FACTORING POLYNOMIALS USING FEWER RANDOM BITS

Eric Bach

Victor Shoup

Computer Sciences Technical Report #757

March 1988

Factoring Polynomials Using Fewer Random Bits

Eric Bach
Victor Shoup

Computer Sciences Department
University of Wisconsin—Madison

Madison, WI 53706
March 16, 1988

Abstract. Let F' be a field of ¢ = p™ elements, where p is prime. We present two new probabilistic
algorithms for factoring polynomials in F[X] that make particularly efficient use of random bits.
They are easy to implement, and require no randomness beyond an initial seed whose length is
proportional to the input size. The first algorithm is based on a procedure of Berlekamp; on input
fin F[X] of degree d, it uses dlog, p random bits and produces in polynomial time a complete
factorization of f with a failure probability of no more than 1/ p(1-9)%d, (Here € denotes a fixed
parameter between 0 and 1 that can be chosen by the implementor.) The second algorithm is based
on a method of Cantor and Zassenhaus; it uses dlog, ¢ random bits and fails to find a complete
factorization with probability no more than 1/ ¢(1=9%4, For both of these algorithms, the failure

probability is exponentially small in the number of random bits used.
Submitted to Journal of Symbolic Computation.

This research was sponsored by the National Science Foundation, via grants DCR-8504485 and
DCR-85525986.

1. Introduction

Let F' be a finite field with ¢ elements, where ¢ = p™ and p is prime. Consider the problem
of factoring polynomials f € F[X] into irreducible factors. There are no known deterministic
polynomial-time procedures for this problem, though there are efficient methods that use random
numbers. We will present two algorithms that are easy to implement and make particularly efficient
use of these random numbers. In particular, they require no randomness beyond an initial seed
about as long as the input, and the probability of their not obtaining complete factorizations is
exponentially small.

Berlekamp’s factoring algorithm [Berlekamp] runs in time polynomial in deg f and ¢q. Thus, for
bounded values of ¢, this is a polynomial-time algorithm. If ¢ is arbitrary, however, Berlekamp’s al-
gorithm requires an exhaustive search through the field F' and this takes exponential time. To avoid
this, various probabilistic polynomial-time factoring algorithms have been invented [Berlekamp,
Cantor/Zassenhaus, Rabin, Ben-Or]. When endowed with the ability to flip coins, i.e. access to a
source of independent, unbiased random bits, they are efficient and reliable.

In this paper we adopt the view that random bits are a scarce resource, and seek factoring
algorithms that use this resource efficiently. There are two reasons for our point of view. First,
a careful analysis of exactly where and how much randomness is required to solve a particular
problem may produce valuable new insight into the problem. Second, whether polynomial-time
computation benefits from randomness is an open question. One could conceivably resolve this
in the negative by reducing the randomness requirement to zero. Our results may lead in this
direction.

To make our view precise, we introduce a formal definition of random bit usage that was
proposed in [Shoup].

First, we adopt the following idealization of probabilistic computation. On input z, an algo-
rithm A computes its random bit requirement b(z) (the time to compute b(z) and its value are
polynomially bounded in |z|, the length of z). A then is supplied with a random bit string of length
b(z), and after time bounded by a polynomial in |z|, it outputs an answer or the special symbol
“77, signifying failure. We assume the failure probability e(z) is less than a fixed constant (1/2,
say), and that if A succeeds in producing an answer, it is correct. Following Babai, we call such an
algorithm a Las Vegas algorithm (see [Johnson]).

The measure we shall use to estimate random bit usage is the function h(z) defined by

h() b(z)

2

if e(z) is nonzero and zero otherwise. h(z) is called the half-cost of A on input z; it measures
the relationship between the random bit consumption and the failure probability in an invariant
fashion. In particular, it does not change if we iterate algorithm A to reduce the failure probability.
Intuitively, the half-cost measures the number of random bits required to cut the failure probability
in half, provided we buy random bits “in bulk.” Since b(z) is polynomial in |z|, so is h(z). If
e(z) > 0, then ¢(z) > 27%*), so h(z) > 1. Therefore, the best non-zero half-cost we could hope
for is h(z) = O(1). If h(z) < H for all z, then e(z) < 2-%=)/H je. the failure probability is
exponentially small in the number of random bits used.

Previously, one of the present authors described a constant half-cost Las Vegas algorithm
for finding square roots modulo primes [Bach]. In this paper we extend this result and give two
constant half-cost Las Vegas algorithms for polynomial factoring. The first is based on Berlekamp’s
algorithm and an extension described in [Cantor/Zassenhaus]. Given a polynomial f of degree d
in F[X], it produces a complete factorization of f using dlog, p random bits, obtaining a failure
probability bound of 1/p(1=9z¢. This implies a half-cost bound of 2/(1 — €) (here ¢, 0 < € < 1,
controls the tradeoff between running time and failure rate). The second algorithm is based on the
distinct degree factorization method (a so-called “folk” method) and improvements to this method
described in [Cantor/Zassenhaus]. It uses dlog, ¢ random bits, obtaining a failure probability
bound of 1/¢g(1~9%2, This implies a half-cost bound of 4/(1 — €). We do not claim that the first
algorithm is necessarily superior to the second in practice, since the half-cost bounds contain an
arbitrary parameter ¢ and randomness may not be the only resource of interest.

Both of these algorithms are efficient and easy to implement. The usual approach searches for
a “splitting polynomial” A for which gcd(F(h), f) # 1, f (F is an easily computable function) and
tries many independently chosen values of h. Our approach is to choose a seed at random and then
deterministically generate a simple sequence that with very high probability contains a splitting
polynomial. In particular, no sophisticated pseudo-random number generator is required.

We describe these algorithms in sections 2 and 3, respectively. In section 4, we briefly discuss

some implementation details.

2. Modifications of the Berlekamp Algorithm

Recall that F is a finite field with ¢ = p™ elements, where p is prime. We assume that we are given
a concrete representation F' = Z (o), where a is a root of an irreducible polynomial over Z, of
degree n.

Let f be a polynomial of degree d in F[X] that we wish to factor. The first step of Berlekamp’s

3

algorithm is to obtain a polynomial f* that has the same irreducible factors as f, but with each
factor occurring only once, i.e. f* is squarefree. This is easily done (see, e.g., [Knuth], p. 421). So
without loss of generality we will assume that the polynomial f is squarefree to begin with. Let
f = fi--- fr be the complete factorization of f.

F' contains Z, as a subfield. Furthermore, F' is an n-dimensional Z,-vector space with
1,a,...,a™ ! forming a basis. The ring F[X]/(f) is an F-vector space of dimension d with the
residues mod f of 1,..., X9 ! forming a basis. Therefore, F{X]/(f) is an nd-dimensional Z,-
vector space with the residues mod f of @*!X7 (i =0,...,n~1;5=10,...,d — 1) forming a basis.
Throughout the rest of this section, we purposefully blur the distinction between a polynomial and
its residue mod f.

Now, by the Chinese Remainder Theorem, we have an isomorphism

FIX1/(£) 2 FIX1/(f1) x -+ x FIX]/(fr)-

For simplicity, we identify F[X]/(f) with its isomorphic image, and call the residues

((1,1,(1,2,. . -,a'r')

the components of f. Since f; is irreducible, F{X]/(f;) is a field containing Z,, the fixed field
of the Frobenius automorphism z — z? on F[X]/(f;). Thus, R = [[;_, Z, is an r-dimensional
Z, ,-vector space, and is the kernel of the Z,-linear map on F[X]/(f) given by z — 2P — 2. Since
we have an explicit basis for F[X]/(f) over Z,, we can construct the matrix of this linear map,
and by Gaussian elimination find a basis w(®),...,w(") for R over Z pe

If p is small, we can quickly factor f in the following manner. First, we compute
hi; = w® +7 (i=1,...,m5=0,...,p—1).
Then, we initialize a set S = {f}, and iteratively refine it as follows: for each h;; we consider each
f in S in turn, and compute ged(h;;, f), if this is a proper divisor v of f, we replace f in S by v
and f /v. Any pair of factors f;, f; must be separated by this procedure, since there must be some

basis element

w(z) - (wl’; ey 'UJT) (wl E ZP)

for which ws # w; (otherwise, all elements of R would agree in their s and ¢t components, which is

not the case). For this w(¥,

W —w, =0 (mod f;)
W —w,#£0 (mod f).

4

Thus, w(? — w, will serve to separate f, and f;.
For large p, we can use a probabilistic method described in [Cantor/Zassenhaus] that goes as
follows. Choose a random element h of R (this is easy as we have a Z,-basis for R). In component

notation

h={(a,...,a;) (a;i € Zp).

Then compute

w= RP-1/2 _ (agz’—l)/z, . .,a(rp‘l)/z)

(note p is odd) and try to split f with u — 1 and u. Let x be the quadratic character on Z,. The
probability that neither ged(u—1, f) nor ged(u, f) split f is the probability that x(a1) = -+ - = x(ar),
since each component of u is 0, 1, or —1. This probability is asymptotic to 1/27~! as p — oo. Using
this method, we can construct a Las Vegas algorithm to completely factor f, but it will not have
a constant half-cost. Indeed, if f = fi f2, the probability that u splits f is about 1/2, leading to a
half-cost near 2log, p.

We now give a modification of this algorithm that does have a constant half-cost for sufficiently

large p.
Algorithm 2.1. Input: f. Output: The set of irreducible factors of f.

(1) Construct the basis w(),...,w(") for R over Z, as described in paragraph 3 of this section.
(2) If r = 1 then output {f} and quit; otherwise, let k = [Llog, p] and S = {f}. Repeat steps
3a-3d d times.
(3a) Choose a random & € Z,,.
(3b) Let hyj =2w® 4+ 5 (i=1,...,m5=0,...,k).
(3c) For each h;j, compute u;; = hg?‘l)ﬂ.
(3d) For each u;j, consider each f in S, and compute ged(u;;, f) and ged(us; — 1, f). If either of
these is a proper divisor v of f, then replace f in § by v and f Jv.

(4) If |S| = r, then output S; otherwise, report failure.

We now analyze the failure probability and half-cost of this algorithm. For fixed s and ¢,
1 < s < t<r,let Py be the probability that one iteration of step 3 of algorithm 2.1 fails to

separate f; and f;. We state the principal result of this section.

Theorem 2.2. We have

log, p
Pst S .
p1/2

5

From this a half-cost bound (Corollary 2.5, below) easily follows. Before proving this we will need

two lemmas, the first of which is proved in [Schmidt].

Lemma 2.3. Let x be a multiplicative character of order d > 1 on a finite field K with ¢ elements.
Suppose that g(X) € K[X] has m distinct roots (in the algebraic closure of K) and is not a d-th
power, i.e. not of the type g(X) = ¢(h(X))%, where ¢ € K, and h(X) € K[X]. Then

< (m—1)g'/%.

> x(g(=))

zeK

Lemma 2.4. If 3, are distinct, nonzero elements of F', then none of the polynomials

H (X = iP5 (X — jv)% (0 < e; < 1,not all e; zero)
1<i<k

are squares.

Proof. Since § and v are distinct, if such a polynomial were a square, then for distinct jy,..., ju

between 1 and k,

7B = jay
J2B = j3v
jw—lﬁ = jw"/
]wﬁ = j17-

But this implies that 8>, 7, = ¥, ju, so either B = v or >_ j, = 0. The first is impossible, and

the last cannot be true because

w k
0< > dy< Y i=k(k+1)/2<p.

1 g=1
The last inequality follows from the fact that k = [1log, p]. m

Proof of Theorem 2.2. Without loss of generality assume that s = 1,¢ = 2. There must be some
basis element w(¥) = (a,b,...) for which a # b. If either a or b are zero, then h;o will separate f;

and f,, provided z # 0. Otherwise, if x(a) # x(b), where x is the quadratic character, hjp — 1 will

6

separate fi and fi, again, provided z # 0. In either case, we have Pj3 < 1/p, so we can assume

that a and b are nonzero and that x(ab) = 1.
For any 1 < j < k, we cannot have 0 = az + j = bz + j, and if either az + j or bz + 7 are
zero, then h;; will separate fi and f,. So if we fail to separate f; and f,, there must exist nonzero

Y1y, Yk i0 Zp such that
(az + 1)(bz + 1) = 2

(az + 2)(bz + 2) = y%

(az + k)(bz + k) = yi.

Since ab = c?, we can set z; = y;/c and rewrite this system of equations as

(z+1/a)(z +1/b) = 22

(z +2/a)(z +2/b) = 23

(z+k/a)(z + k/b) = 2.

Let N = |{(z,21,...,2k) € Z’;“ :(z,21,...,2) satisfies (%)}]. We want to get a good upper

bound on N. Now, for fixed ¢, the number of z satisfying 22 = ¢ is 1 + x(c). Therefore,

k
N =% [T(+x((+3i/a)e+35/b)

T€EZ, j=1

= > > x(ﬁ(w +3/a)% (o + j/b)e’)-

0<ey ,.,ex <1 z€Z, Jj=1

In this last expression, the term corresponding to e; = -+ = e; = 0 is p. For the other terms, we
can get an upper bound on the magnitude of the character sums appearing therein using lemmas

2.3 and 2.4. These lemmas imply

k
N<p+p/?y. (’;)(21— 1)

=1
=p+ p/?(2F(k - 1) + 1).

7

We divide this by 2* to obtain a bound on the number of 2 for which there exist nonzero 21, ...,z

satisfying (%), and then divide by p to obtain a bound on the probability Py5. This produces
Pig < 1/2% 4 (k- 1)/p"/? +1/(25p!/%).

The right hand side of this inequality is asymptotic to %log2 p/p'/? as p — oo, and some calculations

show that it is less than log, p/p'/? for all p > 3. So the theorem is proved. m

Corollary 2.5. The failure probability of algorithm 2.1 is bounded by

Ld
4/3 2
(3 / (1(;8;2 p) >2 < 1/pt=9%e,

(the inequality holds for any € > 0 provided p is sufficiently large).

Proof. Since the iterations of step 3 are independent, the probability of not separating any fixed

Summing over all pairs, we have a failure probability bound of

() () s ()’

_ (d‘*/d(logz p)?)

b

pair of factors is at most

1
< (34/3(1()%2 p)? > = _

p

The last inequality follows from the fact that d'/¢ is maximized at d = 3.

This gives the first bound. To get the second, note that for any € > 0 and p sufficiently large,
we have 34/3(log, p)? < p¢. W

The number of random bits used by algorithm 2.1 is essentially dlog, p, so Corollary 2.5 implies
that the half-cost is no more than 2/(1 — €), since for small p, we can resort to the determinis-
tic version of Berlekamp’s algorithm. This bound is valid even using the approximate uniform

distribution described in section 4.

3. Modifications of the Cantor/Zassenhaus Algorithm

Again, F' is a finite field with ¢ = p™ elements, and we want to factor f € F[X] of degree d. As in
section 2, we assume that f is square free. The first step of the Cantor/Zassenhaus algorithm is to
perform “distinct degree factorization,” that is, obtain factors f(1),..., f(™) of f such that (1) each
f() is the product of r; distinct irreducible polynomials of degree e;, and (2) each irreducible factor
of f appears in some f(9). This can be done in polynomial time by using the fact that X° — X is
the product of all monic irreducible polynomials whose degrees divide a. See [Cantor/Zassenhaus]
for details.

In this section, our analysis will involve several rings and fields, and it will be important to
be explicit about the algebraic structures and homomorphisms under discussion. In particular, for
g,h € F[X], we will use the notation [g] to denote the image of g in F[X]/(h).

We first discuss factoring f = fy--- f- where the f;’s are distinct irreducible polynomials of
degree e. We consider the case where p is odd in detail, and then sketch the differences for the case
where p = 2.

By the Chinese Remainder Theorem, we have an isomorphism

FIX1/(f) = FIX]1/(f1) x - - - x FIX]/(fr).

Let @ = ¢°. Each F[X]/(f:) is a field with @ elements containing F as a subfield. Fix some arbitrary
field E of size @ that contains F. Then there is an isomorphism o; of F[X]/(f;) onto E that fixes
F. Thus, we have an isomorphism of F[X]/(f) onto E” that sends [h]; to (o1([h]s,), - .-, 0-([R]f,))-
We identify F[X]/(f) with its isomorphic image.

The Cantor/Zassenhaus algorithm first chooses a polynomial & at random of degree < re. In

component notation this will be
[h]s = (a1,...,ar)

where a; is a randomly selected element of E. We compute u = A{(?~1/2 mod f. Then
[u]f = (a(lQ"l)/z,...,aS,Q‘l)/z).

Let x be the quadratic character on E. The probability that neither ged(u — 1, f) nor ged(w, f)
split f is the probability that x(a;) = --- = x(a,), which is asymptotic to 1/27~1. Using this
approach, we can construct a Las Vegas algorithm for factoring f, but it will certainly not have a

constant half-cost.

We now give a new algorithm for factoring a polynomial f of this restricted type. Along with
f, it is given as input an “iteration parameter” A. We assume a canonical enumeration Cy,C,, ...

of polynomials over F' of degree < e.

Algorithm 3.1. Input: f,A. Output: the set of irreducible factors of f.

(1) Let k£ = [log, @], and S = {f}.
(2) Repeat steps 3a-3¢ A times.
(3a) Generate a random polynomial & in F[X] of degree < 2e.
(3b) Compute u; = (h+ C;)@D/2mod f (i=1,...,k).
(3¢c) For each u;, consider each f in S, and compute ged(u;, f) and ged(u; — 1, f). If either of these
is a proper divisor v of f, then replace f in S by v and f Jv.
(4) If | S| = r, then output S; otherwise, report failure.

We want to get a bound on the probability that algorithm 3.1 fails to completely factor f. For

fixed s and £, 1 < s < t < r, let Py; denote the probability that one iteration of step 3 fails to
separate f, and f;.

Theorem 3.2. We have

2
PstS‘(‘]‘.(‘)‘g'z'Q_%-

Proof. Without loss of generality assume that s = 1, = 2. We have an isomorphism of
F[X1/(fi1f2) onto E? which sends [h]y, 5, to (o1([h]s,), 02([R]s,)). We identify F[X]/(f1fs) with
its isomorphic image. As h ranges over all polynomials of degree < 2e, it ranges over a complete
residue system mod f; f;. So if h is chosen at random, then in component notation, [h]f, 5, = (2,¥),
where z and y are randomly chosen elements of E.

Fori=1,...,k, let a; = 01([Ci]y,) and b; = 02([Ci]y,). The a;’s are distinct, and so are the

bi’s. Now, u; = (h+C;)(9~1/2 (mod f), and so this congruence holds mod f; f, as well. Therefore,

in component notation

[ui]flfz = (("L + a’i)(Q—l)/za (y + bi)(le)/z)'

Thus, Py5 is no more than the probability that fori = 1,...,k, x(z+a;) = x(y+b;), where we choose
z,y € F at random. Let P}, be the probability that for ¢ = 1,..., %, x(z + a;) = x(y + b;) # 0.
Then Py < k/Q% + P},. Now, P/, is the probability that there exist nonzero z;,...,2; in E such

10

that
(z+a1)(y +b1) = 23

(& + ax)(y + b2) = 23

(¢ + ar)(y + bx) = 2.

Let N =]{(w,y,zl,...,zk) € EF2 : (z,y,2,...,2;) satisfies (x)}|. We want to get a good
upper bound on N. We have

N=3% (1+x(e+a)y+5))(1+x((®+a)(y+ b))
z,y€E

= > 3 X(@ @) (y+ 1) - (@4 ar)(y + b))

0<itnyin <l w,yeE

= 3 <Z X((z +ay) (2 + ak)"k)> (Z X((y+ 1) - (y + bk)ik)>'

0<43 .., <1 z€E yelR

In this last expression, the term corresponding to iy = -+ = 45, = 0 is Q2. We can use lemma 2.3

to bound the magnitude of each of the other terms, obtaining

k >
N<Q+Q), (?)(1—1)2
=1
= Q% +Q (k(k—1)2%2 — g2*=1 4 2F 7).

We divide this quantity by 2* to obtain a bound on the number of z, y for which there exist nonzero
21, .., 2 satisfying (%), and by Q? to obtain a bound on PJ,. Using the fact that Pz < k/Q%+ P,,

we have

1(k Q k(k-1) k& 1
< =2 Y=,
P12__Q<Q+2k+ " 51 2k>

The right hand side of this inequality is asymptotic to ;li-(logz @)?/Q as @ — o0, and some calcu-
lations show that it is less than (log, @)%/Q for all @ > 3. So the theorem is proved. m

We now consider the case ¢ = 2". We will assume that F' contains a primitive cube root of
unity w. If this is not the case, we can construct the quadratic extension of F using the polynomial
w? 4+ w + 1, factor f in this extension field, and then, if necessary, multiply conjugates together to

obtain the factorization of f over the original field.

11

We now modify algorithm 3.1 to handle this case. Step (1) is changed so that k& = [logs Q].
Step (3b) is changed so that

u; = (h+ C;)@"/3 mod 7.

In step (3c), we compute ged(u;, f), ged(u; + 1, f) and ged(u; + w, f).
We can prove an analog of theorem 3.2 for this modified algorithm. Let Py, be the probability
that one iteration of step 3 of this modified algorithm fails to separate f; and f;.

Theorem 3.3. We have

. 2
Pstg(_lggé‘g_)“-

Sketch of Proof. This is very similar to the proof of theorem 3.2. The relevant system of equations
is
(z+a)y+b)2 =2 (i=1,...k).
We can estimate the number of solutions by using the fact that for fixed ¢ € F, the number of
z € E satisfying 23 = ¢ is 1+ x(c) + x(c?), where x is a multiplicative character of order 3 on E. m
Using algorithm 3.1, we now describe an algorithm for factoring any polynomial f in F[X] of

degree d. The basic idea is to perform distinct degree factorization, and then apply algorithm 3.1

to each of the resulting factors.
Algorithm 3.4. Input: f. Output: the set of irreducible factors of f.

(1) Perform distinct degree factorization, obtaining f(1), ..., f(™), where f() has r; factors, each
of degree e;. Initialize S = {}. Generate a list p of d random elements from F.

(2) Fori=1,...,m, do the following. If r; = 1, then add f(¥ to §. Otherwise, let \; = ld/(2e;)].
Run algorithm 3.1 on f(9) with A = \;, using p as the source of random field elements. If this

succeeds in completely factoring f(9), then add the set of factors to S; otherwise, report failure.

(3) Output S.

To analyze this algorithm, we will ignore those f() with r; = 1, since they are completely factored
already. Therefore, to simplify the discussion, we will assume that r; > 2 for each i = 1,...,m.

We also assume that e; < ey < -+ < ey

Lemma 3.5. Let 0 < € < 1 be a constant. Then there exists another constant C, depending on ¢,

such that for ¢ = 1,...,m, the probability that algorithm 3.4 fails to completely factor f(9) is less

than

1
q(1—e).}i.d"

12

provided ¢¢% > C.

Proof. The probability that f(9) is not completely factored is no more than the sum over all s and

t,1 <s<t<r;, of Py. By theorems 3.2 and 3.3, this is at most

+ (Lm0
' Qi ’

where @; = ¢% (note logz @; < log, @;). Since A\; > |r;/2] > (r; — 1)/2, we can bound this by

(T?/(T‘~1)(10g2 Qi)2) : < (9(1(’%2 QZﬁ) :
Qi - Qi '

Now, let 0 < € < 1 be a constant. Then there exists a constant C' such that Q; > C implies
9(logy, Qi)* < Qi In this case, the failure probability is no more than 1/¢(1=9e* We have
d = (2e;)A; + K4, where 0 < k; < 2e;. Since d > 2e;, it follows that (2e;))\; > d/2, and hence
eiA; > d/4. The lemma follows immediately. m

For fixed €, we modify algorithm 3.4 as follows. If ¢* < C, then we factor f(9) deterministically
by brute force examination of all monic polynomials of degree e;, of which there are no more
than C. Otherwise, we use algorithm 3.1. The failure probability bound in lemma 3.5 now holds
unconditionally. Note that this bound holds even using the approximate distribution for p described

in section 4.

Theorem 3.6. Let 0 < 6 < 1 be a constant. Then there exists another constant D, depending on
§, such that the failure probability of algorithm 3.4 is less than

1
q(1—&)(1—e)§;d’

provided ¢¢= > D.

Proof. Summing over all ¢ = 1,...,m, we see that the probability of failing to factor some f(%)
is at most m/q(1=9%%, For fixed 0 < § < 1, we want to bound this quantity by 1/¢(1-8)A-)}d,
Suppose this bound fails. Then we have ¢¢ < m?, where v = 4/(§(1 — €)). We know that
d>2e; 4+ +2em > m(m— 1)+ 2en. So we have ¢°» < (m7/qg™(m~1)1/2 Now, the quantity on
the right hand side goes to zero as m — o0, and so it is bounded by some constant D. m

We modify algorithm 3.4 so that if ¢~ < D, then we factor f by brute force. The failure
probability bound in lemma 3.6 now holds unconditionally. The number of random bits used by

algorithm 3.4 is essentially dlog, ¢, implying a half-cost of no more than 4/((1 — 6)(1 — ¢)).

13

4. Implementation Details

Throughout our discussion, we have tacitly assumed that by using about elog, p random bits, we

can generate a random list of numbers
T = (3317"'7336) (0 <y <p)

with a uniform distribution. We now justify this assumption.

We first point out that the “standard” method of generating a random number between 0 and
p does not work. This method is to generate a random number using [log, p| random bits, and
then throw this number away if it is too large. This process is repeated until a number in range is
generated. This method uses far too many random bits for our purposes.

We now describe a method that does work. Let b = [log, p*]. Generate b random bits, and
view the result as a number 0 < y < 2°. Compute z = y mod p°. Note that p¢ < 20 < 2pe. So for
any 0 < zg < p¢, the number of 0 < yo < 2% such that zy = yp mod p¢ is at least 1 and at most 2.
Therefore, for any zg, P12z = 2] < 2/2 < 2/p°. Furthermore, Pr{z = 20] > 1/2° > 1/(2p®).

Now, compute z = (z1,...,2.) Where the z;’s are the digits of z when z is written in base p.
This gives a one-one correspondence between the possible values of z and the possible values of z.

Therefore, for any e-tuple zg, we have

(2) <eemisa ().

Suppose that an algorithm has a failure probability of @ assuming a true uniform distribution.
Let o' be the failure probability assuming our approximate uniform distribution. Let S be the set
of e-tuples which cause failure. Then o = 37, oPrle = o] < 30, <52/p° = 2a. In all of our

examples, « is sufficiently small that this increase by a factor of 2 is negligible.

5. References

[Bach] E. Bach, “Realistic analysis of some randomized algorithms,” ACM Symposium on the
Theory of Computing, 1987, pp. 453-461.

[Ben-Or] M. Ben-Or, “Probabilistic algorithms in finite fields,” IEEE Symposium on Foundations
of Computer Science, 1981, pp. 394-398.

[Berlekamp] E. Berlekamp, “Factoring polynomials over large finite fields,” Mathematics of Com-

putation, Vol. 24, 1970, pp. 713-735.

14

[Cantor/Zassenhaus] D. Cantor and H. Zassenhaus, “A new algorithm for factoring polynomials
over finite fields,” Mathematics of Computation, Vol. 36, No. 154, April 1981, pp. 587-592.

[J ohnson] D. Johnson, “The NP-completeness column: an ongoing guide,” Journal of Algorithms,
Vol. 5, 1984, pp. 433-447.

[Knuth] D. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Addison-
Wesley, second edition (1981).

[Rabin] M. Rabin, “Probabilistic algorithms in finite fields,” STAM Journal on Com puting, Vol. 9,
No. 2, May 1980, pp. 273-280.

[Schmidt] W. Schmidt, Equations over Finite Fields, Springer-Verlag, Lecture Notes in Mathematics
536 (1976).

[Shoup] V. Shoup, “Finding witnesses using fewer random bits,” University of Wisconsin-Madison,

Computer Sciences Technical Report #725.

15

