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Abstract

In this paper we discuss the relationship between certain structural properties of a set and the
set’s computational complexity. We study four classes of sets for which the membership question
for one element of the domain can be related to the membership question of other smaller (with
respect to some ordering) elements: self-reducible sets, p-selective sets, near-testable sets and p-
cheatable sets. The purpose of the paper is to suggest that a continuing systematic study of the
relationship between this type of internal structure and the computational complexity of a set is in
order. Although some new results are presented, much of the paper is an attempt to review known
results and suggest unifying concepts.

1. Introduction

Structural complexity theory is often concerned with the inter-relationship between sets in
a complexity class, (e.g. Is set A complete for class C'?), and inclusion relationships between
classes, (e.g. Does P = NP?). Additionally, structural complexity theorists have studied the
internal properties of sets (e.g. Do all N P-complete sets have polynomially decidable subsets?). It
is this later type of internal structure that we will be concerned with. In this paper we advocate a
systematic study of the ordering structure that exists within a set and the effect that that structure
has on the complexity of the set. This line of research is not new, as considerable research has been
done on self-reducible sets and p-selective sets, both of which have the type of internal structure that
we are interested in. Self-reducible sets have an internal structure that ties the membership question
for any element of the domain to the membership question for polynomially many smaller elements.
The most famous self-reducible set is SAT. Balcizar, Berman, Book, Fortune, Ko, Mahaney, Meyer,
Paterson, Schoning, Schnorr, Selman, Trakhtenbrot and many others have studied properties of self-
reducible sets. P-selective sets are sets for which there is a polynomially computable function that
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selects from any pair of elements of the domain, an element that is in the set (if either element
is). This turns out to induce a (dense) linear ordering structure on the set. Selman and Ko have
studied these sets extensively.

Although quite a bit of work has been done on self-reducible and p-selective sets, only a few
results have explicitly related their internal ordering structure to their complexity, and little has
been done to discuss internal structure in a unified way. The purpose of this paper is to motivate
research in this direction.

We begin by surveying work that has been done on self-reducible and p-selective sets. Next
we introduce a new class of sets, the near-testable sets, and discuss their internal structure and
complexity. Iinally, we discuss recent work by Amir, Beigel, Gasarch, Gill, Hay and Owings on
p-cheatable sets and give some new results about sets with this type of structure.

2. Self-Reducible Sets

The first class of sets that we will consider is the class of self-reducible sets. These sets will turn
out to have well-founded partial orderings associated with their domains. We will see, however,
that an apparently minor variation in the definition will yield sets (self-1-helpers) whose structure
has not yet been characterized. A set A is self-reducible if there is a polynomial time oracle machine
M such that (i) M4 is a recognizer for A, and (ii) on inputs of length n all of M’s queries have
length less than n. Obviously, every set in P is self-reducible. It is also easy to see that every
self-reducible set is in PSPACUE. Thus,

Observation. P C Self-Reducible C PSPACE.

Probably the best known self-reducible set is SAT. The fact that SAT is self-reducible, and
hence that there is a self-reducible N P-complete set, was heavily exploited by Berman [B78],
Fortune [F79], and Mahaney [M82] to show that unless P = N P, there are no sparse or co-sparse
N P-complete sets.

Balcazar, Book and Schoéning have shown, with the following theorem, that it is highly unlikely
that any self-reducible sets in the polynomial time hierarchy can be reduced to sparse sets.

Theorem [BBS86]. Suppose that A is self-reducible and that there is a k¥ > 0 such that A €
=L /poly. Then =L (A) C =F,,.

Thus, it is not likely that any of the natural self-reducible sets have polynomial size circuit com-
plexity, particularly if they are complete.

Now, for the purpose of considering the internal structure imposed by self-reducibility and in
order to get a definition that is polynomially invariant, it is useful to look at a slightly different
definition. Meyer, Paterson [MP79] and Ko [K83] have given more general definitions of self-
reducibility.

Definition [K83]. A partial ordering < on X* is polynomially well-founded and length related (for
short: polynomially related) if there is a polynomial p such that
(i) < y? is polynomially testable,
(ii) = < y implies that |2| < p(|y|), and
(iii) the length of a <-descending chain is shorter than p of the length of its maximal element.

Definition [K83]. A set A C X* is tt-self-reducible if there is a polynomially related ordering <
on L*, a polynomially computable function f and a polynomial p such that, for all sufficiently large
T EX*
(i) f(z) is a tt-condition (e, (1, ...,¢x)) where « is a k-ary boolean formula that can be evaluated
in time p(|z|) and z; < @ for all « < k, and



(ii) z € A iff a(xa(21),..., xa(2r)) = 1, where x4 is the characteristic function for A.

If the truth-table condition « is a simple disjunction or conjunction, then A is said to be
disjunctive (or conjunctive) self-reducible. If, for any assignment of truth values to the variables,
changing the truth value of any variable from “false” to “true” can never change the resulting
evaluation of the truth-table from “true” to “false,”, then A is said to be positive truth-table
self-reducible. SAT is obviously disjunctive self-reducible, and it has been conjectured that all
N P-complete sets are disjunctive self-reducible. This, however, remains an open question, even
assuming P # N P.

A set is Turing self-reducible if there is a polynomial time oracle machine M such that (i) M4
is a recognizer for A, and (ii) on input = all of M’s queries are to elements that precede z in the
<-ordering. Obviously, any set that is tt-self-reducible is Turing self-reducible.

These definitions make explicit the idea that for self-reducible sets there is polynomial ordering
of ¥* such that the membership question for an element is fully answered by considering the
membership questions for polynomially many preceding elements. Clauses (ii) and (iii) in the
definition ensure that the partial ordering is well-founded. The purpose of this paper is to raise the
question of what types of sets have ordering properties of this sort and what effect these orderings
and membership relations have on the complexity of the set. We will keep returning to these
questions as we consider additional classes of sets that have similar ordering properties.

Before we conclude this section we will consider one other type of set that is closely related to
the self-reducible sets.

Robustness and Helping

The notions of robustness and helping introduced by Schoning and studied by Balcazar, Ko,
Hartmanis and Hemachandra are related to the idea of Turing or truth-table self-reducibility.
Schoning defined an oracle Turing machine M to be robust if for every oracle A the language
accepted by M4 is the same. Thus, changing the oracle can influence the resources used by the
machine on an input (i.e. the computation), but it cannot change the acceptance or rejection of
the input. With this definition Schoning showed the following.

Theorem [S85].
(i) L € NPncoNP if and only if there is a robust, deterministic oracle Turing machine M and
an oracle A such that M#4 decides membership in I, and M# runs in polynomial time.
(ii) L € NP if and only if there is a robust, nondeterministic oracle Turing machine M and an
oracle A such that M4 decides membership in L and M# runs in polynomijal time.

Now, returning to our claim that the notion of robustness is related to self-reducibility, consider
the definition given by Ko of a self-1-helper.

Definition [K87]. A is a self-1-helper if there is a robust, deterministic oracle Turing machine M
accepting A such that for all v € A, M4 (=) halts in polynomial time.

Ko shows that any set that is disjunctive self-reducible, for instance SAT, is a self-1-helper.
Theorem [K87]. If A is disjunctive self-reducible, then A is a self-1-helper.

The proof of this theorem essentially rests on the fact that a robust, deterministic oracle Turing
machine can be constructed to aid in quickly searching the self-reducibility tree for any disjunctive
self-reducible set.

Recall that we mentioned above that it is not known whether all N P-complete sets are dis-
junctive self-reducible. Ko has observed that if every polynomial Turing degree in NP contains a
disjunctive self-reducible set, then there are no log*-sparse sets in NP — P, and hence EXP  NP.
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One of the major open problems left by Ko’s work is: What is the relationship between self-
helping and self-reducibility? For instance, is the converse of the above theorem true? If A is a
self-1-helper, then it appears that A is close to being Turing self-reducible: the machine M4 decides
membership in A in polynomial time, but what length queries are made to A? Unfortunately, there
is no obvious reason that the fact that A is a self-1-helper should guarantee that there is an ordering
of ©* relative to which all queries are length decreasing. In [K87] Ko discusses further conditions
that can be added to the definition of self-1-helper so that this is true.

Balcdzar, [Ba87], made a further attempt to characterize the class of self-1-helpers. He said
that a set A € NP has self-computable witnesses if two conditions hold. First, there is a set B € P
such that

z € Aiff (Iy)lyl < p(le]) and (z,y) € B]

for some polynomial p; that is, there is a polynomially recognizable set of short witnesses for A.
Second, there is a function f that is polynomially computable relative to A that finds short witnesses
for A; that is, if 2 € A, then (z, f(z)) € B. Notice that SAT has self-computable witnesses and
this follows directly from the disjunctive self-reducibility property of SAT. Balcizar proves the
stronger fact that all self-1-helpers have self-computable witnesses.

Theorem [Ba87]. A set A is a self-1-helper if and only if it has self-computable witnesses.

At this point we pose the following problem. The self-1-helpers seem quite similar to the self-
reducible sets. Meyer, Paterson and Ko have given very nice characterizations of the Turing and
truth-table self-reducible sets in terms of a partial ordering on £* and a polynomially computable
membership relation between elements of the ordering. Can one give a similar characterization for
these sets, considered either as self-1-helpers, or as sets having self-computable witnesses?

3. P-Selective Sets

The second class of sets that we will discuss is the p-selective sets. Unlike the self-reducible
sets, these sets have an ordering relation that is not necessarily well-founded.

The p-selective sets are the polynomial time analog of the semi-recursive sets studied by
Jockusch [J68]. Selman [S79] gave the following definition for the p-selective sets.

Definition [S79]. A set A C X* is p-selective if there is a polynomially computable function f
such that for all z,y € &*,
(i) f(2,9) == or f(z,y) = y, and
(ii) if z € A or y € A, then f(z,y) € A.
Thus, if all of the elements of A are “less than” the elements of A, then the function f could
always return the least element of a pair (z,y). To make this more precise, let < be a polynomially
testable linear ordering of £* (it need not be well-founded). A set A is an initial segment of the

ordering (X*,<) if z € 4 and y < 2 implies that y € A. Selman [S82a] observed that any initial
segment of a polynomially testable linear ordering is p-selective.

Theorem [S82a]. If A is an initial segment of some polynomially testable linear ordering of ¥*,
then A is p-selective.

A partial converse to this theorem was also proved by Selman.

Theorem [S82b]. A tally language is p-selective if and only if it is an initial segment of some
polynomially testable linear ordering of {0,1}*.

In a later paper Ko [K83] fully characterized the p-selective sets in terms of initial segments
of polynomial orderings.



Definition [K83]. A binary relation = is called a preorder if it is reflexive and transitive. A
preorder < on X* is partially polynomial time computable if there is a polynomially computable
function f such that

(i) f(2,9) = f(y,5) € {a,9} if 5 < y or y < =,

(ii) f(z,y)=z ifz <y, but noty <z (2 # y), and
(iii) f(z,y) =L if neither © < y nor y < x, where L¢ X.

Given any preorder of X* we can define a corresponding equivalence relation on ¥* by letting
z =y if and only if 2 < y and y < 2. For the equivalence classes of ¥* with respect to = there is
an induced preorder that we will denote <'. Ko [K83] has shown the following,.

Theorem [K83]. A set A C ¥* is p-selective if and only if there is a partially polynomial time
computable preorder < on %* such that if = and <’ are the corresponding equivalence relation and
induced preorder, then

(i) %' is a linear ordering, and

(ii) A is the union of an initial segment of (X*/ =, <').

A natural question to ask at this point is how difficult can the membership question be for p-
selective sets. The first theorem above due to Selman has as a corollary that every standard left cut
is a p-selective set. (If 7 € [0,1]is a real number, then the standard left cut of r is {d € &+ : d < r}
where the elements of % are viewed as numbers written to the base |X].) Since it is known that
there are arbitrarily difficult real numbers, there can be arbitrarily difficult p-selective sets.

Theorem [S79]. There exist arbitrarily difficult p-selective sets.

Nevertheless, there are certain sets for which we know that if they are p-selective, then they
will be in P.

Theorem [S82b]. If A is ptt-self-reducible (positive truth-table) and p-selective, then A € P.
Corollary [S79]. If SAT is p-selective, then SAT € P.

Finally, it follows directly from Ko’s characterization of the p-selective sets that all p-selective
sets have polynomial size circuit complexity. In fact this result can be proved for a somewhat larger
class of sets, the weakly p-selective sets, which contain both the p-selective sets and the left cuts of
real numbers.

Definition [K83]. A partial ordering < on X* is p-linear if for every n, the set &, = {z : |z| < n}
can be decomposed into at most p(n) many pairwise disjoint and incomparable subsets each of
which is linearly ordered by <. A set A C ¥* is called weakly p-selective if and only if there is
a partially polynomial time computable preorder < on L* such that if = and =<' are the induced
equivalence relation and partial ordering, and there is a polynomial ¢ such that

(i) }' is p-linear on ¥*/ =, and

(ii) for every n, A, is the union of initial segments of at most ¢(n) many ='-chains in ™.

Theorem [K83]. If A is weakly p-selective, then A € P/poly.

What we have seen in this review of work by Ko, Selman and others is that the ordering
structure relative to which p-selective sets have polynomially computable selection functions can
be more complicated than the ordering structure found in self-reducible sets; it need not be well-
founded. As a result, p-selective sets can be arbitrarily difficult while self-reducible sets are all in
PSPACE.

The restrictive nature of the membership relation given by the selection function that relates
z and y by telling us that ([f(z,y) = y] = [¢ € A = y € A)]), yields that the p-selective sets are in
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P/poly, while the more complicated membership relation derived from the self-reduction function
probably does not lead to small circuit characterizations.

Thus, both the ordering structure and the type of membership information obtainable in poly-
nomial time play roles in determining computational complexity of the set. We will build on this
idea in the remaining sections.

At this point, we stop to compare what we know about these two classes of sets, as well as
to preview near-testable and p-cheatable sets. The properties displayed in Table 1, which follows,
include our primary focus, the ordering relation; the testable relation; the complexity with respect
to Turing machines and to Boolean circuits; and immunity. (Immunity is more of a negative measure
of complexity: can a set in one class “avoid” all of the sets that are polynomially decidable?)

Finally, it will be useful to build on some of the ideas developed earlier in the study of semi-
recursive sets. Thus, we conclude this section with a brief review of some of their properties.

Semi-Recursive Sets

Jockusch defined the semi-recursive subsets of the natural numbers, N, and used these sets to
prove a variety of results concerning reducibilities and degrees of r.e. sets. It happens that these
sets have a tree structure or partial order very similar to that of the cheatable sets discussed in
Section 5. In fact, many of the techniques Jockusch used in proofs about semi-recursive sets carry
over to the cheatable sets.

Definition [J68]. A set A C N is semi-recursive if there is a total recursive function f such that
for allz,y € N,

(i) f(w,9) = or f(z,7) =y, and

(ii) ife € Aory € A, then f(a,y) € A.

Jockusch presented three theorems that provide nice information about the structural (order-

ing) properties of semi-recursive sets.
Definition. A set A is regressive if there is some enumeration of A without repetitions (it need
not be eflective) for which there is a partial recursive function f such that

(i) if x € A, then f(z) is defined, and

(ii) ifx € A, then f(z) =z il z is the smallest element with respect to the enumeration of A, and
f(z) is the next smallest element with respect to the enumeration of A, otherwise.

If A is regressive and its complement is r.e., then the members of A and A can be viewed as
nodes on an infinite tree, where the regressing function is a total recursive function that always
returns a node’s parent. If a node is in A, then its parent will always be less than the node with
respect to the enumeration for A, and all elements of the regressive set, A, lie on a single branch
of the tree. It is this idea that we will build on in later sections. We note here that this tree is
a well-founded partial order, since we can regress from any node to the root in a finite number of
iterations of f.

Theorem [J68]. Ifaset A C N is r.e. and A is regressive, then A is semi-recursive.
In addition, Jockusch presented a partial converse to this result, attributed to Martin.

Definition. A set A C N is retraceable if there is a partial recursive function f such that

(i) if x € A, then f(z) is defined, and

(ii) ifz € A, then f(¢) =z if @ is the smallest element of A, and f(x) is the next smallest element
of A otherwise. (Here we use the standard less than ordering on N.

Theorem [J68). (Martin) If A is an infinite semi-recursive set, then A has an infinite co-r.e.
retraceable subset.

Nevertheless, not all semi-recursive sets are regressive.
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Self-Reducible Sets
Ordering on £* : Polynomially well-founded, polynomially testable partial ordering.
Testable Relation

Given: x

Find: a truth table ¢, and elements x1, ..., z, such that 2; < z and [z € A <= t(xa(z1), ..., xal(zn))].
For 2-disjunctive self-reducible sets this relation gives [z € 4 <= =z, € AV z; € A].

Complezily
Sequential: P C Self-Reducible € PSPACE
Parallel: Tt is conjectured that [Self-Reducible - P] N P/poly = 9.

P-Selective Sets

Ordering on £* : Partially polynomially computable preordering, which may be dense and need not be
well-founded.

Testable Relation

Given: ¢ and y.

Select one of the following relations: [y A—az € Alor[z € A — y € A].
Complezity

Sequential: Arbitarily difficult.

Parallel: P-Selective C P/poly.

Immunaty: There are recursively bi-immune p-selective sets.

Near-Testable Sets
Ordering on £* : Polynonially testable, exponentially well-founded, linear ordering.
Testable Relalion
Given: x
Compute one of the following relations: [t € A <> z+1€Alor[ze A < z+1¢ 4]
Complezity
Sequential: P C NT C EXPNPSPACE.
Parallel: Little 1s known.

Polynomial Immunily: Any near-testable set A that is not in P is immune of polynomially decidable,
uniformily dense sets D for which DN A € P.

P-Cheatable Sets
Ordering on L*: All known p-cheatable sets have a partial ordering similar to that of a p-selective set.
Testable Relation: (2 {or 1)-pcheatable sets.
Given: z1 and xs.
Find one of the following: [xy €7A] or [2q €74 or 21 € A <= 2z €7 4]
Complezity
Sequential: Arbitrarily difficult.
Parallel: May be in P/poly without being p — close; otherwise little is known.

Polynomial I'mmunity: No (2 for 1)-pcheatable set is polynomially bi-immune; otherwise, p-cheatable sets
may be recursively bi-immune.

Table 1.
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Theorem [J68]. If A is semi-recursive and bi-immune, then neither A nor A is regressive.

In Section 5, when we discuss cheatable sets, we will see that the tree structures common to
retraceable and regressive sets often malkes these sets cheatable. Thus, we will see that the semi-
recursive, retraceable, regressive and cheatable sets are very closely related in terms of internal
structure.

4. Near-Testable Sets

In this section we introduce a new class of sets that we call the near-testable sets. These sets
have a very simple ordering property associated with them, and they also have very restrictive
membership information that can be obtained in polynomial time. Like the self-reducible sets, this
class lies somewhere between P and PSPACUE. Despite the restrictive nature of the membership
relation, we conjecture that not all of these sets are in P.

Before we define the near-testable sets, we will motivate our definition by considering a class
that Balcézar called the word-decreasing queries self-reducible sets.l

Definition [Ba87]. A set A is polynomial time wdg-self-reducible if there is a polynomial time
deterministic oracle Turing machine M such that M4 decides membership in A and for each input
z, all queries to A have length less than or equal to the length of & and if the query has the same
length as z, then it must lexicographically precede .

Balcdzar’s reason for studying these sets was very similar to our reason for writing this paper.
He wanted to provide a unifying structure for a collection of results. The results he was concerned
with all had the form:

If class C is in class D/poly, then something collapses.

Balcédzar’s primary result is that the theorem quoted at the beginning of Section 2 from [BBS86]
is true for wdg-self-reducible sets, as well as for Turing self-reducible sets. That is,

Theorem [Ba87]. Suppose that A is wdq-self-reducible and that there is a k > 0 such that
A € £f [poly. Then ©f(A) C EL,,.

With this result Balcdzar is able to show that many known results follow from a single proof
technique.

In this section we study a very simple subclass of wdq-self-reducible sets. Among other prop-
erties, these sets have the property that the membership question for an element z can always be

polynomially self-reduced to the membership question for £ — 1, in the lexicographic ordering of
.

Definition. A set A is near-testable (A € NT ) if there is a polynomially computable function that
given x decides whether exactly one of @ and @ + 1 is in A. That is, the function

f(2) = xalz) + xalz + 1) (mod 2),
is polynomially computable.

Thus, with respect to the lexicographic ordering on ¥£* we can fully relate the membership
questions for ¢ and « + 1, where & 4+ 1 denotes the lexicographic successor of . This gives us a
linear, well-founded, effective ordering on A.

1. The near-testable sets were introduced and studied by the current authors before they were
aware of Balcazar’s work. In hindsight, his notion of word-decreasing query reducibility provides a
nice motivation for the investigation of near-testable sets.
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A useful concept in the study of near-testable sets is the boundary of a set. Given a set A, the
boundary of A will contain the last element of each contiguous sequence of elements of A and of
A. Formally, we have

boundary(A) = {z : exactly one of z and z + 1 € A}.

We can picture a set as follows:

Let us say that A is represented by the thicker blocks, A by the thinner blocks, and boundary(A)
by the |’s. Notice that boundary(A) = boundary(A).

Observation. A € NT if and only if boundary(A) € P.

Notice that the definitions we have given are absolutely dependent on the order in which a
set is encoded. We will generally consider subsets of {0,1}* under that lexicographic order, where
“z 4+ 1”7 means the next element in that order. When we consider sets such as {primes}, or SAT,
we may think of them as being over other alphabets. As we know, there are standard polynomially
computable mappings from decimal to binary. However, we need to be careful to specify which
encoding we will be using, as other isomorphic encodings may (unfortunately) yield quite different
boundaries.?

We could have given a more general definition of near-testable that would have avoided some
of these problems. Such a definition might say that a set, A, is near-testable if there is some
effective, well-founded linear order <, and a polynomially computable function f(z) = xa(z) +
xa(z + 1) (mod 2), where ¢ + 1 is the successor of z in the < ordering. As stated, this definition
would allow us to construct sets that are near-testable, but are not decidable in polynomial space
or exponential time. If we wanted to ensure that NT C PSPACE n EX P, then we would have
to further require that the < ordering be exponentially well-founded and that z and z + 1 be
polynomially related in size. Having generalized the definition in this fashion, we could then show
that NT is invariant under polynomial isomorphisms. Nevertheless, this more general definition
seems to give less information about the structure of individual sets, so for now we will continue to
concentrate on the original, simpler, definition.

The main question that we will address in this section is: What is the time complexity of
near-testable sets? We do not even know whether N7 = P, although we will present evidence that
this is not likely.

We begin by noting that all near-testable sets are exponentially decidable. On the other hand,

a straightforward slow diagonalization allows us to construct sets that are exponentially decidable
but not in NT.

Observation.
(i) fAe NT, then Ae LXPnPSPACE, and
(ii) there is an A € EXP, such that A ¢ NT.

At this point it is reasonable to ask:

2. Notice that a similar problem arises for the self-reducible sets. Under the natural encoding
and the natural lexographic ordering of ¥*, SAT is self-reducible. However, under other polynomial
encodings, SAT might not be self-reducible.



Question. Are there sets in NP, coN P, ZPP, etc. that are not in NT?

NT appears to be sensitive, both to the distribution of elements in a set, and to density. The
next observation follows from the fact that primes (except for 2) are distributed only throughout
the odd integers.

Observation. If {primes} € NT, then {primes} € P.

Since the set of primes is known to be in ZPP, this tells us that if the set of primes is not in
P, then ZPP ¢ NT.

We can formalize the argument used to show that sets such as {primes} are not in NT unless
they are in P, as follows.

Definition. We say a set D is uniformly dense if there is a polynomial p(n) such that for any
string z, there is an element of D within p(|z|) ‘steps’ of @ in the lexicographic ordering.

Lemma. If there is a uniformly dense set DD such that D € P and DN A € P, then A€ NT
implies A € P.

Proof. Suppose we know the polynomial p(n) that bounds the distance from a string of length
n to the nearest element of D). Suppose also that both D and D n A can be polynomially decided.
To decide A(z), we enumerate the p(|z|) strings preceding =, and run the decision procedure for D
on each of those strings. Once we find y € D, we quickly decide whether y € D N A. We then use
the near-testability algorithm to decide membership for all the strings from y to =z, including z. g

Theorem. If P # NP, then there is a “reasonable” encoding of the N P-complete set 35 AT that
isnotin NT.

Proof. We will assume that 35AT is the set of satisfiable Boolean formulas in 1, 2, or 3
conjunctive normal form. We need to show that there is a uniformly dense polynomial set that
intersects 3SAT in a polynomially recognizable set. This will show that if 3SAT is in NT, then it
is in P. The uniformly dense polynomial subset of 3SAT we will use is Domain(2SAT U 1SAT).
Since this encoding of 35 AT contains the usual 35AT in a polynomially recognizable manner, all
of the usual reductions to 35 AT will still hold. Thus, the salient feature, its N P-completeness, is
preserved.

We will code Boolean formulas as

nliteralfnliteraly...fnliteralifk

where n tells whether or not the literal was negated, and k = 1, 2, or 3. The £ tells us to divide up
the string into clauses of exactly k& literals, except perhaps the last clause, which gets the remainder
of the literals. We need this sloppiness with respect to the last clause so that there are strings
of every length in Domain(2SAT U 1SAT), in order to make Domain(2S AT U 1SAT) uniformly
dense. This will guarantee that for each string of literals, there are Boolean formulas in 25 AT and
15 AT form with that string of literals. (Each string of literals gives rise to three Boolean formulas,
since it may be followed by a 1, 2, or 3.) We have added the extra symbol § to the alphabet for
ease of exposition. In fact, we can assume that all of the encoding is done over {0, 1}*.

Since Domain(2SATU1SAT) € P and (Domain(25ATU1SAT))N3SAT = 25ATU1SAT €
P, the conditions of the lemma are satisfied. If 35 AT, under this encoding, were in NT we would
have 3SAT € P and thus P=NP. =< g

The Berman-Hartmanis conjecture states that all N P-complete sets are p-isomorphic. Thus if
it is true, then a form of the above theorem holds for all N P-complete sets, since 3SAT could then
be considered an effective (though perhaps not reasonable) encoding of any N P-complete set.
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Although the previous results show that it is not likely that all sets in NP, coNP, and ZPP
are in NT', they do not address the converse question of whether there are any sets in NT that are
not in P. We believe that these sets exist and our next results give evidence of this.

Definition. f is a one-way function if f is polynomially computable, polynomially honest (ie.
f~1 is polynomially bounded), 1-1, and f=1 is not polynomially computable.

Theorem. If there is a one-way function, then there is a set Q that is in NT — P.
To prove this result it is useful to introduce the notion of the parity of a set.

Definition. Let < be the lexicographic ordering on {0,1}*. For any set A we define the parity of
A as follows:
paritya(z) = {O if [{y S. x:y € A} is even;
1 otherwise.

Useful Observation. 4 € P if and only if the parity of the boundary of a set A is in P.

Let us consider the earlier picture of the boundary of a set that we used to illustrate the
definition of boundary(A). In order to decide whether a given z is in A, we need to know whether
it is in a thick-blocked region. This will be the case if there are an even number of |’s preceding it,
which is precisely when parityyoundary(a)(2) = 0. (Of course, if the thinner blocks had represented
A, we would havehad 2 € A & PaTitYpoundary( A)(a:) = 1.) Therefore, calculating membership in A
is precisely the same as calculating ParitYyoundary(4)- 1f one of these calculations is in P, the other
must be.

Proof of the theorem. We will implicitly construct the set @ € NT — P by constructing
T = boundary(Q), so that T" € P but parityr ¢ P. By the Useful Observation, this will place
@ € NT ~ P, as desired. T will be composed of pairs (z, f~1(z)), where (z, y) will not be the usual
pairing function, but one more suited to our needs. We will show that if parityr € P, then f~1(z)
is polynomially computable.

Let f be a one-way function, and let ¢(n) be a strictly increasing polynomial bound for both
fand f~1. We will only be concerned about pairs (z,y) where y could possibly be f~1(z). This
is the case only when |y| < ¢(|z]). We will call a pair (z,y) relevant if |y| < ¢(|z]).

What sort of properties do we need our pairing function to have? We need to have the pairs
sorted by their first element, so all (z,y)’s come before all (z + 1, z)’s; we need the pairing function
to be computable in polynomial time in the first element (remember that for relevant pairs, the
length of the second element is also bounded by a polynomial in the length of the first); and that
the decoding function is polynomially computable in the length of the string representing the pair.

Formally, we define T = {(z, f~}(¢)) : © € range(f)}, where {z,y) is the following pairing
function:

o If (z,y) is irrelevant, then (z,y) = 0.

o If (z,y) is relevant, then (z,y) is a string of length |z| + 2¢(|z|), with prefix 2. The suffix of
the string will be y interleaved with 11¥!, followed by sufficient 0’s to make the length of the
suffix 2¢(|z|), like this:

T1T2...Tp 1y11y21yk00 .

2g¢(|z]) bits
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Notice the following properties, where we use < for the lexicographic order:
o (2,y) < (z,w) < (z,u) = & = 2
¢ The decoding map from (z, y) to z,y is computable in time bounded by a polynomial in |(z, y)|.
(Given the string (z,y), in order to find  and y, we must first find n so that |(z, y)| = n+2¢(n).
Since ¢ is strictly increasing, n -+ 2¢(n) is as well, and thus is invertible in time polynomial in
n. Once we have n, we simply read off z; decoding y is equally straightforward.)
o The encoding of (z,y) as (z,y) is computable in time bounded by a polynomial in |z].

We need to show that T' € P, and that parityr ¢ P. To decide if 2z € T, we first “decode” z.
If z # (a,b) for any (a,b), then we know @ ¢ T. If = (a,b), then 2 € T « f(b) = a. Since f is
polynomially computable, this can be determined in time polynomial in |z|.

Suppose parityr were in P. Then we would be able to calculate f~!(z) in time polynomial in
|z|, using the following algorithm. Tirst we must decide if f~!(z) exists. This will be the case if
and only if (z,y) € T for some y. If this is the case, we will use binary search to find it.

Notice that {(z,a) < (z,0) & a < b. We will write z 4+ 1 to indicate the next string in lexico-
graphic order after z. Notice also that the strings immediately preceding (z,0) and immediately
following (z, 19021} do not code pairs. Now, if f~!(z) = y, then the string (z,y) will be the only
string in T’ between (z,0)—1 and (x, 1902D)+1, and otherwise there will be no string in this interval
in T. Therefore parityr({z,0) — 1) # parityr({z,191°D})) if and only if f~1(z) exists. Once we
have determined that it does exist, we use binary search on the strings that encode (z,%), for the
20(a(lzD) relevant y’s, to locate it. This will take time O(g(|z|)). Since f was chosen to be one-way,
this is a contradiction. Therefore, parityr is not in P, and thus by the Useful Observation, if
T is the boundary of a set, that set cannot be in P either. Therefore we define Q such that its
boundary is T'. Explicitly, 0 ¢ @ and boundary(Q) =T. g

The Useful Observation tells us that if A € NT - P, then the parity of the boundary of 4
cannot be in P. But, how close to P can it be? The next theorem shows that if there are one-way
functions that are onto, then the parity of the boundary of Q can be in NP N coNP.

Theorem. If f in the previous construction is both one-way and onto®, i.e. if f~1(z) is uniquely
defined for each z, then parityr € (NP ncoNP) - P.

Proof. The first thing that we need in order to define an N P (and coN P) algorithm for parityr
is the following observation about the pairing function: strings of length n + 2¢(n) encode pairs
(z,y) for an even number of @’s of length n (27 of them, to be precise). Thus parityr(17+2e(n)) = o,
and for |z| # n + 2¢(n) for any n, parityr(z) = 0.

If |2| = n + 2¢(n), let & be the prefix of z of length n. Let ¢ be the rightmost bit of z. This
will tell us whether there is an even or odd number of w’s of length n preceding . Notice that for
each such w, there is precisely one string (w,u) in T

Nondeterministic step: guess y = f~1(=2).

Deterministically verify that f(y) = .

If (z,y) < z then parityp(z) =1 — 1

else parityp(z) = i.

3. Grollman and Sellman show in Theorem 11 of [GS84] that the existence of such a function
is equivalent to P # UnNcolU. Our theorem is in fact a variation of a result from Brassard, Fortune,
and Hopcroft, [1978], which is quoted as Exercise 13.24 in Hopcroft and Ullman ([HU79}]), that
asks the reader to prove {(z,y): f~1 < y} € (NPNcoNP) — P if f is a one-way function.
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This is the same verification procedure for both parityr and parityr. This is because of the
definition of T, rather than because of the symmetric properties of parityr. g

Notice that the set @ of the previous proof is not polynomially bi-immune. We know by a
preceding lemma that there cannot be a uniformly dense polynomial set which intersects Q in a
polynomial set. Thus @ and @ must be polynomially bi-immune with respect to uniformly dense
sets. The set of all strings z, where |z| # n + 2¢(n) for any n, forms a huge polynomial subset of
Q. This does not contradict the lemma, because this polynomial set is not uniformly dense, since
it contains no elements at all of certain lengths. On the other hand, the original @ we constructed,
without the assumption that f was onto, does not necessarily have this property.

The question remains, whether we actually require a one-way function in order to show that
NT # P. We would like to show that the existence of a set in NT — P implies the existence of a
one-way function.* What we have is the following partial converse to the preceding two theorems.

Theorem. If there is a set @ € NT — P with a sparse boundary, then there is a polynomially-
many-to-one, polynomially computable, polynomially honest one-way function.

As is standard, we define f~1(z) = {y: f(y) = z}. Notice that if f is polynomially-many-to-
one, it is conceivable that, given 2, we could find the entire set {y : f(y) = 2} in time polynomial
in |z|.

Proof. Let S = boundary(Q). Let ¢(n) be a polynomial bound on the census function for S.

We define I
o okl ifz e s
) = 3
/(=) {m otherwise.

Since @ € NT, S € P, so f(z) is polynomially computable. Since |f(z)| = ||, f is honest.
Notice that f~1(0™) has at most g(n) elements, all of length n.

Suppose f~!(z) were polynomially computable. By the sparseness of S, given = we could
compute f~1(0), f~1(0%), ..., f~1(0l#!) in time polynomial in |z|, and we could count all those
strings less than z which we have enumerated, to determine paritys(z). But we assumed that
Q € NT — P, which, by the Useful Observation, implies that the parity of the boundary of Q
(paritys) is not polynomially computable.=-< Therefore, f must be one-way. [

There are a number of questions that remain open concerning NT sets. The main question is
obviously whether NT = P.
Main Question. Is NT = P?

A second question concerns the parallel complexity of sets in NT. Is NT C P/poly? To better
understand this question it is useful to observe the following.

Observation. If A or A is sparse and A € NT, then A € P.
Observation. If boundary(A) is sparse, then A € P/Poly, that is A has polynomial size circuits.
Proof. To determine whether 2 € A it is sufficient to know the elements of boundary(A) that

are less than or equal to z. If boundary(A) is sparse, then we can code the information about
elements of the boundary(4) into an oracle, B, in such a way that B is sparse and the information

4. Added in revision, July 1987: Lane Hemachandra has shown that parity-P # P if and only
it NT # P. The existence of one-way functions also implies parity-P # P. These and related
results will be contained in a forthcoming paper by Hemachandra and the current authors.

13



can be retrieved in a polynomial fashion. Thus A <E B. This implies that A € P/poly, which in
turn implies that A has polynomial size circuits. g

The hypothesis of our preceding theorem was that there is a set in NT — P with a sparse
boundary. We do not in fact know that such sets exist.

Question. If A € NT — P, can boundary(A) be sparse?

N
Notice that if A € NT and either A or A is sparse then A € P by the observation made above.
Therefore, if A € NT — P and boundary(A) sparse, then A and A are both unions of intervals
many of which contain exponentially many strings.
Finally, it is reasonable to ask ezactly how robust is the definition of near-testable. One
way to formalize this question is to ask whether it is preserved under polynomially computable
isomorphisms.

Observation. Ifthereisan A € NT— P with a polynomial padding function, then near-testability
is not preserved by polynomial isomorphisms.

Proof. Let T = {20 : 2 € A}. Since A is paddable T is also, and thus 4 =P T. We would
expect, therefore, that '€ NT — P. However, since every other string is not in T, we know that

¢ € T if and only if @ € boundary(T). Therefore boundary(T) € P = T € P. In other words, if
TeNT,thenT € P.=>< g

It is natural here tolook at the relationship between p-isomorphisms of sets and p-isomorphisms
of their boundaries. We might expect that p-isomorphic sets would have p-isomorphic boundaries,
but this is not always the case.

Observation. If A =P T, this does not imply that boundary(A) =¥ boundary(T).

Let A= {0z:2 € {0,1}*} and T = {20 : 2z € {0,1}*}. A =P T, but the boundary of T is all of
{0,1}*, and the boundary of A contains only two elements of each length, so is sparse. Therefore
boundary(A) %% boundary(T). g

If we look at a p-isomorphism between boundary sets, it is likely to “scramble” the pairs of
elements of the set that define intervals in the base set. Therefore, we would not expect all p-
isomorphisms of boundary sets to induce p-isomorphisms between the base sets. In fact, even if we
restrict our attention to p-isomorphisms of boundaries that respect pairs of elements, these do not
necessarily induce isomorphisms on the corresponding intervals.

Observation. There are sets S and T such that boundary(S) =¥ boundary(T) and S %P T.

Construction. Both § and T will be the unions of exponentially long intervals. S is the set of all
strings of lengths from 22%=1 4+ 1 to 22* for each positive k.

boundary(S) = {1*" : n e N}.

If we think of boundary(S) as dividing {0, 1}* into intervals I,,, then S = I,. We set

7 even
boundary(T) = {1¥ : r odd} U {0* : t even}.

It is easy to see that boundary(S) =F boundary(T), and the p-isomorphism respects pairs of
elements.
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We can think of 7' = |J,, .yen 1}, Where for n even, I/, = I,, minus all strings of length 27+1,
except for 0™+1,

To show that a particular p-isomorphism 4 does not map S to T, choose n large enough so
that ¢ cannot map any element of I,, to anything in I}, ,, or higher. Here, we are using the fact
that these intervals are exponentially long. There are 22" — 1 more strings of lengths < 27+1 in
S than there are in T', and ¢ cannot map them to any other strings in 7. Therefore, ¢ is not an
p-isomorphism from S to 7. g

What we have seen in this section is that, by defining a class of sets that have a very simple
ordering structure and a fairly strong polynomially computable membership relation, we have
obtained a class of sets of bounded complexity (PSPACENEX P). Unfortunately, without knowing
more about the boundaries of NT sets we do not know whether they are in P/poly. It is worth
observing that for a p-selective set, with respect to its preordering relation, there is essentially only
one point in the boundary. (For a weakly p-selective set, 4, there are at most polynomially many
elements in the boundary of A™, A restricted to elements of size n.) This is what places these sets
in P/poly.

5. P-Cheatable Sets

Amir, Beigel, Gasarch, Gill, Hay, and Owings have studied a class of sets they call the p-
cheatable sets. This class and related classes that they call terse, super terse and verbose have
many of the same ordering properties that we have been considering.

Before we discuss p-cheatable sets per se, let us take another look at the definition of near-
testable sets. A set is near-testable if the membership relation function

fa(@) = xa(@) + xa(z + 1) (mod 2)

is polynomially computable. Notice that if we make the membership relation function a function
of two arbitrary arguments, that is

Fa(@,y) = xa(@) + xa(y) (mod 2),

then the existence of a polynomially computable membership relation function fY4 implies that
A € P. However, suppose we consider a slightly different modification; suppose that A has a
polynomially computable membership relation function f%(z,y) that computes either a relationship
between the membership question for & and y, i.e., f4(2,y) = xa(z) + xa(y) (mod 2), or decides
membership for 2 or y. That is, for each z and y,

xa(®)+ xa(y) (mod 2), or
(2, y)=q2s€A(z¢gA), or
yeA(ygA).
Note that if we required f/ to compute either a relationship or decide membership for both = and
Yy, then we would again have that the existence of a polynomially computable f% implies A € P.

However with the definition of a membership relation function that we have just given we can prove
several results that will apply to p-cheatable sets.

Theorem 1. Let A be any set. If there exists a polynomially computable function f4 such that
xa(z)+ xa(y) (mod 2), or
fA("an): zeA (ﬂ?gA), or
yeA(y¢ A,
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then A is decidable.

Proof. Suppose that we wish to decide whether or not a large element, say 10,000,000,000,000,
is in A. We will begin by computing f4(0,1). This computation will either answer the membership
question for one of these elements or it will relate their membership questions. If we learn the
answer for one of the elements we simply dispense with that element, say 1, and repeat the process
by computing f4(0,2). We continue in this fashion. The important thing to note at this point
is that with each step of computing f4 on a new input pair, we either (i) learn the answer of a
membership question for one of the inputs, or (ii) a relationship between the inputs, for instance
one is in A if and only if the other is. Therefore if we repeatedly compute f4 on more and more
input pairs, we will find out the membership question for more and more elements, or we will end
up building a long chain of elements each with related membership questions. The important thing
is that at most one infinite chain can develop. This is because if we have two chains developing,
then by computing f4 on a pair containing one element from each chain we will be able to either
join the chains to form a single chain or we will discover the actual answer to the membership
question for one of the elements, and hence for all of the elements in its chain.

Thus for a given set A one of two things must be the case, (i) the above procedure never results
in an infinite chain, or (ii) an infinite chain develops and its minimal element is zy. If an infinite
chain will never develop we simply consider more and more pairs, in some systematic fashion, until
the membership question for 10,000,000,000,000 is resolved. If an infinite chain develops then we
consider more and more pairs until either 10,000,000,000,000 is added to a chain containing 24 or
its membership is determined. If it is added to a chain containing zg, then z is either in A4 or
A and using the membership relations that have been calculated we can answer the question for
10,000,000,000,000. g

Notice that in the proof of the theorem we did not use the fact that f4 is polynomially
computable and even if it is, a straight-forward diagonalization allows us to construct sets that
satisfy the hypotheses of Theorem 1 and have arbitrarily high complexity. Thus we have the
following theorem as well.

Theorem. There are sets satisfying the hypotheses of Theorem 1 that have arbitrarily high time
complexity.

Thus a seemingly minor weakening in the definition of near-testable allows sets to obtain much
greater complexity.

What we would like to show now is that all p-cheatable sets satisfy the hypotheses of Theorem
1. In the form that we have stated Theorem 1 this is probably not true, and hence we need to prove
a slightly stronger version of Theorem 1. Although formally awkward, the version of Theorem 1
give below will he useful when discussing p-cheatable sets.

Theorem 1°. Let A be any set. Suppose there exist polynomially computable functions f4 and

B such that
Fala, 2 2n) = X, or
AL S ot T g€ A (z; € A) for some i < m,

where X is a subset of n — 2 of the z;’s with the property that if values are given for these x;’s
then B can compute a membership relation between the remaining two z;’s. Formally,

B(X,y,2,v1,2, ..., Vn—2) = xa(y) + xa(z) (mod 2),
where y, z are the ;’s not in X and the v;’s are values for the zls € X. Then A is decidable.

Sketch of the proof. The proof of this theorem is essentially the same as the previous proof.
However, in this case we need to assume that there are n — 2 elements at the base of any infinite
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chain whose membership in A or A is known. Again, with respect to a given set A at most one
infinite chain can develop. g

We are now ready to relate Theorem 1’ to the notion of p-cheatable sets.
P-Cheatable Sets

One of the scenarios used by Amir, Beigel, Gasarch, Gill, Hay, and Owings to motivate the
study of the class of p-cheatable sets is the following. One is given a large collection of inputs, say
2k different inputs, and one would like to determine whether or not each input is in a known set A.
It is assumed that the membership problem for A4 is difficult and therefore if knowing that some
z; is in A (or not in A) helps in determining that another «; is (or is not) in A, then one would
like to use that information. To determine membership in A, one designs an oracle machine M
that when given A as oracle will decide the membership question for n different inputs by asking
the oracle as few questions as possible and doing as little computation as possible. They hope to
design machines that run in polynomial time and for a fixed & decide membership for 2% inputs by
asking only k& questions. When this can be done they say that A is p-cheatable. (We will be more
explicit and call such sets (2% for k) — pcheatable.)

We conclude this section by showing that all (2% for k)-pcheatable sets satisfy the hypotheses
of Theorem 1°, and hence are decidable. This decidability result was first proved by Beigel, Gasarch,
Gill and Owings [BGGO86]. We now give an exposition of this result.

We will begin by making the definition of cheatable somewhat more precise.

Definition. A set A is (n for k)—cheatable if there is an oracle machine M such that if M is given
inputs < ®1,...,2, > and an oracle for A, then with k or fewer queries to the oracle M determines
membership in A for each of xy,...,%y. If the oracle machine M runs in time that is polynomial in
| < 1,...,&, > |, then we will call A (n for k)-pcheatable.

Note that the queries that M asks in the course of deciding membership for 1, ..., z, are not
restricted to come from the set @1,...,2,. (In fact, the exact questions asked and the oracle to
which they are addressed turn out to be irrelevant for our purposes. The only feature that matters
is the number of questions that are asked.)® We will be primarily concerned with sets that are
(2% for k)-pcheatable for some fixed integer k. However, we will use the term p-cheatable when
the particular values of n and k& are not important or are obvious from the context.

Obviously, any set that is recursive is (n for k)-cheatable for all n and k. Similarly, any set
that is polynomially decidable is (n for k)-pcheatable for all n and k. So the interesting situation
arises when a set is not recursive (or not polynomially decidable) but is cheatable (or p-cheatable).

As stated above, we will show that all (2% for k)-pcheatable sets satisfy the hypotheses of
Theorem 1’ and hence are decidable. This result is originally due to Beigel et al. In fact, [BGGO-

87] gives a more subtle, more difficult, argument showing that all (2% for k)-cheatable sets are
decidable.

5. Beigel’s definition of p-cheatable sets (what we call (2% for k)-pcheatable) allows M access
to any fixed oracle. However, the definitions given by Amir and Gasarch for (2% — 1 for k)-
pcheatable sets require that A use A as the oracle. (These sets are called verbose by Amir and
Gasarch.)
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Theorem. Let A be any set. Suppose that there is a polynomial time oracle program M, an oracle
C, and an integer k such that for all input vectors < z1,Z3,...,ZTor >, there exists an m < k such
that with at most m queries to the oracle M4 decides membership with respect to A for more than
2k — 2k—m of the inputs. Then A satisfies the hypotheses of Theorem 1°.

Observation. If A is (2% for k)-pcheatable, then A satisfies the hypotheses of the above theorem.

Proof. We begin by considering the problem when £ = 1. Suppose that we have a set A, an
oracle C' and a polynomial time oracle program M that takes as input pairs < 2,z >. If for
every input pair < z1,22 >, MC asks at most one question of the oracle and outputs a vector
v =< 01,0 > withv;=1ifz; € A and v; = 0 if z; € A, then we claim that there is a polynomial
time algorithm for A that satisfies the hypotheses of Theorem 1. We will describe such an algorithm.

We begin by simulating M/ ° on the input pair < @1,z >. When/if M€ queries C about a
string ¢ we simulate M© on the two possible answers ¢ € C and ¢ ¢ C. This will produce two
possible output vectors v and v. If u; = v; = 1, then we know that z; € A and if u; = v; = 0 we
know that z; ¢ A. On the other hand, if u; # v; and us # vy, then we either know that z; € A
iff 25 ¢ A or that 1 € A iff 25 ¢ A. The values of u and v tell us which we know. For instance,
ifu=<0,0>and v =< 1,1 >, then we know that z; € A iff 2, € A4, but if u =< 0,1 > and
v =< 1,0 >, then we know that ; € S iff 23 ¢ A. The other two cases are the same.

Thus, after simulating M on input < 1,z >, we either know the answer to the membership
question for at least one of the inputs, or we know a relationship between the membership questions.
Notice that, if given more than two inputs, M could still determine their membership values with
a single oracle query, then the above algorithm would work even better. Tt would obtain more
information when comparing the output vectors u and v.

We now discuss an algorithm for the more general problem: &k > 2 and m < k. As before, we
simulate M“ on the input vector < 1,29, ...,291 >. If M makes m queries, then we will obtain
2™ possible output vectors. Each output vector contains more than 2% — 25~ zeros and ones and
some number of don’t knows. With this number of zeros and ones in each vector, we are guaranteed
that there is a subset of 2™ inputs that have an output value of zero or one in each output vector,
i.e., they are never assigned a don’t know value. We will henceforth consider only this subset of
inputs. Our remaining problem is solved by the proof of the following lemma.

Lemma. Given 2™ distinct boolean vectors each containing 2% values, m < k, either

(i) there is a subset of 2™ —2 variables such that if the answers to the membership questions for
these variables are known, then a relationship for the membership question for the last 2 variables
is known, e.g. [v; € S iffv; ¢ S], or

(ii) the answer to the membership question is known for at least one variable.

Proof. The idea is to show that there are 2™ — 2 z;’s that allow us to distinguish between all but
two of the possible output vectors. That is, if we knew the membership question for these 2™ - 2
inputs, then we could be assured that there are at most two possibilities for the values of all 2% of
the z;’s. In other words, there are at most two vectors,

Vi =< 11,09, ey tok > V5 =< jl,jz,..-,jzk >
that could be the output of M on input < 21,23, ...,29x >. Thus we are essentially back to the
situation that we had when & = 1.
Now to see that these 2™ — 2 2;’s exist we observe the following. Since each of the 2% output

vectors is assumed to be different, there must be an element z; such that its value in output
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vector vy differs from its value in v;. Therefore if we knew its real membership value we could rule
out one of these vectors as the output of M. Similarly, there must be an element z;, such that
knowing the real membership value for ¢;; and z;, would allow us to rule out two of vy, vy, and, vs
as possible outputs for M ¢. Continuing in this fashion we build up a set of 2™ —2 z,’s that allow us
to distinguish between the first 2 — 1 of the possible output vectors. More formally, the following
program builds a set X containing the necessary z;’s.

X=0
j=2
while | X| < 2™ — 2 do
let ¢ = minz; such that 2; ¢ X
and {z;} UX distinguishes vy, vy, ...,;
X — Xu{z};
J« Jj+1;0d
end.

Now assume that we know the real membership values for the z;’s in X. Then we can narrow
down the possible output vectors to one of the first 2™ — 1 vectors and perhaps the 2™th vector.
(The 2™th vector is possible only if it agrees with the known values, so we may assume that this is
the case). At this point we have two 2% element vectors that agree on 2™ — 2 values. Since k > m
we are back in the situation covered by our base case.

Thus the function f4 simply computes X and the function B does back-substitution to build
the relationship between the remaining two inputs. Since & is fixed and hence 2™ is bounded by a
constant, the simulation of M takes time polynomial in the runtime of MC. Thus, the algorithms
that we have described run in polynomial time if M runs in polynomial time. g

The previous result, and the stronger result of [BGGO86] that preceded it, showed that all
(2% for k)-pcheatable sets are decidable. But, as with arbitrary sets that satisfy the hypotheses
of Theorem 1, these sets can have arbitrarily high complexity, see [AG87]. In fact, we will prove
a much stronger result: we will show that for any deterministic time class Dtime(T(n)) there are
(n for 2)-pcheatable sets that are bi-immune with respect to Dtime(T(n)). This is in contrast to
the situation for (2 for 1)-pcheatable sets, which are easily shown to have polynomially decidable
subsets in either the set or its complement.

Recall that a set A is (n for k) — pcheatable (n and k fixed constants) if there is a polynomial
time oracle machine M such that if M is given inputs < zi,...,2, > and an oracle for A, then
with &k or fewer queries to the oracle, M determines membership in A for each of zq,...,z,. If n
can vary, that is, if the algorithm never makes more than k queries no mater how many inputs it
is given, then we say that A is &k — pcheatable.

Theorem. Let Dtime(T(n)) be any deterministic time class. There is a 2-pcheatable set A that
is bi-immune with respect to Dtime(T(n)). That is, neither A nor A has a Dtime(T(n)) decidable
subset.5

Proof. Let {M;};en be a canonical enumeration of total programs that contains all programs
that run in Dtime(T(n)) and let L(M;) = {2 : M;(z) = 1}. In addition, let f(n) be a monotonically
increasing function such that

6. Added in revision, July 1987. This theorem shows that a conjecture made in [Be86] is
false. Beigel has informed us that he too has realized this and proved a similar theorem, which is
presented in [Be87h].
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(i) f(n)is polynomially honest, that is, for all n the complexity of computing f(n) is polynomially
related to the length of f(n),

(i) f(n) bounds the summation of the runtimes of all programs M;, ¢ < n, on all inputs of
lengths less than or equal to f(n — 1), plus a little additional time to cover the overhead of the
simulation.

We will divide the strings in {0, 1}* into intervals I,, = (1/(»=1) 1/(")] using the lexicographic
ordering of the strings. At stage n in the construction all strings in I,, will be placed into either
A or A. The stages of the construction will perform a diagonalization argument to ensure that if
L(M;) is infinite, then it is not a subset of A or A.

Stage 0: Assume that Iy = {0,1}, let Iy C A and place M{ on the active lists for A and for A.

Stage n:

1) Place M, onto the active lists for A and for A.

2) Run all programs on the active lists on all inputs in the interval I,. Let no be the smallest
index of an active program such that My, (z) = 1 for some z € I, if such a program exits. If
M, is on the active list for A, then place I, into A, ensuring that L(M,,) € A, and remove
M, from A’s active list. Otherwise, place I, into A, ensuring that L(M,,) ¢ 4, and remove
My, from A’s active list. If no program M,, exists, place I, into A.

Bi-immunity: By induction, if L(My,) is infinite, then there is a pair of stages (n1,n2) such
that L(M,) contains elements in the intervals I,, and I,, and at these stages it is the smallest
active program to contain elements in the intervals. During the first of these stages we will have
ensured that L(J4,) is not a subset of A by placing I, into 4 and during the second will have
similarly ensured that L(M,) is not a subset of 4 by placing I, into A.

P-cheatability: We must give a polynomial time oracle algorithm that when given inputs
(21, ..., 201 ), k a variable, decides membership in A for each of the inputs and makes at most 2
queries to A.

Assume that the inputs are sorted lexicographically and consider the positions of the inputs
in the intervals used to construct A. Since f is polynomially honest, in polynomial time we can
determine the interval in which each z; is contained. Assume that they are contained in the intervals
Iy through I,. Notice that 25 is large enough that our entire diagonalization construction up
through interval I,,_5 can be recomputed in time polynomial in |z;x|. (This is because |zye| >
f(n—1) and f(n —1) was defined so that this would be true.) Therefore to decide membership for
all the z;’s in the intervals Iy, ..., I,_y we simply repeat the construction. To decide membership in
the intervals I,y and I, requires only 2 queries to the oracle, since the intervals are each entirely
contained within A or A. »

At this point it is interesting to recall the definition of semi-recursive sets given in Section
3. Because of the ordering structure present in semi-recursive sets, all semi-recursive sets are
(2% — 1 for k)-cheatable. Jockusch [J68] has shown that it is possible to construct semi-recursive
sets that are bi-immune and thus there are (28 ~1 for k)-cheatable sets that are bi-immune. (This
fact and some other results of Beigel, Gasarch and Owings, [BGO87], can be regarded as extensions
of Jockusch’s results.) If one is careful in reconstructing Jockusch’s proof one can in fact ensure
that the bi-immune semi-recursive set is p-cheatable and at the same time in P/poly, thus it is
decidable by polynomial size circuits.”

7. Added in revision, July 1987: In fact, with little additional work, one can guarantee that
the set constructed here will not only be not p-close, but not even recursively-close. A proof of this
will be contained in an upcoming technical report.
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We conclude with the questions: What type of partial ordering must exist on a p-cheatable
set? Can the p-cheatable sets be characterized by ordering structure?
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