USING SELF-REDUCIBILITIES
TO CHARACTERIZE POLYNOMIAL TIME

by
Judy Goldsmith
Deborah Joseph
Paul Young
Computer Sciences Technical Report #749
February 1988






USING SELF-REDUCIBILITIES TO CHARACTERIZE POLYNOMIAL TIME*

JUDY GOLDSMITH
University of Wisconsin - Madison

DEBORAH JOSEPH
University of Wisconsin - Madison

PAUL YOUNG
University of Washington

In this paper we study the effect that the self-reducibility properties of a set have on its time complexity.
In particular, we show that the extent to which a set is self-reducible can determine whether or not
the set is polynomially decidable. Our results concern three variations on the notion of Turing self-
reducibility: near-testability, word decreasing query self-reducibility, and p-cheatability. Our first pair
of results provide characterizations of polynomial time by coupling the notion, first of Turing self-
reducibility, then of near-testability, with the notion of p-cheatability. In contrast, our final theorems
show that if specific nondeterministic and deterministic time classes do not collapse, then 1) we cannot
similarly characterize polynomial time by coupling word decreasing query reducibility with a variant of
p-cheatability, and 2) we cannot characterize polynomial time by coupling parity-P and p-cheatability.

Contents

1. Introduction
2. Basic definitions
3. Results
Theorem 1. Turing self-reducible N p-cheatable = P.
Theorem 2. Near-testable N p-cheatable = P.
Theorem 3. If U.sqParity TIME[T(n)®] # Ueso TIME[(T(n)?], then parity-P N p-cheatable # P.
Theorem 4. If Ueso NTIME[T(n)°] # Ueso TIME[T(n)°],
then Wdg self-reducible N (2F — 1 for k) p-cheatable # P.

4. Summary and conclusions
5. Bibliography
6. Appendix: Some properties of near-testable sets, p-cheatable sets, and wdq self-reducible sets

Categories and Subject Descriptors: F.1.3 [Theory of Computation]: complexity classes

General Terms: Structural complexity theory

Additional Key Words and Phrases: self-reducible, wdq self-reducible, near-testable, p-cheatable,
polynomially decidable

Date: November 30, 1987

* This work was supported in part by the National Science Foundation under grant DCR-8402375, as well
as by a grant from AT&T Bell Laboratories. This report has also appeared as University of Washington
Technical Report 87-11-11 under the same title.

Authors’ addresses:

J. Goldsmith and D. Joseph: Computer Sciences Department, University of Wisconsin, 1210 West
Dayton St., Madison, WI 53706.

P. Young: Computer Science Department FR-35, University of Washington, Seattle, WA 98195.



1. INTRODUCTION.

In this paper we study the effect that various self-reducibility properties have on the complexity of a set.
In particular, we show that the extent to which a set exhibits certain combinations of these properties
can determine whether the set is polynomially decidable.

A set A is said to be Turing self-reducible if there is a polynomial time oracle machine SR4 that
recognizes A, and on inputs of length n all of SRA ’s queries have length less than n. Obviously,
all polynomially decidable sets are Turing self-reducible, and all sets that are Turing self-reducible are
decidable in polynomial space. In this paper we consider three variations on the notion of Turing self-
reducibility: near-testability, word decreasing query self-reducibility, and p-cheatability. We investigate
when these notions can be combined to give an exact characterization of P, the polynomial time decidable

sets. We prove four results.

A set A is called p-cheatable if there is a constant k& > 1 such that, for any 2% elements, the question
of membership in A for all 2% elements can be reduced in polynomial time to only k questions about

membership in A.

Result 1: A € P if and only if A is both p-cheatable and Turing self-reducible.

After proving Result 1, we investigate whether Result 1 can be extended to other classes of self-
reducible sets.

Balcazar introduced a class of sets called word decreasing query (wdq) self-reducible sets. This class
is defined by weakening the definition of Turing self-reducible to allow that on input w, SRA may query
A about any word that is less than w in the lexicographical ordering. In [GJY-87a] we studied a special
subclass of the wdq self-reducible sets in which the only query that SRA needs to ask is membership
of w — 1 (the lexicographic predecessor of w). These sets are called near-testable. Our second result

extends the scope of Result 1.

Result 2: A € P if and only if A is both p-cheatable and near-testable.

In [GHJY-87], Goldsmith, Hemachandra, Joseph and Young show that the class of near-testable sets
is polynomially many-one equivalent to the class parity-P, (9 P), defined by Papadimitriou and Zachos,
([PZ-82]). Interestingly, in spite of the many-one equivalence of NT and parity-P, Result 2 cannot be
extended to parity-P unless certain large nondeterministic time classes collapse. Specifically, if we define

F(0) = 2 and f(n+ 1) = 2/("), then we obtain the following.
Result 3: If |J.,, Parity TIME[(2/0)] # U.»o TIME[(2/(™)°], then there are sets in parity-P that

are p-cheatable but are not in P.

As our final result, we show that, just as Result 2 is unlikely to extend to parity-P, Results 1 and 2

are unlikely to extend to their common generalization, the class of wdq self-reducible sets.
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Result 4: If U, NTIME[(2/™)] # Ucso TIME[(2/(™)¢], then there are sets that are word

decreasing query self-reducible and are (2¥ — 1 for k) p-cheatable but are not in P.

In summary, the results in this paper give fairly tight bounds on the strength of self-reducibility
needed to guarantee that a set is polynomially decidable. In addition, two of our results provide new

characterizations of the class of polynomially decidable sets.

In Section 2 we present basic definitions for these classes of self-reducible sets. Because many readers
may be unfamiliar with some of these classes, we have enumerated some recent results about these sets

in an Appendix.

2. BASIC DEFINITIONS.

Our starting point in this study of self-reducible sets and polynomial time behavior will be the class of
Turing self-reducible sets. As mentioned above, a set A is Turing self-reducible if there is a polynomial
time oracle machine SR4 that recognizes A, and on inputs of length n all of SR4 ’s queries have length
less than n. These sets have been extensively studied by Balcdzar, Berman, Book, Fortune, Ko, Mahaney,
Meyer, Paterson, Schoning, Trakhtenbrot and others. Each of the other classes that we will consider
can be obtained by relaxing this definition of Turing self-reducible. The classes of word decreasing query
self-reducible sets and near-testable sets are obtained by relaxing the condition that all queries have
length less than the length of the input. The class of p-cheatable sets is obtained by further relaxing the
condition on the size of the queries but compensating by requiring that only a few queries are needed to
answer membership questions for many elements.

The class of word decreasing query (wdq) self-reducible sets was introduced by Balcézar to unify
results relating hierarchy collapses to the existence of sets that are reducible to sparse sets. (See the

Appendix for a summary of these results.)

Definition [Ba-87]. A set A is wdgq self-reducible if there is a polynomial time oracle Turing machine
SRA that decides membership in A, and for each input w, all of SR ’s queries lexicographically precede

w.

Obviously, any set that is wdq self-reducible is decidable in ezponential time. Independently of
Balcazar, in [GIY-87a] we studied a particularly simple subclass of the wdq self-reducible sets called the

near-ltestable sets.



Definition [GJY-87a]. A set A is near-testable (A € NT) if there is a polynomially computable
function which, given w, decides whether exactly one of w and w+ 1 is in A, where w + 1 is the

lexicographic successor of w. That is, the function

f(w) = xa(w) + xa(w + 1) (mod 2)

is computable In polynomial time.

Thus if a set is near-testable, then it is wdq self-reducible with w— 1 being the only query necessary
to answer membership for input w. Obviously, all wdq self-reducible sets that require only one query to

the set, including all near-testable sets, are decidable in polynomial space.

The p-cheatable sets were first studied by Amir, Beigel, Gasarch, Gill, Hay and Owings, ([AG-87],
[Be-87a), [Be-87b], [BGGO-86], [BGH-87], [BGO-87]). The definition of the class is based on the following
scenario: one is given a large collection of inputs, wy, wo, ..., ws, and one would like to determine whether
or not each input is in a known set A. It is assumed that the membership problem for A is difficult.
Therefore, if knowing whether some w; is in A helps in determining whether another w; is in A, then
one would like to use this information. These authors use this idea to motivate the following machine
model. To determine membership in A, one designs an oracle machine CH that, when given A as oracle
will determine membership in A for n different inputs by asking the oracle as few questions and doing as
little computation as possible. For example, one might hope to design machines that run in polynomial
time and for a fixed k decide membership for 2F inputs by asking only k questions. The definition can

be formalized as follows.

Definition [AG-87], [Be-87a]. A set A is (n for k) p-cheatable if there exists a polynomial time oracle
machine CH using A as oracle such that, if CH 4 is given inputs (wy, ..., wy), then, with k or fewer queries
to the oracle, CH# determines membership in A for each of wy, ..., wn. We will be primarily interested

in the case where n = 2% and in this paper we call (2 for k) p-cheatable sets simply p-cheatable.

Note that the queries that CH asks in the course of deciding membership for wy, ..., wsx are not
restricted to come from the set wy, ..., wqx. In fact, for the purpose of our results the exact questions
asked and the oracle to which they are addressed turn out not to be relevant.! It will turn out that the

only thing that matters is the number of questions that are asked. Also, notice that k is a constant that

will depend on the set A.

1. Beigel’s definition of p-cheatable sets (what we call (2* for k) p-cheatable) allows CH access to
any fixed oracle. However, the definitions given by Amir and Gasarch for (2% — 1 for k) p-cheatable sets

require that CH use A as the oracle. (These sets are called verbose by Amir and Gasarch.)
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To put the results that follow in context it is useful to observe the following.

e SAT is 2-disjunctive truth-table self-reducible and hence Turing self-reducible. Thus, if P # NP,
then not all Turing self-reducible sets are in P.

e Balcizar has observed that it is not hard to code the successive instantaneous descriptions of any
polynomial space computation into a wdq self-reducible set. Thus, there are wdq self-reducible sets
that are complete for Pspace.

o Amir and Gasarch ([AG-87]) have shown that there are p-cheatable sets of arbitrarily high time
complexity. Thus, there are p-cheatable sets that are not wdq self-reducible.

e Finally, in [GIY-87a] we have shown that if one-way functions exist, then NT # P. What’s more,
a variant of SAT is polynomial many-one complete for NT, ((GHJY-87]). (See Appendix.)

3. RESULTS.

Any set that is polynomially decidable is self-reducible with respect to each of the definitions that we
have given, although, as we have just seen, the converse is almost surely false. Our purpose here is to
investigate when various combinations of self-reducibility do imply the converse. Qur first result shows
that if a set is both Turing self-reducible and p-cheatable, then it is polynomially decidable.

Before proving this theorem, we want to make two comments about this theorem and its proof.

First, this result is a strengthening of a result of Beigel ([Be-87b]) which shows that, if a set is self-
truth-table-reducible (a variant of truth-table self-reducible) and p-cheatable, then it is polynomially
decidable.? Our extension is important because it shows that it is not the combination of a nonadaptive
reducibility (truth-table reducibility) with an adaptive reducibility (p-cheatability) that causes the set to
be polynomially decidable. The polynomial decision algorithm instead results from the fact that Turing
self-reducibility is length decreasing, and hence is polynomially well-founded. It is this well-foundedness
that is needed to force the p-cheatable set to be polynomially decidable.

Second, the requirement that the set be (2% for k) p-cheatable is perhaps a little misleading. What
is really needed is a special form of polynomial cheatability which says that there is some fixed integer n

and a polynomial time algorithm that, given any sequence ay, az, ..., as, can find some initial subsequence

2. Since SAT is self-reducible via a particularly simple truth-table reduction, our first result can
also be consider an extension of work by Amir and Gasarch, who, using a result of Krentel, have observed
that no set that is complete for NP under many-one polynomial time reductions is p-cheatable, unless
P = NP. (Krentel proved that if P # NP, then there are functions computable in polynomial time
using k + 1 queries to SAT that can not be computed in polynomial time using only k queries to S AT,
([Kr-86]). Since any set polynomially many-one equivalent to a p-cheatable set is easily seen to be p-
cheatable, it follows that no set that is many-one complete for NP can be even (k+ 1 for k) p-cheatable,
unless P = NP.) ”



ai, ..., a; such that, if answers to the membership questions a; € A?,...,a; € A7, are given, the answer

to aj4+1 € A7 can be derived.

We begin our proof by showing that if a set is (2% for k) p-cheatable, then this condition is satisfied.
In the proof, we will use a combinatorial lemma to help establish this condition. The condition in turn
is used to prune the self-reducibility tree (a depth-first search tree) for A that results from the Turing

self-reduction on A.
Theorem 1. If A is both Turing self-reducible and p-cheatable, then A is in P.

Proof. Suppose that A is p-cheatable and Turing self-reducible. Let CH 4 be an oracle Turing
machine which witnesses that A is p-cheatable and let SR# be an oracle Turing machine which witnesses
that A is Turing self-reducible. We will describe a polynomial time algorithm for A based on CH# and
SRA.

An important idea in this proof, and in the proof of Theorem 2, is to simulate CH A with a polynomial
time machine that does not actually ask any questions of an oracle. We will call this machine CH and
begin by describing its behavior.

Suppose that CH4 on input (ay, s, ..., Ggx) correctly decides membership in A for each of the a;’s
and does so by asking at most k questions of the oracle. The machine CH on the same input simulates
CH#, and when CH# makes a query to the oracle, CH simulates both possible answers. Since CH4
asks at most k questions, CH produces (at most) 2% possible Boolean valued output vectors, 77, as
CH# ’s possible answers to membership of a; € A?, a; € A7, ..., axx € A7 Since k is a fixed constant,
CH runs in time polynomial in |(a1, @z, ..., agx)|; if we assume that a; < a; for all i < j, then CH runs
in time polynomial in |agx|.

Thus the questions a; € A?, ap € A7, ..., agx € A? form a vector of Boolean variables, which by
an abuse of notation we can abbreviate to @i, ..., dgx, while the simulation of all possible answers to k

queries forms at most 2% sequences, T;, of possible Boolean output values for these questions.

We next develop some notation and prove an easy lemma which enable us to conclude that for any
such sequence, in time polynomial in |as«|, we can always find a j < 2* such that answers to the j

questions a; € A?, ..., a; € A? will always allow us to infer the answer to aj . € A7

3. While it is true that C H4 is not really guaranteed to ask only k questions or run in polyno-
mial time if it is not given correct answers to membership about A, if a sequence of simulated queries
to A either generates too many queries or fails to run within the required polynomial bound, the re-

sulting output vector can safely be ignored since ¢ prior the output vector is not generated by correct

information.



Notations. Let aj,...,a, be n boolean variables. Let 77, (1 < ¢ < m) be m fixed truth assignments
to a1,...,8n. (S0 Ti = vi1,...,, Vi,n, I8 & sequence of n boolean values.) For 1 < j < n we say that
T; =; Uy if U7 and Ui agree on their first j values; i.e., if for all £ with 1 < ¢ < j, vi; = vpr . For
0 < j < n, we say that ay,...,a; imply aj;1, and we write (ay, ..., a;) — (aj41), if for all 4,7, 77 =; 777
implies that v; j41 = vp j41. Clearly, if (ay,...,a;) — (aj41) then, no matter what truth values are
assigned to aj,...,a; from any of the permissible initial assignments in 77,...,7;,;, we can predict the
truth assignment to aj;1 from the truth assignments to a;, ..., @;. Finally, for each j, (1 < j < n), welet

#; denote the indez of the the equivalence relation =;; i.e., #; is the number of distinct initial Boolean

sequences vi 1, ..., % j from among all 73, (1 < ¢ < m). Clearly for all j, #; < #j4+1 and #; <m.

Lemma 1. Let ay,...,an, be n boolean variables. Let %7, (1 < i < m) be m fixed truth assignments to
ai,...,an. Then

a) #; = #;j41 implies that (ay, ..., a;) — (aj41).

b) If m < n, then there exists j < m such that (ay, ..., a;) — (a;j41).

Proof. a) Follows directly from the observation that the equivalence relation =;4, is always a
refinement of the equivalence relation =;. Thus, if the indices of the equivalence relations are the same,
then it must be true that for all 4,4/, 77 =; 7 implies that v; ;41 = vy j41.

b) Note that if #; = 1, then all values v; ; are the same, so trivially ( ) — (ay). Thus if (b) fails,
#1 = 2. But by (a), if (b) fails, then #;41 > #;, so #; > j for all j. But this implies #, > n, which is

impossible since for all j, #; cannot exceed the number of distinct Boolean vectors 77, which is m. g

The next thing that is important for the proof of Theorem 1 is to simulate SR#; again without
actually querying an oracie. The result of this simulation is a self-reduction tree. The self-reduction tree
for a is a depth-first search tree defined as follows: a is the root of the tree, and each child of @ is a string
queried by SR4(a), (in the order queried, from left to right). Each element of the tree other than a is a
query made in the self-reduction of its parent node. The leaves are strings of length one. SR*(a) queries
at most p(n) strings, where n = |a|. The self-reductions of each of these strings query at most p(n — 1)
strings, and so forth. Therefore, the self-reduction tree for @ has at most p(n) elements at depth one,
p(n)p(n — 1) elements at depth two, and so forth, for a total of at most Z?;oz Hj‘:o p(n — j) elements.
Although this is exponential in n, it can be used to give a decision procedure since the self-reduction
tree systematically reduces the membership question for a to questions about the leaves of the tree, all
of which are among the finite set of elements of length one. We will use the simulation of CH# to prune

this tree, so that, to decide whether a is in A, we will only need to discover membership information for

polynomially many elements in the tree.



Our pruning of the self-reduction tree will remove most of the right subtrees. In particular, on any
branch of the tree from any leaf a; to the root a, if there are more than 2% nodes on the branch, then for
any subsequence of (not necessarily contiguous) nodes a;,, ..., @i, from the leaf to the root, we can find
some j < 2F such that (i, ..., ai;) — (ai,,,). But this means that as we traverse back up this branch of
the self-reduction tree, once the memberships of a;,, ..., a;; are all known we can infer the membership
of a;;,, without traversing down any subtree of a;,,, that lies strictly to the right of the branch from a;
to a. Thus, in any collection of at least 2% nodes on a single branch of the tree, all of the right subtrees
of at least one node can be pruned away. It follows that on any branch of the tree, all but at most 2k 1
right subtrees can be pruned away. By careful programming this pruned tree can be generated in time

polynomial in the number of its nodes.

Having seen that the self-reduction tree, as pruned by the machine CH , always has at most 2¥ — 1
nodes that branch to the right as we traverse the tree from any leaf to the root, we now analyze the size
of such trees. For simplicity, we consider only trees, as above, that have nodes with size at most equal
to their maximum distance to a leaf.

Claim. Any tree of this type with a constant bound on the number of right-branching nodes along
any path, and with a polynomial bound both on the depth of the tree and on the number of children of
each node, has total size that is polynomial in the size of the root.

We call a tree with constant bound ¢ on the number of right-branching nodes a c-tree. Let S(n,¢)
be the maximum number of elements in such a c-tree of depth n with polynomial bound p(n) on the
number of children a node of length n may have. We will make the worst-case assumption that the
branching nodes are as close to the root as possible, i.e. that there is no non-branching node on a path
between two branching nodes. (Suppose there were: we could draw a c-tree with more nodes by adding a
subtree as a left child of the non-branching node. This would not affect its original children, but would
increase the size of the tree.) We assume without loss of generality that p is non-decreasing, and for all
n, p(n) > 2. Our goal is to prove that S(n,¢) < [n * p(n)]*+>.

If ¢ is the root of the tree, consider a’s children. The rightmost child of a lies along a path that
has no right-branching nodes. Therefore, it is the root of a c-tree of height n — 1. The other p(n) — 1
children lie below a right-branching node, (namely, the root), so they are each the root of a (¢ — 1)-tree

of height n — 1. In other words, we have the recurrence relation
S(n,e) = S(n—-1,¢) + (p(n)—1)*S(n~1,c~1) + 1.

To establish the base case for an induction, we note that any tree of depth 1 has at most two nodes on
any path, so S(1,¢) = p(1)+1. A straightforward induction on n using the preceding recurrence relation

then establishes that S(n,c) < [n * p(n)]+2.

Therefore, in fewer than [n* p(n)]°*t? steps, we can determine a sufficient number of elements in the

self-reduction tree for input a to determine whether a € A. Thus A € P, as claimed. g
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Notice that in the proof of Theorem 1, we have used the fact that SRA ’s queries are length-
decreasing to bound the height of the self-reduction tree. This is the only reason that we need this
restriction. As we discuss in the Appendix, Meyer, Paterson, and Ko have generalized the notion of Tur-
ing self-reducibility to allow not just size reducing queries to A, but polynomially bounded queries along
arbitrary polynomially bounded well-founded partial orderings. It is clear that our proof of Theorem 1

works equally well for this more general notion of Turing self-reducible.
As an obvious corollary to Theorem 1 we have the following.

Corollary. A is polynomially decidable if and only if A is both Turing self-reducible and p-cheatable.

A natural question to ask at this point is to what extent can we relax the notion of self-reducibility
and still obtain a result like Theorem 1. For instance, if we consider sets that are wdq self-reducible and
p-cheatable, are they still polynomially decidable? In an attempt to answer this question we will next
consider sets that are near-testable. (Recall that the near-testable sets form a very simple subclass of
the wdq self-reducible sets.) In this case the answer to our question is “yes;” all sets that are p-cheatable

and near-testable are polynomially decidable.
Theorem 2. If A is both near-testable and p-cheatable, then A € P.

Proof. In the proof of the previous result the polynomial time decision procedure for 4 used the
self-reduction procedure SR4 to partially build a self-reduction tree, and then used the simulation CH
to prune that tree. In that case we could think of the self-reduction algorithm as driving the algorithm
and the p-cheatability algorithm as a subprocess to keep the time bound down. In the proof of Theorem
2 the simulation CH will drive the algorithm and we will use the near-testability algorithm to finish-off
the process.

The key idea is much as before; the simulation CH can be used to give a partial decision procedure
for A. For any sequence ai, ..., @, by analyzing the output of CH , we can always obtain a relationship
of the form (a1, ag, ...,a;) — (@j41)-

In this construction, we use CH to prune subintervals out of the interval [0, a], continuing until
we are left with only intervals of length one. On input a, the idea is to split the interval [0, a] into
9% equal length subintervals: [0,a1], (a1,az2], ..., (@21, 02c = a]. We will try to reduce the problem
of deciding membership for a to the problem of deciding membership for ay, ..., azx_1. For example,
suppose we run the simulation CH on input (a1, az, ..., azx) and analyze the output. If we can deduce
that (ay, ..., agx..1) — (asx), then to decide whether a € 4 we simply need to know which of @, ..., a9x_;
are in A. Thus, as long as we remember the relationship (as, vy @r..1) — (@gx), we can ignore all
elements in the interval (aqx_q, g+ ]. Since the a;’s are evenly spaced this allows us to omit from further

consideration 3% elements. If this process could be repeated, removing 5-1; of the remaining elements at
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each step, then we would have a polynomial time algorithm. In fact, although the process is not nearly
so uniform, we can give a polynomial time algorithm using this general idea.

Before formally describing the algorithm we need one more piece of terminology. At each step of
the algorithm we will try to eliminate an interval of elements. Each of these intervals will be associated
with one of the elements that we use as input to cH , (the a;’s in the above example). In particular, at
any step in the algorithm the terminology a;’s interval will refer to those elements between a;_; (or 0

in the case of a1) and a; that have not yet been eliminated. We now describe the full algorithm.

The algorithm for deciding a € A.

ko1
Step 0: Let a; ; = Lf“,‘—j, ayp = L%i‘—], vy @y ok g = Lg—-i-,;ﬂj, and a; o« = a.
Initially, the intervals associated with each point are, a1,1 : [0,@1,1], ..., @1 2% : (@1 2x_1, 81 2x].

Step i: If not all of the intervals have length 1,

then run CH on (@i1,ai2, ..., @; 2+) and deduce a membership relation of the form

(*) (a1, 85) = (@i j41), 0<j <25

a) eliminate a; j41 s interval from further consideration and

store the relation (x) for determining a; j41’s membership question;

b) pick a new endpoint to use in the next step by

picking the midpoint of the longest interval currently associated with any a;; and

c) renumber the a;’s so that, ai411 < @ig1,2 < ... < Qi1 ,%;

else (finishing up) When all of the intervals have length 1, it is time to put the pieces back together
and discover whether @ € A. It is easy to see that the single element intervals that remain, together
with the eliminated intervals, exactly cover the entire interval [0, a] in a disjoint fashion. Also every
a;; that was used in the above process must appear as a right endpoint of one of these intervals.
For simplicity let us number the remaining intervals of length one together with the eliminated
intervals, I, Iy, ..., I, from left to right. We want to determine membership for the right endpoint
of each interval, since the right endpoint of I, is a. If I has unit length then its right endpoint is 1,
and we know whether 1 is in A. If I; does not have unit length, then it must have been eliminated
at some step of the algorithm, and the only way to have eliminated an interval of the form [0, a; 1]
was by having CH directly determine the membership of a;; with a relation ( ) — (ai;;1). Thus,
whatever form I; has, the algorithm directly tells us whether or not its right endpoint is in A.
Suppose now that we have determined membership for the right endpoints of intervals I, ..., I;
and we want to determine membership for I;41’s endpoint. If the length of I;4; is 1, then we simply
use the near-testability algorithm to figure out the answer to the membership question using the
right endpoint of I;. Otherwise, there must have been some Step i at which Ij4; was eliminated

using a relation (a;1, ..., @ ;) = (aij+1). In this case the answer to a;;j11’s membership question
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can be deduced by knowing the answers to the membership questions for smaller elements. Since
each of these elements is the endpoint of some interval and we now know the answers for all smaller

endpoints, we can now deduce the answer for I;;1’s endpoint.

Complezity analysis. Notice that, except in the case that an interval has length 1, the puiting
the pieces together step at the end of the algorithm, simply involves looking-up information that was
generated in the earlier steps of the algorithm. If an interval has length 1, then we must use the near-
testability algorithm for A. This algorithm runs in polynomial time. Therefore, if the number of intervals
generated is polynomial in the length of a, then the algorithm will be polynomial in |a|. Showing that
the number of intervals is polynomial amounts to showing that the number of Steps in the algorithm is
polynomial. To show that this is the case we need to consider the number of elements in the intervals
that are eliminated at each step.

In Step 1 we are guaranteed to eliminate an interval containing 1/2% of the points less than a.
If at each step we eliminated 1/2¥ of the remaining elements, then after the ith step we would have
a - (2F — 1)7/(2F)* elements remaining. Thus in log(sx _1y/oxa steps we would have reduced all of the
intervals to size one, and would have a polynomial time algorithm. Unfortunately, at each step we do
not remove 1/2% of the remaining elements. However, at any step there are 2% intervals, and at each
step we remove one interval and cut the remaining longest interval in half. Thus in going from Step
(2 — 1) - (i) to Step (2¢ — 1) - (i + 1) we eliminate one half of the elements active at Step (2 — 1) - (7).

Since k is a constant, this is sufficient to guarantee that the algorithm runs in polynomial time. g

As an obvious corollary to Theorem 2 we have the following.
Corollary. A is polynomially decidable if and only if A is both near-testable and p-cheatable.

Before returning to the problem of extending Theorems 1 and 2 to the entire class of wdq self-
reducible sets, we will look briefly at a class very closely related to the near-testable sets. In [GHJ Y-87]
it is shown that the class of near-testable sets is polynomially many-one equivalent to the class parity-
P45 It is thus natural to ask whether Theorem 2 holds for this class. Interestingly, in spite of the
polynomial many-one equivalence of NT and parity-P, the theorem probably does not hold for perity-P.

4. A language, L, is in parity-P if there is a nondeterministic Turing machine, M, such that we L
if and only if M(w) has an odd number of accepting paths; parity-P is sometimes denoted by ®&P. If C
is any deterministic time class, we will use the notation parity-C to stand for the obvious parity class

defined with respect to the time bounds for the corresponding nondeterministic machines.
5. A thorough discussion of the relation between near-testability, parity-P, and p-cheatability,

including the construction of sets complete for parity-P and for NT may be found in [GHJY-87]. Much
of the work in [GHIY-87] is based on work in [GJY-87a] and in [He-87], and a discussion of some of this
work may be found in the Appendix to this paper.
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To see one reason why this is so, we consider log*-sparse sets. While standard definitions of sparse sets
require that, for any value of n, the set have relatively few elements of size less than or equal to n, we

require not only this, but that individual elements of the set are very widely separated.
Definition. We say that a set S is log*-sparse if for ¢ and y in S, ¢ < y implies 2zl < |yl

Sparse sets have played an important role in complexity theory. Any polynomially sparse set that
is Turing self-reducible or near-testable is in P. Similarly, any set that is word decreasing query self-
reducible and is contained in a polynomially decidable, polynomially sparse, set (such as a tally set)
is itself polynomially decidable. Although these sets are in P and it is known that no sparse sets can
be complete for NP or for coNP unless P = NP, it is nevertheless believed that that there exist very
sparse sets in NP — P. In explaining why this should be so, Hartmanis, Immerman, and Sewelson
([HIS-85]) point out that the analysis of nondeterministic Turing machines is difficult precisely because
their behavior often seems to be very isolated. In general, the behavior of a nondeterministic machine on
any given input is not likely to tell much about its behavior on other elements of the set. They use this
intuition to motivate their results showing that separation of higher nondeterministic and deterministic
time classes implies that there are very sparse sets in NP — P. Specifically, they prove that for any

sufficiently rapidly growing, well-behaved function T,

| NTIME[T(n)] # | TIME[T(n)°]
>0 e>0

if and only if there is a set of density 277" (™ in NP — P, ([HIS-85); Thm 6). In the case where T is a
simple exponential, they use the proof of this theorem to prove that there exist sparse sets in NP — P
if and only if there exist tally sets in NP — P, ([HIS-85]; Cor 4).

For the results that follow, we deal with log*-sparse sets. To apply the Hartmanis, Immerman,
Sewelson results we define £(0) = 2 and f(n + 1) = 2/(") and we take T(n) = 2/("). Theorem 6 of
[HIS-85] immediately applies, and the analogue of their Corollary 4 shows that the higher deterministic
and nondeterministic classes are separated if and only if there are well-spaced log*-sparse tally sets in
NP — P. Furthermore by careful modifications of all of these proofs, we can prove these same results

with NP replaced by parity-P. We summarize these facts in the following lemma.
Lemma 2, a). There is a log*-sparse tally set, S, in NP — P if and only if

U NTIME(2S™Y) # | TIME[2'™)°].
c>0 e>0

Furthermore, S C T =go; { /(™| nis a natural number}.
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b). There is a log*-sparse tally set, S, in parity-P - P if and only if

| Parity TIME[(2/™)°] # | TIME[(2/™)].
e>0 e>0

Furthermore, S C T =45 { 1/(™ | n is a natural number}.

Since the separation of the higher complexity classes implies the existence of log*-sparse tally sets
in NP — P and in parity-P - P, we take such separations as hypotheses in our final two theorems, which
explain why extensions of Theorems 1 and 2 to parity-P and to word decreasing query self-reducible sets

are unlikely.

Theorem 3. If |, Parity TIME[(2/("™)] # U,5o TIME[(2/(™)°], then there are sets that are in
parity-P 0 p-cheatable but are not in P.

Proof. The proof is simple, and in fact yields a stronger result. Let S and T be the sets guaranteed by
part (b) of Lemma 2. Note that T is both polynomially decidable and log*-sparse, and that S itself is
in parity-P but not in P. We prove that S is (n for 1) p-cheatable for every n.

Note that for any string y, deterministically simulating the nondeterministic parity machine used
to define S takes time 2PU¥D | which is less than 22M, where p is a polynomial bound on the runtime of
the parity machine. Therefore, given any n-tuple (21, 22, ....,2s), in increasing order, we can calculate
membership in S for all of the z;’s as follows. First discard all z;’s which are not in T. Since T is
polynomially decidable this takes time at most polynomial in the sum of the lengths of all z;. Call
the largest remaining string z,. Next discard all strings z; such that 21%il > |z,,|, and finally test
all remaining strings z; < m,, for membership in S by brute force, by simulating the nondeterministic
algorithm which defines S. Since such z;’s all satisfy 27l < |2, and since there are at most |z, | such
strings, the latter work can all be done in time polynomial in |z,,|. Finally, to decide whether zm € S,

query the oracle. §

We now turn to the question of whether we can extend Theorems 1 and 2 to show that all wdq
self-reducible sets that are p-cheatable are in P. We believe that the answer is “no,” but we also expect
that a proof will be difficult. To disprove the result one would need to construct a set that is wdq
self-reducible and p-cheatable, but not in P. All known p-cheatable sets are, as above, polynomially
(many-one) reducible to sparse or co-sparse sets. But, as shown by Meyer and by Balcazar, any wdq
self-reducible set that is polynomially Turing reducible to a sparse or co-sparse set is in £§. Thus, to
disprove the result, one would presumably have either to construct a new type of p-cheatable set or to
prove T§ # P. As a partial step in this direction, under an hypothesis similar to that of Theorem 3, we

can construct wdq self-reducible sets that are (2% — 1 for k) p-cheatable, but not in P.
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In [GJY-87b], we showed how to construct sets that are (2% — 1 for k) p-cheatable, not sparse,
and not close to any polynomially decidable set. We now show that similar sets can be made wdq

self-reducible and yet not polynomially decidable.

Theorem 4. If U,y NTIME[(2/(M)] # U, TIME[(2/()¢), then there is a set A that is
i) wdq self-reducible,
ii) (2¥ — 1 for k) p-cheatable,
iii) in P/poly,
iv) in ©%, but
v) not in P.

Proof. Let S and T be the sets guaranteed by part (a) of Lemma 2. As in the proof of Theorem 3,
we observe that T' is both log*-sparse and decidable in polynomial time. Let M be a nondeterministic
polynomial time Turing machine that decides membership in .S in time p(|z|). We assume without loss
of generality that p is strictly increasing and that all computation paths on input z have length p(|z|).
We will use M to describe a set, A, that is wdq self-reducible and (2% — 1 for k) p-cheatable, but is not
polynomially decidable.

The set A will consist of strings of the form z#c, where # is a marker and ¢ is a computation

path of M on input z. We define
A = {z#c: 3¢ < c and & is an accepting computation of M on input = },

where < denotes the lexicographic ordering.

Claim 1: A is wdq self-reducible. To see this, observe that to decide whether a = z#c € A we can
check whether z#¢ € A where ¢ is the lexicographic predecessor of ¢. If z#¢ is in A, then accept a. If
z#¢ is not in A or if z#c has no such lexicographic predecessor, then check whether c is an accepting
computation of M on input z. If it is, then accept a. If it is not, then reject a.

Claim 2: Ais (2% — 1 for k) p-cheatable. In fact, we make a stronger claim: there is an oracle
Turing machine that, given any 2F — 1 elements (k a variable), determines in time polynomial in their
cumulative length whether or not each is in A, and asks no more than k queries. Assume that we are
given inputs a;, as, ..., gk in increasing order. First find the corresponding z values, and let a,, be
the largest of the a;’s for which the corresponding z value is in T. Those a;’s bigger than a,, can be
rejected, so next consider those of length |a,,|. Any of these for which the corresponding z value is not
in T can be rejected. The remaining ones must all have the same z value since T is log*-sparse. Sort
the remaining elements of length |a,,| lexicographically and perform a binary search, asking membership

questions in A. This will require at most k queries to an oracle for A and will determine membership in

A for all a; of length |am|.
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Next consider the a;’s of shorter lengths. These have different = values than a,,. For any z not in T
the corresponding a; can be rejected. Recalling that 7" is log* sparse, the x values for the remaining a;’s
must be widely spaced. In fact, T is so uniformly sparse that if ; < z3 are both in T, then all of z,’s
computation paths can be examined in time polynomial in |z2#tc|. Therefore, for the remaining a;’s of
some fixed length less than |a,,|, we can test whether the largest is in A by a brute force computation to
see if it’s z value is in S, and if it is in S, just as for the a;’s of length a;, we can determine membership
of the remaining @;’s by binary search.

Claim 3: A is in P/poly. To show this, we need to show that A is polynomially Turing reducible to
a sparse set. This is easily seen to be the case because, to determine whether a is in A for a = z#c and
z € T, we simply need to know which, if any, of M(z)’s computation paths is the least accepting path.
This information can be coded into a sparse oracle.

Claim 4: A is not polynomially decidable. If A were polynomially decidable, then the following
algorithm would determine membership in S in polynomial time. To decide whether s € S we test

whether the string s#c, where c is the lexicographically greatest computation path of M(s), isin A. g

One last observation should be made about this theorem. Since all known wdq self-reducible sets are
in Pspace, we might try to replace the current hypothesis by the simpler hypothesis that Pspace # P.

If this could be done, we would have as a corollary that
Pspace # P implies ¥ # P,

since any wdq set that is in P/poly is in Zf . 'To make our job easier we would be willing to drop
the P/poly condition from the theorem, but again we hit a stumbling block. All known (2¥ — 1 for k)
p-cheatable sets are in P/poly.

4, SUMMARY AND CONCLUSIONS.

In the past, most notions of self-reducibility that have been studied have been refinements of Turing self-
reducibility. Many natural sets have been shown to be self-reducible, and in general it is not believed
that polynomially self-reducible sets must be polynomially decidable. Recently, several new notions
of self-reduction have been introduced with the study of wdq self-reducible sets, near-testable sets,
and p-cheatable sets. Again, examples can be found of sets that are self-reducible via these types of
reductions and yet are probably not polynomially decidable. However, an interesting situation arises
when one considers sets that exhibit more than one type of self-reducibility; often the combination of
self-reducibilities causes the set to be polynomially decidable. The four results presented in this paper
explore the possibility of using combinations of self-reducibility properties to characterize polynomial
computation. They add to the knowledge of the interplay of these reducibilities that has come directly
from the study of near-testable and p-cheatable sets. We combine the results of this paper with previously

known results in the table below.
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Selman [Se-82b] has shown that any p-selective set that is positive truth-table self-reducible is
polynomially decidable.

The classes NT and @P are known to be < -equivalent. The set ®SAT is easily seen to be
<P _complete for ®P and, like SAT, it is Turing self-reducible. Therefore, unless P = @P,
®P N {Turing self-reducible sets} # P. If we consider the image of @SAT under the uniform
many-one reduction that exists between NT and @P, then this set is also Turing self-reducible.

Thus, unless NT = P = @P, NT n { Turing self-reducible sets} # P. See [GHIY-87] for details.

If there is a log*-sparse set in P that is not P-printable, then there is a near-testable p-selective set
that is not polynomially decidable. This set is also wdq self-reducible and is in &P because of the

trivial containments. Again, the details of this construction are contained in [GHIY-87].

A straight forward diagonalization can be used to construct a log*-sparse set that is p-cheatable

and p-selective, but not polynomially decidable.

Combinations of Reducibilities that Characterize Polynomial Time
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In conclusion, our results show that the notions of wdq self-reducibility, p-cheatability and member-
ship in P and P/poly are tightly intertwined. As shown in Table 1, questions about these connections
remain open. We believe that solutions to the following questions would be particularly useful in pro-

viding a better understanding of polynomial computations and self-reducibility.

Question 1: Are there sets that are wdq self-reducible, p-cheatable, but not polynomially decidable? A
positive answer would give us a version of Theorem 4 that does not rely on the existence of log*-sparse

sets.

Question 2: When are p-cheatable sets polynomially reducible to sparse sets? We expect a complete

characterization to be difficult.

Acknowledments: We would like to thank Richard Beigel and Bill Gasarch for introducing us to
the notions of p-cheatable sets. Thanks go to Jose Balcazar and to Alan Seman for discussions on
self-reducibilities, and also to Larry Ruzzo for his observations concerning the existence of log*-sparse

sets.
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6. APPENDIX: SOME PROPERTIES OF NEAR-TESTABLE, P-CHEATABLE AND
WDQ SELF-REDUCIBLE SETS

A. Some Properties of Turing Self-reducible Sets

Theorem. If A is self-reducible, then A € PSPACE.
Theorem [Se-82b)]. If A Is positive truth-table self-reducible and p-selective, then A €P.
Meyer, Paterson [MP-79] and Ko [Ko-83] have given more general definitions of self-reducibility.

Definition [Ko-83]. A partial ordering < on £* is polynomially well-founded and length related (for
short: polynomially related) if there is a polynomial p such that

() & < y? is polynomially testable,

(ii) = <y implies that |z| < p(|y|), and

(iii) the length of a <-descending chain is shorter than p of the length of its maximal element.

Definition [Ko-83]. A set A C X* is tt self-reducible if there is a polynomially related ordering < on
%*, a polynomially computable function f and a polynomial p such that, for allx € *
(i) f(z) is a tt-condition < a, < 3, ..., & >> where « is a k-ary boolean formula that can be evaluated
in time p(|z|) and z; < « for all i < k, and
(ii) z € A iff a(xa(z1), .., xa(zx)) = 1, where x 4 is the characteristic function for A.

If the truth-table condition « is a simple disjunction or conjunction, then A is said to be disjunctive
(or conjunctive) self-reducible. SAT is obviously disjunctive self-reducible, and it has been conjectured
that all NP-complete sets are disjunctive self-reducible. This, however, remains an open question.

Ko said that a set is Turing self-reductble if there is a polynomial time oracle machine CH such
that (i) M4 is a recognizer for A, and (ii) on input  all of M’s queries are to elements that precede z

in the <-ordering. Obviously, any set that is tt self-reducible is Turing self-reducible.

B. Some Properties of Wdq Self-reducible Sets

Proposition [Ba-87]. If A is wdq self-reducible, then A€ EXPTIME.
Theorem [Ba-87]. If A€ PSPACE/poly and A is wdq self-reducible, then A € PSPACE.

Theorem [Ba-87]. If A€ £F/poly and A is wdq self-reducible, then =P(4) c =h,.
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C. Some Properties of P-cheatable Sets

Theorem [BGGO-87]. All p-cheatable sets are decidable.
Theorem [Be-87a]. P # NP implies that no N P-complete set is p-cheatable.

Theorem [AG-87]. Let Dtime(T(n)) be any deterministic time class. There is a 2-pcheatable set A
that is bi-immune w.r.t. Dtime(T(n)). That is neither A nor A has a Dtime(T(n)) decidable subset.

Theorem [Be-87]. 1-pcheatable sets cannot be polynomially bi-immune.
Theorem [GJY-87b]. There are 1-pcheatable sets that are not p-close.

Theorem [GJY-87b]. There are 2-pcheatable sets that are bi-immune for arbitrary time classes, in

P/poly, yet not p-close.

Theorem [GJY-87a]. There are (2% — 1 for k) p-cheatable sets that are recursively bi-immune, in

P/poly, yet not p-close.

D. Some Properties of Near-testable Sets

Observations [GJY-87a].
i) PCNT = coNT C EXPTIME 0 PSPACE,
ii) if A€ NT and A is polynomially sparse, then A € P,
iii) there is A€ EXPTIME, such that A¢ NT, and
iv) if A is sparse and A€ NT, then A€ P.
Theorem [GHJY-87], [He-87]. NT C ®P and every set in ®P is <F -reducible to a set in NT.
Corollary [GHJY-87], [He-87]. NT = &P.
Corollary [GHJY-87], [He-87]. @P # P ifand only if NT # P.

Observation [GHJIY-87]. The same proof that shows that SAT is <P -complete for #P can be used
to show that parity-SAT is <P -complete for ®P. Parity-SAT has received a lot of attention recently. In
particular, Valiant and Vazirani ([VV-85]) have shown that parity-SAT is N P-hard under randomized
reductions. Furthermore, if f is a reduction from parity-S AT to a set in NT (as in the Theorem above),

then f(parity—SAT) is <b -complete for NT.

Theorem [GHJY-87], [He-87). If S € NT N P/poly, then there is a tally set T € 20(n*) such that
SePT. _

Theorem [GHJY-87], [He-87]. Relative to a random oracle A, ®PA — PPA # 0 with probability
one.

Corollary [GHJY-87], [He-87]. Relative to a random oracle A, NT —PP4 # 0 with probability one.
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