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1. Abstract

In this paper we discuss the optimization of multiple-relation multiple-disjunct queries in a relational data-
base system. Since optimization techniques for conjunctive (single disjunct) queries in relational databases are
well known [Smith75, Wong76, Selinger79, Yao79, Youssefi79], the natural way to evaluate a multiple-disjunct
query was to execute each disjunct independently [Bernstein81, Kerschberg82]. However, evaluating each disjunct
independently may be very inefficient. In this paper, we develop methods that merge two or more disjuncts to form
a term. The advantage of merging disjuncts to form terms lies in the fact that each term can be evaluated with a
single scan of each relation that is present in the term. In addition, the number of times a join is performed will also
be reduced when two or more disjuncts are merged. The criteria for merging a set of disjuncts will be presented.
As we will see, the number of times each relation in the query is scanned will be equal to the number of terms.
Thus, minimizing the number of terms will minimize the number of scans for each relation. We will formulate the
problem of minimizing the number of scans as one of covering a merge graph by a minimum number of complete
merge graphs which are a restricted class of cartesian product graphs. In general, the problem of minimizing the
number of scans is NP-complete. We present polynomial time algorithms for special classes of merge graphs. We

also present a hueristic for general merge graphs.

Throughout this paper, we will assume that no relations have any indices on them and that we are only con-
cerned with reducing the number of scans for each relation present in the query. What about relations that have
indices on them? It turns out that our performance metric of reducing the number of scans is beneficial even in the
case that there are indices. In [Muralikrishna88] we demonstrate that when optimizing single-relation multiple-
disjunct queries, the cost (measured in terms of disk accesses) may be reduced if all the disjuncts are optimized
together rather than individually. Thus, our algorithm for minimizing the number of terms is also very beneficial in

cases where indices exist.

2. Background and Previous Work

Previously all query optimization research has concentrated on the optimization of conjunctive (single dis-
junct) queries only. In fact, even the optimization of conjunctive queries is known to be a hard problem [Chan-
dra77]). Tableaus [Aho79] have been used to represent a subset of relational calculus queries. These queries

involve only equality based selections, projections, natural-joins, and only AND connectors. Thus, tableau queries
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are a subset of conjunctive queries [Chandra77]. Most query optimizers start by transforming the user query into
some standard canonical form. This standard form is then rearranged/simplified into an equivalent but cheaper
expression. Two standard forms that have been used are the disjunctive normal form (DNF) and the conjunctive
normal form (CNF). Both Ingres [Wong76] and System R [Selinger79] seem to use CNF but do not explain how
they deal with queries that have ORs in their qualification list. All of their examples (as in other query optimization
papers) deal only with queries that have no ORs. As pointed out earlier, since the general optimization problem is
computationally intractable, cheaper expressions are obtained by applying heuristics. Single disjunct queries can be
augmented with additional selects using transitive rules [Youssefi79]. A series of projections can be combined into
a single projection and similarly a sequence of restrictions can be combined into a single restriction {Smith75].
Minimizing the sizes of intermediate results is achieved by perfopning selections and projections before joins and
cartesian products [Smith75, Wong76]. Experimental results [Youssefi79] have shown that performing selections
before joins is a very good heuristic. DNF has been used in [Bemstein81, Kerschberg82] to optimize and evaluate

the query disjuncts separately. An excellent survey of query optimization is presented in [Jarke84].

In this paper, we demonstrate that optimizing queries involving multiple disjuncts by optimizing each disjunct
separately can be very inefficient. Considerable savings in cost may be achieved by optimizing the disjuncts

together,

3. The Problem

) n
Definition: A term is an expression of the form' [1P;, n> 0, where each P, is either a join clause or a

i=1
boolean expression (in disjunctive normal form) of selection clauses on exactly one relation. 1
We will motivate the problem associated with optimizing each disjunct separately with a couple of examples.
Throughout this chapter, Si’ T., and Uk will denote single-relation selection clauses on the relations S, T, and U

J
respectively. J will denote a join clause.

To illustrate the effect of optimizing each disjunct separately, consider the following query with four dis-
juncts?:

SI'TI-J + Sl-T2'J + 82~T1'J + 82'T2'J (Example 1)

n
'[TP, is equivalent to Py AND Py AND ... AND Py,

i=1
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If the four disjuncts in this query were optimized and run separately, the S and the T relations would each be
scanned four times and the join J would be executed four times, each time with different inputs. On the other hand,
if the four disjuncts are transformed into the following term:

(S 14»82)-('1‘1+T2)~J
S and T will each be scanned once and J will be executed only once.
As another example, the query,
§;7+ Tyl +S5,T+ T,J (Example 2)
can be transformed to the equivalent query
(Sl+82)-J + (Tl+T2)-J
The effect of performing this transformation is to reduce the number of scans of both § and T from 4 to 2 and the

number of joins that must be executed from 4 to 2.

4. Covering by Complete Merge Graphs

In this section, we show how the problem of transforming a query in disjunctive normal form into a form that
minimizes the number of terms can be formulated in terms of covering a merge graph with a minimum number of
complete merge graphs. Each complete merge graph will correspond to a term in the result and vice-versa.

Definition: Given a query in disjunctive normal form, there is a one to one correspondence between the
vertices of the merge graph and the disjuncts in the query. An edge of color  is drawn between two vertices in the
merge graph if and only if the two vertices satisfy each of the following three conditions:

Condition 1: The two vertices (disjuncts) have selection clauses on the same set of relations.

Condition 2: The two vertices have the same set of join clauses.

Condition 3: The two vertices differ in the selection clauses of exactly one relation, namely relationy. [
A complete merge graph is defined in terms of a cartesian product graph that we will define first.

Definition: A cartesian product graph G = G1 X 62 is defined as follows: the vertex set V(G) is V(Gl)
X V(GZ) and (xl, x.z) -- (yl, y2) exists if and only ifx2 =Y, and XYy is an edge in Gl’ or Xy =y, and X5~y is
an edge in G2' |

Thus, if G = G1 X G2 X..X Gm, each pair (vl, s V), (wl, wm) of adjacent nodes in G differs on exactly one

Following standard boolean notation, we use *+’ to denote the boolean OR while *.* is used to denote the boolean AND.
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coordinate.

Definition: A complete merge graph G = G; x G2 x..xGp isa cartesian product graph where each
G, is a clique. 0
In drawing complete merge graphs, we will adopt the following convention: An edge in a complete merge graph
between two adjacent nodes, (vl, e V m) and (wl, wm), has color i where Vi EW, and is drawn parallel to the ith

coordinate axis.

Figure 1 illustrates the merge graphs for the two examples described in Section 3. By definition, the disjuncts
correspond to the vertices in the merge graphs. The dotted edges connect vertices that differ in selection clauses on
relation T only, while the solid edges connect vertices that differ in selection clauses of the S relation only. The
merge graph of Example 1 is also a complete merge graph, while the merge graph of Example 2 consists of two

complete merge graphs.

Figure 2 shows some examples of complete merge graphs and the corresponding terms. Figure 2(A) shows 5
one-dimensional complete merge graph for the query given by S1 + 82 + S3 +S 4 Figure 2(B) shows a two-
dimensional complete merge graph for the query given by Sl'T1 + ‘SI-T2 + SZ'T1 + SZ-T?_ + S3-T1 + S3-T2. Simi-
larly, Figure 2(C) shows a three-dimensional complete merge graph for the query with twelve disjuncts. The figures
show that the selection clauses of the various relations serve as coordinates in drawing merge graphs. Since all the

vertices in a connected component of a merge graph have the same set of join clauses, we choose to drop them from

ST S,T,J
; s, 5,
; i v Ty
$,T,J S,T,J
C T,
Merge Graph for Example 1. Merge Graph for Example 2.
(Single Component) (Two Components)

Figure 1
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the disjuncts whenever it is convenient to do so. Clearly there is a 1-1 correspondence between a term and a com-

n
plete merge graph. Given a term HPi, the corresponding complete merge graph is the cartesian product of the com-
tal

plete graphs Gi’ i=1L,nlf Pi =Py +Py+ - *+DPpp the vertex set of the corresponding Gi is (pl, Pgs s plP.I)'
1 1
Similarly, given a complete merge graph, we can obtain the corresponding term uniquely. For example, given the
complete merge graph (Sl’ 82, S3) X (Tl, TZ) (shown in Figure 2(B)), the corresponding unique term is (S1 + S2 +
S3)-(T1 + T2).
Thus, given an arbitrary set of disjuncts, the problem of minimizing the number of terms is equivalent to cov-

ering the vertices of the corresponding merge graph with a minimum number of complete merge graphs. A vertex is



said to be covered if it is part of at least one complete merge graph in the cover. A cover that consists of a minimum

number of complete merge graphs is called a minimum cover.

5. Covering by the Minimum Number of Complete Merge Graphs is NP-complete

The problem Pl' of finding a minimum cover of complete merge graphs in a merge graph is NP-complete. In
fact, this is true even when the corresponding set of disjuncts involve only two relations. The proof is simple
[Pruhs87]. We state problem P1 formally.

Instance: A two dimensional merge graph G’ = (V’, E’), positive integer K < [V’1.

Question: Are there k < K complete merge graphs that cover G™?

Theorem 1: Problem P; is NP-complete.

Proof: It is easy to see that P, is in NP, since a nondeterministic algorithm need only guess k complete
merge graphs and check in polynomial time that the merge graph is covered by them.
It is known that the problem P2, of covering a given bipartite graph with the minimum number of complete bipartite
subgraphs is NP-complete [Garey79]. We state problem P, formally.

Instance: Bipartite graph G = (X, E, Y), (V = X U Y), positive integer K < [EL

Question: Are there k < K subsets Vl’ V2, s Vi of V such that each V, induces a complete bipartite
subgraph of G and such that for each edge x--y € E there is some Vi that contains both x and y?
We will polynomially reduce an instance of problem P,toan instance of problem P, as follows:
For every edge x--y in G, associate a disjunct (x’, y*) in the two dimensional merge graph, G’. Therefore, we have

El=IV'l

We now claim that G can be covered with k < K complete bipartite subgraphs if and only if G’ can be covered with
k complete merge graphs. By the reduction, every point in the merge graph corresponds to an edge in the bipartite
graph and vice-versa. Therefore, with every complete bipartite subgraph, (Xi, Ei’ Yi) in G, we can associate the

complete merge graph X°; x Y’;in G’inal-1fashion. O

In the following sections, we will develop polynomial time algorithms for special classes of merge graphs.

We present a heuristic for general merge graphs in Section 6.
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5.1. A Quadratic Algorithm for Simple Merge Graphs

We begin this section with a couple of definitions.
Definition: A corner vertex cv in a merge graph G is a vertex such that all edges incident on cv are
part of one complete merge graph H. We say that H is rooted at cv and denote it by Hev. [
Definition: A merge graph G is said to be simple if V(G) = V(Hcv 1) U V(Hcvz) Vo U
V(Hcvn). O

We will show that we can cover a simple merge graph Gs with a minimum number of complete merge graphs
in O(V(G %) time.
Definition: The dimension of a vertex v, denoted by dim(v), is equal to the number of distinct colors of
the edges incidentonv. (O
Definition: The degree_vector of a vertex v, denoted by deg_vec(v), is given by: deg_vec(v) = (n;, n,,

e ) where k = dim(v), n, is the number of edges with color i incidentonv,i=1, ..k 0O

Finding if a vertex v (dim (v) = k, deg_vec(v) = ("1' Ny, .o "k)) is a comer vertex can be done in O(IV(G S)I) time.
The vertices of a complete merge graph, rooted at v, form a rectilinearly oriented, complete k-dimensional grid.
The coordinate of each vertex in this grid can be represented as a k-tuple. Each component of this k-tuple is the set
of selection clauses on a particular relation. The number of vertices adjacent to v is (n1 +hy+ o+ "k) < IV(GS)I.
By inspecting the components of the coordinates of the vertices adjacent? to v, we can deduce the coordinates of the
remaining ve;'ﬁces that must be present in the merge graph in order for v to be a corner vertex. This can be done in
O((n1 + 0y + .. "k) < IV(GS)I) time. We now need to check if the remaining (n1 * n, * L “k) vertices are
present in the merge graph. Either (n1 * n, L “k) < !V(GS)I or (nl * n, * Lk "k) > V(G S)I. In the latter case
we know that there is no complete merge graph rooted at v. Checking for the existence of a vertex with a given
coordinate can, in practice, be done in O(1) time by hashing on the coordinate. Only if all the (n1 * n, * . *nk)
vertices exist, then is v a corner vertex. For example, in Figure 2(B), if the input vertex was Sl-Tl, we know that its
adjacent vertices are Sz-T1 and S3'T1 along the edges with label S and SI'T2 along the edge with label T. Thus the
S-components of the coordinates of the SZ-T1 vertex and the 83'T1 vertex are 82 and S3 respectively. Similarly,

the T component of the Sl-T2 vertex is TZ' Now all we need to do is to check the presence of vertices with labels

¥The merge graph is stored as adjacency lists.



8-

S5°T, and S3°T,.

We now present the O(V(G s)lz) time algorithm for covering a simple merge graph with the minimum number
of complete merge graphs.
Input: A simple merge graph Gs‘

Output: The (minimum number of) complete merge graphs that cover G s

Algorithm A
V_I = @; /* V_I represents the set of Vertices that have been included in a complete merge graph */
while (comner vertices remain in (V - V_])) do
begin
Step 1: Find a corner vertex cv such thatcve (V- V_I).
Step 2: Find the complete merge graph Hcv rooted atcv. V_I=V_Iu V(Hcv).
end while
End Algorithm A

For reasons of efficiency, we will always search the vertices of a merge graph for a corner vertex in order of
increasing degree. The proof of correctness of Algorithm A is presented in the following theorem.
Theorem 2: At the end of Algorithm A, V_I =V, and Algorithm A produces the minimum cover.
Proof: The proof is simple and is based on the following two observations:
1. Every comner vertex belongs to one and only one complete merge graph.

2. Two corner vertices with different corresponding complete merge graphs cannot simultaneously be part of any
one particular complete merge graph.

The first observation follows directly from the definition of a corner vertex. All the edges adjacent to a corner
vertex belong to the complete merge graph rooted at that corner vertex. Therefore, every comer vertex can belong

to one and only one complete merge graph.

We will prove the second observation by contradiction. Assume that the two different complete merge graphs
are Hev, and Hcv2. Assume that cvy and Cv,, are part of a third complete merge graph Hcv3. By the first observa-
tion, cv, can belong to only one complete merge graph. This implies that Hevy is identical to Hcv3. Similarly,

Hcv2 is identical to Hcv3. Therefore Hcv1 is the same as Hcv2.

The number of complete merge graphs in the minimum cover is equal to the number of iterations of the while
loop in Algorithm A. This is because at each iteration exactly one complete merge graph is obtained. Hence the

theorem. O
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C, we have cv, € Vl X V2 X..X (Vk - Wk) X Vk s XX Vn. Assume that there is more than one edge incident
on v. Delete_Edge(ei) is true for every edge of the form e, = V--Cv, as it will be adjacent to edge V-vy, vy €
V(Hcvz) such that color(v--cvz) = color(v--vl) =k If vy ¢ V(Hcvz), then edge v-CY, and edge v--v, cannot be
edges of the same chordless four cycle as this will contradict the fact that vy is a corner vertex. Thus, all vertices
in V1 X V2 X . X (Vk- Wk) X Vk 41 XX Vn that were comer vertices before will remain corner vertices. The
complete merge graph, H’cvz, rooted at vy is given by Vl X V2 X..X (Vk - Wk) X Vk s X X Vn‘ Clearly,
V(Hcvl) U V(Hcv2) = V(Hcvl) v V(H’cvz).

Case2:LetT= [k, m,..}. Wi c Vi' ie T, Wj = Vj,j ¢ T.

In other words, more than one W is a proper subset of the corresponding V. Consider v € C. There exist edges C

€m ¢ E(Hcvl) such that ey = V-V Vg € V1 X V2 X..X (Vk- Wk) b ¢ Vk+1 X..X Vn' and mn=V"Vm Ym € Vl X

ml
V2 X.x(V m- Wm) X Vm s XX Vn‘ Clearly, edges & and e, are the adjacent edges of a chordless four cycle
as they belong to the complete merge graph, rooted at Cvy. In this case, none of the vertices in Hcv2 will be deleted
and CVsy will still be a corner vertex. The complete merge graph, H’cvz, is the same as Hcvz. Again, V(Hcvl) U

V(Hcvz) = V(Hcvl) U V(H'ev,y). O

The above theorem applies to any pair of ‘intersecting’ complete merge graphs that are in turn embedded in a
larger merge graph. We now present an augmented version of Algorithm A which we will call Algorithm B. Algo-
rithm B removes qualifying edges and vertices.

Input: A merge graph G.

Output: A set of complete merge graphs that cover a subset of V(G).

Algorithm B
V_I1=@; Orig_vertex_set=V;
while(corner vertices remain in (V - V_D))do
begin
Step 1: Find a comer vertex CV,CVy € (V-V_D. *If dim(v) = 1, v is a corner vertex by definition. */
Step 2: Find the complete merge graph Hev, rooted at cvy LV_I=V_Iu V(Hcvl)
Step 3: Delete edge e = v--u if Delete Edgeze) is true, v e V(Hcvl)
Step 4: Delete v e V(Hcv,) if Delete_Vertex(v) is true’.
Step 5: Undelete all edges v b (v ' Vp € V(Hcv 1)) such that Undelete_Edge (Y vb) is true.
end while
End Algorithm B

Mis poss:ble that G may have broken up into more than one component after step 4. This can happen if more than one vertex of Hev is
an articulation point of G. If G has more than one component, each component must be dealt with individually.
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Step 5 has been introduced strictly for reasons of correctness. We will elaborate on this point at the end of the

section.

If, at the end of the algorithm, V_I = Orig_vertex_set, by Theorems 2 and 3, we know that the algorithm has

produced the optimal number of terms.

A note on the complexity of Algorithm B. Steps 1 and 2 are identical in algorithms A and B. Step 3, the step
with the greatest time complexity, determines if an edge is part of a chordless four cycle. Checking if two adjacent
edges are part of a chordless four cycle can be done in O(1) time (by hashing) by checking for the presence of the
fourth vertex. A given edge is adjacent to at most [E(G)! - 1 edges of the merge graph. Thus, the time complexity of
Step 3 in Algorithm B is O(IE(G)IZ). The number of times the while loop is executed is at most O(IV(G)I). There-
fore, the time complexity of Algorithm B is O(V(G)I * lE(G)Iz). .

We will conclude this section with an example that illustrates the operation of Algorithm B. ,

Example: Consider the merge graph shown in Figure 4(A). Each vertex in the merge graph represents
the disjunct that is a product of its coordinates. For example, vertex 1 denotes the disjunct SlT‘,'U1 while vertex 12
denotes SZT1U2‘ There are a total of four corner vertices in the merge graph. They are (1, 10, 11, 12}. Assuming
cvy = 10, we can see that the set of vertices in the complete merge graph HIO is=(4,5,7,8,9, 10}. The vertices in
V(H10> can be merged into the single term (SZ+S3)-(TI+T2+T3)-U1. Notice that H10 intersects with H11 as
described in case 1 (in the proof) while HlO intersects with H1 as described in case 2. The set of edges adjacent to
vertices in V(Hlo) isE; = (4-2, 4--3, 4--5, 4--7, 4--9, 4--i1, 5--3, 5--8, 5--10, 7--2, 7--6, 7--8, 7--9, 8--6, 8--10, 9-
-2, 9--10, 9--12}. Figure 4(B) shows the merge graph after the edges in E(Hw) have been deleted. We calculate
dim’(v) for v € V(H,p). We find dim’(10) = 0; dim’(5) = dim’(8) = 1; dim’(9) = dim’(7) = 2; dim’(4) = 3. We
remove vertices 5, 8, 10 and the incident edges 3--5, 6--8. The set of edges adjacent to vertices in V(H 10) is now E
= {4--2, 4--3, 4--11, 7--2, 7--6, 9--2, 9--12}. Of these, edges 4--11, 9--12, and 9--2 can be removed as they are not
part of any chordless four cycle. Since vertices 4 and 7 are not removed, we put back edge 4--7. Figure 4(C) shows

the 2 component merge graph at this stage. Notice that vertices 1, 11, and 12 are still corner vertices.
In the next two iterations, H, and H, ; will be found. The algorithm terminates after the third iteration. ~ [J

We pointed out earlier that Step 5 was introduced strictly for reasons of correctness. Step 5 caused edge 4--7
to be put back into the merge graph in the above example. By definition of a complete merge graph, H; would not

be a complete merge graph without the edge 4--7. However, as described in section 3.6, we would still have been




9.

5.2. An Improved Algorithm for a Larger Class of Merge Graphs

Algorithm A assumes that a comer vertex would be found at every iteration and works optima.lly only for sim-
ple merge graphs. Figure 3(A) shows a merge graph G that is not simple. Vertices 7 and 8 are the only corner ver-
tices* in G and V(H7) U VG{8) # V(G). After finding corner vertex 7, if we had removed the vertices of the
corresponding complete merge graph and edges adjacent to them, both vertices 1 and 4 would have become corner
vertices. However, in general, after finding a corner vertex, we cannot remove all the vertices in the corresponding
complete merge graph along with the adjacent edges without affecting the optimality of the result. The merge graph
in Figure 3(B) can be reduced to two terms, viz., (S1 + 82)'(’I'1 + Tz)'U1 and SZ'TZ'UZ. On the other hand, if ver-
tex S is identified first as a corner vertex and we remove vertices 3 and 5, we would finally get three result terms,
viz., SZ-TZ-(U 1+ Uz), (S1 + 82)-T1-U1, and Sl-Tz-Ul. Clearly, that would not be optimal.

Let Hcv1 be a complete merge graph that was identified in some iteration of Algorithm A. Before proceeding
to the next iteration, we would like to:

(1) Remove certain qualifying edges in EE = [e=v--ulve V(Hcvl)} , and

(2) Remove certain qualifying vertices from V(Hcvl).

$3T,Y;
)]
S,T,U _ S.T.U
1111 > STYy
1@ @)
| $1T1Y, S2T1U
! R @ !
| g g
P @ 8% : :
5{TyUp, | : 5
| | s
: L@ @ |
$;T,U, . 6 5, S.T.U $,T,U; N\ iZTZUl
- / 2°272 N
® AN
$4T,U,
5TV (5
(A) (B)
Figure 3

*Vertex 4 would have been a comer vertex if the disjunct SZ'TI’UZ was in the query. Similarly, vertex 3 would have been a corner vertex
if the disjuncts Sl'Tz'U1 and S._,"TZ"U1 were in the query.
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Therefore, we need some criteria that must be met by the qualifying edges and vertices before they can be deleted.
The criteria must ensure that the optimality of the result is not affected after qualifying edges and vertices are
deleted. We must ensure that every vertex that was a corner before isolating Hcv1 remains a corner vertex after
removing the qualifying edges and vertices. We will first present the criteria and then an algorithm that we will call
Algorithm B. The class of merge graphs for which Algorithm B will work optimally is the class of merge graphs in
which a comer vertex will be found at every iteration after qualifying edges and vertices are removed. This class

includes the class of simple merge graphs.

Let Hev,y be a complete merge graph identified at some iteration. Let Hcv2 =V xVyx..x V,, be some
other complete merge graph such that C = V(Hcv 1) N V(Hcvz) is a non-empty set. The subgraph induced by the
vertices of C, denoted by G[C], is a complete merge graph. This is because complete merge graphs are cartesian
product graphs and the intersection of two or more cartesian product graphs is also a cartesian product graph. G[C]
=W, x W, x... x W, where W, < V;,i= 1,n. We define three boolean functions Delete_Edge(e): E —> {false,
true}, Delete_Vertex(v): V(Hcvl) --> {false, true}, and Undelete_Edge(va, vb): V(Hcvl) x V(Hcvl) --> [false,
true} which are true only in the following cases:

Forve V(Hcv 1) and e = v--u,
Ifee E(Hcvl), Delete_Edge(e) is true.
If e ¢ E(Hcv,), then Delete_Edge(e) is true if and only if there is no edge e’ adjacent to v, €' ¢ E(Hcv,),
such that e and ¢’ are the adjacent edges of the same chordless four cycle. Clearly the adjacent edges o} a

chordless four cycle will be of different colors.

Delete_Vertex(v) is true if Delete_Edge(e) is true for every edge e adjacent to v. Clearly, Delete_Vertex(v)
is true if dim’(v) £ 1. dim’(v) is calculated using edges that do not belong to E(Hcvl).

Undelete_Edge(v_, vb) is true if Delete_Vertex(v_) and Delete_Vertex(v, ) are both false, where v_, v, €
V(Hev,) a a b a'b
1 .

Theorem 3: Let Hcvl and Hcv2 be two complete merge graphs as described above. After

(1) removing all edges e such that Delete_Edge(e),
(2) removing all vertices v such that Delete_Vertex(v), and
(3) undeleting (putting back) all edges Va«Vp such that Undelete_Edge (v a2 vb)

vy will still be a comer vertex of a complete merge graph H’cv2 and V(Hcvl) U] V(Hcvz) = V(Hev ) v V(H'cv,).
Proof: All edges in E(Hcv 1) are first dropped. We divide the proof into two cases:

Case 1: W, c V, for somek, 1 skSn;Wj=Vj,j¢k, 1<j<n.

Consider v € C. Every edge adjacent to v ¢ E(Hcvl) as edges in E(Hcvl) have already been removed. Since cv, ¢
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able to recognize that vertex 1 is a comner vertex because the edges adjacent to vertex 1 were not removed. In order
to determine if a set of vertices are the vertices of a complete merge graph rooted at a given vertex v, our algorithm
requires that only thocs edges adjacent to v be present along with all the vertices of the complete merge graph. The
presence of the edges that are not adjacent to a corner vertex but that belong to the corresponding complete merge

graph need not be present for finding all the vertices of the complete merge graph and the associated term.

6. Maximum and Maximal Merge Graphs

Algorithm B assumed that a corner vertex would be found at every iteration. Unfortunately, it is easy to find
merge graphs that have no comner vertices. Figure 5 shows an example of a merge graph with no corner vertex that
can be covered optimally with six complete merge graphs as shown. In the absence of comer vertices, it seems
natural to start by finding a maximum merge graph rooted at some vertex.

Definition: Let E be the edges adjacent to a vertex v. A maximum (maximal) merge graph H’ = (V*,
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E’) rooted at a vertex v, E’ ¢ E, is defined to be a complete merge graph rooted at v such that the set of the vertices,
V’, of the complete merge graph form a maximum (maximal®) set. O
However, finding a maximum merge graph rooted at a vertex is NP-complete. In fact, the problem P; of finding a
maximum merge graph rooted at any vertex in the (2-dimensional) merge graph is NP-complete. Formally, the
problem P, may be stated as follows:

Instance: Given a two dimensional merge graph G’ = (V’, E’) and a positive integer M = K*K < V'L,

Question: Is there a complete merge graph with > M vertices in the given merge graph?

Theorem 4: Problem P1 is NP-complete.

Proof: Clearly P, is in NP, as a nondeterministic algorithm need only pick m 2 M vertices and verify in

polynomial time that these m vertices form a complete merge graph. The rest of the proof that P, is NP-complete

#The set of vertices in V' form a maximal set if no more vertices in the merge graph can be added to V” to find another complete merge
graph. A maximum set is the largest maximal set.
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involves two reductions and is presented below. We start with the following NP-complete problem in [Garey79].

Instance: Graph G = (V, E), positive integer K < IV,

Question: Does G contain a clique of size K or more, i.e., a subset V' ¢ V with [V’ 2K such that every
two vertices in V’ are joined by an edge in E?

We polynomially reduce G to a bipartite graph B(V 1 EB, V2) as follows:
(1) For every vertexiin V, introduce two vertices ije V,and 12 € V,, and the corresponding edge il--i,2 € Eg.
(2) For every edge i--j € E, add edges il"jZ' i2--jl € EB’

We now claim that G has a clique of size = K if and only if B has a complete bipartite subgraph of order
> K induced by the vertex partitions V’1 <V, and V’2 c V2 where lV’ll = lV’2I 2 K. By the reduction, a clique of
size k in G results in a complete bipartite subgraph of order k in B. This is because, there is a one to one correspon-
dence between a clique in G and a complete bipartite graph in B.

The other-polynomial reduction consists of reducing an instance of a bipartite graph B to a merge graph G’ (as
shown in Section 5). By this reduction we have [Egl =IV’l. Therefore, B has a complete bipartite subgraph of order
> K if and only if the merge graph has in it a complete merge graph with 2 K*K number of vertices. This is because

there is a 1-1 correspondence between anedge in BandavertexinG’. 0O

Unfortunately, finding a maximum merge graph rooted at a vertex does not guarantee an optimal solution. As
an example consider the merge graph in three dimensions with 12 vertices shown in Figure 5. The optimal solution
consists of a cover with six complete merge graphs as shown. There are no chordless four cycles in this merge
graph. Vertex 2 has three edges incident on it, each of which is a maximum merge graph. If we staﬁ with edge 2--3
as the first complete merge graph, Algorithm B will yield a cover that consists of seven complete merge graphs.

However, if we start either with edge 2--12 or 2--1, Algorithm B will yield an optimal cover.

Since the problem of finding a maximum merge graph is NP-complete, and does not necessarily lead to an
optimal solution, we propose the following heuristic:
In the absence of comer vertices in step 1 of Algorithm B, choose a maximal merge graph rooted at a vertex

of minimum dimension. If two or more vertices have the minimum dimension, find a maximal merge graph
rooted at a vertex with the smallest degree.

The complexity of finding a maximal merge graph, rooted at a vertex v (in a merge graph G), with
degree_vector(v) = (nl, Ny, . “k) is O((n1 * n, * L "k»' At the present time, we have not been able to derive

any analytical bound on the performance of the heuristic. However, it is very likely that after a maximal merge
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graph has been found, and the qualifying vertices and edges in this maximal merge graph have been removed, there
will be corner vertices in the subsequent iterations. On small examples, we have found that the heuristic gives a
solution that is close to the optimal solution. As discussed above, the heuristic performs optimaily for the merge
graph in Figure 5. It seems difficult to be able to derive quantitatively how well the heuristic performs in general.
The proof of NP-completeness for the problem of finding a minimum cover (in 2-dimensions) shows that the prob-
lem is equivalent to covering the edges of an arbitrary bipartite graph with complete bipartite graphs. There seem to
be no good approximation algorithms in literature for the latter problem. Empirical methods for judging the quality
of the heuristic also seem infeasible. Consider for example that we generate all possible merge graphs in three

dimensions, with four vertices in each direction. The number of such complete merge graphs is equal to 24*4*4 =

2%,
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