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Abstract

We present some efficient algorithms for computing the transitive closure of a directed graph. The algorithms are adapted
to compute a number of related queries such as the set of nodes reachable from a given node, or queries posed over the set of
paths in the transitive closure such as the shortest path between each pair of nodes, or the longest path from a given node. We
indicate how these algorithms could be adapted to a significantly broader class of queries based on one-sided recursions. We also
analyze these algorithms and compare them to algorithms in the literature. The results indicate that these algorithms, in addition
to their ability to deal with queries that are generalizations of transitive closure, also perform very efficiently; in particular, in the
context of a disk-based database environment.

1. Introduction

Several transitive closure algorithms have been presented in the literature. These include the Warshall and
Warren algorithms, which use a bit-matrix representation of the graph, the Schmitz algorithm, which uses Tarjan’s
algorithm to identify strongly connected components in reverse topological order, and the Seminaive and Loga-
rithmic algorithms, which view the graph as a binary relation and compute the transitive closure by a series of rela-
tional joins.

While all of the above algorithms can compute transitive closure, not all can be used to solve some related
problems. Schmitz’s algorithm cannot be used to answer queries about the set of paths in the transitive closure (e.g.
to find the shortest paths between pairs of nodes) since it loses path information by merging all nodes in a strongly
connected component. Only the Seminaive algorithm computes selection queries efficiently. Thus, if we wish to
find all nodes reachable from a given node or to find the longest path from a given node, with the excepnon of the
Seminaive algorithm, we must essentially compute the entire transitive closure (or find the longest path from every

node in the graph) first and then perform a selection.

We present new algorithms based on depth-first search and a scheme of marking nodes (to record earlier com-
putation implicitly) that computes transitive closure efficiently, and can also be adapted to deal with selection
queries and path computations efficiently. In particular, in the context of databases an important consideration is I/O
cost, since it is expected that relations will not fit in main memory. A recent study [Agrawal and Jagadish 87] has
emphasized the significant cost of I/O for duplicate elimination. The algorithms presented here will incur no 1/O
costs for duplicate elimination, and we therefore expect that they will be particularly suited to database applications.

(We present an analysis of the algorithms that reinforces this point.)

The paper is organized as follows. We introduce some notation in Section 2. Section 3 presents the algo-

t Partially supported by the National Science Foundation under Grant IRI-8703592.



rithms, starting with some simple versions and subsequently refining them. We present an analysis of these algo-
rithms in Section 4. We consider selection queries in Section 5, and path computations in Section 6. In Section 7,
we consider how some of these algorithms can be adapted to deal with one-sided recursions. We discuss related

work in Section 8, and present our conclusions in Section 9.

2. Notation and Basic Definitions

We assume that the graph G is specified as follows: For each node i in the graph, there is a set of successors
E;={jl({,j)isanarcof G }.

We denote the transitive closure of a graph G by G*. The strongly connected component of node i is defined
aV,={i}uljl@j)e G*and (j,i) € G") ). The component V; is nontrivial i V; # (i }. The condensation
graph of G has the strongly connected components of G as its nodes. There is an arc from V; to V; in the condensa-
tion graph if and only if there is a path fromi toj in G.

The algorithms we present construct a set of successors in the transitive closure for each node in G . The set of
successors in the transitive closure for anode i is S; = { j | (i, j) is an arc of G" ). A successor set S; is partitioned
into two sets M; and T;, and these may be thought of as the ‘‘marked’’ and ‘‘tagged’’ subsets of S;. Initially M; =
T; = oforalli. T

3. The Transitive Closure Algorithms

3.1. A Marking Algorithm

In this section, we present a simple version of the algorithm. We emphasize that we do not suggest using this

algorithm in general; we present better algorithms, which are derived by refining this algorithm.

proc Basic_TC G )
Input: A digraph G specified using successor sets E;, i=1ton.
Output: S; = U; UM;,i=1ton, denoting G".

(Ui =E;Mi =9
fori =1tondo

while there isanode j € U; doM; =M; UM; L () }; Ui = UiuU;-M; od
od

}
Proposition 3.1:j e M; =>E; cM; U U;.

Proof: Whenever a node j is added to M;, M; U Uj; is also added to M; U U;. The claim follows from the observa-
tion that initially M; = ¢and U; = E;, and M; U U; is monotonically increasing, foralli. []
Lemma 3.2: Algorithm Basic_TC correctly computes the transitive closure of a directed graph G .

Proof: j € M; u U; implies that j € E; or that there is some node k such thatk € E; and j € M; U U;. It follows

that only nodes that are reachable from i are in M; U U;. To see that all such nodes are in M; L U;, we note that

¥ The set S; may be thought of as containing clements that are either marked or tagged. Agrawal and Jagadish [Agrawal and Jagadish 88] pointed out that this
wonld lead to O (n?) storage overhead for the marks and tags. They observed that implementing this by paritioning S; into separate sets incurs almost o addition-
al overhead.
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when the algorithm terminates U; = @for all ;. The proof is completed by the fact that initially U; = E; and M; U
U; is monotonically increasing for all i, and Proposition 3.1. []

3.2. Depth-First Search to Number Nodes
Suppose that the graph G is acyclic. Let us number the nodes using a depth-first search such that all descen-

dants of a node numbered n have a lower number than n. If we now run algorithm Basic_TC using this ordering,
every time we add a successor set S; to a set S;, §; = M;, and U; = @ We refer to such additions as closed addi-

tions. (The successor set S; is closed, that is, it contains all successors of j in the transitive closure.)

To deal correctly with cycles, we must make some modifications. The idea is to ignore back arcs (arcs into
nodes previously visited by the depth-first search procedure) during the numbering phase. The algorithm Basic_TC
is run using this numbering. In the presence of cycles, not all additions are closed. (For example, the addition of §;
to S; when the arc (i, j) is a back arc is not a closed addition. This is reflected by the numbering - popped [j1 is >

popped [i].) We now present the depth-first numbering algorithm.

proc number (G )
Input: A graph G represented by successor sets E;.
Qutput: Graph G with nodes numbered.
{vis =1;
fori =1 ton dovisited[i] := 0; popped[i] :=0 od
while there is some i s.t. visited [i] = 0 do visit(i) od
}
proc visit(i)
{ visited[i] =1,
while there is j € E; s.t. visited [j] = 0 do visit(j ) od
popped[i] = vis; vis = vis + 1,
}
The above algorithm implicitly establishes a spanning forest over the graph G. There is an arc (i, j) in the_

spanning forest if there is a call to visit (j) during the execution of the call visit (i ). It is easy to establish that this is a
spanning forest since there is exactly one call visit (i) for each node i. An arc (i, j) in the graph G is called a for-
ward arc if j is a descendant of i, a back arc if j is an ancestor of i, and a cross arc if there is no ancestor-
descendant relationship between i and j in the spanning forest. The following lemma identifies an important pro-
perty of the spanning forest induced by algorithm number .
Lemma 3.3: ([Aho et al. 74]) Let G 1 be a strongly connected component of a directed graph G . Then, the vertices
of G 1 together with those of its arcs that are common to the spanning forest form a tree. []

The node in the connected component which is the root of this tree is called the root of the strongly connected
component.

The following lemma identifies an important property of the numbers assigned by the above algorithm.

Lemma 3.3: ([Hecht 77]) Arc (i, j) is a back arc in the spanning forest if and only if popped[i] < popped [j]. []



3.3. A Depth-First Transitive Closure Algorithm

We have presented the numbering algorithm as a preprocessing phase for algorithm Basic_TC. While this
exposes the underlying ideas clearly, we might improve performance by doing the transitive closure work as we
proceed in the numbering algorithm. The following simple algorithm illustrates the idea, although it only works for
dags.

proc Dag DFTC (G )
Input: A graph G represented by successor sets E;.
Outpus: S;, i=1ton, denoting G™.

{ for i = 1tondovisited[i] := 0; S; == dod
while there is some node i s.t. visited [i] = 0 do visit(i) od

}

proc visit (i )
{ visited[i] :=1;
while there is some j € E; - S; do
do if visited [i] = O then { visit() }; §; :=S; wS; U {j } od

}
The above algorithm can be modified to deal with cyclic graphs as follows. We need to distinguish nodes that

are reached via back arcs, and we now partition S; into two subsets M;, and T;. T; denotes nodes reached via back

arcs.

proc DFTC (G )
Input: A graph G represented by successor sets E;.
Output: S; = M; U T;,i=1ton, denoting G".

{vis=1;
fori = 1 to n do visited{i ] := visited 2[i] := popped [i] = 0; M; :=T; := Global .= ood
while there is some node i s.t. visited [i] = 0 do visitl(i) od

}

proc visitl (i)
{ visited[i] =1,
while thereis j € E; - M; - T; do

if visited [j ] = O then visit(j);

if popped(j1>0then { M; :=M; UM; U {j K T: = T;uT)) -M; )

eIseT.- :=T,' () {j }
od
ifieT then (IfT; ={i }then {M; :=M; L {i };T; = & Global = M;; visit2(i) } }
else (T; =T;- (i iMi=M; 0 {i}}

popped [i] = vis; vis =vis +1

}

proc visit2(i )

{ visited 2[i] := 1;
while there is j € E; s.t. visited 2[j]1 =0 and T; # odo visit2(j) od
M; :=Global; T; =0




)
Theorem 3.4: Algorithm DFTC correctly computes the transitive closure of G.

Proof: We note that the nodes are assigned the same numbers by algorithm DFTC as by algorithm number , and so
a spanning forest is induced whose back arcs (i, j ) are characterized by popped [i] < popped[j].

Claim 1: After the execution of the while-loop in visit 1), M; = (j | j is reachable from i through a path that does
not contain a back arc ), and T; = ( k | there is some j € M; s.t. (j, k) is aback arc, and notk € M; }.

This claim can be established by a simple induction on the height of the subtree rooted at i.

Claim?2: After the execution of the while-loop in visit 1(), T; = { i } if and only if i is the root of a connected com-
ponent.
This claim follows immediately from the previous claim.

We observe that for every node j in a strongly connected component rooted at a node i, the call to visit2
when the root i is identified sets M; = M;, and T; = @& Thus, after the call visit 1(i), where is the root of a strongly
connected component, M; contains all successors of j for every node in this component, and T; = @ It is now easy
to show that T; = @after the call visit (i) for all nodes i which do not belong to a connected component. The proof
of Theorem 3.4 is completed by the observation that when algorithm DFT C terminates, all connected components
have been identified, and so M; includes all successors of i for all nodes i. (The termination of the algorithm is

straightforward, and can be shown through induction on the height of the tallest tree in the spanning forest.) []

Notice that visit2 is called immediately after a strong connected component is identified and fully updates the
successor lists of all nodes in the component. An alternative would be to make the calls to visit2 after vistil is called
for all the nodes in the graph. This second alternative has strictly inferior performance to DFTC, because nodes in a
strong connected component might be visited from nodes outside the component while still having their successor

lists mcomplete A variant of this alternative was suggested by Agrawal and Jagadish [Agrawal and Jagadish 88].

b
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Figure 3.1: A graph with cycles.
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The example of Figure 3.1 illustrates the basic difference between the DF TC algorithm and Dag DFIC,
which is the need for a second phase to take care of nontrivial strongly connected components. The graph of Figure
3.1 contains two such components, namely {a.b.d} and {e f }. Concentrating on the former, when a is visited via
the arc (d,a), the successor list of 4 has not been computed yet, and so the successor set of d cannot be updated
properly. Basic_TC solves the problem by continuing to visit the successors of @ again, but this may lead to serious
inefficiencies. DFTC solves the problem in the second pass, where a is identified as the root of the component and
its successor list is distributed to all the nodes in the component. This is done by the calls to visit2. Similar com-

ments hold for the other component also.

3.4. Optimized Processing of Nontrivial Strong Components

There is a major potential inefficiency in DFTC in that the second pass over a strong component re-infers
several arcs of the transitive closure that have been inferred during the first pass also. This can be seen in the com-
ponent {a,b,d} of Figure 3.1. Assume that from d we first visit e and f and then visita. As soon as (d,a) is
discovered as a back arc, DFTC puts a in the tagged set of d, and it then pops back to b adding into its successor
list d.e.f, and a, with a being tagged. Finally, the successor list of a is updated to contain all the nodes in the
graph without any tags. During the second phase of going over the component {a,b.d)}, nodes d.,e.f,and a (as
well as ¢ ) will be reinferred as successors of b. In this section we develop an algorithm that avoids this duplication
of effort by essentially generating the successors of only one of the nodes in a nontrivial strong component during
the first pass. In the second pass, the lists of all the other nodes are updated, thus avoiding any unnecessary duplica-

tion of work.

To deal with this problem, we now present a further refinement of algorithm DFTC. In this version of the
algorithm, we do not need to distinguish tagged elements by partitioning successor lists, since a stack mechanism
‘hat is used to construct the successor set for (the root of) a strongly connected component allows us to make this
distinction. During the process of the aléorithm, the elements of the stack are lists of successors of nodes in some
nontrivial strongly connected component. If we discover that some of these (potentially distinct) ‘‘components’’ are
in fact part of the same component, then elements of the stack are merged to reflect this. t The array visited con-
tains integer elements in this algorithm. The notation L, := L, e L, is used to indicate that list L, is concatenated to
list L, by switching a pointer, at O(1) cost. For the special case when L, is @ (that is, when list L, is to be assigned
to the empty list L,) we use the notation L := e L. In contrast, the notation L, :=L; U L, is used to denote that a

copy of L, is inserted into L ;.

proc Global DFTC(G)
Input: A graph G represented by successor sets E;.
Output: S;, i= 1 to n, denoting G~

{vis :=1;top :=0;
for i := 1 to ndo visited[i] := popped|i] :=root[i] = 0; pir [i] = n+1; list[i]:= nodes[i] :=S; = nil od

¥ There are other transitive closure algorithms that use stacks (c.g., [Schmitz 83, Agrawal and Jagadish 88]). Ourusc of the‘ stack, however, is unique in that itis a
stack of successor lists of nodes in nontrivial strong components, as opposed to a stack of nodes. (The space for storing the graph is O(72“) in any case.)




while there is some i s.L visited[i]=0 do visit(i) od
}
proc visit (i )
{ visited [i] := vis; vis = vis + 1;
while there is j € E;-{ i } s.t. visited[j]1 =0 do
visit(j);
it popped[j1>0and ptr[j]1=n+1then S; =5; US; LU (j
if popped[j]> 0 and ptr{j]#n+l1
then { bot := min (top ,ptr [i 1,ptr {j 1)
while top > bot do
list [top —1] := list [top~1] e list [top ]; nodes [top—1] := nodes [top—1] e nodes ftop];
if visited [root [top ] < visited [root [top—1]] then root [top—1] := root [top ];
top :=top - 1;
od
if ptr[i] = n+1 then list{top ] := list[top ] ®S;;
ptriil:=top;S; :=elist[top]
IH
if popped(j]=0
then { top = top +1; root[top]:=j; list[top] := eS;; nodes[top] = nil; ptrii] :=top }

od

if i = root[top]
then { for each j € nodes[top] (i } doS; = list[top]w (i Y ptrijl=n+1lod; top =top -1}
elseif ptr[i]= n+1 then { list[ptr [i]} == list[prr {i]1© (i }; nodes(ptr{il]] =nodes[ptriljw {i } };
popped|i]:=1
}
Theorem 3.5: Algorithm Global_DFTC correctly computes the transitive closure of G .

Proof (Sketch): We develop our proof by establishing several claims about the algorithm. We first prove a simple
claim about subgraphs of G which are dags.

Claim1: Let the subgraph rooted at i in G be a dag. Then, in the calls visit (j), for all nodes j is in this subgraph,
popped [k] >0 and ptr (k1= n+1 for all children k of j after visit (k).

The claim is easily proved by induction on the height of the dag. Thus, only the first if-statement is considered
in each of these calls. From the statement, it follows that for all nodes j in this subgraph, §; contains all successors
of j when visit (j) terminates.

Claim?2: In the call visit (i ), a new level is added to the top of the stack if and only if (i /) is a back arc.

This follows from the fact that popped [j] = 0 (when testing the conditions of the if-statements in procedure
visit) if and only if (i .j) is a back arc, and from the if statement which is executed when popped[j1=0.

Claim3: If ptr[i]1 = n, and m = min (n, top), then every node in the set list{m] U nodes{m] is reachable from i,
and node i is reachable from every node in the set nodes[m]. The node root[m] is the earliest visited node which
can be reached from some node in the set nodes [top ].

This is the important invariant property that underlies the algorithm. We present an informal justification of
this claim. The formalization of this proof relies upon an induction over the condensation graph for G. New levels
are added to the stack only when back arcs are found. When a new level is created in the call visit (i), the root field

records the node reached via the back arc, and prr[i ] is assigned the current level (top) of the stack. Further, the
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successor set S; is concatenated to the set list [fop ], and §; is then identified with (i.e., via the pointer denoting ;) to
list [top]. This indicates that i is part of a nontrivial connected component, and as the last step in visit (i), i is added
to nodes [top] and list[top], unless i = root{top]. (We show later that { is the root of the component if i =
root (top].) Further, if j is a child of i, and j does not belong to this connected component, the successor list of j is
complete when the call visit (j) terminates. (This is a property of the depth-first nature of the algorithm, and we need
an induction on the condensation graph of G to establish this formally.) This successor list is added to the successor
list of i (through the execution of the first if statement), and thus, to the set of nodes in list[top] if i is part of a con-
nected component. Finally, if j is a child of i, and j belongs to the same component as i (either popped[j] >0 and
ptr(j1# n+1, or popped|j] = 0) we update root [top] to the earliest visited node that is reachable through either j

or through a previously discovered member of the connected component (that contains i and j).

Claim4: If root[top] = i after the execution of the while statement in the call visit (i), then { is the root of a con-
nected component, the set nodes [top ] contains all other members in the component, and the set list[top ] contains

all nodes which are reachable from the component.

Since root[top] = i, there must be some descendant j of i from which there is a back arc to i. Thus, i
belongs to a nontrivial strongly connected component. Further, i is the earliest visited node that is reachable from
this component (by Claim 3). Thus, i is the root of this component. The call visit(j) has already terminated for
every node in this component (since i is the root of the spanning forest induced by the sequence of calls), and so
every node in the component, other than i, has been added to nodes [top]. Similarly, all their successor lists have
been added to list [top] (and these lists include the complete successor lists of all children of these nodes which do

not belong to the connected component rooted at ). This concludes the proof of Claim 4.
The theorem is established by a simple induction on the condensation graph, using Claims 1 and 4. (]

From the proof of the algorithm it should be clear how duplication of effort is avoided by distributing the
work associated with a nontrivial strong component between the first and the second pass. In component {a.b,d)
of Figure 3.1, as successors are generated, they are put into the appropriate list of the global stack. “When the root a’
has been processed, that list contains the successors of a, which have been generated once for every independent
path of some node in the component. Nodes e and f may have been generated as successors of d originally, but
when the algorithm recognizes that d belongs to a nontrivial strong component, these successors are moved to the
appropriate list of the global stack in O(1) time (by list concatenation). Hence, all of these inferences can be attri-
buted to a, so that when in the second phase we make the list of a list of b and d also, this effort has not been

accounted before.

We want to illustrate two points about the operation of the global stack of lists. The first is concerned with
separate strong components. In Figure 3.1 assume that (d,a) is traversed before (d,¢). When (d,a) is traversed an
empty list is pushed on the stack. Later, when (f ,) is traversed and the second component is discovered, another
empty list is pushed on the stack. When we pop up to e again, the list of the top of the stack contains e and f, the
fact that the visit to the top strong component is completed is recognized, and after the second pass, the top of the

stack is removed. Thus, when we continue popping up from d, the lower strong component does not appear as such




in the stack, and so no undesirable interference occurs.

The second point we want to illustrate is concerned with a single strong component which is discovered in a

piecemeal fashion. Figure 3.2 will serve as the working example.

SN

N———

h 4
Figure 3.2: A strongly connected graph.

The whole graph is one strong component. Assume that the nodes are visited in the order a, b, c,h,d, e, g, and
f. Thus the back arcs (k,b) and (g.d) are discovered before (f ,a) is. This results in two potentially independent
components to be pushed on the stack, namely, {b,c.h) and (d.e.g) After (f @) is discovered, a third level is
added to the stack, because there is no way of knowing that all of the nodes belong to the same component. This is
discovered when we pop up back to e again, the second if-statement in the algorithm case is triggered, and the two
lists at the top (corresponding to a and d respectively) are merged into one in O(1) time by simply changing some
pointers. When c is reached, similar actions are taken, so that when a, the root, is reached, all its successors are

correctly found in the top list.

4. Analysis of the Algorithms

We now present an analysis of the complexity of all the above algorithms. For each algorithm, we first
analyze its time complexity assuming that everything fits in main memory. We then analyze its I/O complexity
assuming that data has to be moved back and forth between main memory and disk. For the second case, the first
analysis represents the expected CPU time. In addition, in Section 8, we will present an analysis of the Seminaive
algorithm [Bancilhon 85], Warren’s algorithm [Warren 75], and an algorithm by Schmitz [Schmitz 83], and we will

compare their performance with that of our algorithms.

The forthcoming analysis assumes that all algorithms use the appropriate structures (combination of list
representation and bit representation of a graph) so that duplicate elimination can be done in constant time. This can
be achieved as follows: Whenever an arc (i ,j) is to be added to a list we check the ij bit of the adjacency matrix. If
it is 1, we don’t do anything. If it is 0, we make it 1 and add the arc in the successor list. All this is of cost O(1).
We could have duplicate elimination done in O(1) time even if we used the adjacency matrix representation alone,
but then we would not be able to search only existing arcs; we would have to scan the 0’s of the matrix as well.

This would increase the time complexities of all the algorithms.

Regarding the 1/O performance of the algorithms, it is very hard to analyze while taking into account the
effect of buffering. For several of the algorithms concerned, the appropriate buffering strategy is not obvious. We
felt that unless the algorithms are implemented and tested the comparison may be unfair if we uniformly use the
same buffering strategy. Hence, in the forthcoming analysis we assumed minimal amount of buffering, i.e., we
assume that the size of main memory is O (n). Also, to simplify the analysis, we used a successor set as the unit of

transfer between main memory and disk. Although successor sets may be very different in size, and data is read
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from and written back to disk one page at a time, we believe that the number of successor set reads and writes gives

an excellent indication of the actual I/O cost. For our analysis we will use the following parameters.

n number of nodes in the graph

e number of arcs in the graph

€con number of arcs in the condensation graph of a given graph

n. number of nodes in a strong component ¢

IR number of arcs in a strong component ¢

el” number of arcs emanating from nodes in a strong component ¢ (= 3, d,)
veEe

t number of arcs in the transitive closure

!, number of nodes reachable from node v

v

t, number of nodes reachable from (any node of) a strong component ¢
d, out-degree of v

We will also use the following notation for various necessary sets.

vV set of nodes in the graph

E set of arcs in the graph

Eoon set of arcs in the condensation graph of a given graph
E. set of arcs in a strong component ¢

T set of arcs in the transitive closure

scC set of strong components in the graph

Notice that E =E_,, U Y, E. and that e =e¢.,, + S, e. Finally, we will use the O(.) notation for both cpu
ceSCC ce SCC

and I/O cost. We will retain, however, several of the constants of the various terms in the cost so the comparison
between the various algorithms can be more accurate. Also, the cost will always be broken into two parts, the
search part and the inference part. In our notation, the inference part will be put within square brackets [ ... ]. For
example, a cost of O (x+[y]) indicates O (x) search time and O (y ) inference time.
4.1. Basic_TC

The outer for-loop of Basic_TC is executed n times. For every node v, the while-loop may be executed ¢,
times in the worst case (all the nodes are reachable from v and they are all unmarked as they are discovered). The
list manipulation inside the loop represents the number of arcs inserted in T (these may include duplicates). Put dif-
ferently, it represents the number of inferences performed by the algorithm. Inserting the successors of w to the
successors of v involves d,, additions. In addition, the initialization of S, costs d, additions. We conclude that the

cpu cost of the algorithm is

cpu(Basic TC)=0(n +t+[e+ 3, dy,D. 1)
(vw)eT

One can verify that in the worst case this is an O (n 3) algorithm.

We now turn to analyzing the I/O cost of Basic_TC. A node’s original successor set is brought once into
memory and from that point on stays there until it is processed completely. So, the outer loop represents n reads.
The initialization step and the list manipulation steps require one read for each arc in 7. So the total 1/O cost of the

algorithm is
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i o(Basic TC)=0(n +[t]). @)

4.2. Dag DFTC

Dag DFTC is a straightforward adaptation of the depth-first algorithm, with an additional list manipulation
every time we pop up from a node. The search part of the algorithm costs O (n+e) time [Aho et al. 74]. This
includes the calls to visit and the execution of the for-loop inside visit. In the inference part of the algorithm, every
arc (vw) in T — E is inferred once for every successor of v that can reach w. Equivalently, this can be seen from
the fact that every time we pop up from an arc (v,w) in E, the successors of w and w are added to the successors of

v. Hence, the total complexity of Dag_DFTC becomes

cpu(Dag DFTC)=0(n +e +le+ 3 1) 3)
(vw)ieE

In the worst case this can again be an O (n°) algorithm. Notice, however, the improvement over Basic TC. On the
search part, Basic_TC searches ¢ arcs as opposed to e arcs. On the inference part, the two terms cannot be directly

compared, but we can show that their average over all graphs is the same.

For the 1/O cost, recall that we assume only minimal buffering (at least two successor sets, though). In the
worst case, the successor set of a node is brought in from disk once for every call to the node and once for every
pop-up to the node from one of its successors. The former corresponds to the search part and can involve up to n+e
calls (one for each incoming arc and one for a possible visit to the node from the outer level of the algorithm). The
latter corresponds to the inference part and can involve up to e pop-ups. The worst case assumes that visits to a
node from its predecessors and pop-ups to the node from its successors are far enough in time that the successor set
of the node has been paged out. Hence, the I/O cost of Dag_DFTC is

i o(Dag DFTC)=0(n +e +[e]). ()]
Notice again the improvement over Basic_TC'.

43. DFTC

The general DFTC algorithm, which can handle cyclic graphs as well, is much more compiéx to analyze in
comparison to the special algorithm for dags. This is due to the partitioning of the nodes reachable from another
node into tagged and marked so that cycles can be identified, and due to the overhead of a second visit to the nodes
in all nontrivial strongly connected components to adjust their sets of reachable nodes. For nodes that do not belong
to a nontrivial strongly connected component, the algorithm performs exactly as Dag DFTC. For nodes in non-
trivial strongly connected components the following differences can be identified between the two algorithms with
respect to their cost:

(a) Each strongly connected component is traversed in depth-first order a second time by calls to visit2. For a
strongly connected component c, the cost of that is e, (There is no n, factor here, because we always start
from the root of the ¢ and all the interesting nodes are known to be reachable from the root.)

() In the first pass, some of the transitive arcs from nodes in a strongly connected component are not inferred.

Nevertheless, in the worst case, all those arcs will be inferred in the first pass too, and the inference cost of the
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first pass would be like the one for the acyclic graphs.

(¢) The nodes reachable from nodes in a strongly connected component (except the root) are inferred once in the
second pass. Some of them have already been inferred in the first phase, so this may represent unnecessary

work.

Incorporating all the above observations we may conclude that the cpu cost of DFTC is

cpu(DFTCY)=0(n+e+ T, ef+e+ X twt+ 2, (=Dl (5)
ceSCC (vw)eE ceSCC

Notice that if SCC is empty, the formula reduces to (3). Also notice that most of the time the inferences in the first

pass will be fewer than what is implied by the first summation in the inference part of the cost.

Comments similar to (a), (b), and (c) hold for the disk-based version of the algorithm. Assuming no buffering
again the cost of the first pass is exactly the same as it was before (in terms of successor set retrieval). In the second
pass over a strongly connected component the successor sets of all the nodes in it are brought from disk once to be
updated. For this we assume that the tagged successors of a node can be brought in separately (so that when a node
has an empty tagged successor list nothing is brought in memory). They may need to be brought as many times as
their out-degree, however, when visit2 pops-up to the node. So, the extra I/O involved with the second visit of
strongly connected components is n,+e, for each component ¢. The successor set of each node (except the root) is
then updated (actually, assigned a value) once as well. This can be done, however, after we pop up to the node from
its last child and we are ready to pop up to the parent of the node. Hence this cost has been already accounted as
part of the search cost of the second pass. For uniformity, however, we will remove it from there and account itas
inference cost. Given the above, the total number of extra I/O needed for that is n. for each component ¢. This

brings the total I/O up to

i o(DFIC)=0(n +e + Y, e +le+ 3, ne—1D. 6)
ceSCC ceSCC

Again, if SCC is empty, (6) reduces to ).

4.4. Global DFTC
The last algorithm that was presented for reachability (Section 3.4) was Global_DFTC, which instead of pop-

ping up the list of nodes reachable from a strongly connected component to its root, it makes use of a global "stack”

of successors. Thus, the number of inferences in the first pass over a component is minimized. Specifically, we
observe the following:

(@) Search time for the first pass is O (n+e). The total cost of manipulating the stack while the algorithm operates
in a strongly connected component ¢ is no more than O (n,). This is because, in the worst case, a new level is
introduced to the "stack" for every back arc in the graph, there can be at most n, back arcs in a strongly con-
nected component, and because merging of two consecutive levels is of cost O (1).

(b) Search time for the second pass over a strongly connected component ¢ is O (n.). This is because, all the

nodes of ¢ have been collected in a separate list.
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(c) In comparison to DFTC, the second pass costs the same in terms of inferences. There is a big win, however,
over the first pass. Each node reachable from a strongly connected component is generated only once, unless
it is outside the component and it is reachable from nodes in the component by two completely independent
paths. This means that the set of arcs of the condensation graph E,,, will be used as the basis of the infer-
ence, instead of the complete set of the arcs. That is, the number of inferences in the first pass will be

O(een+ Y tw). In addition, each node of a strongly connected component ¢ is inferred once during
(v.W)€ Fou

the first pass over the component.

Adding up all the costs involved we conclude that the cpu cost of the algorithm is

cpu(Global DFTC)=0(n +e+ 3, n.+ 3 n.+ N
ceSCC ¢ e SCC

[econ + Z by + Z n, + Z (nc—l)tc])-

(v, W)€ Feam c€SCC c €SCC
For the sake of marginally additional search time, the inference time of Global DFTC is significantly smaller than

that of DFTC.

Since the stack is assumed to be in main memory the search part of the second pass over the strongly con-
nected components costs no [/O. >From the first pass over the whole graph we have O (n+e). In analogy to the cpu
time, e,,, successor sets are inferred during the first pass and n, ones have to be done during the second pass for

every strong component ¢ . Hence, the total I/O cost becomes

i 0(Global DFTC)=0(n +e + [exn + 3, ne—1D. 8)
¢ € SCC

The improvement over DFTC is again noticeable.

5. Selections ‘

When a selection of the form "columnl = ¢ " is specified, the algorithm deals with it effectively. (That is, we
want to compute all tuples of the form (c,?) in the transitive closure.) In fact, the algorithm becomes much simpler.
We need not do any numbering of nodes, and so we can directly run algorithm Basic_TC. Further, the first loop is
no longer necessary. We can simply consider the selected node ¢ and execute the inner loop.

On the other hand, a selection of the form "column2 = ¢ " (i.e. compute all tuples of the form (?,c)) requires
us to first generate a new representation for the relation p, which is the set of predecessor sets. The algorithm can
then be used exactly as for the other selection.

Finally, consider a selection of the form "columnl = ¢ 1 and column2 = ¢2". That is, we simply wish to see if
(c1,c2) is in the transitive closure. To do this, we proceed as in the case of selection "columnl = ¢ 1", with the

difference that we can stop if ¢ 2 is added to SL. ;.

6. Path Computations
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6.1. Algorithm

We have considered how to compute the transitive closure of a graph. We have also considered how to com-
pute this closure given a selection of the form "column = ¢ " The latter problem is in fact that of finding all points in
the graph which are reachable from c. In this section, we consider how to compute several properties that are
specified over the set of paths in the graph. We call such properties aggregate properties, and we refer to the com-
putation of such a property as a path computation.

We use the path algebra formalism developed in [Carre 79], and the terminology in [Rosenthal et al. 86,
Agrawal et al. 87], which we present below. There is an arc E (i,j) from node i to node j, if and only if j € E;.
There is a label L;; associated with each arc E (i /). Node i is called the source and node j is called the destination
of this arc. A path from node i to node j, P (i,j), is an ordered set of arcs {E(source destination)}, k =1, ..., n,
such that i = E,.source, . ,.destination = Ej.source, ... , E, .destination = j. A label may be associated with the
path P (i,j). This path label is computed as a function, called CON (for concatenate), of the labels of the arcs in
P(i,j). We sometimes specify the path by the sequence of nodes on it. A path set is any set of paths, and we can
associate a label with a path set S. This path set label is computed as a function, called AGG (for aggregate ), of
the path labels of the paths in §. CON must be associative. Let E (i .j ), E(j k) and E (k l) be three arcs, with asso-
ciated labels L;;, Ljx, Lu:

CON (L;;, CON (Lj, Ly)) = CON (CON (Lij, Ljx), L)

AGG must be associative, commutative and idempotent. Let P, P, and P be any three paths, with associ-

ated labels L, L, and L3:

AGG (L1 L
AGG (L. oy

Finally, there is a zero label ®and a unit label © such that for all labels L,

AGG §L1, AGG 5\(2: EZ) AGG (AGG (Ly,L2),L3)

AGG (¢ L)=L,CON(0,L)=CON(L,0)=L
The following table, from [Carre 79, Rosenthal et al. 86], shows how several familiar problems can be described in

this terminology.

Problem CON AGG
Reachability AND OR
Shortest Path Add Min
Critical Path Add Max
Maximum Capacity Path  Min Max
Most Reliable Path Multiply Max
Bill of Materials Multiply  Add

The path set in each of the above definitions is the set of all paths in the graph.

A path problem can also be formulated using matrices. A graph can be defined using an adjacency matrix A




.15 -

where A;; = L;;, for each arc E (i ,j). Let AF denote the kth power of A. Then, L,"j denotes the label for the set of
paths from i to j of length at most k. For a path problem to be well-defined, A must be stable, that is, for some &,
A* = A**! A graph G with operations AGG and CON defined over its labels is said to be absorptive if for every
cycle yin G, AGG(CON(Y), ) = 6. If <G, AGG, CON> is absorptive, then (the adjacency matrix associated with)
it is stable [Carre 79]. All the examples in the table presented earlier are absorptive. In this paper, we assume that

<G, AGG, CON> is absorptive for the given path problem.

The path label for a path can always be computed as we construct the path. Consider paths P 1(i,j) and
P2(j k) with associated labels L;; and L;. We can construct a new path P3(i k) with label L, by concatenating
these paths, and the label for the new path can be computed by applying CON to their labels. Using a triple to
denote a path and its label:

P1(Gi,j.Lij) . P2( k.Lj)=P3@ ,k,CONLi;.Ljx))
This follows from the associativity of CON.
Similarly, the straightforward way to compute a path set label is to compute each path in the set, along with its
path label, and to apply AGG to the set of path labels as they are generated. This is clearly very expensive

(exponential in the size of p ) since we must explicitly enumerate all paths in the set.

An important property of path set labels is identified in [Agrawal et al. 87, Carre 79]. T Efficient path compu-
tations are possible if AGG and CON obey the distributive law:

AGG (CON(a,b), CON(a c)) =CON (a, AGG(b c))
(An example of a path set label which does not satisfy this property is the paint problem, discussed in
[Agrawal et al. 87]. Let each path from a node i to a node j be painted with a different color. The problem is to
compute the amount of paint needed. For this problem, both AGG and CON are the addition function, and addition

does not distribute with respect to itself.)

We now consider the intuition behind why this property permits efficient path computations. Consider the
case when there are two paths from node j to node k, say P 1(j k) and P2(j J), with associated labels L, and L.
Let there also be a path P (i ,j) from node i to node j, with label L. Let § be the set of paths from i to k. The prob-
lem is to compute AGG for this set. We would like to do this without explicitly enumerating both the paths P (i .j) .
P1(j k) and P(i,j) . P2(j k). In particular, suppose we apply AGG to P1 and P2, and simply record label L’ =
AGG(L,, L,), instead of L, and L, with the ordered pair (j k). Now, instead of generating the two paths from i to
k, we only generate a single path from i to k, with the label CON(L ,L"). If AGG and CON are distributive, then
this is indeed the correct path set label for the set of paths from i to k.

This property is easily exploited to generalize the transitive closure algorithms we presented earlier to also do
path computations. First, we must augment the successor set representation to also record labels. Consider succes-

sor set S;, and let j be a node in it. There is a label L;; associated with this node. Initially, when the set of successor

+ Carre included this property in his definition of a path algebra. Agrawal et al. do not require this in their definition, but in all their algorithms, they assume that it
holds. (They also assume that <G, AGG, CON> is absorptive.)
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lists denotes the graph G, this is the label associated with the arc (i,j) in p. After the path computation is com-
pleted, this is the path set label associated with the set of all paths from node i to node j. Next, we must modify the
algorithm itself. Algorithm Global DFTC cannot be used, however, since it loses path information, and so we use
algorithm DFTC . To simplify the presentation, we make the following assumption: If §; does not contain node &,
the label L is taken to be the zero label @

pre: Path_DFTC (G )
Input: A directed graph G represented by successor sets E; in which node j has label L;;.
Output: S; =M; UT;,i=1ton, denoting G,
{ vis :=1; pop =1
for i = 1 to n do visited [i] := visited 2[i] 1= 0; popped[i] :=0; M; :=T; := ood
while there is some node i s.t. visited [i] = 0 do visitl(i) od

}

proc visitl (i )
{ visited {i] = vis, vis 1=vis +1;
while (E; - M; -T;)= odo

choose j € (E; -M; - T:); * S.LL,‘] <L, forallk e T; */

if visited [j] = O then visit1(j);

if popped(j1>0

then { for alik € S; do

L&u = Lik; L.g = AGG (La, CON (L,‘j, ij )),
ifL34%L; andk € M; thenM; :=M; U { k}

od
Mi=Mu{])
}
eseT; =T, u{j};
T,' 2=T;UTj
od
fieT;

then (if T, = (i Jthen {M; =M; U (i i T; = gvisit2 } }
else (T;:=T; - {i iMi=M; U (i}]}

popped|i] :=pop; pop =pop +1

}

proc visit2
{ visited2{n] = 1;
while there is i € E, s.L visited2[i] =0 and T; # ¢do
choose such a node i with the smallest visited [i ];
while T; # odo
choose j € T;; /*s.t. popped[jl = popped (k] forallk € T; */
forallk e S; do
L,‘Zw = L,}; L,'k = AGG (Lik: CON (L,'j, ij ));
ifL3%# Ly andk € M; then M; :=M; U { k }

od

M;=M; L {j}L7T =T -M
od
visit 2(i)
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We state the following simple lemma without proof.
Lemma 5.1: If j € T;, then visited 1{j] < visited 1(i], for all nodes m, n. Further, for every node i in a connected
component, if j € T;, then j is also in this component. []

We now prove the correctness of algorithm Path DFTC.

Theorem 5.2: Algorithm Path DFTC terminates with M; equal to the set of all successors of i, forall i, and L;;
equal to the correct label for the set of paths from i to j for all nodes j € M;, if <G, AGG, CON> is absorptive, and
CON is distributive over AGG.

Proof: The proof that the algorithm terminates and computes M; correctly is identical to the proof of Theorem 3.4.
It remains to be shown that the labels are correctly computed. Since the graph is absorptive, we need only show that
AGG is applied exactly once to the label of every acyclic path from i to j in computing L;;, for all ordered pairs (i,
7). Whenever a new path from i to j is generated, AGG is applied to the label of this path and the previous label
L;j. Thus, since CON is distributive over AGG, we only need to show that all acyclic paths are generated, and gen-
erated exactly once.

The algorithm generates a path P = (i, k, ... , j) by first generating the subpath from k£ to j and then con-
catenating this path to the arc E (i ). This is done during the call visit 1¢). The numbering popped [] specifies the
order in which calls to visit 1 terminate, that is, popped[i] < popped[j] if and only if visit 1() terminates before
visit 2(j).

Claim1: For all nodes i in G, all acyclic paths from i are generated (1) when visit 1() terminates, if i does not
belong to a nontrivial strongly connected component, or (2) when visit2(r) terminates, where r is the root of the

strongly connected component containing i , otherwise.

We prove this by induction on the condensation graph of G. A number popped is also associated with each
node of the condensation graph. If node.i represents a nontrivial strongly connected component of G withrootr,
we define popped[i] = popped[r]. For all other nodes, which represent themselves, popped is as before. Our
induction is on the ordering popped. Consider the basis case of node a such that popped [a] is the least over all
nodes in the condensation graph. (It may not be 1 - this node may represent a connected component in G which
contains, or is reachable from a connected component which contains, the node in G with popped = 1.) If this node
is a leaf in G, the claim holds trivially. Suppose this node represents a strongly connected component in G. Then
we show that the claim holds for all nodes in this strongly connected component. Node a must be a leaf in the con-
densation graph, and so no nontrivial connected component in G is reachable from a. Let r be the root of this com-

ponentin G.

Claim?2: Consider a node n, n # r, in this connected component. When visit 1(n) terminates, every acyclic path
from n which does not contain a back arc has been generated and considered in the label computation for labels of

the form L, for any node k that is reachable from n by such a path.

The proof of Claim 2 is by induction on the height of the spanning tree rooted at r which is induced by the

calls to visit 1. This proof is straightforward, and is omitted here.
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Claim 3: When the call visit (i) is generated for a node i in this component, if j € T;, then all acyclic paths from j
have been generated.

We prove this by induction on the numbering vi:::ed[i], for the nodes in this component. For the basis,
visited [r] < visited [j] for all nodes j in this component. Consider the call visit2(r ,, which is invoked when we

identify the root 7 (during the call visit 1(r)). We note that T, = @& and so Claim 3 holds trivially.

Let the claim hold for all nodes j in this component with visited [j] <N, N > visited [r]. Consider a node n such
that visited [k] = N+1. When the call visit 2(n) is generated, if m € T,, then the call visit2(n) has already been gen-
erated. This follows from the fact that calls to visit2 are generated in the same order .. calls to visit1, and from
Lemma 5.1. Thus, all acyclic paths from m have been generated, and their labels computed. Further, since visit 1(n)
has terminated, all acyclic paths from n that do not contain a back arc have been generated, by Claim 2. The only
other acyclic paths from n are those which are of the form (n, m, ... ), where m € T,. Since all acyclic paths from
m have already been generated, visit2 generates all the remaining acyclic paths from n by concatenation of paths
(m, ...) to E (n,m). This completes the proof of Claim 3 and also the proof of the basis case for Claim 1.

Let Claim 1 hold for all nodes i in the condensation graph with popped [i] < N. Consider a node j with
popped [j1=N+1.If j does not belong to a nontrivial connected component, then, for every child £ of j, all acyclic
paths from k are generated when visit 1(k) terminates. Thus, visit1(j) generates all acyclic paths from j. If j
belongs to a connected component, the proof is similar to the proof of the basis case, and is omitted. This concludes
the proof of Claim 1.

Claim4: Each (acyclic) path is generated at most once.

Consider a path from node i to node j, (i, k, ..., J ). If the path does not involve back arcs, it is (only) gen-
erated by cdﬁqatenating (k. ..., j) to E(i k). Thus, it is generated only once. Let the path involve a back arc. Then
we can denote\the pathas P = (i, k,..,n).(n,m). (m, ..., j), where the segment from i to n does not involve
any back arcs, and E(nn) is a back arc. Each acyclic subpath from m is concatenated to the path from i tom
exactly once, and further, this is the only way P is generated. This concludes the proof of Claim 4, and of Theorem
52. 00

Consider the labeled graph of Figure 5.1. We illustrate the algorithm by using it to find the shortest path
between all pairs of points. Note that AGG is min and CON is add for this problem.
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e f g
Figure 5.1: A labelled graph.

We assume that the visit order is (a, ¢, b, e, f, d, g). Thus, the call visit1(a) recursively generates (in
order) the calls visit 1(c), visit 1(b), visit 1(e), visit 1{f ), visit 1(d), and visit 1(g). The induced spanning tree con-
tains the arcs E(a.c), E(c.b), E(b.e),E(bf),E(c.d)and E(d.g).

The following table indicates the marked and tagged sets, with the labels for the corresponding paths

included, for node i after the call visit 1(i). The rows are in the order that the calls terminate:

Node? M, T,
e @ [<b,1>}
f o )
b {<e 1> <b,2>,<f 1>} o
g ] o}
d {<g,1>) o
c { <b,1>,<e 2>, <f 2>,<d,1>,<g 2>} o
a { <b 1>, <e, 2>, <f 2>,<d 2>, <g,1>} )

We identify b as the root of a connected component after the calls visit (e) and visit(f ) terminate. We then
invoke visit 2(b), which recursively invokes visit (¢). After this call terminates, M, = { <b,1>, <e,2>, <f 2>}, and

T, = & The call visit 2(b) then terminates, and thus, visit 1(b) terminates.

Let us consider the call visit 1(a) at the point when the call visit 1(c) has terminated. The successor sets forall
the other nodes are as shown in the table, and the successor set of @ is empty. £, = { <b,1>,<c,1>,<d 3>, <g,1>}.
We now generate all paths from a through ¢ by concatenating the successor set for ¢ to the arc E (a,c). After this
step, M, = { <c,1>, <e,3>, <f ,3>,<d 2>} and T, = @ Note that b and g are not in M, at this point although they
are in M, , since their labels do not change. Next, we generate all paths from a through b by concatenating the suc-
cessor set of b to the arc E (a ,b). After this step, M, = { <b,1>, <c,1>, <e 2>, <f 2>, <d 2>} and T, = @ Notice
that the labels of some of the nodes already in M, changed in this step. Finally, we consider the arc £ (a.g), and

since the successor set of g is empty, we terminate after moving g to the marked set, as shown in the last row of the

table. []
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Note that we could use the following heuristic in deciding which successor set to add next:
choose j s.t. L;j <Ly forallk € U;
instead of the heuristic of choosing the node with the largest popped value. However, we could simply pick some

arbitrary node j without affecting the correctness of the algorithm.

A few additional remarks may be in order. First, it is possible to ask for path set labels for an arbitrary set of
paths. The above algorithm only computes labels for sets of all paths from some node i to some node j. However,
by subsequently applying AGG to the set of all labels, it also possible to compute the path set label for the set of all
paths in the transitive closure. Thus, we can find the longest path in a graph. (In this case, CON would be concate-

nation and AGG would be the function which picks the longer path.)

Second, it is possible to specify aggregate queries with selections (of the form "column = ¢ " etc.). For exam-
ple, we may wish to compute the longest path from node i. Thus, we are only interested in the set of paths from
node i. This is computed using essentially the algorithm for the selection "columnl = { ", with some label computa-

tion, followed by applying AGG to all labels in the successor set S;. We present this algorithm below.

proc select_path_TC (i )

(U; =E;M; =g
while U; # odo
choose j € U; s.t. L;; S Ly forallk € U
forallk € S; do
Lgd:=Ly; Ly = AGG (Ly, CON (Ly;, Ly));
L= Ly then (U; :=U; 0 {k); Mi:=M;-(k})
od
Ui=U;-{j}; Mi =M; v {k}
od

}
We observe that for the special case of the single source shortest path problem, this is Dijkstra’s algorithm

[Dijkstra 59]. Other examples of path computations with selection include the shortest path from node i to node j,
the maximum flow path from node i to node j, etc. At first sight, it appears that we can use the algorithm
corresponding to the selection "columnl = i and column 2 = j". However, we would then terminate as soon as we
discovered some path from node i t node j. This is incorrect since we wish to find all paths from i to j. Thus, we

must still use the algorithm corresponding to the selection "columnl = i".

6.2. Analysis

One can see that DFTC and Path_DFTC are different only in the way they treat the various successor lists.
DFTC simply adds lists to others while removing duplicates. Path_DFTC adds lists also, but whenever there are
duplicate nodes, it chooses exactly one of them, according to the semantics of AGG. The complexity of the two
operations is exactly the same. Hence, the (worst-case) complexity of both algorithms (reachability and path com-

putations) is the same. It is repeated here for clarity.

cpu(path_ DFTC)=0(n +e + 3] e rle+ ¥ t,t+ X et )]
ce SCC (v.w)eE c e SCC




221 -

i_o(path DFTC)=0(n +e + Y, (.+e)+[e+ 3 ncl). (10)
¢ e SCC ce SCC

7. One-Sided Recursions

We can extend the algorithm to deal with recursive queries that are extensions to transitive closure called

one-sided recursions, which were introduced by Naughton [Naughton 87]. The following example illustrates this.

UX.Y) :- s(X,2), a(Z.Y).
a(X!Y) - P(sz): a(Z,Y)
aX.Y) :- ¢X.,Y).

The relation ¢ can be expressed as s . p" . q. If we wish to compute the entire relation ¢, we proceed as fol-
lows. Suppose s contains a tuple (c 1,¢ 2). Then, we compute p" with the selection "columnl = ¢ 2". We do this for
every such tuple in 5. Once, we compute the closure for some node, we can make use of this in computing the clo-
sure of other nodes (through closed additions). To maximize this, we could order the values in the second column
of s by the frequency of their occurrence in successor lists of p. Finally, we join all the successor sets computed in
this fashion with g. (We will see later how this algorithm can be arrived at in the general context of a one-sided

recursion.)

If we wish to compute ¢ with a selection of the form "columnl = ¢ ", we proceed as follows. We start with the
successor set of ¢ in relation ¢. Next we extend this set using the transitive closure algorithm. This gives us o(s) .
p". Finally, we join with ¢. We deal with a selection of the form "column2 = ¢ " similarly, but we must first con-
struct predecessor sets.

We now sketch the extension of this evaluation method to general one-sided recursions. Our presentation is
informal, and we refer the reader to [Naughton 87] for formal definitions. Consider a predicate p defined by a Data-
log programy that contains a single, linear recursive rule. By substituting the body of the rule for the occurrence of
the recursive p\redicatc, we can produce a series of strings of predicate instances. >From each string of predicate
instances in this series, we can generate a string of predicate instances containing only base predicates (predicates
which are stored in the database and are not defined by any rules) by using the non-recursive rules. The answer to a
query can be obtained by generating these strings of predicate instances and evaluating the resulting join expression
over the base predicates. To do this efficiently, we must try to combine the effort of generating (and evaluating) suc-
cessive strings in the series. In the above example, the series contained the following strings:

sX,2), a(Z.Y)

sX,2), p(Z,21), a(Z1,Y) .

sX.Z), p(Z.Z1), p(Z1,22), a(Z2.Y

.{Jsing the non-recursive rule, these sets generate the following join expressions which must be evaluated over

the base predicates:
sX,2), q(Z.Y)

sX.Z), p(Z,.21), q(Z1.Y)
sX.Z), p(ZZ1), p(Z1.22), 9(Z2Y)
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Informally, a definition is one-sided if there is exactly one connected set in each string of the series after
removing the instance of the recursive predicate. (We say that a predicate instance p is connected to another predi-
cate instance ¢ in a string if they share a common variable, or if there is a predicate instance m which is connected

to both p and g. A connected set is a maximal set of connected predicate instances.)
Naughton has observed the following. If a recursion is one-sided, the join expressions to be evaluate: are all

of the form 5 . p* . t, where:
1. s is a (possibly empty) initial segment of predicate instances.

2. p‘ denotes i repetitions of p, where p represents a group of predicate instances and i 2 0. The adjacent
instances of p are connected by shared variables, and the pattern of shared variables is the same between each

pair of adjacent instances of p..
3. ¢ represents some predicate instances due to the non-recursive rules.

This regular pattern in the series of expressions to be evaluated allows us to develop efficient evaluation algo-
rithms. The bulk of the work is in evaluating the joins denoted by the subexpression p‘. Naughton presents an
efficient algorithm for evaluating queries containing selections. This algorithm works by evaluating each expression
in the series by starting from the end which contains the selection and performing a series of joins. Further, the regu-
lar structure of the expressions implies that in evaluating each expression we can re-use the results obtained in

evaluating the previous expression. The algorithm is presented below:

initialize carry, seen, ans;
while carry not empty do
carry = f (carry); seen i=seen \J carry; carry = carry - seen
od
ans = g (seen)

The initialization of the sets carry, seen anc ans, and the functions f and g are determined by the query and
the program. We note that this has a strong relationship to the selection algorithm presented earlier for transitive

closure. To make this relationship more apparent, we present below a slight variant of algorithm Basic_TC .

proc Basic TC2(G )
Input: A digraph specified as a binary relation G.
Output: G represented as a binary relation ans.
(Ui =M; =1 (01 (G T =@
fori =1tondo
while U; # odo
U,' = U,' b G;M,' :=M,' Unz(U,' b T)U U,'; U,- = U,' -M,'
od
T:=Tu({i)}xM)
od
ans =T
}
This is essentially algorithm Basic_TC (using a different representation for the relations) except that the
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choice of j € U; is constrained a little. (Note that any execution of Basic_TC?2 is also an execution of Basic_TC,
but the converse is not true. Some slight changes are also introduced because Naughton initializes seen to carry,
whereas our earlier algorithm initialized it to ®.) This leads naturally to the following selection algorithm:

proc Select (G )
Input: A digraph specified as a binary relation G.
Output: 01 (G"), represented as a binary relation T .
(Ui =M; =1, (015 G) T =0
while U; # odo
U; =U; ba G:M; =M; UTTQ(U, saTYOU; Us =U; -M;
od
T =i} xM);
ans =T
}
The statement in the while-loop can be simplified a little by noticing that 7' = @ when it is executed:
U,’ :=U,' = G M; =M; v U; U,' = U,' -M,-
To see the similarity to Naughton’s algorithm, observe that U; and M; correspond, respectively, to carry and
seen . Suitably generalizing algorithm Select by introducing abstract functions f and g in the place of the expres-
sions defining U; and T (which are specific to the given query on the transitive closure program), and generalizing

the initialization statements, we obtain precisely Naughton’s algorithm for evaluating selection queries.

Generalizing Basic_TC2 similarly in terms of f and g, we obtain an algorithm for computing a query with no
selections over a relation defined using one-sided recursion. In the example we considered earlier in this section, the
algorithm obtained in this way is indeed the algorithm informally presented earlier. To illustrate this point, we con-

sider that example again:

1X,Y) :- s(X.2), a(ZY).
a(X'Y) - P(X,Z), a(sz)-
a(XvY) - q(ch)-

The initialization step is as follows:

Ui :=M; == (O1 (s));

T:=0
The statement in the while-loop is as follows:

Ui=U sap; M; =M U (U; 5« TV U;; U; = U; -M;

Finally, the definition of ans is as follows:

ans =T 3(T baq)

This concludes our discussion of one-sided recursion. We hope that we have conveyed the intuition behind
the generalization of the transitive closure algorithm to the case of one-sided recursion, although we have not
described how to automatically arrive at the appropriate initializations and definitions of the functions f and g.
While we have not presented an analysis of this algorithm in comparison to Seminaive (in particular, in computing

the entire relation without selections), we observe that this is analogous to the performance of Basic_TC with
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respect to Seminaive for the reachability case of transitive closure. Thus, we expect a significant improvement on

the average.

8. Related Work

A large body of literature exists for main-riemory based algorithms for transitive closure. Recently, with the
realization of the importance of recursion in new database application, transitive closure has been revisited and re-
examined in a data intensive environment. In this section, we will review a significant subset of the existing algo-
rithms comparing them with ours. In particular, we compare Global DFTC with the traditional Warshall and War-
ren algorithms [Warshall 62], [Warren 75], [Agrawal and Jagadish 87], an algorithm by Schmitz {Schmitz 831, and

the Seminaive algorithm [Bancilhon 85]. We also discuss some other related work on transitive closure.

8.1. Schmitz

In all the relevant literature, the algorithm by Schmitz [Schimtz 83] is the one closest to our best algorithm for
reachability, i.e., Global_DFTC. lItis based on Tarjan’s algorithm for identifying the strong connected components
of a graph [Tarjan 72]. The common characteristics of Schmitz’s algorithm and Global_DFTC are that (a) they are
based on a depth-first traversal of the graph, (b) they identify the strong connected components of the graph, and (c)
they take advantage of the fact that nodes in the same component have exactly the same descendants and that they
are descendants of each other. On the other hand, the two algorithms differ in that (a) Schmitz is using a stack of
nodes in the graph, whereas we use a "stack” of successor lists and (b) Schmitz is waiting for a whole strong con-
nected component to be identified before it starts forming the descendant list of the nodes in the component,
whereas we do that dynamically by associating partial descendant lists with the elements of the stack. Due to space
limitations we do not present Schmitz’s algorithm here. We will only give the formulas for its cost and compare
them with the corresponding formulas of Global DFTC. The basic idea of the algorithm is that when Tarjan’s
algorithm identifies a strong component, its nodes are at the top of the stack. Thus, Schmitz’s algorithm scans the
successor sets of all the elements of the component in the stack, and adds their descendants to the descendant list of -

the component,

Schmitz’s algorithm (in its original form) finds the transitive closure of the condensation graph only. That is,
it generates only one descendant list per strong component. To compare it with Global DFTC uniformly, we
assume that after the descendant list of the representative node of the component is found, it is copied to all the

other members of the cc:.  onent as well. With this modification the cost of Schmitz’s algorithm is

cpu (Schmitz)=0@2n +2¢ +n + (11)
[econ+ 2, tetnc+ Y, (n.—DitD-
(vwiek.. ceSCC

Comparing (11) to (7) we notice that the inference time is exactly the same: the two algorithms are identical. The
search time, however, is different. In particular,

° Schmitz’s algorithm always manipulates the stack, paying a cost of O (n), whereas Global DFTC manipu-

lates the stack oniy when it operates in a nontrivial strong connected component, paying a cost of
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O( Y n.). Assuming that each operation on the stack costs roughly the same in the two algorithms,
¢ eSCC

Global DFTC wins. Also,

° Schimtz’s algorithm delays the generation of the descendant list of any node until a complete strong con-
nected component is found. Therefore, in its second pass it scans all the nodes and all their successors again,
paying an additional cost of O (n+e), whereas Global_DFTC simply scans the nodes in the nontrivial com-

ponents, paying acostof O( Y. n.). Global DFTC outperforms Schmitz’s algorithm again.
ceSCC

A final note on the cpu performance of the two algorithms is that on acyclic graphs, the performance of
Global_DFTC is the same as that of DFTC; no overhead is paid. In contrast, Schmitz’s algorithm pays the extra

overhead of a second pass and of manipulating the stack.

Analogous comments are appropriate for the I/O cost of the two algorithms. Assuming minimal buffering, the

two major overheads for Schmitz’s algorithm are the following:

° Since additions are delayed until a component is found, every time the algorithm pops up to a node v from a
node w, v's successor list will be brought back without taking advantage of the fact that w's list is in
memory. This accounts to an additional O () in successor list reads during search time for Schmitz’s algo-
rithm.

° In the second pass over a strong connected component, we assume that all but one of its nodes have their suc-

cessor lists on disk. Hence, an additional O ( Y, n,) lists have to be brought in during this phase.
ceSCC

According to the above, the I/O cost of Schmitz’s algorithm becomes

i o(Schmitz)=0(n +2e + 3, nc+[emn+ Y, ne-1)). 12)
¢ eSCC c e SCC

Comparing (12) with (8) we see that the total overhead paid by Schmitz is O(e + Y, n.) and is paid at search
¢ € 8CC

time. Regarding the inference part, the two algorithms are again identical. In the best case (which happens to be
when the graph is one strong component), Global DFTC wins by almost a factor of 2 in successor list I/O over
Schmitz’s algorithm. In the worst case (which happens when the graph is acyclic), and assuming that ezn,

Global_DFTC outperforms Schmitz’s algorithm by a factor of at least 1/3.

8.2. Seminaive

The Seminaive algorithm was developed as an algorithm to answer queries on general recursively defined
relations [Bancilhon 85]. We present the algorithm in a way that resembles the algorithms we have developed in
order to compare its time complexity with theirs. In particular, the descendants of every node are found first, before
finding the descendants of any other node. In contrast, Seminaive works in stages, and at each stage k finds the des-
cendants of all the nodes that are k arcs away from the mode. This does not affect the cpu cost of the algorithm,
whereas it should improve its [/O cost, since the descendant list of each node is not moved back and forth between

main-memory and disk. Considering the main memory version of Seminaive, one realizes that it is equivalent to
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Basic_TC without taking marking into account. The algorithm is shown below.

Input: A Graph G specified using successor sets E;, i =1 ton.
Output: S;, i = 1 to n, denoting G®.

proc Seminaive ) {

Uy =E;M; =0
fori :=1ton do

while thereis j € Ui-{i} doM; =M; U (j}; Ui =U; VE; -M; od
od

Seminaive will always perform like Basic_TC if the latter is provided with the worst of ordering of nodes (so that
no advantage can be taken from marking). Hence, its performance is given by the same formulas like Basic_TC,
since they represent worst-case behavior. We would like to emphasize, howev -. that on the average, even

Basic_TC will do much better than Seminaive, due to the effect of marking. 1f

Seminaive imposes an order on how U; is processed. In particular, nodes are processed on a first-come-first-
served basis, which corresponds to a breadth-first traversal of the nodes in the graph rooted in i. Since no marking
is in effect, however, the order of processing does not affect the cpu time analysis in any way. The formula for the

cpu cost is repeated below for ease of reference:

cpu(Seminaive) =0 (n +t +[e + Yy, dw. (13)
(vw)eT

Comparing with Global_DFTC, we see that the inference parts are not directly comparable. We can show, how-
ever, that on cyclic subgraphs, Global_DFTC always wins, whereas on the acyclic part (the condensation graph) the
two formulas have the same average over all graphs, but one can be better than the other on any specific graph.
With respeci "st{) the cost of searching, the presence of ¢ in Seminaive’s cost formula, as opposed to e in
Global_DFTC s cost formula, makes Global_DFTC superior.

In terms of I/O, traditional implementations of Seminaive work by performing a sequence of jolus of relations
(i.e., successor list blocks). Blocking, however, can be applied to all the algorithms we have described so far. For
example, instead of getting one node’s successor set, one can bring a block’s worth of successor sets and proceed
appropriately. We believe that blocking affects all algorithms in this paper in the same manner. Hence, for the sake

of comparison, we will adopt the Basic_TC 1/O cost formula for Seminaive as well. It is given below:

i_o(Seminaive)=0 (n + tD. (14)
Comparing (14) with (8) we see that there are some cases where Seminaive will do better. A specific example
is a graph that is fully connected, i.e., has n? nodes. In that case (14) gives O (n+n %) whereas (8) gives O (2n+n?).

For most graphs, however, Global_DFTC is far superior to Seminaive.

+ In fact, this is how the algarithms were ariginally conceived. Marking provides a way of expleiting search order, and depth-first search provides a way of finding a
good order. Further, focussing on ane node at a time ensbles us to do duplicate elimination with no additional 1/O since the required successor sets arc always in
memory, under the assumption that at least two sets fit into memory. .
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8.3. Warshali and Warren

The traditional transitive closure algorithms are the one proposed by Warshall [Warshall 62] and its
modification proposed by Warren [Warren 75]. They are both based on an adjacency matrix representation of the
graph, and their main difference is the order in which they access the elements of the matrix. Both algorithms have
O (n® complexity, where the primitive operations are bit or’s and and’s. On the average, however, the Warren
algorithm performs better than Warshall’s. Moreover, this is true for the most part in disk-based implementations of
the algorithms also [Agrawal and Jagadish 87]. Thus, we decided to discuss only the Warren algorithm. The War-

ren algorithm can be written in the notation we have developed as follows.

Input: A Graph G specified using successor sets E;, i =1 ton.
QOutput: S;, i=1ton, denoting G .

proc Seminaive (G ) {

S:=FE;
fori:=1ton do

forj:=1toi—-1doifjeS; thenS; :=S; US;; od
od
fori:=1ton do

for j =i+l ton doif j € §; then §; :==§5; U §;; od
od

This is the "straightforward implementation" [Agrawal and Jagadish 87] of the Warren algorithm written in terms of
successor lists. We assume that the if-statement is checked while scanning over the range of j (i.e., the successor
list of i is sorted). Since the way the algorithm will run depends on the names of (numbers assigned to) the nodes, it
is relatively difficult to come up with a precise measure of the complexity of the algorithm. In the worst case, the
two for-loops over j will be executed once for every descendant of i, except itself, (i.e., all descendants are inserted
in front of j). In both loops complete descendant lists might be added. With this pessimistic assumption, the worst

case cpu cost of the algorithm is given by the formula

cpu(Warren)=0(n +t +[e + 3, 4D (15)
vw)eT

Comparing even against (13), (15) makes the Warren algorithm look even worse than Seminaive, let alone
Global_TC. We believe, however, that on the average it will perform better than Seminaive. To get a better feeling
for the Warren algorithm let us consider the best case. In that case, nothing happens in the second pass, and the first
pass scans only original arcs (i.e., all descendants are inserted behind j). In that case the best case cpu cost of the

algorithm is given by

cpu(Warren)=Q(n +e +[e + 3, 1. (16)
(vw)eE

This can only happen if the graph is acyclic (this is just a necessary condition, not a sufficient one). Notice that (16)
is equal to (3), which is the running time of Global_TC for the acyclic case. Although this is simply an indication
and not a proof, it seems that Global_TC will never perform worse than the Warren algorithm, and in most cases it

will perform much better.
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Similar conclusions can be drawn in terms of the I/O performance of the Warren algorithm. Assuming no

blocking, the worst and best case performance are given by the following formulas:

i o(Warren)=0 (2n + [t]). (17

i_o(Warren)= Q(n + [e]). (18)
In the worst case, the Warren algorithm has worse /O behavior than Seminaive, whereas in the best case it may out-
perform Global DFTC by less than a factor of 2 (n+e versus n+2e). We believe that on the average
Global_DFTC will perform much better than the Warren algorithm, but an average-case analysis and/or implemen-
tation is needed to establish this. However, there is some empirical evidence in support of this conjecture. Agrawal
and Jagadish have results that show that the 1/O costs for Seminaive are 100 to 700 times more than the I/O costs for
a careful implementation of Warren. This factor comes down to about 4 when the implementation of Seminaive is
refined to reduce the cost of duplicate elimination [Agrawal and Jagadish 87]. We remarked earlier that the behavior
of Basic_TC is similar to the performance of Seminaive (assuming no costs for duplicate elimination) when the ord-
ering of nodes is such that the marking optimization never applies. We therefore expect that Basic_TC, and even
more so Global DFTC , will perform better than Seminaive by a significant factor on the average. Since the average
case behavior of Seminaive is seen to be close to that of a careful implementation of Warren, this indicates that our

algorithms will outperform Warren on the average.

We would like to emphasize here that the above analysis. is done under the assumption of minimal buffering
and no blocking of successor sets on disk. Agrawal and Jagadish’s implementation of the Warren algorithm uses
blocking extensively. Since the Warren algorithm is quite different in nature from the algorithms presented in this
paper, it is hard to say whether blocking will affect the Warren algorithm and Global DFTC in the same way. (Of
course, the appropriate blocking and paging strategies will also differ significantly.) Further investigation is needed

in this direction in order to compare the two algorithms with blocking.

8.4. Other Work

Besides Seminaive, another popular algorithm that has been proposed for general recursion is the Smart or
Logarithmic algorithm [Valduriez and Boral 86] and [Toannidis 86]. The idea behind the algorithm is to first com-
pute all the pairs of nodes that are a number of arcs apart that is a power of 2, and then compute the remaining arcs
performing much fewer operations than would otherwise be needed (i.e., if Seminaive was used). Regarding the
transitive closure of a graph, it has been shown that Smart outperforms Seminaive for a large class of graphs and
under varying assumptions about storage structures and join algorithms. The power of the algorithm relies heavily
on computing sets of arcs, so it is hard to formulate it in a way that can be directly compared with the algorithms
presented in this paper. It has been shown, however, that the straightforward implementation of the Warren algo-
rithm sometimes performs better than Smart and sometimes worse, whereas the blocked implementation uniformly
outperforms Smart. We speculate that since our analysis showed that Global_DFTC outperforms the Warren algo-

rithm, it will outperform Smart as well.
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A straightforward disk-based implementation of Warren’s algorithm was proposed and tested against
Smart/Logarithmic [Lu, Mikkilineni, and Richardson 87]. It used hashing as a basic storage structure and employed
hash-based join techniques. The cost of the algorithm was analyzed and compared to the cost of two versions of
Smart/Logarithmic. The analysis was much more detailed than the one presented in this paper for the Warren algo-
rithm, since the cost of buffering and hashing had to be taken into account. The main results of the analysis were
that the Warren algorithm works better than Logarithmic when there is ample main memory available and when
there is a great variation in the lengths of the various paths in the graph. As we mentioned above, another imple-
mentation of the Warren algorithm, much better suited to disk-based data was developed by Agrawal and Jagadish
[Agrawal and Jagadish 87]. They used blocking to improve the performance and provided empirical evidence that
the algorithm outperforms both Seminaive and Smart/Logarithmic almost uniformly.

Lu proposed another algorithm for reachability that uses hash-based join techniques to compute the transitive
closure of a relation [Lu 87]. Its basic structure is that of Seminaive, but it employees two interesting tricks that
speed up computation: (a) the original relation is dynamically reduced by eliminating tuples that are known to be
useless in the further production of the transitive closure, and (b) as soon as a tuple is produced, if it is inserted in
the same hash bucket that is being processed, the tuple is processed also. Lu showed that for a restricted class of

graphs his algorithm performs better than both Seminaive and Smart/Logarithmic.

A limited amount of work has been done on the shortest path problem between two given nodes of a graph
using QUEL* as the coding language [Kung et al. 86]. Four algorithms, two based on breadth-first search, and two
heuristic algorithms, based on best first search [Rich 83], were implemented and their performance was compared
against the same programs implemented in Fortran. The conclusion was that for large graphs, one of the breadth-
first versions was the algorithm of choice, even as compared to a main memory implementation. Both the scope of

that work and\xts conclusions are only marginally relevant to the work presented in this paper.

In the context of the Probe DBMS prototype, transitive closure was identified as an important class of recur-
sion and was generally termed traversal recursion [Rosenthal et al. 86]. Traversal recursion was formally specified
using path algebras [Carre 79], and it focused primarily on path computation problems. The algorithms proposed
for traversal recursion were Seminaive and one-pass traversals, i.e., algorithms that need to traverse a graph only
once. It was argued that one-pass traversals are better than Seminaive, but no formal argument or empirical results

were provided. Under the assumptions made in this paper, our results confirm the above claim (at least for reacha-
bility).
9. Conclusions

We have presented several closely related algorithms for evaluating a broad range of queries related to transi-
tive closure. With the exception of Seminaive, no other approach offers efficient performance over such a variety of
queries, including selections, single-source and all-sources path problems, and even one-sided recursions. Our

analysis indicates that this flexibility is not achieved at the cost of efficiency; indeed, in many cases, the algorithms

are seen to reduce to well-known algorithms (e.g. Dijkstra’s algorithm) or to do better than less flexible algorithms
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(e.g. Schmitz). The algorithms are similar to the Schmitz algorithm and some other algorithms that identify strongly
connected components and compute the transitive closure over the condensation graph in that they exploit a topo-
logical ordering of nodes. They differ significantly in not separating the identification of the components from the
transitive closure phase, and in not merging all nodes in strongly connected components a—priori . The first of these
differences offers a computational advantage, whereas the latter allows the adaptation of these algorithms to path

problems.

We view this work as a first step. Our analysis, while it indicates the promise of the algorithms presented here,
still needs to be refined and supplemented by a comprehensive performance evaluation based on actual implementa-
tions of the algorithms. We also need to explore the effect of the various heuristics mentioned in the paper, and to

study the relationship of the more sophisticated algorithms to one-sided recursions.

A preliminary study of the potential for parallel execution and performance improvements through good
blocking and paging heuristics shows much promise. However, as we progress from Basic_TC to the more sophisti-
cated algorithms, it appears that there is a tradeoff between these factors and the benefits of a strictly depth-first

search order.

Finally, if the graph G is updated relatively infrequently, it might be feasible to store the successor sets
according to (at least, approximately) the reverse topological order (popped). In this case, directly running algo-
rithm Basic_TC to compute the transitive closure should outperform the other strategies, and thus, the order in

which data is stored is exploited in a unique way to optimize the computation of the transitive closure.
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