i
| | | | | 2%
H ; H ; 1 H
32 ‘ 4 i u y—— 53%
13]] 1 H
C | | | | : 4%
o Ry SR
i 1] ¥ t 1 1
p16-4-rmmmem SR A — R e 6%
1 1 1 ¥ t
u ; ; ; . : ' 8%
t | i 1 T i V
i ‘ ' ' ; ¢ 1 12%
ngl .. . I Y /A o R]
: S
P | | | | | |
0 : : : ! ' |
w e e N
e | | ; | | |
r H 1 H i H H
] i 1]] 1
g A b — e é
1 i] 1 1 1
L3 1 1 b 13 1
| | | | | |
E E i : E i
1 ; E ; : : E
1 2 4 8 16 32 64
Number of Processors

Figure 2.2: Predicted Effective Computing Power as a Function
of the Number of Processors and % Demand

Figure 2.2 is a graph of the effective computing power as a function of the number of processors
in the system, estimated by solving the model for demands ranging from 1 to 15 percent. The figure shows
that a 1% demand does not reach saturation with up to 64 processors. However, for a 5% demand, operat-

ing system contention becomes significant at 16 processors. Note that once saturation is reached, adding

-4~

more processors does not increase computing power because the operating system is limiting the system

throughput.

S 1 R

L e L
B R = N
- S ® -

it Wi ot Yt ik Wit S b il o hnbuiiad it Rl
H) i ; : i
1 1]] t 1]]
] b 1 13 1 b
1]] 13 1 1]
| Dulatiatid i [e sesspmesTooTpTes
4 t] 13 13 b
L3 H 1] 1] 1 1
1]] 1] 1] t 1]
[SR {0, WL DUPPN W SUNPUOION D} ISR EPPIPUDS PUPGRON DOt FEUIES BRAUSTPIOHGS DIOUSE VPN [IS JUURON IO
t ¥ [U ¥ 1 1
13 1 b 1 1] 1) ¥
t] H] 1]
13 + i 1] 1]
| JESORRN SRS SRS, | SRS DRI S
¥ t ¥ ¥] 1 ¥
1 1 i H i 1 t
13 13 1 1 1] 1 1]
1 ¥ 1 § t 1]
| JEREESIGRY SPRSI. N — | T | SNSRI IR SN
13 13 i il v] 4 ¥
3] 1 H i 1 t 1]
L3 1] 1 1] 3 1]
3 1 1 1 ¥ 1] 1 1]
[Rt LR R D . T T P
1] ¥ 1 1 ¢ ¥ 13 1 1]
£] 1 1 1 1 3 ¥ 1]
3] 4 1 H H t 1 b
13 1 1 1 1 F E 1 L
L R it et Fmmm A ——— Rt BT LR
13 1 1 1 H 1]] 1 b
¥ b 1 1 il 5 b 1 1]
1] 13 1 1 3 1 1] 1 ¥
B] 1 1 1 ' ¢ ¥ t
[Sttt o adhadedied adadiade Tttt st o g e e e o]
1 1] t 1 1 1] 1 1]
H i 3 1 1 1] 1 1]
H] 1 1 El 1 ¥ I3 1]
i 1 1 ¥ 1 1] 1]]
[Mulafudied Mdasinding enbe | bttt Rt | aiaindin Sl A
1 1 1] 1 1 1 ¥ 1] 3
1 1 b 1] 1 1] 1 t
3 1 ¥] 1 i i t 1
])] 1 1 1 R] i 3
[et [a5natts Subbatat niataiets bt maiaits Said 1 % % i A ety Rt } Y [t et R
1 1 3 ¥ 1 1 1 H 3 P
1 1 b b ¥ + ' i 1] b
1 1 L3 £ 1] 1) i 1] 1]
R TR [PRI PUPUPUPN EPEPUUO PG NORPULS PRSP RORPID,. \ WO, VIOK PO) SO | IO SRR SURP
H 1 ¥ ¥ 1 1 1 ¥ 1] b
1 1] 3 13 + 1] i) £ H
1 1 b i b ¥ 1 E il] i
1 1 1]] i ¥ 1 £ 1 1] 1l
| P U S | S SESNN SN S Lvmmdee el
i 1 b] ¥ t 1 ¥ 1 3 i
1] 1 1] i b ¥ 1 L3] 13 1
1] 1 1] 1] 13 ¥ 1 1 i i 1]
1 1 ¥]] 1 1 i] b i
1] L]] 3 1 i ¥] ¥ ¥ L3
O wv < [52] (o] — o [, o (o] — [=
—t — — — — —t —

LoEaswmaobt A OF Vi

12 13 14 15 16

1

Number of Processors

1

0

1

9

8

Power as a Function

ing

Comput

Predicted Effective
of the Number of Processors and % Demand

Figures 2.3

Figure 2.3 is an expanded view for the range of 4 to 16 processors. This range is particularly

interesting because it represents the sizes of current or soon to be available supercomputers intended for

scientific applications. For a 4 cpu system, appreciable degradation in effective computing power occurs

only for demands of 15% or higher. At 8 processors, demands above 8% lead to the loss of more than 0.5

processors in computing power. At 16 processors, the 4%, 5% and 6% are delivering effective computing

powers of 15.3, 14.7 and 13.9, respectively. If the time spent in supervisor mode is 5% or more per proces-

sor then a 16 processor system will lose more than 1 high-performance cpu to contention.

-5.

3. Preliminary System Measurement Experiments

We have available time on a CRAY X-MP system for measurement studies of operating system
contention. The operating system used in the study reported in this paper is an experimental version of

CRAY UNICOS+. UNICOS is a version of UNIXT that has been ported to a multiprocessor environment.

Probes were added to the experimental version of UNICOS to measure the demand for the operat-
ing system semaphore. We wish to emphasize that the instrumented kernel used for the study is an experi-
mental version. The description and results that follow may not agree with any released version of the

operating system.

3.1. The Operating System

The experimental version of UNICOS used for our measurements has a single operating system
semaphore used for protecting kernel critical regions. Multiple processors can be in supervisor state, but
because critical regions are protected, only one processor can be in a critical region. Nine critical regions

were identified that are protected by the operating system semaphore.

A test and set instruction is used to acquire the semaphore. If the test and set instruction is unsuc-

cessful, a processor busy-waits. Requests waiting for the semaphore are served in random order.! A wait-
ing processor cannot schedule a different process to run because the scheduler is protected by the sema-
phore. Even if scheduling a different process to run were possible, it may not make sense if context

switching is more time consuming than the expected wait.

There are many possible paths through the operating system. A process might acquire and release
the semaphore several times while remaining in kernel mode. This possibility introduces interrequest
dependencies, a violation of one of the assumptions made for the simple model. One of the aims of our

measurement study is to assess the impact of these dependencies.

4 UNICOS is a trademark of CRAY Research. UNIX is a trademark of AT&T.

! Note that system throughput is the same for first-come first-serve service (assumed in our model) and random order of service.

3.2. Implemented Measures

In this initial study of the demand on the operating system semaphore, a minimal set of measures
are obtained. These measures are: 1) the rate that requests are handled (the throughput or frequency of
requests), 2) the mean time a request holds the semaphore (the duration), and 3) the mean time a request
waits to acquire the semaphore (the waiting time). Higher moments of these measures were not obtained.
We comment on this further in section 3.4. An important aspect of the duration is that it is not the length of
time from when a request is made until it is satisfied, but the length of time the semaphore is held, For
example, in the case of a read request, the duration of the request is the time it takes to place the request on
the i/o processor queue. The semaphore is then released. The waiting time of a request is the time spent in

a busy-wait loop because the semaphore is unavailable,

The experimental UNICOS kemel was modified to obtain three values from which the above

measures can be computed, for each of the nine critical regions. One value is the total number of times

each region was entered during a measurement interval.2 The throughput for each region is then the total
number of times the region is entered divided by the length of the measurement interval. A second value
reported by the modified kernel is the total time spent in each critical region during the measurement inter-
val. The average duration of a request for the region is then the total time in the critical region divided by
the number of requests that occurred in the interval. The last value reported for each region is the total
time spent busy-waiting before entering each region. The mean waiting time for each region is the total

time spent busy-waiting before entering a region divided by the number of entries into the region.

To collect the data, code was added at the beginning and end of each critical region. Total waiting
time is determined by recording the value of a hardware clock following the unsuccessful test and set
instruction that begins a busy-wait loop. The clock is read again after the first successful test and set
instruction that ends the busy-wait, and the difference is the wait time for the request. The wait time is then
added to the sum of all previous wait times for the region. Incrementing a counter after each successful

entry of a region gives the total number of times a region is entered. The duration of a request is the differ-

*We used a measurement interval of 10 minutes for the 2-CPU experiments and 5 minutes for the 4-CPU experiments.

ence in clock times from just after acquiring the semaphore to just before release. The duration for the
current request is then added to the sum of the duration of all previous requests for the region. Note that
the updating of the measures is protected by the semaphore, since each measure recorded is shared by all
cpus. Note also that the implementation of this minimal set of measures is aimed at minimizing the over-

head introduced by the probes.

The values for the nine regions are easily combined to give the total throughput, mean holding
time, and mean waiting time for the semaphore. The total throughput is the sum of the throughputs for
each of the regions. The overall mean holding time is calculated by summing the holding times for all nine
regions and dividing by the total number of requests. The overall mean waiting time is given by summing

the total waiting time for all nine regions and dividing by the total number of requests.

Given the experimental estimates of throughput (A), average duration (x), and average wait time
(W) of requests for the semaphore, we want to calculate the demand per processors (i.e. the percentage of
time a processor would spend holding the semaphore if it was the only processor in the system). It would
be incorrect to calculate the demand by multiplying the measured duration by the measured throughput and
dividing by N (the number of processors) because the measured throughput includes waiting time. To cal-
culate the correct percentage, we first apply Little’s Law to obtain the average time for an execute-request-
wait-hold cycle, and then subtract the mean waiting time and mean duration, to get the interrequest time

per processor (Z):

z=~f-\’~-W-f 3)

The measured interrequest time is used to calculate the measured per-processor demand using
equation (1) from Section 2. The measured demand is used as an input to the simple model to get the
predicted effective computing power. The measured effective computing power is calculated from the
measured throughput and measured waiting time using equation (2) given in section 2. The measured and

predicted computing powers are compared to determine the accuracy of the model.

8-

3.3. System Scaling

Our measurements give us the average demand per processor, not per process. We use the term
system scaling to denote how demand on the operating system semaphore changes as the number of pro-
cessors increases. The results presented in section 2 assume that the demand per processor remains con-
stant as the number of processors is increased. We know that the demand of a particular process remains
constant as the number of processors increases. Thus, provided there is sufficient work so that processors
are never idle, a workload composed of identical processes should give roughly the same per-processor
demand as system size increases. However, scheduling decisions and other factors may produce non-linear
scaling effects for non-homogeneous workloads. We will examine both homogeneous and non-
homogeneous workloads to validate the accuracy of the measures, and to examine the effect of system

scaling on per-processor demand.

3.4. Measurement Results

We are interested in testing the validity of the results given in section 2 and in examining charac-
teristic demands on the operating system for various types of workloads. The results of measurements
given in this section are for a homogeneous compilation workload, a homogeneous executable workload
with low i/o requirements, a non-homogeneous executable workload with higher i/o requirements, and a
mixed workload of compilations and executables. We also examine the effects of doubling the workload,

and the measurements of an idle system.

3.4.1. Compiler Workload

In this section we describe an experiment that measures the demand that FORTRAN compilations
place on the system semaphore. We used a program that takes approximately 60 seconds to compile. This
compilation is set up in an infinite loop so that when it finishes it will start again, To generate work for all
the processors, 12 identical compilations were run simultaneously. The experiment was performed on a
CRAY X-MP in both a 2-processor and 4-processor configuration. The results of the experiment are given
in the first two rows of Table 1. The frequency (i.e. throughput), duration and waiting times are the total

values for the nine critical regions.

9.

From the table, we see that for this homogeneous workload, the mean duration remains relatively
constant for the two and four processor configurations. It is also true that the mean duration measured for
each of the nine critical regions that contain code whose execution is independent of the number of cpus,
remained constant for the 2-cpu and 4-cpu cases. (This data is not shown in the table.) This increases our

confidence in the correctness of the instrumentation.

The 10% drop in per-processor demand between the 2-cpu and 4-cpu results, is observed in all of
the homogeneous workloads we have studied, and appears to be an important phenomenon. We are
currently investigating the cause of this decrease. We surmise that there are sections of the operating sys-
tem which are not critical regions, but which have more work to do when the number of processors

increases.

Table 1: Measurements and Predictions for Workloads

Frequency | Mean Duration | Mean Wait | Measured Effective Processing power

CPUS (requests/sec) | (microsec) (microsec) | demand(%) | measured predicted %difference

12 Identical Compilations

2 3896 121 58 26.64 1.78 1.87 5.06

4 5940 125 163 24.40 3.03 3.21 5.94
20 Identical Executables

2 42 99 24 0.21 2.0 20 0

4 72 87 14 0.16 4.0 4.0 0
15 Different Executables

2 254 86 8 1.10 2.0 2.0 0

4 1244 119 58 3.76 3.93 3.98 1.2
30 Different Executables and Compilations

2 694 157 70 5.59 1.95 1.99 2.05

4 1700 149 108 6.65 3.81 3.94 341
30 Identical Compilations (Effects of Swapping)

2 3574 190 129 44.12 1.54 1.67 8.44

4 - 4462 202 374 38.69 2.33 244 4.72
Idle System

2 151 41 11 0.31 2.0 2.0 0

4 127 38 9 0.12 4.0 4.0 0

-10-

Examining the waiting time for the two and four processor runs, we see that the waiting time has
almost tripled. Note that the increase in waiting time explains why the frequency of requests has not dou-

bled when moving from two to four processors.

The compilation workload yields a measured demand of roughly 25%. This is a high demand that
has severe performance implications for systems with four or more processors. The last three columns in
Table 1 compare the measured effective computing power of the experiment with the simple model’s esti-
mates for the measured demand. We see that the measured effective CPU power for 4 processors is 3.03.

For this high-demand workload, a full CPU is lost to contention.

The model estimates are somewhat optimistic when compared with the actual system, predicting
about 5% higher computing power. There are several possibilities for the discrepancy between the model
and the actual system measurement. Experimentation with model estimates for large variance in the sema-
phore holding times indicates that this is an unlikely source of the discrepancy. We are currently investi-
gating other possible sources of increased contention, including some known interdependencies in the

requests for the semaphore. The key point is that the model slightly overestimates system performance.

3.4.2. Executable Workload I

The set of measures in this section are for a workload consisting of 20 processes. Each process is
the exact same executable program. When a process finishes, it is immediately restarted. The program
takes approximately 40 CPU seconds to run and has low i/o requirements. The third and fourth rows of

Table 1 give the results of this experiment.

For this workload, we see that the demand is only about 1/5 of a percent. The results indicate that
when moving from 2 to 4 processors, the average duration decreases by 10%, yielding additional decreases
in the per-processor demand, and a decrease in the mean waiting time. We attribute this result to uncer-
tainty in the measurements, since the sample sizes are relatively small for this low-demand workload. The
measured and predicted processing powers are in agreement and show ideal performance. If executable
workloads typically have such low demands, then 64-processor systems will not suffer degradation due to

operating system contention for these workloads.

-11-

3.4.3. Executable Workload II

In the experiment in this section, the processes running are not identical. The workload is a job
mix of 15 different executables. The execution times of the jobs range from 1.1 to over 300 CPU seconds.
Two jobs have large i/o requirements, three have low i/o requirements, and the rest have no i/o require-

ments. All the processes are set up as infinite loops.

Rows five and six of Table 1 show that for this mixed workload, the demand per processor
increases when moving from 2 to 4 processors. In fact, somewhat surprisingly, we observe nearly a five-
fold increase in the frequency of semaphore requests. Further examination of this result reveals that this is
a property of the UNIX scheduler. The scheduler penalizes jobs that have acquired CPU time and rewards
jobs that have received little CPU time. Furthermore, the acquired CPU time measure decays with elapsed
time. Jobs that make frequent system calls accumulate CPU time more slowly than jobs that make fewer
calls. Also, short jobs are preferred by the scheduler, and each of these jobs makes system calls at start-up
and termination. Thus, frequent callers receive preferential treatment from the scheduler, increasing the
per-processor demand on the semaphore when there are more processors. This means that with a standard
UNIX scheduler and any heterogeneous workload, increasing the number of processors can lead to higher

contention than is predicted by the simple scaling assumed in the model of section 2.

The mixed workloads (in this and the next section) are the only tests where the average duration
of requests changes significantly in the 2-cpu and 4-cpu tests. It appears that in this first mixed workload,
the processes that are receiving preferential treatment make requests that hold the semaphore longer than

the less frequent requesters. This causes the mean duration to increase.

The performance figures for this workload indicate that the per-processor demand for the two pro-
cessor configuration is low, about 1%, and the effective computing power is nearly ideal. The four proces-
sor configuration has a substantially higher demand, showing the combined effects of the increased fre-
quency and average duration of requests. Again, the difference between the measured and predicted effec-

tive processing power is small.

-12-

3.4.4. Mixed Workload

The second mixed workload is an experiment with the same 15 jobs as in the mixed workload of
the previous section, with the addition of 15 processes each running a compile of a copy of the program
used in the 15 executables mix. This produces a total of 30 processes executing concurrently, all set in

infinite loops. Rows seven and eight of Table 1 give the measurement results.

This data also shows some increase in demand when scaling from 2 to 4 processors, due 10 pre-
ferential scheduling of frequent requesters. The effects of the scheduler are less dramatic than in the previ-
ous workload, since the current workload is more homogeneous (i.e., the compiler, which comprises half

the processes, makes about the same demands on the system regardless of what it is compiling).

The measured effective processing power indicates that the system with 4 processors is losing
4.5% computing power to contention. The simple model estimates are 2-3% higher than the system meas-
urements for this workload. Recall that the model estimates show more than 10% loss in effective comput-

ing power with 16 processors, for the measured demand of 5 to 6%.

3.4.5. Scaling the Workload

Increasing the number of processes within a workload increases the number of jobs the scheduler
must handle and the amount of swapping due to context switching. To investigate the impact of these
issues on our measurements, we ran the compiler experiment described earlier but increased the number of

processes from 12 to 30. Rows nine and ten of Table 1 give the results of the experiment.

All the processes in the workload have identical characteristics. Thus, the per-process demand
time should be identical for both the 30-compilation and 12-compilation workloads. In fact, when compar-
ing the data in rows 9 and 10 with the data in rows 1 and 2, we see that the per-processor demand has
increased from 26.64% to 44.12% for two processors and from 24.40% to 38.60% for the four processor
configuration. We attribute the extra demand to two factors: 1) extra time spent in the scheduler and 2)

swapping effects. The swapping effects appear to dominate.

We examined the average swap queue size for the two experiments. The queue sizes were 1 and

13-

14 for the 12- and 30- compilation workloads, respectively. We also repeated the experiment with 8 and
15 compilations. The 8-compilation demand was about 25% for the two and four processor configurations.
This is in very close agreement with the 12-compilation results. The 15-compilation workloads had
demands of about 30%, which lie between the 12-compilation and 30-compilation experiments. From
these experiments, we conclude that 1) swapping should be avoided to minimize contention for the sema-

phore and 2) swapping effects are minimal in the 12 compilation workload reported earlier.

3.4.6. Idle System

The last two rows of Table 1 reports the measurements of an idle system. The normal background
daemons are running as they were for all previous experiments reported. Clock interrupts and scheduler
invocations occur in sequence 60 times per second, and together account for nearly all of the activity meas-
ured in the idle system. Note that these interrupts occur a maximum of 60 times per second, but in the
presence of active processes they occur much less frequently, as is clearly demonstrated by rows 3-4 of the
table. The idle system and executable workloads with low ifo requirements yield very low contention for

the semaphore, and nearly ideal effective computing power.

3.5. Preliminary System Measurement Conclusions

From the results of the initial measurement studies reported above, we reach several preliminary
conclusions. First, the actual demand on the operating system semaphore is highly variable, and depends
on the type of workload measured. Measured executable workloads have per-processor demands in the
range of 0.1 - 4%. Compilation workloads have demands of about 25%. Combined compilation and exe-
cution workloads have demands of 5.6% and 6.7%. Second, the scaling of per-process demand as the
number of processors increases for a fixed workload is complex. If the workload is homogeneous, per-
processor demand decreases by about 10% when the number of processors is changed from two to four, If
the workload is non-homogeneous and the operating system uses the UNIX scheduling algorithm, then
per-processor demand for the operating system semaphore increases as the number of processors increases.

This is because the UNIX scheduling algorithm gives preferential treatment to jobs that make more fre-

.14~

quent requests for the semaphore. Third, the need to swap pages between memory and ifo devices
increases the demand on the operating system semaphore, and should be considered in projecting system
performance for large systems. Finally, the simple model in section 2 is optimistic by approximately 2 -
5% when compared with system measurements of realistic workloads. For workloads with very high
demands the model’s prediction is still within 10% of the measured value. The error in the predictions is at
least partially due to known interdependencies in the semaphore requests that are not incorporated into the

model.

4. Conclusions and Future Work

We have presented a simple model for evaluating the performance implications of using a single
semaphore to protect the critical regions of a supercomputer multiprocessor operating system. This model
predicts that if applications require the semaphore for less than 1% of their total execution time, the system
can scale 10 64 processors without appreciable degradation in peak computing power. If, on the other
hand, application demand for the semaphore is 5%, the degradation in processing power due to contention

for the semaphore is 10% when the system configuration includes 16 processors.

Preliminary measurement studies indicate that 1) the demands of actual workloads are highly vari-
able, and 2) the actual degradation in computing power is somewhat worse than predicted by the simple
model for a given demand. Some executable workloads have demands in the range of 1 - 2%. On the
other hand, compilation workloads can present a demand as high as 25%. Interdependencies in the sema-
phore requests, which are not represented in the model, are at least partially responsible for the lower
observed processing power than estimated by the model. These preliminary results lead us to conclude that
operating system contention is a factor to be considered when designing supercomputers of four or more

processors.

Three extensions to the measurement studies are needed in order to complete a more sophisticated
model that can be used to project the effect of semaphore contention in larger configurations with
confidence. The first extension is the implementation of measures that will allow us to uncover all of the

reasons that actual contention is higher than contention predicted by the simple model. (We have

-15-

determined that higher variance in the semaphore holding times and/or known interdependencies cannot
account for all of the discrepancy.) The second extension is the implementation of measures, and/or exper-
iments with additional workloads, that will allow us to more fully understand the precise way in which
demand for the semaphore scales as the number of processors increases for a fixed workload. Finally, we
need to measure a wider variety of workloads on a wider variety of supercomputers. Measurements at a

typical supercomputer user site are highly desirable. We are currently pursuing these extensions.

Acknowledgements

The authors gratefully acknowledge Chris Hsiung at CRAY Research, Inc., for suggesting the
topic of this paper, and Jim Harrell and Bruce Steger at CRAY Research, Inc., for their assistance in carry-

ing out the measurements.

References

[BaBu84] Bach, M. J., Buroff S. J., "Multiprocessor UNIX Systems," AT&T Laboratories Technical
Journal, Oct. 1984, Vol 63, No. 8. Part 2, pp. 1733-1750.

[Fede84] Feder, J., "The Evolution of UNIX System Performance” AT&T Laboratories Technical Jour-
nal, Oct. 1984, Vol 63, No. 8. Part 2, pp. 1791-1841.

[PaMa86] Paul, G., Martin, J. L. "Aspects of Performance Evaluation in Supercomputers and Scientific
Applications” private communication

-16-

