A PARALLEL ALGORITHM FOR
MINIMAL COST NETWORK FLOW PROBLEMS

by
Jorg Peters
Computer Sciences Technical Report #762

April 1988






A PARALLEL ALGORITHM
FOR
MINIMAL COST NETWORK FLOW PROBLEMS *

by

Jorg Peters

Computer Sciences Department
University of Wisconsin - Madison
Madison, Wisconsin 53706 USA

Abstract

In this paper we explore how simplex-based algorithms can take advantage of multi-
processor capability in solving minimal cost network flow problems.

We present an implementation of such an algorithm that stresses the importance of
parallelized pricing. This implementation solves all NETGEN test problems of size (5000
x 25000) in less than 50 seconds wall clock time on the Sequent Symmetry S-81 using 6
processors.

Additionally, we contrast this algorithm, based on specialized processes, with algo-
rithms that execute a uniform code on each processor. We discuss why specialized processes
perform better on the set of test problems.

* This research was supported in part by NSF grant CCR-8709952 and AFOSR grant
AFOSR-86-0194






1.Introduction

This paper is centered around the question: given a class of algorithms, a set of stan-
dard test problems and a (small) number of processors - can we find a parallel algorithm,
based on the characteristics of that class of algorithms, such that j + 1 processors solve
the test problems —ZL-— times faster than j processors?

. Jt+i R . .

In particular, we are concerned with simplex-based parallel algorithms for solving the

minimal cost network flow problem :

mincz

s.t. Ao =17
(NF) 0<z<u,

wherec, uand z € R®,r € R™ and A € R™*" (n > m). A is a node-arc incidence matrix.

The minimal cost network flow problem is a linear program. It is special however,
in that the structure of the constraint matrix A allows for a natural, sparse representa-
tion. Using specialized data structures, simplex based algorithms remain efficient even for
problems with hundreds of thousands of variables. It is this efficient average case behavior
which we want to speed up.

In the sparse representation, the two non-zero entries in each column of the matrix
A correspond to an arc: a ‘1’ in row ¢ and a ‘—1’ in row j describe an arc from node ¢
to node j. Thus A may be represented as a graph rather than as a full m by n matrix.
Accordingly, the vector ¢ contains the costs per unit of the flows, z, on the arcs, while
the vector u contains their capacity. The right hand side element r;, if negative (positive),
represents demand (supply) at a node ¢. Furthermore, as we split the constraint matrix
into basic (subscript B) and nonbasic (subscript V) parts ( A = Ap + AN ), the subgraph
corresponding to the basic part has the structure of a tree.

Before describing the data structures appropriate for a parallel implementation, Sec-
tion 2 will give some insight into the parallelizability of the minimal cost network flow
problem. Also, we define the terms “uniform parallelism” and “specialized parallelism” as
a way of labelling two different classes of parallel algorithms for (NF'). Implementation and
comparison of these two basic approaches led to the main algorithm, which is described in
Section 3. We implemented the main algorithm, NETPAR, and its variants on two versions
of the SEQUENT shared memory multiprocessor. In Section 4 we demonstrate the perfor-
mance of our code on a set of test data generated by a standard test problem generator,
NETGEN [KNS74]. The problems range from 12,500 to 250,000 variables and from 1,000
to 50,000 constraint equations. We also present a comparison between the performance of
our code and a standard sequential code. Our goal was to reduce the total execution time
of the algorithm. Thus we measured wall clock time throughout. The computional paths
of the test runs are analyzed in Section 5 to show how the speedup factors were achieved.
In Section 6, we argue why methods based on uniform parallelism are in general not as
successful as methods based on specialized parallelism. To this end, we discuss another
implementation executing a uniform code on each processor. Section 7 concludes with a
discussion of extensions of the main algorithm that can further enhance parallelism.



2. Selection of the algorithm

We first outline the basic features of simplex-based algorithms. Using these features
we then characterize two basic types of multiprocessor algorithms. In a third part of
this section we define our measure of efficient use of multiple processors. In particular, we
contrast the notion of linear speedup in the context of a problem with that used to describe
the degree to which a parallel algorithm can take advantage of additional processors.

2.1 Basic features of simplex-based algorithms

The overall algorithm contains some operations that are executed only once and oth-
ers that are repeatedly executed. The former consist of reading the data, initialization,
computation of the optimal objective function value and output of the solution flows, all
of which can be parallelized in a straightforward fashion. Hence we focus our discussion
on the latter, consisting of the iterated operations. The following paragraph will introduce
the necessary notation. We caution that it will not by itself explain all the concepts of
simplex-based network flow algorithms. We refer to [KKH80] for a broader exposition.

There are three basic operations common to simplex-based algorithms.

Pricing (“Selection of the pivot column”). Pricing consists of finding arcs with neg-
ative “reduced costs”. Recall the equation in (NF). If we split A, ¢ and z into basic
and nonbasic parts then Az = r can be solved for zp: zp = Agl (r — Anzn). Hence
cprp + cnyzn = const + (cy — TpAN)zN, where T = CBABI is the “dual variable”.
Pricing a nonbasic arc 7, from node k to node [, consists of checking whether the reduced
cost of arc ¢, (cy —TBAN)i, is negative. Given the special structure of A, this is equivalent
to checking whether ¢; — mp + 7 < 0.

Cycling (“Selection of the pivot row”). On adding an arc to a spanning tree, a cycle
occurs. It is on this cycle that the flow changes. If the problem is unbounded, the change
is infinite; otherwise an arc j along the cycle will reach its bounds (0 or u;). The first
arc that allows the least flow change leaves the basis!, re—establishing the tree structure of
the basis representation. The cycling operation determines this arc and identifies the four
nodes cut , notcut , join and severed as illustrated in figure 2.1. Cut and notcut are the
nodes connected by the entering arc. Cut is the node above which the old tree is cut as
the bounding arc leaves the basis. Severed is the node on the leaving arc furthest away
from the root of the basis tree. Join is the first common ancestor of cut and notcut .

Updating. Updating changes the flow, the dual variables and the structure of the
tree. The flow is altered within the cycle according to the results of Cycling. Arcs leaving
the basis at the upper bound reverse orientation (“reflection”). The subtree originally
attached to severed has to be re-attached as a subtree of notcut . Finally the dual variables
in the re-attached subtree change by the amount computed in Pricing,.

A close examination of the operations shows that Pricing lends itself naturally to par-
allelization. The processors can be associated with a fixed set of arcs in a straightforward

1 If this arc is the entering arc it is set to its upper bound and the basis remains

unaltered.




severed
i
Kfa entering /\
I / arc —
cut / /
o

notcut

Figure 2.1: A network pivot.

manner . The access to arc information does not need to be controlled by locking. Cy-
cling and Updating on the other hand have dependencies, since changing the tree structure
interferes with traversal. Finally, we note that Pricing will yield accurate results only if
the duals involved are currently valid.

2.2 Two approaches to parallelizing simplex-based algorithms

We now classify techniques of parallelization into two groups based on the above
operations.

2.2.1 Uniform Parallelism

If each processor has an identical code and performs Pricing, Cycling and Updating
on its own, we call the parallellism uniform. We can subdivide this category further,
based on the objects that have to be locked. The granularity of locking determines how
dynamically processors can be associated with parts of the underlying graph.

In the subgraph locking approach each process owns a collection of subgraphs,each
protected by a lock. If a process needs nodes or arcs outside its collection of subgraphs
in order to pivot, the process acquires subgraphs from other processes. In the context of
network flow problems, it is natural to consider subtrees as the units to be locked. See
[CM88] for an application to Generalized Network Problems. Subtree locking is efficient
only if there are a large number of “independent” subtrees so that the processors need not
compete or wait for access to the locked parts of the graph.

In the cycle locking approach each process tries to acquire a cycle. The locks are
associated with single nodes. The processes compete for the locks on the nodes and give up
the locks as soon as possible. We describe an implementation of this approach in Section
6. Cyecle locking is efficient only if there are a large number of non-overlapping cycles at
all times during the computation.

1 Arcs are often sorted using the “from” nodes as primary and the “to” nodes as
secondary keys. We would then simply associate the i** processor with the i** part of the
sorted list.



' Input and Initialization
Proc 0 Proc 2
Tl |G i
I{/I Updating ;’f;‘il Updating m
E Cydling Cyeling
Updating Updating
l Output

Figure 2.2.a: Uniform parallelism - Processes have identical code.

Figure 2.2.a illustrates the concept of uniform parallelism.

While the above approaches are well suited for largely independent subproblems, de-
pendencies can cause considerable amounts of backtracking and idle waiting. The following
two approaches cut down on the number of locks and the amount of contention at the cost
of reduced parallelism. In particular, only one update will be performed in each time slot.

2.2.2 Specialized Parallelism

If processors have differing, specialized codes and perform only one or two of the three
basic operations we call the parallellism specialized.

The pricing heuristics approach makes n — 1 processors compete to find the most
promising arc (based on a heuristic), while a single processor is dedicated to Cycling and
Updating. The processors dedicated to Pricing continue their work (with possibly incorrect
data) during the update.

In the parallel update approach, all n processor compete to deliver the promising
candidate. Additionally, major parts of the updating task are shared by all processors.

| Input and Initialization I Input and Initialization
Proc 0 Proc 2 Proc 0 Proc 2
T Cyeting Pricing T gi:lmg Pricing
) Proc 1 Proc3 "8 Proc 1 . Proc3
I{/I Updating Pricing o m‘i 1{/[ Updating Pricing Updating pmcx
E E Updating Updating
l Qutput l Output
Figure 2.2.b: Pricing heuristics schema. Figure 2.2.c: Parallel update schema.

Our main implementation favours the pricing heuristics approach, but incarporates
parts of the parallel update idea. As the next four sections will document, this approach
excelled on the available set of test data. In contrast, the performance of our cycle locking
implementation was impeded by a considerable number of backtracks, and the negligible :

5




number of “independent” subtrees made the subtree locking approach inefficient. Also,
the size of the re-attached subtrees and thus the amount of work available proved to be
too little to justify a pure parallel update approach.

2.3. The measure for efficient use of multiple processors

We start with the observation that algorithms based on specialized parallelism cannot
run on a single processor machine. Thus we need a measure that judges the efficient use of
additional processors with respect to an arbitrary initial number of processors. Let t;(p)
be the average real time needed by j processors to solve the instance p of the problem (NF)
and

ti(p) *J
ti+1(p) (4 +1)

We will say that we achieve linear speedup from j to j+1 processors for a set P of

instances if s(j;p) > 1 for all p € P. In particular, we achieve linear speedup for a
k-processor machine on a set of test problems P if

s(j;p) =

1< 8mi(P):i= . s(7;p),

where m is the minimum number of processors necessary to run the algorithm. The
efficiency of the m-processor version has to be established by comparing its real time
performance with a good (preferably the best) single processor algorithm.

We now set our notion of speedup into perspective. Let ||p|| be the size of an instance
p of the problem (NF) and let f(||p|]|) be the worst case sequential time complexity for
(NF). Then for £ < f(||p|]) our notion is weaker than the notion of asymptotic linear
speedup for (NF), which can be expressed as 1 < s, s(jpip ({P : p € NF}). Another
related notion is efficient parallelizability. Efficient parallelizability characterizes problems
that can be solved in O(log'(||p|)) time using as many as O(||p||’) processors, where [
and ¢ are integers !. This notion is also weaker than asymptotical linear speedup. The
relationship to our measure is not clear.

We take the opportunity, however, to point out that (NF') is most probably not effi-
ciently parallelizable. For this we define P to be the class of problems solvable in polynomial
time by a deterministic algorithm. A problem is then said to be log-space complete for P
if it is in P and any problem Q in P can be reduced to it using no more than O(log(]|¢|}))
space, where ¢ is an instance of Q. It is conjectured that log-space complete problems are
not efficiently parallelizable 2. Since the maximum flow problem is log-space complete for
P [GSS82], so is the minimal cost network flow problem.

1 This class is called NC. See [Pi79] for a formal definition of NC.
2 In [Co83] the situation is compared to finding a polynomial time algorithm for an
N P-complete problem.



3. The main implementation

We start by motivating the data structures of the implementation. The m X n con-
straint matrix A is represented as a graph with n arcs. Accordingly, we have arrays of size
n: for each arc ¢+ we record the node from which the arc emanates (FROM;), the node
into which it leads (INT'O;), the associated cost (COST;) and the capacity (CAP;). A bit
array (F'LIP) indicates whether a variable is at its upper bound. All other arrays are of
length m. Flows (the primal variables FLOW) and duals (DUAL) need only be recorded
for basic variables. The basis tree is defined by specifying a predecessor (PRED) for each
node.

Further arrays help speed up the dual update and the cycling process. A preorder list
of nodes (SUCC) allows visiting all nodes in a subtree in an efficient manner. Storing the
number of successors (NSUC) with each node helps to find join during Cycling. For a
parallel implementation this data structure should be chosen over an array that stores the
depth of the nodes in the tree. Since NSUC records the size of subtrees, we can decide
whether to split work among several processors or to use a single processor and avoid
overhead. The algorithm also maintains an array ASUC of pointers such that
i = ASUC|[SUCCI:]]. After the subtree under severed has been re-attached to the full
tree as part of the update operation, the successor list of these nodes has to be adjusted.
This entails finding the node ¢ such that SUCC[i] = severed . ASUC helps us to find :
without searching the (possibly whole) tree.

In the following, py will stand for processor 0, and p; for processors ¢ with ¢ €
{1,...,n — 1}. Besides updates of the shared memory representation of the basis tree
the communication between the processes is restricted to two queues (see figure 3).

The price-queue is in general a priority queue [Se84]. It contains at its top position
the name of the currently most promising arc. In our implementation we chose the priority
queue to be a stack, filled by the p; and emptied by po, and the most promising arc to
be the arc with the most negative reduced cost. In particular, suppose that one of the p;
finds an arc with negative reduced cost in its subset of the arc array (see Section 2). It
then locks the price-queue and deposits the newly found arc, if it is more promising than
the arc currently at the top. The p; perform pricing throughout (Cycling and) Updating.
They price on the average one arc per dual node updated by po.

After completing an update, py acquires the stack (making a fresh empty stack avail-
able to the p;). If the stack acquired by py is empty, ! po checks all arcs for negative
reduced cost (interupting the search if the price-queue has a new entry). If po finds no arc
with negative reduced cost, pp notifies the p; and the algorithm terminates.

An entry of the stack is valid if it has a negative reduced cost when the stack is
acquired by pp. Since the update progresses as the p; price out, the ordering of the stack
is more reliable towards the top. Yet there is no guarantee that the topmost element is
valid or the most promising arc. Thus, if the stack is not empty, po chooses the entering
arc from a (small) number of valid entries starting from the top. In our implementation

1 Measurements during the test runs indicate that empty stacks occur only about a

total of 3 to 8 times towards the end of the computation.

7




po chooses the best of at most 3 valid entries. The price-queue forces a comparison of the
proposals of all pricing processors. In this sense the priority queue guarantees candidates
drawn from a global comparison.

The work-queue is in general also a priority queue. It allows the transfer of work
from po to the p;. Again we chose a stack structure for the priority queue. There were
at most two entries in the stack at any time since we did not parallelize the update of
the re-attached subtree (see Section 7 for an extension). In particular, suppose that the
number of nodes (counted during Cycling) on the path from join to notcut is larger than
some fixed number (wgmin). Then py makes an entry in the work-queue describing the
path to be updated and the changes in NSUC and FLOW along that path. The processes
pi check the work-queue frequently. If there is an entry, they lock the work-queue, remove
the entry, unlock, and perform the update. The parameter wgmin should be chosen such
that the extra work for py in entering the information is less than doing the update itself.
A reasonable choice for wgmin is 10.

The algorithm NETPAR can now be stated as follows.

step O:
pi: Read and initialize.!
po: Read and initialize.
step 1:
pi: Price out. Check work-queue. If the work-queue is non-empty grab work. If
notified by py go to step 2.
po: If there is no valid entry in the price-queue check for termination. If no arc with
negative reduced cost is found, notify p; and go to 2. Take the most promising
arc from the price-queue. Cycle and update (fill the work-queue). Repeat step 1.
step 2:

pi: Output flows. Compute objective function value.
po: Output flows. Compute objective function value.

The general general idea of the algorithm is captured in figure 3.

A
[ T PE—
[vUPDAT]NC WORK QUEUE

R P .B_, | PRICING
CYCLING | PRICE QUEUE | N
P l M
<7
N

Figure 3: General idea of the algorithm

1 NETPAR uses an artificial starting basis as discussed in [GKKN74]

8



4. Performance of NETPAR

NETPAR was tested on the (new) NETGEN benchmark problems [KNS74]. The
generator allows the user to specify certain problem parameters, like the number of nodes,
the percentage of bounded arcs etc.. Once the parameters, in particular the random seed,
are specified, the problems are generated deterministically. Thus the benchmark problems
are well defined by a list of parameters and the generating program.

The problems are divided into groups. In each group one problem parameter is varied
to pinpoint the performance of the algorithm.

More specifically, the new NETGEN benchmark problems are variations of the fol-
lowing two basic problems:

basic transportation problem basic transshipment problem
total supply 250000 total supply 250000
nodes 5000 nodes 5000

sources 2500 sources 500

sinks 2500 sinks 500

arcs 25000 arcs 25000

mincst 1 mincst 1

maxcost 100 maxcost 100

transp. sources 0 transp. sources 500
transp. sinks 0 transp. sinks 500

% high cost arcs 0 % high cost arcs 0
% capacitated arcs 100 % capacitated arcs 100
min. capacity 1 min. capacity 1
max. capacity 1000 max. capacity 1000

We were able to test NETPAR on two versions of the SEQUENT?M multiprocessor.
The older version, the SEQUENT Balance B-21000 [SB84], consisted of 8 NS 32032 pro-
cessors. Each processor had a 8 kbytes cache attached. Physical memory was limited to 8
Mbytes. The version as of January 1988, the SEQUENT Symmetry S-81 [SS87], consists
of 10 Intel 80386 processors. It is geared towards floating point arithmetic reducing the
number of integer registers available to NETPAR from five to three. On the other hand
the processors are approximately three times as fast and the cache size is increased to 16
kbytes. Physical memory is currently limited to 40 Mbytes.

We compare NETPAR first with a standard code, NETFLO [KH82]. Then, we mea-
sure speedup of NETPAR*! over NETPAR’, where NETPAR stands for NETPAR using

k processors.

4.1 NETPAR versus a single processor algorithm

NETPAR, as described in Section 3, needs at least 2 processors. Hence there will
be no entry corresponding to a single processor in the speedup diagrams. However, we
consider NETFLO, a close relative of our algorithm. To set the results of NETPAR into

9




perspective, we show how NETPAR using 2 processors compares with NETFLO on the
SEQUENT Symmetry. From each group of test problems at least one is displayed below.

NETFLO vs. NETPAR?*

101 104 106 110 115 116
NETFLO (t) 729.30 802.60 399.60 430.50 698.10 636.30
NETFLO (i) 50307 51006 32528 31342 44857 36618
NETPAR (t) 89.12 93.51 36.28 42.55 69.43 87.70
NETPAR (i) 19162 19352 12666 12738 15784 16917

* NETPAR using 2 processors
1:terations t:time
NETFLO vs. NETPAR?

117 121 122 126 130 134
NETFLO (t) 344.90 802.70 802.60 441.60 500.50 195.40
NETFLO (i) 23707 89088 78026 41036 43681 15749
NETPAR (t) 36.68 124.03 103.22 38.81 42.34 26.85
NETPAR (i) 10893 34297 27620 14050 14056 11830

NETFLO vs. NETPAR?

138 142 144 147 150
NETFLO (t) 1308.80 802.60 794.20 2530.70 802.60
NETFLO (i) 108822 64964 71496 195150 85584
NETPAR (t) 126.24 83.79 96.22 187.90 90.62
NETPAR (i) 35844 23061 24768 34753 25777

We conclude that NETPAR? is 8-10 times faster than NETFLO on the test problems.
Note in particular the different number of iterations. Section 5 will detail the influence of
the total number of iterations on the computing time.

4.2. Speedup of NETPAR

Now we consider the performance of NETPAR! as ¢ varies. The resulting amount
of data is considerable. Nevertheless, we hope to convey the essence of the information
by presenting two diagrams for each problem group and displaying two graphs for each
problem.

The two diagrams show results on the two versions of the SEQUENT multiprocessor.
The results on the Balance version are displayed on the left unless indicated otherwise. All
results on the Symmetry version are displayed on the right. The problems 101 through 120
are transportation problems, 121 to 150 are transshipment problems. The varied quanti-
ties are listed with each figure. For example, “total supply [103: 6,250,000]” means that
problem 103 had the specifications of the basic transportation problem with the total sup-
ply altered to 6,250,000 units. The labels of the figures are lower case for transportation
problems and upper case for transshipment problems. The last letter indicates the mul-
tiprocessor environment, i.e. “B” stands for Balance and “S” for Symmetry. Times are

10



given in seconds and measured from start to end of the program, including data input,
initialization and computation and output of primal and dual solution. The times do not
include output of the basis arcs and their flows.

We display two graphs for each test problem. The solid line displays timings as the
number of processors increases !. Emanating from each data point there is a dotted line
indicating the linear speedup as defined in Section 2: the dotted line indicates the maximal
possible improvement in the computation time as the j + 1° processor is added to the
workforce assuming the total amount of work remains unchanged. The dotted line can lie
above the solid line, if the additional processor decreases the overall work, for example by
helping to chose better arcs. On the other hand, if the dotted line lies above the solid line
at the j + 1 processor mark, there is a better algorithm for j processors than the one used:
namely an algorithm in which the j processors mimick j + 1 processors.

We chose to display real time versus the number of processors, since we consider
the real time performance of an algorithm the ultimate reason for developing parallel

algorithms for numerical problems. So called “speedup diagrams” displaying the ratio
( time for 1 processor

time for n processors
depends on the quality of the single processor entry. If the single processor algorithm

is inefficient, “superlinear speedup” (in the sense of the speedup diagram) may be easily
achieved but worthless as a performance criterion.

) against the number of processors are often flawed. Their validity

I The data points have been connected to help the eye.

11




Transportation problems: 101 to 120

500 « 200 4
o—o NETPAR ;
o T linear speedup
. 101: (5000 by 25336) objfn = 6191726
102: (5000 by 25387) objfn = 72337144
400 103: (5000 by 25355) objfn = 218947553
300 A
T
I
M
E
200 4
100
0 v r : v : . 0 . r v . . . . : .
1 2 3 4 s 6 7 1 2 3 4 5 6 71 8 9 10
NUMBER OF PROCESSORS NUMBER OF PROCESSORS
Figure 4.sdB/S : total supply [101: 250,000, 102: 2,500,000, 103: 6.250,000]
700 - 300 +
10 *—ao _ NETPAR
et lmswd?
106: (5000 by mvog objfn= 4314276
107: (5000 by 37832) objfn= 7393769
600 108: 5000by50309; objfn= 8405738
109: (5000 by 75299) objfn= 9190300
500 4
200 4
400 4
T T
I 1
M M
E 300 E
100 4
200
100
0 . ' . r . ] 0 v . v v . : v . .
1 2 3 4 5 6 7 1 2 3 4 5 6 1 8 9 10
NUMBER OF PROCESSORS NUMBER OF PROCESSORS

Figure 4.apB/S: arcs [106: 12,500, 107: 37,500, 108: 50,000, 109: 75,000]

(proportional) supply [106: 125,000, 107: 375,000, 108: 500,000, 109: 750,000]

12



[eK4uTE |

D)
s
110: (5000 by 12825) objfn =
111: (5000 by 37828) objfn =
112: (5000 by 50325) objfn =
113: (5000 by 75318) objfn =

11

NETPAR
linear speedup

8975048
4747532
4012671
2979725

2 3 4
NUMBER OF PROCESSORS

mE

100 4

4 5 6 7 8 9 10
NUMBER OF PROCESSORS

Figure 4.acB/S: arcs [110: 125,000, 111: 375,000, 112: 500,000, 113: 750,000]

100 4

constant supply [250,000]

o—a

ISy

NETPAR
linear speedup

114: (5000 by 26514) obifn= 5821181

115: (5000 by 25962) objfn= 6353310

2 3 4 5
NUMBER OF PROCESSORS

3 i 3

70

50 4

30

10 4

Figure 4.rB/S: transportation rectangularity

3

4 5 6 7 8 9 10
NUMBER OF PROCESSORS

[114: 500 sources and 4500 sinks, 115: 1500 sources and 3500 sinks]

13




700 « 300 -

>—o NETPAR
M linear speedu
12 116:55000by25304§objﬁ1== 5915426
600 117: (SO00 by 26514 objfn= 5821181
1 118: (5000 by 37797 objfn= 7045842
119: gsooo by 50301§ objfn= 7724179
120: (5000 by 753309 objfn= 8455200
500 4
200 4
400
T T
I I
M M
E 400 E
100
200 4
100 4
0 . . . . . . S A S
1 2 3 4 5 6 7 1 2 3 4 5 6 71 8 9 10
NUMBER OF PROCESSORS NUMBER OF PROCESSORS
Figure 4.auB/S: arcs [106: 12,500, 107: 37,500, 108: 50,000, 109: 75,000]
(proportional) supply [116: 125,000, 117: 375,000, 118: 500,000, 119: 750,000] unlimited
capacities
Transshipment problems: 121 to 150
400 « 200 5
— NETPAR
A lincar speedup
121: (5000 by 25000) objfn = 6636636
122: (5000 by 25000) objfn = 30997529
300 - 123: (5000 by 25000) objfn = 23388777 150
124: (5000 by 25000 objfn = 17803443
125 (5000 by 25000 objfn = 14119622
1
M2
E
100 {
0 . + . ' . . L
1 2 3 4 5 6 7 1 2 3 4 5 6 71 8 9 10
NUMBER OF PROCESSORS NUMBER OF PROCESSORS

Figure 4.SDB/S: number of sources / sinks [121: 50/50, 122: 250/250, 123:
500/500, 124: 1,000/1,000, 125: 1,500/1,500]

14




[ck<4ale]

2 3 4 5
NUMBER OF PROCESSORS

500

o—e NETPAR
+-+ linear speedup
12 126; (5000 by 12500) objfn = 18802218
127: (5000 by 37500) objfn = 27674647
400 4 128: (5000 by 50000) objfn = 30906194
129: (5000 by 75000) objfn = 40905209
300 4
200 <
100 4
0

1 2 3 4 5 6 7 8 9 10
NUMBER OF PROCESSORS

Figure 4. APB/S: arcs [126: 12,500, 127: 37,500, 128: 50,000, 129: 75,000]

(proportional) supply [126: 125,000, 127: 375,000, 128: 500,000, 129: 750,000]

600 300 -
13 Lo NETPAR
A linear speedup
130: (5000 by 12500) objfn = 38939608
13 131: (5000 by 37500) objfn = 16752978
500 4 132: (5000 by 50000) objfn = 13302951
133: (5000 by 75000) objfn= 9830268
400 4 200 4
T
4 I
300 M
E
200 4 100 4
100 4
0 1 v v v T ] 0 v T 4 Y T v v v v
1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10

NUMBER OF PROCESSORS NUMBER OF PROCESSORS

Figure 4 ACB/S: arcs [130: 12,500, 131: 37,500, 132: 50,000, 133: 75,000]
constant supply

15




—o NETPAR
et lingar speedup
134: (1000 by 25000) objfn = 3804874
.. 135: (2500 by 25000) objfn = 11729616
\ “\ 136: (7500 by 25000) objfi = 33318101 1504
137: (10000 by 25000) objfn = 46426030

13\

\
kY
T 3 \
] 1 - \
200 M 100 :
\
E Ly
\I
13
100 4 50 4
1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9
NUMBER OF PROCESSORS NUMBER OF PROCESSORS

Figure 4. NB/S: nodes [134: 1,000, 135: 2,500, 136: 7,500, 137: 10,000]

400 4 i3 200 -
oo NETPAR
138 ek lincar specdup
138: (5000 by 25000) objfn = 60710879
14 \ 139: (5000 by 25000) objfn = 32729682
300 4 140: (5000 by 25000) objfn = 27183831 150+

141: (5000 by 25000) objfn = 19963286
142: (5000 by 25000) objfn = 20243457
143: (5000 by 25000) objfn = 18586777

14 }-.
200 4 M 100 4
14 E
1004 TNy YW 50
1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9
NUMBER OF PROCESSORS NUMBER OF PROCESSORS

Figure 4. UBB/S: (upper bound range) capacitation [138: 50, 139: 250, 140:
500, 141: 2,500, 142: 5,000, 143: o]

16



m =3

300 -
144
4R o0 NETPAR
146\,
R linear speedup
144: (5000 by 25000) objfn= 2504591
%
‘\ 145: (5000 by 25000) objfn = 215956138
£y
200 4 146: (5000 by 25000) objfn =-843048403
T
1
M
E
100 4
0 : : r r v .
1 2 3 4 5 6 7
NUMBER OF PROCESSORS

Figure 4.CRB/S: cost range [144: 1-10, 145:

20 4

10 4

Oy
=2 AR

up
104: (5000 by 25344) objfn = 19100371

10S: (5000 by 25332) objfn = 31192578

4 s 6 7 8 9
NUMBER OF PROCESSORS

Figure 4.csS: cost shift [104: -100
to -1, 105: 1 to 100]

200 «

150 4

150 4

50 4

2 3 4 5 6 7 8 9

NUMBER OF PROCESSORS 10
1-1000, 146: 1-10,000]
14
oo NETPAR

+++ lincar speedup
i 147: (S000 by 25000) objfn = -427908373
148: (5000 by 25000) objfn = -92965318
149: (5000 by 25000) objfn = 86051224

150: (5000 by 25000) objin = 619314519

2 3 4 5 [3 7 8
NUMBER OF PROCESSORS

Figure 4.CSS: cost shift [147: -100
to -1, 148: -50 to 49, 149: 101 to
200, 150: 1001 to 1100]

17




To test the performance of NETPAR on some larger problems we created problems
201 through 203 drawing from the characteristics of problems 101 through 103. We simply
prescribed 10 times as many nodes, arcs, sinks, and sources:

common properties of 201-3

nodes 50000

sources 25000

sinks 25000

Large NETGEN problems 201 to 203 arcs 250000
Problem | random seed supply mincst 1
201 13502460 250000 maxcost 100
202 4281922 2500000 transp. sources 0
203 44820113 6250000 transp. sinks 0
high cost 0

capacitation 100

min. capacity 1

max. capacity 1000

Below, we show the performance of NETPAR on the problems 201, 202 and 203

compared with the problems 101 to 103.

200 +
oo NETPAR
10
. +¢ linear speedup
150 4 L
1 "\ 101: (5000 by 25336) objfn= 6191726
" “‘l
\,\ 102: (5000 by 25387) objfn = 72337144
T %
A 1001 N 103: (5000 by 25355) objfn = 218947553
E

1 2 3 4 5 6 7 8 9 10
NUMBER OF PROCESSORS

Figure 4.sdS: supply / demand mag-
nitude (Symmetry version)

20000 -
e  NETPAR
+=+ linear speedup
15000 o
201: (50000 by 253537) objfn = 5806427
202: (50000 by 253388) objfn = 61017205
T
]3)0000~ \ 203: (50000 by 253364) objfn = 158441376
E
5000 4
0

1 2 3 4 5 6 7 8 9 10
NUMBER OF PROCESSORS

Figure 4.sdS’": supply / demand mag-
nitude (Symmetry version)

18



We observe that for the smaller NETGEN problems, performance does not improve
proportionally when we use more than 6 processors. In fact, since additional processors
compete for the price-queue,we have at times an increase in the overall running time. For
problems 201 through 203 this point of decreased effectiveness is moved to the right. That
is, we observe that more processors can be used efficiently as the problem size increases.

19




mR 3

5. Analysis of the computations

In the previous section we observed that NETPAR performs well in real time (when
compared to NETFLO) and achieves superlinear speedup. In this section we exhibit char-
acteristics of the computational paths that shed some light on why the pricing heuristics
approach is efficient. To this end we analyze the distribution of work over time.

While collecting the data for such an analysis, we have to make sure that the addi-
tional code and the additional time spent on measurement does not significantly alter the
variables we want to measure. (This can be viewed as a version of the “Heisenberg uncer-
tainty principle” for parallel programs.) Thus we restricted the time-dependent analysis
to simple measurements during the test runs. (The timings in Section 4 include the time
spent for data collection.)

First, we display time versus pivots to show how expensive the pivots are. We display
two typical graphs showing the problems 102 and 123 solved on the Balance version. The
number of processors used is indicated after the problem name, i.e. 1233 is the graph
corresponding to problem 123 solved with three processors. For example, the first 6,000
pivots on problem 102 using 5 processors took about 19 seconds, while the first 14,000
pivots took 51 seconds.

300 400 -
P 1232 £
/', lﬂ
» 'l
] K
/‘I 300 A /0
¢
200 4 g
'l
lﬁ
T 7,
2004 s
E
100
100 4
l.’l
,.
o0 0-0-0"0" .1 i:i; o*
8 L o o-000-0-80 828
3 EEE i AsEv
0 : ' v o . r v
0 s 10 15 20 25 0 s 10 15 20 25
NUMBER OF PIVOTS (in 1000) NUMBER OF PIVOTS (in 1000)

Figure 5.a: Pricing heuristics decrease the number of expensive pivots

The increased amount of pricing due to more processors thus reduces not only the
number of pivots, but in particular the number of ezpensive pivots

Next, we analyze why the pivots are expensive. For this we display the number of
nodes whose FLOW and NSUC fields have to be updated, that is, the number of nodes
on the cycle. We also display the number of nodes whose dual variables have to be altered,

20



umUoZ =WC wmERar

which is the number of nodes in the re-attached subtree. The former is labelled “avg.
CYCLE size”, while the latter is displayed as the solid “avg. SUBTREE size” graph.

700 « 2000 «
26 avg. CYCLE size
o] T 2ve SUBTREEsize 123.9 Qg CYCLE size
1500 4
500 4 N
U
B
400 4 E +avg. SUBTREE size
01000 4
F
300 4
N
)
D
E
200 4 s
500 +
100 1
0 s i 0 eIy
0 1 2 3 4 5 6 7 8 9 10 11 12 01 23456 7 8 9101112131415

NUMBER OF PIVOTS (in 1000) NUMBER OF PIVOTS (in 1000)

Figure 5.b: Expensive updates coincide with the re-attachment of large
subtrees.

We observe that updates are expensive when large subtrees are re-rooted. This means
that our implementation is successful, because large trees change little. Since we use
additional processing power largely to improve pricing, we deduce that the efforts spent
on pricing have a stabilizing influence on the evolving basis trees.

21




6. Arguments against Uniform Parallelism

6.1 The subgraph locking approach

The success of subgraph locking depends on the existence of an efficient computa-
tional path that allows for parallel non-conflicting updates. That is, this approach needs
groups of nodes and arcs that can be altered independently over some length of time. While
such a clustering problem is in general very difficult, an analysis of the update operations
suggests that we look for independent subtrees. To get an idea of how many subtrees would
be available for a subtree locking approach, we collected the entering arcs’ indices during
a couple of test runs. This allowed us to replay the computation and analyze the dynamic
tree structures thoroughly without distorting the computational path. (This replay was
also done in parallel by slightly modifying our main implementation.) In particular we
could afford to label the nodes at each check interval and thus measure not only how many
subtrees coexist on the average, but also how fast the subtrees change. The significance of
the following analysis relies on two assumptions. First, that the NETGEN problems are
representative of network flow problems in general. Secondly, that most efficient compu-
tational paths are similar to the paths traced out by our main algorithm. To determine
the potential of the subgraph locking approach we considered two types of subtrees.

¢ Primal subtrees are unconnected by flow to the rest of the tree.!

¢ Dual subtrees have their root directly connected to root .
We logged both the dynamically evolving subtrees and the tree distribution at the solution
stage.

First, we present the dynamic picture. The interval chosen for counting the subtrees
and the change in the subtrees as well as relabelling with the nodes with their root node
label is five iterations. The subtrees are grouped in intervals of 100 nodes and the results
are averaged over every 1000 iterations. That is, for example, all observations made on
subtrees with more than 400 and less than 500 nodes are recorded together and anew for
each interval of 1,000 iterations. We give the labelling code in the Appendix. Thus, in
figure 6.a below, we observe an average of 0.19 primal trees in the ‘400 to 500’ row for the
interval 6,000 to 7,000 iterations. The black portion of each bar indicates the percentage
of change for the group of subtrees, i.e. the number of nodes found with a label different
than the subtree root label. A blank bar indicates stability.

Problem 135, solved on the Symmetry version, is chosen as a representative problem
for our observations. Problem 135 needed 9,380 pivots for this particular run. We omitted
the bar graphs corresponding to the first 6,000, resp. 4,000, iterations since the number of
subtrees was essentially 0.

First, we show the primal subtree count.

1 We include subtrees connected by nonbasic arcs at their upper bounds to the rest of

the tree.

22



Figure 6.a.

subtree nodes

100 to 200
200 to 300
300 to 400
400 to 500
500 to 600
600 to 700
700 to 800
800 to 900
over 900
sum

average number of primal subtrees (problem 135)

i

1

i

i

==

.|

pivots in 1000: 6 to 7

|

1
B
7 to 8

8to9

9to 10

Figure 6.a illustrates that primal subirees are scarce. The averaged number of subtrees
stayed below 1. In any case, considering primal subtrees as independent units in the sense
of the subgraph locking approach is a flawed decision: unless the subtree root is directly
attached to the root of the full tree, dual updates will propagate into it. Primal subtrees
are naturally independent units only at the end of the computation.

Consequently, we focus on dual subtrees.

Figure 6.b.

subtree nodes

100 to 200
200 to 300
300 to 400
400 to 500
500 to 600
600 to 700
700 to 800
800 to 900
over 900
sum

average number of dual subtrees (problem 135)

prvots in 1000: 4 to 5

0 10 10 10 10 {0
1 - - il
1 1]
| 1l
1]
|
| i B ]
1 A 1R -] 0 0
5to6 6to7 7t08 8to9 9 to 10

Figures 6.b shows that dual trees of an interesting size are more abundant (up to 8 in
our example), but become rare towards the end of the computation. Yet the changes in the
subtrees occur typically in the large subtrees despite the stabilizing influence of our scheme
on the subtree structure; and all subtrees coalesce in the final stages of the computation.

We now look at the picture at the end of the computations. The roots of primal
subtrees with 30 and more nodes are counted in the rows labelled big,primal. Subtrees
that are both primal and dual independent are labelled big,independent.

23




NETGEN Solution Subtrees

Problem no. 101 102 103 104 105 106
total,primal 626 235 192 647 613 888
big,primal 8 1 2 9 6 12
big,independent 1 1 1 1 1 1
Problem no. 107 108 109 110 111 112
total,primal 595 166 457 802 570 535
big,primal 5 1 5 7 9 7
big,independent 1 1 1 1 1 1
Problem no. 113 114 115 116 117 118
total,primal 486 1520 1058 333 375 328
big,primal 2 4 8 3 15 6
big,independent 1 1 1 1 1 1
Problem no. 119 120 121 122 123 124
total,primal 9 16 2540 2615 2244 1467
big,primal 3 3 5 1 2 2
big,independent 1 1 1 1 1 1
Problem no. 125 126 127 128 129 130
total,primal 1000 2124 2098 1927 1497 1892
big,primal 3 3 1 1 2 3
big,independent 1 1 1 1 1 1
Problem no. 131 132 133 134 135 136
total,primal 2303 2374 2382 40 680 3866
big,primal 2 4 3 2 2 3
big,independent 1 1 1 1 1 1
Problem no. 137 138 139 140 141 142
total, primal 5529 202 1188 1768 2602 2730
big,primal 5 11 4 3 1 1’
big,independent 1 1 1 1 1 1
Problem no. 143 144 145 146 147 148
total,primal 2887 2361 2206 2227 24 126
big,primal 1 1 1 3 2 1
big,independent 1 1 1 1 1 1
Problem no. 149 150
total,primal 2660 2698
big,primal 2 3
big,independent 1 1

Thus, according to our criteria, the NETGEN problems end up with a basis consisting
of a single big subtree. We conclude that the average number of subtrees during and at
the end of the computation does not justify a tree locking approach.

24




2000

He" ROPIESROGPTE

[ A o~ R ]

g

;

g

6.2 The cycle locking approach.

Similarly, cycle locking encounters problems due to the lack of independent sub-
graphs. In our implementation of this approach we used two different types of locks. The
first type, cycle locks, are exclusive. If any other lock is encountered while locking the
cycle the process must give up its entering arc and erase its locks (backtrack). The locks
on the path to root from the common ancestor of cut and notcut , called path locks, are
not exclusive. A node may have several locks of this kind. But if it has at least one, it
can not have a cycle lock. Path locks avoid the “cycle in a cycle” situation where a cycle
occurs in a subtree about to be rehung. Without further costly locking, this situation
leads to errors in the update of dual variables. The path locks are non-exclusive to avoid
unnecesary blocking of paths.

For figures 6.c and 6.d, we counted the number of backtracks per processor per 1000
iterations of our cycle locking implementation. The number of collisions reflects wasted
work. For example, the 500 backtracks per 1000 iterations using 9 processors to solve
problem 121 indicate that 4.5 attempts were necessary to lock one complete cycle.

Figure 6.c: lots of collisions (121)

" 7000 -
6000 +
B
A
C
K
T5000 4
R
A
C
1213 K000 4
P 121 o
S0P 1216 13000
g 1217
+ e
2 P
SFe B3 d
I’ L o
¥ 2000 4
. .
8
8
/' 1000 4
” ’I
{3d
- t{'—i’ o
) ....*iﬂfﬂ“.‘“"‘ 0 Y
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
NUMBER OF PIVOTS in 1000 NUMBER OF PIVOTS in 1000

Figure 6.d: more collisions (101)

Our general observation was that the number of collisions increases rapidly after the
first 5,000 iterations and more pivots are aborted than completed. To take advantage of
the low backtrack rate in the initial phase, we tried to use cycle locking as a first phase,
switching to pricing heuristics when the number of backtracks reached a certain level. It
turned out that the pure pricing heuristics implementation using 6 processors needed fewer
iterations than the pricing heuristics part of this hybrid implementation. This is illustrated
by figures 6.e and 6.1f.

25




» 101_6
150 "

200 4

0 et =g

100 A

0 0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 01234567 891011121314151617181920
NUMBER OF PIVOTS (in 1000) NUMBER OF PIVOTS (in 1000)

Figure 6.e: The cycle locking - pricing heuristics hybrid (left) performs
worse than the pricing heuristics approach (right).

Judging by the slope of the graph in figure 6.e and our previous observation on the
reasons for expensive updates, it seems that cycle locking grows medium sized trees that
have to be re-shuffled. A possible explanation for the poor performance of the cycle locking
approach is therefore that it tends to create local optima: better arcs are blocked and do
not enter because of contention. In particular, arcs that produce large cycles have a lower
chance to enter the basis.

26



7. Extensions of the algorithm.

Recall the graph that plots pivots versus subtree size in Section 5. It shows that the
total amount of work available for a parallel update is in the order of 50 nodes or less for
most of the pivots. On the Symmetry version of the Sequent multiprocessor, updating the
dual values of 100,000 nodes takes ~ 1 second if properly coded. Thus it does not seem
reasonable to maintain additional data structures or incur a communication overhead for
a pure parallel update approach. Nevertheless, we present the basic idea, since it might
be useful in conjunction with the pricing heuristics approach as trees and problems grow
larger.

The key data structure is LSUC. It contains a pointer to the last element of the
subtree of a node. We need this last element to be able to efficiently cut the re-attached
subtree into pieces. Without LSUC we would have to use SUCC to traverse the whole
subtree, which is almost as expensive as doing the update itself. Again, using NSUC we
can decide what sub-subtrees should be added to the work-queue. The work-queue entry
is of a similar format as in the cycle update case: the subtree root node, the number of
nodes to be updated and the changes in FLOW and DUAL and NSUC. Special care
has to be taken if the subtree root is cut . A disadvantage of LSUC is that it potentially
needs to be updated all the way up to root .

PRED{severed] ('

sever
&%}/LSUC [severed]

notcut

Figure 7.a: An example of LSUC.

Another extension aims at reducing the contention for the price-queue. We can
dispense with locking all together, if we maintain several price-queues, one for each p;. An
additional processor is dedicated to checking these local queues periodically and selecting
the best arc for pg.

Acknowledgements

I thank R.R. Meyer for his support, J. L. Kennington for his version of NETFLO and
J. Mote for NETGEN and the test problem set.

27




Appendix

We now present the code used to analyze the tree structure to make our claims precise.
Code sections embraced by the pair lock and unlock are only accessible to one processor
at a time. :

code for analyzing dual subtrees
id = m_get_myid();
for ( cand = id; cand <= mazNode; cand += procs) {
if ((nsuclcand] > 100) && (pred[cand] == artNode)) {
/* a primal root candidate */
ctr = 0; k = cand,
for (i = nsuc[cand]; i; i~7) { /* change in subtree */
if (label[k]! = cand) {
ctrt+-

H

label[k] = cand;

}

ns = nsuc[cand]/100; /* i.e. slots 50,100,200,... */
if (ns >=10) ns = 9;
change = (1.0 * ctr)/nsuc|cand);
lock;
treect[ns]*+;
treecg[ns] += change;
unlock;
}
}

The code for analyzing primal subtrees is slightly more complicated, since we have to make
sure that no tree is counted twice.
E.g., instead of

if ((nsucf[cand] > 100) && (pred[cand] == artNode)) {
/* a primal root candidate */

we have

if ((flow[cand]) && (nsuc[cand] > 20)) { /* a dual root candidate */
lock;
if (notin_gqueue(cand))
enter_queue(cand)
else
continue; /* back to “for-loop” */
unlock;

28



References
[CM88] M.D.Chang, M.Enqquist, R. Finkel, R.R. Meyer, “A parallel algorithm for gen-
eralized networks”, Technical Report no. 642, Dept. of Computer Sciences, UW
Madison, 1987 ( to appear in Parallel Optimization on Novel Computer Archi-
tectures)
[Co83] Stephen A. Cook, “An overview of computational complexity”, CACM 8, n0.6,
1983
[GKKNT74] F. Glover, D. Karney, D.Klingman, A.Napier, “A computation study on start
procedures, basis criteria, and solution algorithms for transportation problems”,
Management Science 20, 1974
[GSS82] Leslie M. Goldschlager, Ralph A. Shaw, John Staples, “The maximum flow prob-
lem is log-space complete for P”, Theoretical Computer Science 21, 1982
[KNS74] D. Klingman, A. Napier, J. Stutz, “NETGEN: a program for generating large
scale capacitated assignment, transportation, and minimum cost flow network
problems”, Management Science 20 no. 5, 1974
[KH82] J. Kennington, R. Helgason, “Algorithms for network flow programming”, John
Wiley and Sons, New York, 1982
[Pi79] N.J. Pippenger, “On simultaneous resource bounds”, Proc. 20th IEEE Sympo-
sium on Foundations of Computer Sciences, Los Angeles, 1979
[SeB4] Robert Sedgewick, “Algorithms”, Addison Wesley, 1982
[Sm82] Stephen Smale, “On the average speed of the simplex method of linear program-
ming”, Preprint 1982
[SB84] “Balance’™ technical summary”, Sequent Computer Systems, Inc., 1984
[SS87] “SymmetryT™ technical summary”, Sequent Computer Systems, Inc., 1987

29




n = w =
1 proc 10 procs
1 sweep | 1 sweep | 2 sweeps | 3 sweeps | 5 sweeps | 7 sweeps | 10 sweeps
it sec| it sec| it sec| it sec | it sec| it sec| it sec
1
2
3
4
3
ave

e 1 big row (row n-1)

® My =

> Mij

i#j




n= d = w =
1 proc 10 procs
1 sweep | 1 sweep | 2 sweeps | 3 sweeps | 5 sweeps | 7 sweeps | 10 sweeps
it sec| it sec| it sec| it sec| it sec| it sec| it  sec
1
2
3
4
5
ave

e 1 big row (row n-1)

® M =

> myj

i#j




n= d = w =
1 proc 10 procs
1 sweep | 1 sweep | 2 sweeps | 3 sweeps | 5 sweeps | 7 sweeps | 10 sweeps
it sec| it sec| it sec| it sec| it sec| it sec| it sec
1
2
3
4
5
ave

e 1 big row (row n-1)

® My =

> mij

i#j




n = d = W =
1 proc 10 procs
1 sweep | 1 sweep | 2 sweeps | 3 sweeps | 5 sweeps | 7 sweeps | 10 sweeps
it sec| it sec| it sec| it sec| it sec| it sec| it sec
1
2
3
4
5)
ave

e 1 big row (row n-1)

® My =

Z mz-j

i#j




