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ABSTRACT

Full openness is desirable to allow applications to obtain their specific service needs and
implement particular semantics. In a fully open system any application can choose, add, replace,
and extend services as well as resources. However, in a multiuser environment protection considera-
tions impose constraints on openness. Enforcing protection may reduce sharing, entail execution
overhead, or increase programming complexity. This dissertation studies how a fully open comput-
ing system can be constructed for a multiuser environment and explores the aspects of openness.

We investigate these issues at three levels of abstraction: model, design, and implementation.
The dissertation defines a model of a fully open multiprocessor computing system, describes a
specific design based on the model, and examines various techniques by which that design can be
implemented. Our s{udy provides insights into the extent of openness and into the interplay between
openness, protection, efficiency, and complexity.

The model, called the FOCS model, identifies a minimal set of mandatory services required
by considerations of protection and sharing. The role of the operating system is then defined as pro-
viding only these services. All other services can be provided by any application. The model offers
a novel view of resource management, based on the notion of resource ownership. Applications
own private and shared resources and provide the policies as well as the mechanisms for using them.
The protection mechanism of the model employs the concepts of encapsulation, ownership, and
light-weight capabilities. The model introduces the notion of activities, which are threads of con-
trol that represcnt computations across multiple address spaces.

At the design level we explore the mechanisms needed to support protected openness and
examine their efficiency and complexity. The design elaborates on the issues of processor and
memory management, accounting, naming, and language support. Based on the examination of
implementation techniques, we conclude that a fully open computing system can be implemented
with contemporary technology. Our initial analysis suggests that the execution overhead of such a
system would not be large and that programming complexity would be comparable to that in con-
ventional systems.



vili

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Miron Livny, for his assistance during this
research. I am indebted to him for his encouragement and countless suggestions. His critical read-
ing and persistence on the details have greatly improved the thesis.

I feel grateful to my committee members, Marvin Solomon, Mike Carey, Jim Goodman, and
Rafi Lazimi. Marv and my former advisor, Raphael Finkel, were endless sources of ideas and
inspiration. Their astute thinking and clarity of communication are admirable. Special thanks go to
Mike for being always willing to discuss databases and to contribute smart advice. My thanks to Jim
and Rafi for participating in my committee.

I want to acknowledge many people that made my stay in the departinent pleasant, and in par-
ticular Sheryl who was always eager to give a hand or lend a smile; Lorene for her help and for
enriching my son’s stamp collection; Bob for taking care of the department; Paul, Scott and the “lab
rats” for trying their best to make my workstation cooperative.

I enjoyed having many good friends during my five years in Madison, and all deserve special
acknowledgements. In particular, my partner in several projects and offices Henry Chang; former
officemates Hari, Prasun, Kishore, Erez, and Cui-Qing Yang, and to current officemates Phil, Henry,
and Sam for occasionally lending a listening ear but always distracting my thesis work with enjoy-
able discussions (life beyond computers); P.B. Schecter and Dave Kamowitz who shared my Israeli
jokes; Tony Rich for his enthusiastic effort to “Englishize” this dissertation; class mates Matt, Giri,
Rajiv, Suhas, Bob, Mary and many more; Betty and Chet for being our hosts in the first year in
Madison; Irene of the office for foreign students for helping foreigners feel at home; and the Chabad
House friends for being the best family away from home—especially Jenny for trying to cheer me up
by letting me win at Ping-Pong.

But most of all I thank my family for all your lpove and support: Paulette for your endless
efforts to keep my little nest abroad intact Ariel and Serge for being such great buddies; my in-laws
Claire, Claude, Lolo and Simon for your continuous encouragement; Tzippi for your immense moral
support, and my parents, Masha and Yechiel Landesman, for instilling in me the desire to always do
the best I can.

Finally, my children Avishay and Elinor deserve special thanks for being so considerate and
understanding. Light the light back kids, I'm home on a full-time dad position. There are no words
I can use to express my thanks to my wife, Chantal. Thanks for tolerating Eagle Heights for five 1-
0-n-g years, for assuming extra burdens at home, for putting up with all the hardship of poor-
student’s salary, and for being a great partner.




Chapter 1

Introduction

Imagine you have just completed the design of a next-generation, general-purpose operating system
(OS). You have thoroughly examined the needs of its prospective applications and carefully crafted
the services to support them. The inevitable question is that of how soon designers of databases,
programming languages, and other applications will complain about missing features or inadequate
facilities in the new OS. This phenomenon is a symptom of two problems designers of general-
purpose OS’s face: First, they cannot predict at design time the service needs of all potential applica-
tions. During the lifetime of an OS the needs of its users change as new applications emerge.
Second, the designers cannot satis{y all needs. Needs may conflict, so satisfying the needs of one

application may prevent satisfying those of another application, or impose unbearable overheads on
the latter.

These problems were observed in many different environments [94, 113, 125]. As the follow-
ing cases demonstrate, OS services considered “generally adequate” fail to support the needs of cer-
tain applications. Buffering services provided by the OS simplify programming, but are very
inefficient for applications, such as a database management system (DBMS), that require particular
allocation and replacement policies [36,37, 125]. If the DBMS implements its own buffer manage-
ment services, then it may suffer large overhead due to redundant buffering in the OS and the
memory-replacement policy of the OS [94,125]. Interprocess communication (IPC) services
designed to support diverse communication paradigms [15] may impose undesirable semantics on a
distributed programming language with particular features [112]. Another general IPC mechan-
ism [107] has become inefficient and insufficient for an application of multiple, tightly-coupled
processes [121,122]. Because of the protection measures employed by the mechanism, it cannot
support the specific semantics of memory sharing and the efficient address-domain crossing required
by that application. Scheduling services in a time-sharing environment relieve applications from the
complexity of CPU time allocation, but are inadequate for real-time applications. If a real-time
application has to run in such an environment, these requirements necessitate adding redundant and
complex mechanisms to the OS [57]. These mechanisms, in turn, incur execution overhead and may
obstruct real-time scheduling requirements. Moreover, while an OS usually supports one model of
communication, a real-time application may require that several models are efficiently accommo-
dated, and that they can be chosen dynamically [111]. Resource-management services of the OS
provide a virtual, higher-level view of the hardware, and thus simplify programming; however, they
are inadequate for an extendible DBMS which requires direct access to disks for reasons of
efficiency and correct placement of objects [24]. Furthermore, testing a new device driver above the
service interface of an OS is a complex, costly, and rarely correct task [139]. Finally, a rigid file
structure imposed by the OS can restrain the applicability of a user-friendly interface that requires a
different file organization [117].



The failure of these general-purpose services to support specific needs is inherent to their gen-
erality — they cannot adjust to each application’s needs. Hence they inflict excessive overhead or
unwanted semantics on some applications. To overcome this problem, services should be adaptable.
We believe that in order to support adaptability, the OS should be restructable and extensible. In
addition, it should facilitate sharing of resources and services between applications. An ideal OS
would support adaptability dynamically, in a protected way, and without incurring extra overheads.
To support dynamic adaptability, an OS should be open to its users, letting them choose, add,
replace, and extend OS services and resources. An open system will be ideal if protected openness is
accommodated efficiently. One may argue that the failure of general-purpose services can be over-
come by having multiple application-tailored OS’s. This alternative is less plausible. It does not
support sharing; providing a full-scale OS for each application is costly.

The open system approach has the promise to solve the design problems mentioned earlier: It
lifts the burdens of foreseeing the needs of all potential applications, and of identifying an optimal
set of services. Yet openness is constrained by considerations of protection and efficiency. In this
dissertation we investigate the interplay between openness, protection, efficiency, and complexity in
a multiuser environment. Through an elaborate description of a fully open computing system we
expose the problems of openness and examine potential solutions. Our thesis is that such a system is
amenable to applications’ needs, it is viable, and it can be implemented by employing features of
contemporary technology.

1.1. Open vs. Closed Systems

The open system approach can be better defined by comparing it with the closed system
approach. In the latter approach the OS owns all physical resources and provides mandatory services
for using them. The service interface of the OS cannot be changed or bypassed by applications. An
application, for instance, cannot own a CPU or dictate its allocation. It cannot access a disk directly
without using intermediary OS services. The service interface can be at a high or low level.

In a closed system with a high-level service interface, the OS provides ample functionally rich
services. It offers applications the convenience of having a virtual view of resources. As shown in
Figure 1a, applications are “small” (or “simple”), since the system provides most of the services they
need. This approach, however, has several severe drawbacks. It inflicts on OS designers and imple-
mentors a heavy burden of continuously extending and modifying services to accommodate new
needs. Some modifications are often impossible because they conflict with existing services. More-
over, in an all-if-anything service-provision style, each application pays a performance penalty for
all features, including those it does not want. As we learned from the design of a flexible IPC
mechanism [16, 53], adding features to enhance generality increases the OS complexity and execu-
tion overhead, and still falls short of satisfying all users.

In a closed system with a low-level service interface, the OS provides a reduced set of ser-
vices, as depicted in Figure 1b. Since applications supplement most of the necessary services, they
can presumably satisfy their needs. For instance, an application can efficiently access the physical
resources. However, writing applications in such a system is more complex, and might be unbear-
able for many users. Application-level user interfaces (see Figures la and 1b) can mitigate only
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Figure 1: The Operating System in Various Approaches
(a) Closed OS with a high-level service interface; (b) Closed OS with a low-level service interface;
(c) Open OS with a low- to high-level service interface.

some of the programming complexity. Furthermore, since the OS does not support sharing of ser-

vices between applications, this approach imposes a large programming overhead on each applica-
tion writer.

An open OS tries to combine the benefits of these two variations of the closed-system
approach, as shown in Figure 1c. It provides a low-level, mandatory service interface, which offers
efficient access to resources and the ability to implement customized services. The OS allows appli-
cations to construct different, higher-level service interfaces. These interfaces are modular, and thus
can be selected or bypassed by applications.



1.2. Full Openness

How open should a system be? In order to achieve maximal adaptability, a system should be
open to all applications. Any application should be able to select services or resources in all
domains, including the IPC, processor and memory management service domains. We refer to such
a system as fully open.

Full openness raises the following intriguing and intricate problems.

(1) How is openness achieved? Specifically, how is the system structured, what are the con-
structs that represent resources and services, and what are the primitives that accommodate
dynamic customization? One aspect of this problem is whether openness requires the support
of a particular computer architecture. Another aspect is the extent to which service domains
can be selected independently of each other while being shared by different applications. In
most systems IPC, processor and memory management are tightly coupled, so selecting a ser-
vice in one domain dictates using particular services in other domains.

(2) How much does protection constrain openness? A multiuser environment dictates that
resources are protected from being improperly used, and that users are protected from each
other. Therefore, some services must be retained in the secure domain of the OS, and some
restrictions must be imposed on users. These services should also assist applications in imple-
menting their own protection mechanisms. Previous research in operating systems has not
established the desired minimal set of such services and restrictions.

(3) To what extent does protected openness conflict with efficiency or simplicity?
Specifically, what are the tradeoffs betwcen these aspects? Can efficiency be improved
through architectural support, without requiring an overly complex architecture? Do protec-
tion restrictions imply a complex programming style?

1.3. Research Overview

The goal of this research is to investigate the interplay between openness and the constraining
aspects of protection, efficiency, and complexity. The interplay is studied in a multiuser environ-
ment in which the protection of both shared and private resources has to be addressed. The aspects
of efficiency that are examined include execution and resource allocation efficiency. Complexity
includes the aspects of programming and computer architecture.

The research method chosen is to experiment with a fully open computing system (FOCS)
defined at three levels of abstraction. We have developed a model of a fully open computing system
called the FOCS model. The model defines the system components and their interrelationship. It
has been used to design a fully open OS for a multiprocessor system. Following the design phase,
we have examined techniques to implement a FOCS.

Each of these stages of refinement contributed to our understanding of the problems and pro-
vided a framework to evaluate solutions at diffcrent levels of detail. The model helped us study how
to support the required functionality. The design stage and the examination of implementation tech-
niques provided insights into the potential performance of a FOCS. We found that the modeling
process was instrumental in exposing many obstacles to achieving full openness, and it shed light on
dependencies between the components of a FOCS. The design was useful in experimenting with




concrete solutions to these problems, and in evaluating their implied efficiency and complexity. The
implementation study has shown the practicality of a FOCS. It has illuminated the architectural
complexity and execution efficiency attained in such a system.

1.4. Lessons from Related Work

A new model was necessary since no other model or OS design supports openness to its ulti-
mate extent. Several models, such as the object [68], client—server, and virtual machine models [59],
as well as many systems motivated by them [14,19,41,54,85,107,115] open up high-level services
or virtual resources to applications. Some support construction of virtual OS’s. Others allow appli-
cations to partially direct the policies of the OS. However, none of them enables general users to
manage shared physical resources or provide low-level services. Most services for IPC, processor
and memory management in these systems are provided by irreplaceable OS components. A few
single-user systems [80, 108, 129] open OS policies and mechanisms to the user, but they ignore
aspects of protection and sharing that are important in a multiuser environment. Therefore, these
models and systems cannot provide a framework for exploring the aspects of openness in a multiuser
environment.

Moreover, we have not identified a simple way to extend any of these models to define a
FOCS without altering its major features. In some cases, the desired notions, such as letting any
application directly access physical resources and provide allocation policies, conflict with the philo-
sophy of the model [63, 68]. Some systems isolate their entities from each other and impose protec-
tion barriers, which in turn imply high communication costs [66, 99, 140, 144]. As a result, opening
low-level or frequent services is impractical.

The FOCS model borrows several concepts from related work, but upgrades them in the pur-
suit of full openness. Some concepts, such as decomposing a computing system into objects, are
extended with features that support full, protected openness. Other concepts, such as using capabili-
ties for addressing and access control, are simplified by removing features that obstruct openness.

1.5. Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 surveys models, designs, and
other conceptual frameworks that have introduced concepts relevant to system openness. This
chapter points out the main characteristics of past work that either support or obstruct full openness.

The FOCS model is presented in Chapter 3. The chapter describes an abstract system and
motivates the necessary restrictions on openness due to protection requirements. It discusses how
the general principles apply to diverse resources, elaborating on CPU and memory management.

In Chapter 4 a system design based on the model is detailed. The chapter discusses services
and techniques by which the abstract system can be realized. The discussion shows the aspects of
efficiency and programming complexity in a FOCS.

The feasibility of an implementation of the design is discussed in Chapter 5. The discussion
focuses on selected issues of service representation, CPU management, addressing, and memory
management. The chapter examines the implied execution efficiency and architectural complexity
of a FOCS.



Chapter 6 summarizes the lessons on system openness that stem from this research. It
discusses bounds of openness, the interplay between the aspects of openness, dependencies between
service domains, and hierarchies. Chapter 7 concludes the dissertation with a summary of the key
ideas, contributions to Computer Science, and directions for future research.




Chapter 2

Related Concepts

Although no previous work has addressed full openness, many systems introduced concepts which
are amenable to full openness. To put our work in perspective, this chapter surveys models and OS
designs which set openness as a major goal, or which can be considered open to a certain extent. We
present their major concepts, discuss their approach to system openness, and analyze their charac-
teristics that either support or obstruct full openness. The diverse systems surveyed here are grouped
into categories based on their central abstraction or their structure. Each category is preceded with a
brief characterization of the systems in it and the common lessons they provide to system openness.
We discuss also programming language concepts that support system openness.

2.1. Object-Oriented and Capability—Based Systems

An object-oriented system is structured as a collection of objects. An object, according to the
object model as defined by Jones [68], encapsulates invariant properties and operations. The only
way one object can determine or manipulate the state of another object is by invoking the latter’s
operations. An object has a type. The system supports type inheritance and the construction of com-
posite objects out of basic-type objects. These characteristics together with the support of dynamic
naming of objects provide a good foundation for an open system, since they accommodate easy
selection and replacement of services. The model, however, cannot easily support memory manipu-
lation or scheduling of one object by another one. In systems strictly following this model these ser-
vices are reserved for a special object — the OS kernel. Moreover, the model encourages isolation
of objects from each other due to protection requirements [69]. This isolation renders interobject
communication costly, and thus effectively precludes the relegation of related OS functions to
separate objects.

The object model and most object-oriented systems base protection and dynamic naming pri-
marily on capabilities, although this property is not inherent in the concept of objects. A capability
was initially proposed as a secure pointer that names an object and lists a set of operations or rights
regarding that object [48]. It is also useful as a protected address [52]. A capability-based system,
therefore, provides a good foundation for an open system, since it offers dynamic selection of ser-
vices in a unified and protected way. In practice, most capability-based systems employ generic
capabilities; capability management, i.e. inheritance, copying, and transfer of capabilities, is usually
performed by the OS or by specialized hardware. Hence, it incurs extra execution overhead or archi-
tectural complexity. We elaborate below on these issues and discuss several object-oriented or
capability-based systems.

The primary motivation for Hydra (143, 144] was to allow any application-level program to
provide OS services to any other program. To protect programs from each other, Hydra’s designers
painstakingly defined an extensive protection mechanism based on elaborate capabilities. The
mechanism can cope with most conceivable protection problems (cf Ch. 7 in [144], for example).



As the designers have admitted, this mechanism is too restrictive for most applications, which rarely
need most of its features. An object in Hydra is viewed as an instance of an abstract type, modeled
after a Simula class [46]. Each object has a capability list which can be dynamically inherited,
amplified, or reduced. Hydra supports strong typing and performs object-type checking at execution
time, at the expense of extendibility. Among the object types supported by the kernel are procedure,
process, I/O device, file, and policy. Because the granularity of some objects is too small, and since
object creation and capability verification require extensive work, every computation suffers a large
execution overhead. The overhead, in turn, i$ a crucial barrier to effective OS openness.

As Hydra’s designers realized, frequent decision-making functions, such as memory replace-
ment and process dispatching, could not be practically implemented by programs other than the ker-
nel. To facilitate OS openness, they defined the principle of mechanism—policy separation. The
kernel implements mechanisms. It accepts policy specifications from higher level software, which
can be supplemented by user programs. However, this principle has never been clearly applied.
Some policy functions remain in the kernel; some kernel mechanisms allow only certain policies.
For example, Hydra demonstrates that CPU scheduling policy can be specified by user-level pro-
grams (called PM’s). Since a PM is fully trusted by the kernel, it has to be ordained by some instal-
lation authority, and cannot be installed by every user. Moreover, because of the large communica-
tion overhead, the kermel-PM interface is inflexible and so a PM cannot easily react to changing
scheduling needs. For similar reasons, most of the memory management functions are retained in
the kernel. (This decision is in part due to the restrictive hardware for which Hydra was designed.)
Unfortunately, memory management is bound to CPU management. For instance, memory allocation
decisions are based on the scheduling state of processes. Hence, these two service domains could
not be opened independently.

StarOS [70] mitigates some of these problems by supporting larger objects, such as a module,
and simplifying the capabilities. StarOS and Medusa [100] have introduced the concept of a task
force, which is a collection of small processes. A task force typically represents a single application
or implements a utility. Its processes may share data and resources, and can be scheduled as a group.
A task force could potentially replace certain OS utilities. In these systems, however, most of the
OS functions are provided by the OS kernel and irreplaceable utilities.

CAP [96, 140] incorporates capability-based protection with a hierarchical process tree. To
improve performance, the protection mechanism is directly supported by the architecture and by
microcoded services. The goal of CAP was to let any process supervise the services of its offspring
processes. Accordingly, a process is a coordinator of its subtree of processes for all services they
need, including CPU scheduling and memory management. A process has a capability pointing back
to its parent (that is, to a procedure or to a capability pointing back to the parent’s parent) for each
service that the process cannot or is not allowed to provide. The protected services are provided by
the root of the hierarchy — the master coordinator. This structure simplifies service provision and
control, and allows each application to be its own virtual OS. In addition, a process can obtain real
CPU time to multiplex among its offspring processes. However, the rigid, multilevel hierarchy
reduces sharing. The backward capability resolution mechanism, which is needed for service invo-
cation, has resulted in performance degradation and in increased architectural complexity.




Consequentially, only two levels of the hierarchy were implemented [86]. To reduce invocation
overhead, some OS services can be executed as protrected procedures within the domain of each
process. Nonetheless, these services cannot be replaced by any process.

The iAPX-432 computer architecture and its iMAX operating system [71] are an integrated,
object-oriented system [99]. The system enhances the object model of Hydra and the architectural
support of CAP. It provides OS openness to a large extent. iIMAX defines interfaces through which
applications can introduce new facilities or replace the existing ones. Several template packages
allow an application to create a type manager (a process), which can control other processes. A
Process_Manager (PM) can create new processes, control their progress, and delete them. Using a
generic queueing and IPC mechanism [45], a PM directs the kernel to which queue to move a pro-
cess. However, the direction is a hint, subject to the kernel’s consent. And, a process or its
“servers” cannot specify scheduling requirements to the process” PM. Any application can build its
own IPC mechanism, using ports and the simplified send and receive operations provided by the
architecture. Hierarchical IPC mechanisms are also possible, but the overhead incurred by object
maintenance and by access control is very high. User-level memory managers can create objects of
virtual segments and allocate them to physical memory, but replacement policies are retained in the
kernel. Any user can create a new device implementation without altering the system code. Overall,
the extended facilities of this system have required a complex architecture which evidently exhibits
poor performance.

Eden [14] supports object management in a distributed environment. It differs from its prede-
cessors, Hydra and iMAX, in three important aspects. First, an object can be active. It may contain
multiple, light-weight processes, for whom the object controls memory management, scheduling,
and IPC functions. However, the kernel alone controls these same services for objects. Second,
objects communicate via invocations. It is the invoked object, not the kernel, that verifies access
rights. Invocations are performed via a message-based, remote-procedure-call (RPC) mechan-
ism [25], which is too slow to support frequent or urgent operations — even in a shared-memory
environment. Last, Eden and its tailored language EPL support capabilities as a first-class type. A
capability can be manipulated as easily as any datum; capability constants can be assigned at com-
pile time. This property greatly reduces the overhead of capability management.

Cronus [110] offers further openness. It extends Eden by allowing processes to be the
managers of one or more object types, and to perform access control and resource monitoring on
them.

Argus [89] and Clouds [84,120] take a language-based approach to construct fault-tolerant
distributed systems. A guardian (Argus) and object (Clouds) can be thought of as a virtual, per
application OS. It provides application-level control, and implements application-dependent seman-
tics. A guardian defines handlers, executes them upon invocation, and guards various resources. In
other aspects, these systems are closed according to our definition.

2.2. Client-Server, Message—Based Systems

The client-server model has never been formally defined; its de facto definition stems from
many message—-based systems that claim to follow such a model. This model focuses on the
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relationship between the components of a system. The OS is structured as a kernel and a collection
of utilities that provide services to applications. Application-level servers may provide services to
other applications. In practice, however, these services implement high-level functions only, and
most of the OS utilities are irreplaceable. In fact, the execution cost of message passing is detrimen-
tal to opening low-level or frequently-used services to non-kernel processes. The OS in such sys-
tems supports a single, generic IPC mechanism. A customized IPC mechanism can be constructed
only above the default one, and only if their semantics do not clash. A customized mechanism is
rendered inefficient if its semantics are simpler than those supported by the default mechanism. The
following systems further illustrate these issues.

Demos {19] has introduced the above system structure in a single machine environment. It
has been extended by Arachne [119], Charlotte [16], and Demos/MP [91] to a distributed environ-
ment. The three systems address policy-mechanism separation by retaining mechanisms in the ker-
nel and relegating policy functions to utility processes. These systems are open, but only to a lim-
ited extent, as demonstrated in three respects. First, some of the mechanisms restrict the policies that
can be supported. Second, some of the utilities are distinguished processes whose functions cannot
be performed by ordinary processes. For instance, the process and memory management utility is a
single, distributed monitor, which cannot be replaced by users. Third, the utilities are responsible for
higher-level functions, e.g. process placement, and do not control lower-level functions, e.g. pro-
cess scheduling or message transfer.

Thoth [39] is an early single-machine predecessor of the distributed V kernel [40,41]. These
systems add several interesting aspects to openness. First, Thoth supports the notion of a team—a
collection of processes sharing an address space. In a single-team environment, kernel functions can
be linked with the application processes, saving context-switching time on system calls. In addition,
a team can provide several kernel functions. Second, the process structure is a tree in which a parent
process can control the progress of its child processes. However, because scheduling is not open, the
parent cannot schedule them directly. Third, these systems support a reduced, efficient IPC mechan-
ism, which thus is attractive to openness. However, application-specific, higher-level IPC mechan-
isms cannot be easily built above this mechanism. For example, it is hard to facilitate nonblocking
send-receive or memory-mapped IPC.

RIG {83] extends Demos by relegating to user-level servers the time and network services
which traditionally have been provided by OS kernels. Even I/O device drivers can run as user-level
servers. Nonetheless, these servers cannot be replaced or bypassed by general users.

Accent [107], a descendant of RIG, provides uniform process-kernel interaction through the
IPC mechanism. Memory management, CPU scheduling, and I/O operations are handled through
messages. Theoretically, a process may choose its kernel by passing its kernel port to another pro-
cess. The high-level, elaborate IPC mechanism is extensible but closed to applications. Accent
integrates memory management with the IPC mechanism and the filing system [56], an extension to
similar notions employed by Multics [23] and Tenex [30]. This integration allows relegating
memory management functions to user-level servers. Accent opens memory management {o some
extent by letting applications create virtual memory objects and specify their backup policy. On a
page fault, a message is sent to the guardian of the faulting process to decide what to do.
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Nonetheless, memory replacement policies as well as process scheduling are solely decided by the
kernel.

Mach [12] upgrades Accent and extends its memory management facility [134]. It lets
application-level tasks specify sharing and inheritance rules. An external pager (a task) can com-
municate to the kernel requests to pin or unpin data objects in core, to initialize memory objects, and
to initiate page replacement. Although this facility largely opens memory management, it cannot
replace the kernel’s role as the memory manager because of its execution overhead. Most notably,
this facility does not suit real-time applications, or applications with frequently-changing mapping
requirements. Mach recently introduced a new facility of multithreading [135]. Although tasks can
create and destroy threads, they have little control over thread scheduling. For instance, a task can-
not indicate execution dependencies between threads. Or, if a thread is blocked in a task because a
non-sharable resource is occupied by another thread, the task cannot dictate that the latter thread be
dispatched urgently or aborted.

SODA [74,76] and Amoeba [95, 131] address openness by separating processes physically.
They assume a multicomputer environment in which each computer runs a single process at a time.
(In Amoeba, however, multiple threads can run at one process.) Hence, SODA and Amoeba simply
ignore many of the traditional OS functions. They do not concern themselves with memory alloca-
tion policies. Process scheduling—apart from process placement—is virtually null. SODA and
Amoeba offer a simple, connectionless IPC mechanism. It is possible to provide IPC services out-
side the kernel, e.g. to provide connection-based communication or message screening, but such a
facility might be inefficient. Other services, in particular device and filing services, are fully open.
Amoeba demonstrates the ability of using “cheap” capabilities, stored in a user’s space and verified
by specialized hardware. It bases openness on the notion that servers can bill customers for services
and execution time. It is noteworthy that SODA has explored the ramifications of simplifying a sys-
tem as far as possible, similar to our goal in exploring how far a system can be opened.

2.3. Layered and Hierarchical Systems

A layered system is divided functionally, assigning a different function or a service class to
each layer. Models of open, layered systems were formally defined for network communica-

tion [132, 146], but no model has been formalized for operating systems.! Layering a system helps to
“untangle knotty services” so that they can be handled separately. Once functions are separated, a
layered system can be open by allowing applications to construct higher-layer facilities above
lower-layer ones.

A hierarchical system, in our definition, supports different logical (sub)systems, each of which
may be a layered system. The virtual machine model [59] defines a computing system organized in
a tree structure of virtual machines, each of which possibly runs a different operating system. The
physical resources are retained by the lower level of the hierarchy—the real machine and the real

'Notice, however, that these models define openness differently than we do, in the sense that they allow
multiple high level protocols to be constructed above a lower-level protocol. Also, the description of the THE
system [49] is viewed by some as an informal model definition of a layered OS.
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OS—and are multiplexed among the higher levels. Although each user may install a full-fledged
OS, the model does not allow users to dictate allocation policies or mechanisms for the physical
resources. As shown below, the rigid structure of systems following the layered or hierarchical
approach impedes openness, since it restricts sharing as well as dynamic replacement of resources
and services.

THE [49] was an early layered system which focused mainly on the internal structure of the
OS for reasons of improved resource utilization and ease of testing. THE divides OS functions into a
rigid hierarchy of layers, each implementing one or more independent abstractions. All functions are
performed by sequential processes — I/O drivers, a storage controller, and a scheduler, as well as
user programs, are each a sequential process. Since the processes implementing OS functions com-
pletely trust each other, they cannot be replaced by user processes.

Like THE, Venus [88] was built as a hierarchy of levels of abstraction. It was designed for a
small community of cooperating and mutually-trusted users. Therefore, Venus grants its users some
ability to access the hardware features and to be involved in the OS mechanisms through shared pro-
cedures. Users are given virtual devices which they can manage. Resource management is pri-
marily provided by independent processes so that applications could potentially manage physical
resources. In practice, however, all physical resources are owned by the OS, which also retains ail
device management functions.

Swift [44] is a recent layered system that focuses on programming methodology, not on sys-
temn openness. Like THE and Venus, it does not let applications supplement system functions. Each
layer is implemented by a module; a logical function is carried out by a task that crosses several
layers. Tasks execute in a single shared address space. Swift allows cyclic dependency between
layers and reverse invocations. A lower layer can call higher layers synchronously. This feature
offers efficient communication and a simple synchronization mechanism between different layers of
abstraction. It is useful for an open system, where frequent operations, e.g. interrupt handling, may
be carried out by separate components.

T

An unnamed system by Habermann et al [63] is a hybrid of a layered and a hierarchical sys-
tem. The designers’ goal was to develop families of operating systems, the software equivalent of
computer architecture families such as PDP [21] and IBM Systems 360/370 [116]. The OS func-
tionality is statically divided into a rigid hierarchy of functional levels. Each level can have several
implementations, thus forming collectively a tree of OS’s. A path in the tree is analogous to an OS.
It is assumed—and checked at compile time—that a level knows the interfaces of the underlying lev-
els and complies with them. These features support static openness, which suits system designers
rather than user applications. Furthermore, special instructions allow cross-space invocations. How-
ever, sharing among the levels is limited. An additional drawback is that interlevel communication
is highly time-consuming, since at each invocation a complete address space must be created.

VM [115] supports a rigid hierarchy of virtual machines running virtual OS’s. It allows any
user to introduce a full-fledged virtual OS above another virtual or real OS. In this respect, the sys-
tem is fully open, including being open to device management. However, this approach poses
several obstacles to dynamic, full openness. A user’s virtual machine controls only virtual resources.
Except for a few implementation short-cuts, a virtual machine has limited or no control over the
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policies employed by the underlying machines. Access services and resource management functions
traverse several hierarchical levels, which decrease their efficiency. Intermachine communication is
cumbersome: it requires static authorization, lengthy setup, and complex communication proto-
cols [6,66]. Resource sharing between OS’s at various paths or at non-neighboring levels of the
hierarchy is very constrained. Moreover, VM incurs programming complexity and space
inefficiency, since even changing one feature in an existing OS requires creating a new, full-fledged
OS. As a final remark, the implementation of VM shows that with an adequate computer architec-
ture and with tuned mechanisms, the achieved performance is reasonably good.

2.4. Single-User Open Systems

An unnamed system by Lampson and Sproull [80], Pilot [108], and Cedar [129] represent
three generations of single-user open systems. They let the user replace many OS functions, since
they do not concern themselves with most of the aspects of sharing and protection. In this respect,
these systems represent an extreme departure from the other systems discussed here.

The main design goal of the first of these systems was to allow an application program “to
reject, accept, modify or extend” any of the OS facilities. Using the Junta mechanism, an applica-
tion can literally remove from memory those OS services it does not need, or install its own ones.
Moreover, it can read the system state from disk and take over the machine. Actually, the OS is
activated only at entry-procedure calls, and hence an application can execute without preemption.
This approach towards full openness is very simplistic due to the assumed environment. Protection
has been considered to a very limited extent, and fairness is not an issue of concern. In addition, vir-
tual memory has not been supported because of the lack of adequate hardware support. The IPC
mechanism is almost null—only via disk files. Another characteristic of the designers’ approach to
openness is that some interfaces are rigorously defined (that is, standardized), but applications can
implement them with different semantics.

Pilot is written in Mesa [7] and is tightly coupled to the language. It was designed as a power-
ful runtime support package that implements the semantics of Mesa, e.g. process creation, and relies
on Mesa services, e.g. process scheduling. The kernel and the user processes share a single address
space. Openness is supported by structuring the kernel and by defining standard interfaces. The ker-
nel is “horizontally” structured as a collection of facilities, each implementing a service domain. A
facility is “vertically” divided into kernel-manager layers, analogous to the policy—mechanism
separation of Hydra. A facility is composed of interfaces and implementation modules. Most of the
I/O devices can be directly accessed through low-level services. Some services, however, are closed.
For instance, memory replacement policies are retained in the kernel. Like its predecessor, Pilot
deliberately ignores many protection problems, such as Trojan Horse programs implanted in the sys-
tem. Apart from using the type checking facility of Mesa to prevent errors, the sole protection meas-
ure of Pilot is to prevent chaos, e.g. by excluding concurrent access to system files.

Cedar is an extension of Pilot. It is similarly tightly-coupled with the Cedar language—itself
an extension of Mesa—and with the Cedar machine. Its approach toward openness is similar to that
of Pilot. Cedar extends the notion of abstract device interfaces, which let the user control devices
without knowing the details of the physical resources. Cedar hides the management of physical
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memory in the microcode level and in a single memory management layer. All other system com-
ponents, including device drivers, run in virtual memory; they cannot dictate its mapping to physical
memory. In Cedar, as in Pilot, a program gets bound to the interfaces it needs through the
language’s import and export constructs.

2.5. Other System Designs

The major contribution of Multics [23,98] to systemn openness is its support for dynamic
selection and binding of services. The entire system can be viewed as a collection of named seg-
ments. A program can dynamically bind existing segments, including those of the supervisor, or
introduce new ones. System services can be invoked efficiently, since all segments bound to a pro-
gram run in a single address space. However, this approach has necessitated a complex memory
architecture. Address translation requires an extra level of indirection, the “linkage area”, which
incurs overhead on every memory reference. Certain supervisor services can be activated only
through cross-address-space calls. The supervisor executes on the caller’s thread of control, and
hence it preserves the caller’s scheduling precedence. Employing the notion of memory-mapped
files and devices, Multics unifies memory, file, and 1/O management. The IPC mechanism [123],
however, has not been integrated with memory management. Overall, Multics cannot be considered
open, since most of the traditional OS functions are retained in the supervisor. Furthermore, its pro-
tection mechanism based on a hierarchy of 16 rings is too rigid for an open system, in which more
dynamic transfer of control between servers and customers is needed.

Unix™ [109, 137] was designed as a small OS with only a few default options. Users, there-
fore, have the flexibility to define their preferred options. Through the shell interface [32], users cus-
tomize their command language, terminal options, and a variety of execution environment parame-
ters. Unix employs a device-independent I/O mechanism which allows users to add new devices and
control them, albeit not dynamically. An application can access a device in a “raw mode,” namely,
to dictate the device’s organization; it cannot, however, control access scheduling. Processes fdrm a
static tree structure. A parent process can stop, resume, signal, or kill its child processes. In all other
respects, Unix is a closed system. The kernel alone implements CPU scheduling, IPC, memory
management, filing, buffering, and network services. The IPC mechanism, based on signals and
pipes, restricts the ability of applications to customize their IPC. As observed by oth-
ers [29, 105, 135], the major obstacles to openness in Unix are the rigid structure of the file system,
the tight coupling of different service domains, and the structure of the OS centered around a large,
monolithic kernel.

2.6. Other Conceptual Frameworks

Various concepts introduced in the context of programming languages are attractive to support
full openness.

Parnas has introduced techniques to modularize the software hase of a system [101,102]. A
module can be thought of as an abstract service. Although the focus of his work is on the structure

™{Jnix is a trademark of Bell Laboratories.
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of programs rather than on mechanisms to open a system, decomposition of a system is a necessary
Step to openness.

Hoare and Brinch Hansen have introduced monitors [33, 65] as the basic blocks for structuring
operating systems. A monitor is an extension of a module that provides implicit synchronization.
Brinch Hansen’s Distributed Processes language [34] extends the notion of monitors to support
active or passive monitors. A monitor may have one or more processes, running occasionally to per-
form housekeeping chores. A monitor is activated by other processes through procedure calls. A
monitor can be conceptualized as a server in an open system, activated by customers to perform ser-
vices.

Kieburtz and Silberschatz [77,78] have introduced the notion of capability managers which
help maintain capabilities outside the protected domain of the OS kernel. This property remedies
some of the overhead encountered in traditional capability-based systems. The linguistic support
they propose simplifies the construction of resource managers and the verification of resource access.

2.7. Conclusions

We have discussed many concepts which lay a good foundation for a fully open system.
Capabilities facilitate a unified and protected approach to select resources and services. An object-
based, server—customer-based, or a modular view of a system enables decomposition of functionality
as well as encapsulation of resources. Policy—mechanism separation and decomposition of a system
to layers encourage distribution of OS functions among different components. A unified view of
devices or interfaces, together with the support of application-level device drivers, can accommodate
private or customized physical resources.

However, as the many systems surveyed here illustrate, each concept bears potential perils to
full openness. In particular, supporting a concept with protection barriers that are too high, or with a
communication facility that is too slow, impedes openness of many OS functions. The following
chapters exhibit how these concepts, and the lessons we learned about their drawbacks, have shaped
our model and design of a fully open computing system.
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Chapter 3

The Model

3.1. Introduction

In order to investigate the problems and possibilities of full openness, we need a system with
which to experiment. The process of defining such a system is part of the experimentation, since
during this process the problems are studied and potential solutions are evaluated. In defining a sys-
tem, one has to deal separately with the questions of functionality and performance. First, one has to
examine the questions of whether and how the required functionality can be achieved. Then one can
study the questions of how efficient and complex the resulting system would be. In defining a fully
open computing system, the first question is thus how to construct a system that provides the func-
tionality of a conventional OS without sacrificing openness. A model of such a system is needed to
examine this question. Developing a model exposes obstacles to full openness due to protection
requirements or due to dependencies between service domains. Experimentation with the abstract
system defined by a model allows us to evaluate potential ways to overcome these obstacles. A
model provides a base to derive a specific, more concrete design, which in turn serves as a frame-
work to study the aspects of efficiency and complexity. We discuss each of these issues in turn.

A model defines system components, their interrelationships, and the principles upon which
resources and services can be added or selected. This definition lays the groundwork for deciding
the system structure and the rules of interaction between its components at the design level. For
example, a designer has to define rules for inter-application communication in order to allow appli-
cations to provide services to each other. These rules should specify the methods for naming, typing,
addressing, and for inheritance of names, types, and inyocation rights. Likewise, a design has to
state how service providers and customers are protected from each other, and to address the subjects
of buffering and synchronization. The difficulty in coping with these issues in an open system is that
openness advocates conflicting objectives. On the one hand, one wants uniformity, so that services
can be invoked by different applications. On the other hand, one wants to minimize the set of man-
datory services or features, so that applications can select the services they need without suffering
excessive overhead or coerced semantics. A model defines principles to resolve this conflict at the
abstract level, and to guide the definition of more concrete rules at the design level.

An important role of a model is to help us investigate how protection requirements constrain
openness. Protection has a dual purpose. First, it provides a resource allocator the necessary means
to implement its allocation policy—in particular, to enforce usage restrictions and to revoke previous
allocations. Second, it assures a service provider or a resource owner that the service/resource can-
not be used by unauthorized entities. A model is needed to identify a minimal set of mandatory ser-
vices that accommodate protection requirements. In essence, the model establishes a lower bound
on openness due to protection requirements; it qualifies full openness as limited only by those pro-
tection barriers necessary to accommodate higher-level, customized protection mechanisms.




17

The modeling process explores the requirements for openness and protection in different ser-
vice domains and the interaction between those domains. For instance, the developer of a model
examines how protected openness of CPU scheduling and memory management can be supported,
and in what aspects these domains interact. The main contribution of this phase is to expose depen-
dencies between service domains that restrict the ability of users to select services. The subject of
controlling critical sections demonstrates this role. Consider the case where part of a service is a
critical section. Since such a section must be executed urgently or atomically, the service provider
desires that a computation entering the critical section completes it uninterrupted. One solution
would be to disable CPU preemption during the critical section. However, not every service pro-
vider can be entrusted by the system to do so. Likewise, the scheduler of a computation that invokes
this service cannot be permitted this right, since in a fully open system any application may include
a private scheduler. In either case, allowing applications to disable CPU preemption may render the
system chaotic. This example highlights the following four dependencies:

(1)  The dependency between a service provider and the schedulers of computations which invoke
its services. If the provider does the scheduling, then how is it told the precedence of compu-
tations, and how can it satisfy all precedence requirements? Otherwise, how does the provider
tell different schedulers to increase the priority of a computation occupying a critical section,
or to block one awaiting a critical section?

(2)  The dependency between unrelated computations. A computation might be delayed because
another computation occupies a mutually-exclusive resource. If the scheduler of the second
computation does not schedule it frequently to release the resource, then how can the service
provider schedule the computation or preempt the resource?

(3)  The dependency between CPU scheduling and memory management. If a service is required
by an urgent computation, then how can the provider guarantee that page faults do not occur
during the service?

v

(4) The dependency between the service provider and whoever maintains a computation’s state.
If a computation is “private” to an application or to its scheduler, but invokes services of other
applications, then where is the computation’s state maintained? In particular, how can to
guarantee that a computation cannot “jump into” the middle of a critical section, causing
chaos to the service provider and its customers?

These problems were exposed by our experimentation with defining the model. The solutions
adopted were generalized to define principles that apply to other service domains, such as buffer
management and recovery.

3.2. Overview

Central to the model is the assumption that all computing requirements can be captured by
two abstractions: a service and a resource. A service is an abstraction that uses resources to carry
out a logical function. The model is based on the concepts of resource ownership and service pro-
vision. The computing system is modeled as a collection of servers that own resources and provide
services. To provide a service, a server has to own the required resources or gain access to them via
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other servers. Full openness is achieved by enabling each server to dynamically select the services
and resources it needs.

A computation is a sequence of services represented by an activity. An activity is a thread of
control that executes services. Execution means materialization of a service by using a distinguished
type of resource called a processor. A server is stored in a distinguished type of resource called
memory. Services are invoked via bindings. A binding is a reference to a service; it is held by a
server or an activity. Through services, a server obtains ownership of resources and accesses them.
A server may access the resources it owns, transfer ownership of portions of them to other servers,
and later reclaim them. A server can give permits (with specific access rights) to other servers to
access the resources it owns.

In order to accommodate full openness, the model leaves the semantics of using resources and
services to the mutual understanding of each provider and customer. However, as necessitated by
protection requirements, a few restrictions apply to resource ownership and service provision. First,
resources which all servers may share are controlled by generally-trusted servers. Likewise, the ser-
vices required by servers to protect their own resources and services are also provided by generally-
trusted servers. These servers constitute the Operating System Base (OSB). Second, a few conven-
tions apply to the interfaces of services which a server might be obliged to invoke without knowing
their invocation protocols. The conventions, called the standard interface, name such services and
specify standard invocation protocols.

The OSB is the base above which customized services are defined. Resources and services
not included in the OSB are open to any application. An application is defined as any collection of
non-OSB servers. Users are represented in the system by servers and activities.

The physical environment assumed by the model is a multiprocessor, shared memory environ-
ment. The computing system includes one or more tightly-coupled and architecturally identical
CPU’s. There are one or more memory subsystems, each of which defines a physical address space.
All memories conform to the same service interface. (A glossary of the terms introduced in this
chapters appears at the end of the dissertation.)

3.3. Servers, Resources and Services

A service is an abstraction of a set of actions that carries out a logical function. Its functional-
ity and its invocation protocol, such as the number and types of input arguments and of outputs, are
decided by the service provider. A service can be performed synchronously or asynchronously with
its invocation. When executed asynchronously, it may return multiple outputs.

Servers are self-contained entities that communicate via service invocations and shared
resources. A server can be viewed as a dynamic representation of a program (composed of execut-
able algorithms and data structures) tha! implements services. Any server can create a new server by
acquiring memory space and placing the new server there. A creator does not need permission from
the OSB or any other server to create a new server, nor does it have to register the new server. Itis
up to the creator of a server to decide which of its bindings, permits, and resource ownerships the
new server inherits.
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A resource is a physical component—such as a CPU, disk space, or communication
bandwidth—or a logical entity—such as a semaphore, file, or virtual disk. A resource is encapsu-
lated in one server, called its host. The host defines the semantics of accessing the resource. A
resource is composed of units defined by its host. Each unit can be owned by several servers con-
currently. The default owner of the entire resource is its host, which can grant ownership to other
servers. Through the host’s services, an owner can access the resource and transfer ownership of
units it owns to another server. A transfer of ownership is called allocation. Depending on the
resource, access and allocation of a unit can be exclusively granted to only one owner of it. For
instance, access and allocation of a unit of physical memory would conceivably be granted to its
current owner, which is the last server which was allocated that unit. However, any former owner of
a unit may revoke it. Revocation of a unit U from an owner O means that O looses its ownership of
U, and that the revoking server becomes the unit’s current owner. It also implies that U is revoked
from any server to whom U has been allocated by O. It should be noted that an owner of a resource
can provide both the allocation policy of the resource and the mechanisms to use it. When an owner
dies, ownership of its resources is returned by their hosts to the servers that have allocated these
resources to the deceased server. A host may allow an owner to name other default inheritors. An
owner can give permits to other servers to access its share of the resource. A permit references
resource units and lists rights for accessing them.

Figure 3-1 illustrates the relationship between servers, resources, and services. It shows that
multiple hierarchies of services and resources can be formed. The physical resources comprise the
lowest level of the resource hierarchy. A logical resource is mapped by its host to several resources
which the host owns or is permitted to access. The mapping of a resource or a service to other
resources or services can be transparent to the customers of the resource/service. Figure 3-2 further
illustrates the notion of resource ownership and access. Server R, for instance, accesses resource P
through the host of P, not through @, which allocated the resource to R.

A server can charge for resource and service usage. It can charge an activity directly while the
activity executes its service, or charge another server that has furnished a permit for this operation.
Charging can be used to reduce contention for scarce resources, as well as to account for resource
usage.

The model view of naming and typing of servers, services, and resources is simplistic, which
is the result of our desire to minimize the imposition of default semantics and overhead. Servers,
services, and resources are identified by unique names. Types of services and resources have
application-specific semantics in practice, hence there is no support in the model for formal

definition and checking of types.! Hosts and service providers attach names to their resources and
services as they like. The names are used in announcing a resource/service either statically, e.g. in
user manuals, or dynamically through intermediary servers. We denote such servers as

IFor the sake of convenience, we refer to various services or servers by their assumed functionality. For
instance, a disk server is one that provides access to a disk. However, we do not imply that this functionality
is rigorously defined by the model, nor that services named identically—such as two disk access services—are
functionally identical.
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matchmakers. A matchmaker allows servers to deposit bindings or permits, to locate required
resources and services, and to obtain the necessary bindings. Servers can acquire bindings and per-
mits both statically, e.g. at load time, and dynamically, e.g. as a result returned by another service.

There are two exceptions to this principle of naming and typing. First, two resource types are
distinguished from other resources. A processor is the only resource strictly required to materialize
every service. A memory is a resource necessary to store servers. Different processors and
memories may exist in the system. We further distinguish between (1) special-purpose, non-shared
processors, and (2) general-purpose, shared processors called CPU’s. For the sake of simplicity, the
model deals only with architecturally identical CPU’s. A host of a physical resource (denoted for
brevity a p-host) may embed a special-purpose processor that is dedicated to perform access to the
resource. For instance, a dedicated processor in a disk host performs disk accesses independently of
any CPU.

Second, naming and typing conventions are defined for the interfaces of services which a
server may be obliged to invoke without knowing their invocation protocols. Such a situation
occurs when a server must invoke a given service to carry out a required function for a given activity
or resource, without being able to (1) choose the service, or (2) learn the service’s interface in
advance. These conventions, called the standard interface, identify such functions. They specify
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Allocation of a resource is illustrated as transferring units of it. To distinguish a logical resource from a physical

one, they are depicted differently, although any difference can be hidden from the user of the resource, e.g. from
Server S.

for each function how any service that carries it out should be named, the service’s invocation proto-
col, and the way its binding is obtained. To clarify why a standard interface is needed, consider the
following two examples. A server may have a permit for a customer’s buffer which it wants to “pin”
in core. The pinning service needs a standard interface because the service of a specific, possibly
different, memory server must be invoked for each buffer. In contrast, writing a file does not neces-

sarily require a standard interface, since the service can be performed by the server itself or be
selected from some file server in advance.

The model does not define a particular standard interface. This task is relegated to the system

designer.” The model’s view is that the standard interface is minimal in the sense that it includes

The standard interface is defined statically, for two reasons. First, if a server were to dynamically learn
the invocation protocol of a service in the standard interface, then the system designer would still have to stati-

cally define the rules for specifying invocation protocols. Second, dynamic learning of protocols would be
complex or inefficient.
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only those services for which the above two conditions cannot be circumvented; the standard inter-
face is not imposed, but rather suggested to any server that wants to provide such a service.

3.4. Activity Management

An activity represents a computation — an independently scheduled entity that consumes pro-
cessor time to execute services. It is a thread of control that starts executing one service, and
through service invocations can span multiple servers. At each invocation the activity starts to exe-
cute the invoked service. The invoking service is suspended until the invoked one returns. The
sequence of invoked services which have not yet returned is denoted the activity’s dynamic chain,
or simply chain. (We interchangeably refer to such services and the servers that provide them as
being in the activity’s chain.) The last service (server) in a chain is denoted the current service
(current server) of the activity.

Multiple activities can run concwrently at one server. They all share its data structures,
resources, permits, and bindings. It is the server’s responsibility to synchronize them. They can
communicate through the server’s data structures and resources. Figure 3-3 shows two activities,
one currently blocked at Server R and the other running at Server (. Activity A’s chain, for
instance, is (S, O, ..., R), and its current server is R. The major difference between an activity and
the common abstractions process and thread supported by other systems [109,135] is that an
activity can run at multiple address spaces.

The model has a dual view of the activity—server relationship. On the one hand, a server is
viewed as passive, letting any of its services be executed by the activity that invokes the service. In
this view, the server’s resources and bindings are used by activities. On the other hand, the activity
can also be viewed as passive. It is owned by a server—its creator—and can be transferred to other
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servers. The owner dispatches the activity, that is, lets the activity consume processor time. The
owner can block the activity or terminate it. In this view, an activity merely transfers execution state
between active servers. A service invocation thus can be viewed as transferring an access permit for

the processor to the server whose service is invoked.> Moreover, an activity may hold bindings,
which can be used by servers in its chain to invoke services on its behalf. A limited scheduling
capability of an activity is granted to its current server by letting the server switch between activities
running at the server. Such switching is useful to push an activity, for example to release a critical
section or a scarce resource. For protection reasons, a server is not allowed to switch to an activity
for which another server is the current server, because the latter might require that the activity be
blocked awaiting a certain event.

In an asynchronous service provision, the service is performed by a different activity than the
one that invoked it. The invoked service is not in the chain of the invoking activity. Access services
of a p-host that has a private processor are examples of asynchronous services. However, the invoca-
tion of a p-host’s service is more intricate because it requires transfer of control between two proces-
sors. The invocation is initiated on a CPU. Then, an internal mechanism of the p-host is used to
schedule an activity to perform the access on its private processor. At access completion, a CPU is
required by the p-host to perform various tasks such as telling a waiting customer about the event.
Using a similar mechanism, the CPU host schedules a specified or a predefined activity to perform
these tasks on a CPU.

The model also recognizes the need for asynchronous service invocation in addition to asyn-
chronous service provision. In some situations a server may wish to invoke a service asynchro-
nously, because suspending the invoking service could be undesirable. For instance, suppose server
§ invokes a service of server R, such as an I/O access, which is performed asynchronously; at access
completion R invokes a “reply” service s of S to report the event. However, if s;cannot be entrusted
to return quickly, then R cannot invoke it synchronously because of the risk of suspending further
accesses to R’s resource. The model does not support asynchronous invocation directly as a “built-
in” facility, since such an invocation can be accomplished by other means. For example, R can
schedule another activity to invoke s later. Or an asynchronous service invocation can be provided
as a service which itself is invoked synchronously and which returns after relegating the invocation
of s to another activity.

Activities may have to communicate by means other than the data structures and resources of
servers in their chains. For example, while activity A runs at the owner of activity B, the owner
decides to terminate B. So the owner wants to tell the services in B’s chain to properly clean up their
state. Similarly, a service executed by activity A discovers an event which implies changing the
course of execution of activity B, e.g. aborting the current service of B. For these purposes, activity
A can raise an exception on B through a service provided by the OSB. As a result, when B resumes
execution the exception is noticed by the CPU, which diverts B’s control to execute a service
predesignated to handle such an exception. For protection purposes, raising an exception is allowed

3Other permits can be transferred as parameters to the service.
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only to B’s owner and B’s current server; another server R cannot raise an exception directly, even if
R is in the activity’s chain, since R might not know the current state of B. Notice, however, that R
can notify B’s owner of the event through the activity’s bindings; it may notify other servers in B’s
chain through ordinary service invocations, if it knows which servers these are. The invocation pro-
tocols of exception-handling services are included in the standard interface because raising excep-
tions by an activity’s owner is tantamount to invocations of services whose protocol the owner could
not know in advance.

We distinguish between activities using solely a private processor of some p-host and others
that use CPU’s. The former activities are controlled by the p-host and are invisible to other servers,
while the latter may span multiple servers. In the rest of the dissertation we discuss only the latter
activities, except where stated otherwise.

Each activity has an associated execution state, which consists of scheduling information and
the environments of the services in its chain. The scheduling information is maintained by the
activity’s owner. The environments are distributed among the servers in the activity’s chain—for
example, the environments are stored in the servers’ local “stack frames.” Some of these environ-
ments are stored in the CPU’s state during execution. When an activity is preempted from a CPU,
its state must be preserved until the activity is redispatched. The state is stored in locations accessi-
ble to the CPU host and protected from corruption by other servers. These locations are collectively
called the Activity’s Context Descriptor (ACD). Consequently, dispatching and halting an activity
are services provided by the CPU host.

3.5. The OSB

3.5.1. The OSB and protection

On the one hand, openness implies that servers should be allowed to select the protection
mechanisms that fit their security objectives. On the other hand, protection in a multiuser environ-
ment prescribes the following demands: (1) that servers are able to implement desired protection
mechanisms, (2) that every server can access resources intended to be shared by all servers, and (3)
that a server cannot cause unrelated servers to fail, namely, those that do not use its services and that
have not permitted the server to access their resources. To resolve the conflict between these
requirements, the FOCS model offers a low-level protection mechanism based on the notions of
encapsulation, ownership, and light-weight capabilities. The OSB enforces only those protection
measures that facilitate the protection of resources and services. We discuss the above issues in turn.

In order to let a server select its protection mechanism, it is left to the server to decide how to
protect its resources and services, to discriminate among customers, to reject invocations, to check
service inputs, and (if the server is a host) to verify ownership and access permission to its resource.
It is assumed that a service is trusted by its customers to provide the expected function. Hence, a
customer is not protected against a faulty service (a misservice), except that the service provider can-
not use resources to which it has not been granted access.

To guarantee a server the ability to implement a customized protection mechanism, the OSB
provides a minimal set of mandatory services. The set consists of services to verify a binding at
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service invocation and a return address at service return, to raise and to notice exceptions, to authen-
ticate the id of a server or of an activity, and to maintain accounting. The verification service
guarantees proper entry to and exit from services; the exception-related service protects activities, as
discussed above; the authentication service aZlows servers to discriminate among customers; and the
accounting service protects the accounts, for which the users are responsible to “pay the bills.”
Furthermore, the OSB is the default inheritor of a terminating activity and of an activity whose
owner has terminated, in order to ensure the servers in the activity’s chain the ability to recover their
state.

This set of mandatory services excludes any service or restriction that servers can provide for
themselves, such as further authentication of invokers. Most notably, the OSB does not maintain
bindings or permits, which are viewed as light-weight capabilities. Each holder of a binding or a
permit can duplicate and transfer it to other servers as an ordinary data structure. Nonetheless, a
binding for a service is created and can be invalidated only by the service provider, and a permit for
a resource—by the resource owner.

To guarantee access {0 the generally shared resources, called system resources, their hosts are
included in the OSB. The definition of what constitutes the system resources is installation-
dependent. The view of the FOCS model is that each such host provides a minimal set of mandatory
services, required to access its resource and to control its allocation. These services implement rudi-
mentary mechanisms to carry out access and allocation requests in a protected way, as well as a basic
policy to allocate the resource to a few customers. Higher-level mechanisms and allocation policies
are relegated to the resource owners. It is noteworthy that the power of the OSB to impose protec-
tion restrictions derives from being the hosts of certain resources, which the OSB annexes at system
initialization.

Finally, the notions of resource ownership and of encapsulation of resources and services
prevent a failing server from inducing failure in If a server crashes, its resources are reclaimed or
inherited by former owners, and it cannot corrupt resourcgs to which it has no access.

3.5.2. The OSB and applications

What servers do we consider appropriate for inclusion in the OSB? Foremost, the OSB
includes the hosts of an installation-defined list of system resources. This list should include hosts of
resources the OSB depends on, such as the host of the memory into which the OSB is loaded, the
CPU host, and a clock host. The CPU host encapsulates all the CPU’s in the system.* It provides
services to allocate CPU’s, to use them, to create and to terminate activities. A clock host is essen-
tial for proper reclamation of CPU’s. The OSB includes also an Accountant and an Initiator. The
Accountant provides services to manage accounts, to charge and to credit them. The Initiator is the

“The model does not allow additional CPU hosts outside the OSB because of the semantics of service
provision and of protection. Since a service (other than an access to a physical resource) is performed by the
CPU at which the service is invoked, an untrustworthy CPU host may violate protection requirements or mali-
ciously modify the OSB, thus corrupting the entire system. The reason for a single CPU host is mainly of con-
venience. It relieves servers from being bound to many CPU hosts, and from negotiating CPU allocation with
each host separately.
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server that creates the OSB at system-initialization time.

Figure 3-4 depicts the computing system as composed of several collections of servers, one of
which is the OSB, the others of which are applications. As mentioned earlier, an application is any
logical collection of non-OSB servers. Customized OS’s can be constructed by applications above
the OSB. We imagine that at an installation one or more customized OS’s (denoted COS) may
exist. A COS provides system services, so that not every application must complement the minimal
services of the OSB with all the services that it needs. For example, a COS may include (see Figure
3-4) (1) A matchmaker, (2) a server manager, which provides services to create and terminate
servers, (3) a memory host and a virtual store manager, which provide services to allocate physical
memory and to map servers to it, (4) a user-interface server that mediates between users and the
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system, and (5) other hosts, language processors, and editors.

The model assumes that a distinguished user, called the System Administrator, is the primor-
dial owner of all accounts, and its servers are the primordial owners of all system resources. Thus,
the system administrator can dynamically manipulate allocation policies, ownerships, and account-
ing information without needing a special interface or a privileged mode.

3.6. Management of Specific Resources

In this section we discuss how the principles and primitives defined by the model apply to
specific resources. This discussion is at the model level and does not introduce design decisions.
The concepts introduced here, however, guide the design which will be presented in Chapter 4.

Resources are categorized as those that are allocated in units of time, and others that are alio-
cated in units of space. A time-partitioned resource is owned entirely for T time units. During this
period the owner can access the resource exclusively. Allocation is consumed, in the sense that the
ownership expires once T time units have passed. Likewise, the allocator’s ownership is reduced by
the portion that has been allocated. On revocation, only the unused portion of a previous allocation
can be reclaimed. Processors, tape drives, and network-communication \channels are examples of
resources that exhibit these characteristics.

A space-partitioned resource can be shared and accessed concurrently by multiple owners.
Allocation of such a resource does not reduce the allocator’s share. Revocation can reclaim a previ-
ous allocation entirely. Obviously, an allocator may set a limit on the duration of an allocation;
however, in such a case time is used as a decision parameter, not a resource unit. Likewise, the
resource’s host may restrict sharing, for instance by forbidding a former owner to access the resource
unless that owner first revokes the resource. Storage resources such as memories and disks (both
physical and virtual) are examples of resources that exhibit these characteristics.

The discussion below focuses on the CPU and memory resources, for which openness sharply
confronts protection requirements and efficiency objectives. As shown below, the concepts of
resource ownership and service provision allow every application to implement its particular CPU
scheduling or memory allocation policies. The aspects of efficiency and complexity in managing
these resources will be discussed in the following chapters.

3.6.1. CPU Management

A major difficulty of CPU management is to accommodate CPU scheduling by any server in a
protected and efficient way, with simple mechanisms that can support any scheduling policy. Here
we show solutions that derive from the model principles. These solutions are elaborated in Chapter
4 with concrete services.

The CPU host encapsulates multiple CPU’s. It routinely allocates them to its customers, and
provides services to further allocate CPU’s and to revoke them. Any server can own a CPU for a
slice of time units. A p-host may want to own a CPU in order to schedulc activities to initiate
accesses to its resource, or to inform customers of access completion. A CPU owner is called a
scheduler.
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CPU allocation establishes a stack-like ordering of owners for each CPU. At each allocation,
the allocator becomes the current owner of the allocated CPU. Control passes to this scheduler to
dispatch activities or to further allocate the CPU. Control of the CPU is returned to the allocator
when the server allocated a slice either consumes the slice or releases the CPU. Nonetheless, the
allocator can revoke the slice before it is consumed, or allocate another slice to another server, who
then becomes the CPU’s current owner. The allocator can do so either when it is activated by a ser-
vice invocation or while it is executed concurrently on another CPU. Of course, a scheduler may
allocate virrual time slices to its customers. It is up to the scheduler to “map” these slices to alloca-
tions of real-time slices. Figure 3-5 depicts the CPU host, a dynamic hierarchy of schedulers, and
the notion of CPU allocation.

The ordering of CPU ownership is maintained by the CPU host. A primordial ordering is
defined at system initialization. It can be dynamically altered by the CPU host. This ordering
represents relative priorities of servers for obtaining CPU’s. When a server urgently needs a CPU, it
revokes one from the CPU’s later owners via a service called a CPU interrupt. An owner can
prevent a CPU from being preempted during urgent work by asking the CPU host to increase its
priority, namely, to promote its position in the stack of CPU owners.

A scheduler dispatches an activity for execution on a given CPU for a specified portion of the
scheduler’s slice, called a quantum. Dispatching is a service of the CPU host, which can be invoked
directly by every scheduler. For instance, S, in Figure 3-5 is allocated CPU’s through S, but invokes

the dispatching service directly. We decided that dispatching an activity implies reclaiming the
remaining quantum of the activity currently executing on the specified CPU, since quanta are of real
time and since a CPU must be used exclusively. Hence, if the latter activity is the dispatching one, it
is blocked at the CPU host until the dispatched activity consumes the quantum. Notice, however,
that the scheduler may be executed by the latter or by another activity before the quantum expires,
and thus it can modify its scheduling decisions “on the fly.” Using a CPU is itself accomplished via
the access services denoted as machine instructions.

Dispatching means granting a CPU permit to the activity’s current server, as indicated in Fig-
ure 3-5. This permit is conveyed by the activity to other servers through service invocations and
returns. Having such a permit, a server may switch execution to another activity as discussed earlier.
This switching is performed by the CPU host, whose intervention is needed to preserve the former
activity’s CPU state and to restore the latter’s state.

3.6.2. Memory management

We assume below that servers are stored in virtual memory which during execution must be
mapped to physical memory. References in virtual memory must be translated to physical memory
addresses. A main difficulty of memory management is to accommodate openness of memory allo-
cation and mapping while ensuring efficient and protected translation and access. We show here a
solution based on the model. Specific mechanisms that support this solution will be discussed in
Chapters 4 and 5. The structure of physical and virtual memory are presented first, and then the
issues of mapping and translation are discussed.
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Figure 3-5: CPU Management
CPU allocation is illustrated as transferring smaller CPU’s, although the allocation is of time units. Dispatching an
activity A is illustrated as handing a permit to Server R at which A currently runs. Every server permitted access to
a CPU can directly invoke the CPU host’s services, denoted as machine instructions.

The components of physical and virtual memory are the following. The shared physical
memory of the computing system consists of one or more physical address spaces. Each such space
is encapsulated in a host, denoted m-host, and is composed of frames. A frame is a contiguous,
host-dependent range of physical addresses. The frame is the unit of allocation of physical memory.
Other p-hosts may have private memories, which are not discussed here.

The virtual memory of the system is composed of Universes. A Universe is a logical
resource, managed by a server called the Universe manager (denoted U-mgr). A Universe is
mapped by its manager into physical memory owned by the latter. A server that wants to directly
control the mapping of its virtual space to physical memory, or to provide such a service to other
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servers, can obtain frames, create a new Universe and map it to these frames.

A Universe is divided into Spaces, which are the units of allocation of the Universe. A Space
is a reference environment in which a server is stored, as shown in Figure 3-6. A server is by
definition an owner of the Space it is stored in. The decomposition of a Universe to Spaces is
motivated by protection and efficiency considerations: Once execution switches to a given server,
there is no need to check the eligibility to reference code and data structures within its Space. Refer-
ences outside the Space need be validated via permits or bindings. It is assumed, therefore, that at a
given time one Space is the current Space for each CPU, and that a CPU generates virtual addresses

within that Space.’ A Space switch occurs in a protected way at activity dispatching, at service invo-
cation, at service return, and at any copying between Spaces that is not performed directly in physi-
cal memory. The owner of a Space may create permits to access regions of the Space, for instance to
be used by other servers as buffers of service inputs and outputs. This structure supports sharing of
address spaces through permits and through mapping of different Spaces to the same frames. It is
left to the design level to accommodate sharing in an efficient way.

A U-mgr allocates a Space to any server that wants to create a new server and store it in the
Space. Both servers own the Space and can access it concurrently, but the former server can revoke
the Space from the new server. The U-mgr may allow each owner to dynamically increase or reduce
the size of its Space. A Space owner can specify access restrictions regarding the Space, e.g. that a
given portion of the Space is read only. Such restrictions are useful to avoid access errors or to
prevent modification of some structures stored in the Space. The U-mgr verifies that each access
complies with such restrictions.

Universe 123
Space 1 Space 2

Server Server
S R

A Universe
Space 0

manager Host

Figure 3-6: A Universe and its Host

SActually, a virtual address is a permiit to access a location in a Space, furnished by a server to the CPU
host. The CPU host passes the permit to the m-host as a parameter to a memory access service.
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We turn now to discuss the mapping and translation between virtual and physical memory

(see Figure 3-7). At each memory access a virtual address needs to be translated into a physical
address. Conceptually, the virtual address is passed to the U-mgr, which translates it and generates a
request to access the resulting physical address. Since the U-mgr is stored in virtual space too, a
recursive translation of several virtual addresses might be necessary. Before performing the access,
the m-host verifies that each frame accessed during the translation (as well as the frame of the
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resulting physical address) is owned by that U-mgr.

This hierarchical address translation is straightforward but would be prohibitively inefficient.
Therefore, a virtual address is passed to the m-host, which performs the translation and the access
without involving the U-mgr. The mapping information of a Universe should be therefore visible
and accessible to the m-host. This information is stored either at the m-host or at the Universe,
depending on the mapping scheme supported by the m-host. In the former case, the m-host allows
the U-mgr to manipulate this information directly, for efficiency reasons. In the later case, the map-
ping information is grouped in an m-host-dependent structure whose location is made known to the
m-host by the U-mgr. In either case, each server accesses memory directly as shown in Figure 3-7.
The m-host verifies the access as before.

It is left to the design level to make the interfaces for mapping and translation simple and
efficient. One possibility is that the U-mgr is stored in one of the Universe’s Spaces, as indicated in
Figures 3-6 and 3-7. Consequently, the Universe’s structural and mapping information are local data
structures of the manager; they can be directly and efficiently manipulated by the manager. (Hence,
a Universe is autonomous and self-contained.) Moreover, the U-mgr can control its own mapping
to physical memory, and so it can fix volatile structures in core.

Upon a mapping fault or an access violation, the m-host either rejects the access service with
an appropriate error indication, or invokes a designated service of the U-mgr (labeled as the “fault”
service in Figure 3-7). A binding for this service is passed to the m-host by the manager at Universe
creation. This service may further invoke a fault-handling service of the server that caused the fault,
if such a service is known to the U-mgr.

3.7. Examples

This section illustrates how the model’s primitives and principles lend themselves to support
the coexistence of different applications and the sharing of various resources. It differs from the
former section in that it presents specific examples, some of which include design-level solutions.
An additional purpose of this section is to emphasize various aspects of the model and thus support
the rationale discussed in §3.8. We discuss here a hypothetical fully open computing system, in
which a customized OS (COS) and three major applications coexist: a Unix-like system, a VM-like
system, and an extendible DBMS called ED (see Figure 3-8). The following examples focus on the
inter-application interfaces.

3.7.1. A Shared Memory Subsystem

In order to directly control its memory mapping and replacement, the OSB, the COS and each
of the three applications runs in its own Universe, as shown in Figure 3-9. There is a single memory
host in the OSB, whose entire physical memory is statically divided between the COS and the OSB.
The U-mgr of the COS allocates its share of the physical memory to its customers — the U-mgrs of
the Unix-like and the VM-like systems. It also maps the servers of the COS to physical memory.
The U-mgr of the ED DBMS is allocated frames through the Unix-like system’s U-mgr.

The allocation policy of the U-mgr of the COS is the following. It allocates a portion of the
memory on a static basis. Each application is allocated several memory regions, which are intended
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Figure 3-8: A fully open computing system

to support the application’s normal demand (or a fraction of that if the contention for memory

between the applications is high). Additional regions are allocated dynamically on a short-term
basis, to accommodate fluctuations in the applications’ demands.

The allocation strategies in such an environment can differ in sophistication. They can be
based on different pricing schemes, bidding for memory, or trading memory for other resources.
Examples of memory-allocation algorithms in a market-oriented FOCS are discussed elsewhere [51].

The U-mgr of the COS uses three methods to revoke frames from a customer U. Foremost, it
extracts the required number of frames from a free-frame list of U. It uses a permit given by U to

access this structure. If the list is empty, then the U-mgr invokes a service of U to release the
frames. If the service fails to release the required number of frames, then the U-mgr—being the
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Figure 3-9: A shared memory subsystem
former owner of the frames—enforces the revocation.

3.7.2. Private and Shared Disks

Each of the three applications includes a p-host of a private disk, as shown in Figure 3-8.
Thus, the application completely controls the organization of its disk and the scheduling of accesses
to it. The host of a private disk is visible only to the application’s servers and to the CPU host — as
required for CPU allocation.

A host of the shared disks is included in the COS. The shared-disk space is used by the three
systems for temporary files, or to support a sudden growth in demand for disk space. It is also used
by applications constructed above the Unix-like and the VM-like systems which want to customize
their file services. The host of the shared disks divides the disk space into blocks, which are the
units of allocation. It provides low-level access services to physical locations, and is oblivious of the
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logical structures mapped by disk owners to these locations. It does not provide buffering - it reads
and writes into each customer’s buffers through access permits.

The shared-disks host employs the following simple allocation policy. A given portion of the
disk space is partitioned among its customers for long-term usage. In a friendly, non-competitive
environment this partitioning is based on customers’ demands for disk space. In a competitive
environment, the demands are adjusted according to criteria set by an administrative authority. The
other portion of the disk space is reserved for temporary use. The host employs a pricing function
which penalizes customers for holding disk blocks for long periods, pressing them to release unused
blocks.

Multiple file systems are constructed above private and shared disks, as shown in Figure 3-8.
Each File Server (FS) defines the rules for sharing files and physical locations by its customers. A
file created by a customer of an FS becomes a resource owned by that customer. Accesses to the file
and its allocation to other servers are performed through the FS. To reduce access overhead, the
Unix-like FS allows a customer to obtain a permit for the physical locations of a specific file, then
access that file in “raw” mode, that is, directly through the disk host. The VM-like system defines
virtual disks, maps them to its share of disk space, and allocates them to its customers. The ED sys-
tem uses the services of the Unix-like FS to maintain backups and the image files of its servers. It
uses its own FS and disk host to maintain its database.

3.7.3. An Interserver Communication Server

There is a server that provides services for interserver communication (ISC). Its purpose is to
help servers in different applications to communicate and synchronize when they cannot do so by
invoking each other’s services directly. This ISC server accommodates two mechanisms: (1)
message-based communication over logical channels, and (2) event-based synchronization.

In the first mechanism, customers acquire and share logical channels, which are the units of
allocation. A channel can be concurrently owned and agcessed by multiple servers. An owner of a
channel may transfer its ownership to another server. Suppose the communication primitives allow
for sync!--onous or asynchronous Send, Receive, Wait—which blocks until a specified Send-Receive
transaction completes, and a nonblocking Inspect to check the status of such a transaction. A custo-
mer invoking the Send or the Receive services supplies an access permit to a buffer in some Space.
If the customer elects to Wait until the Send/Receive completes, the invoking activity is blocked
through the owner of this activity. When a Send-Receive pair is matched, the ISC server copies the
data from the sender’s buffer to the receiver’s buffer directly, that is, through their common U-mgr
or otherwise through the memory host.

In the second mechanism, the ISC server provides synchronization services. A Notify service
is used to indicate that a given event happened. A WaitEvent service blocks the invoking activity
until all or any of a specified list of events occurs. When the awaited events are notified, the ISC
server requests the owner of a waiting activity to unblock the activity. Note that the customer need
NOt OWR amy resource, NOr present any permit.
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3.7.4. Concurrent Interaction with Multiple Systems

Multiple terminal servers that control shared terminals in the computing system are included
in the COS. A user logging in at a terminal interacts first with a terminal server who owns the termi-
nal. This server is also a window manager. It facilitates creating windows, which are thie units of
allocation of the physical resource (the terminal). The user may choose to interact with a different
user-interface (UI) server at each window, as shown in Figure 3-10. That UI server becomes the
owner of the window until the user logs off or disconnects from that Ul server. The allocation policy
used by the host is simple -— let the user decide the allocation. The terminal server provides “raw”
Read and Write services from/to the window. These services are permitted to the current owner of
the window, or to whoever the current owner has issued an appropriate permit.
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3.7.5. ED: An Extendible Database Management System

In this example we elaborate on the needs of an application-specific DBMS and show how
those needs can be met in a FOCS. ED exemplifies the new class of extendible DBMS’s [20]. To
further illustrate the advantages gained in a fully open system, we assume that ED supports an
“object-oriented” database, organized as a collection of typed objects. Actually, ED is modeled after
two such systems, Exodus [36] and POSTGRES [128].

Of major importance to any DBMS is the ability to control: (1) The organization of the data-
base on disk, so that accesses are efficient and the database can be reorganized as a result of growth
or decline, (2) the scheduling of disk accesses, especially due to data dependencies as well as during
recovery, (3) the management of buffers: in particular to decide memory and buffer replacement pol-
icies [94,43]. These issues are more acute for an extendible DBMS, since its data types, structures,
and access methods are application-dependent and may change, perhaps even dynamically [60, 90].
These issues become even more important when the database is extendible and object oriented, since
more sophisticated algorithms for disk and buffer management are required. Specifically, we assume
that in addition to the above requirements ED must be able (1) to dictate the placement of objects on
disk, e.g. their page alignment and clustering, so that data and objects can be efficiently inserted into
or deleted from an object, (2) to support sharing of disk blocks among object versions, (3) to support
different buffer sizes, (4) to allocate buffers per object stored on disk rather than per disk block as do
the general-purpose buffering facilities of operating systems, and (5) to ensure buffer alignment on a
page boundary and buffer continuity in physical memory, in order to avoid multiple page faults on
buffer access. Finally, as any DBMS may require, ED also needs (1) to control the scheduling of
queries of high priority, (2) to implement a particular security policy, and (3) to be able to efficiently
share buffers with its customers.

A configuration of ED that accommodates these requirements is depicted in Figure 3-11. The
managers shown are layers of abstraction, not necessarily separate servers. As mentioned earlier, ED
runs in its own Universe and controls memory mapping and replacement for its servers. In fact, the
U-mgr of ED may elect to map several servers to a single Space, in order to reduce communication
overhead. ED implements its own buffering mechanism. The U-mgr maps the buffer pool into a
segment of virtual space, which is shared by the Spaces of ED servers. ED servers share buffers with
customers through permits.

ED includes a private disk to maintain its database of objects. The disk host provides block-
ing and nonblocking disk access services to ED servers. It accepts access-scheduling directives from
other ED components. The Objects & Types Manager is responsible for defining new objects and
types, for access method selection for queries, and for other aspects of query processing. Other ED
components are responsible for policies in other domains, in which ED has specific requirements:
recovery, accounting, security, and transaction management—including concurrency control.

As illustrated in Figure 3-11, ED may acquire services from “outside” servers. The shared-
disks host is used to retrieve load modules and to store backups. An outsider server schedules activi-
ties to perform urgent queries, recovery operations, and maintenance chores. This scheduler accepts
directives from the Transaction Manager of ED.
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3.8. Rationale

The preceding scctions described the model and illustrated its usefulness. This section
justifies our selection of model features and semantics in light of the examples above and other
potential applications. Some of the features of the FOCS model are unique; others borrow or com-
bine features of systems described earlier.
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Resource Ownership

Resource ownership enables applications to access physical resources directly, to control map-
ping of logical resources to other resources, and to transfer these abilities to customers. Other
models do not support direct control of CPU scheduling or memory management by ordinary appli-
cations. The model’s view of resource management supports policy—mechanism separation. In
addition, it allows an application to supplement the mechanisms for using a resource, for instance
when the existing mechanisms do not support the application’s policy. Encapsulation of resources
within their hosts enables every application to define private resources and protect them. Resource
ownership, however, has a potential drawback: a resource is subdivided among applications, so it
might be underutilized by one application while being overutilized by another one. The charging
system, as well as other mechanisms at the design level that pressure owners to release unused
resources, aim to cope with this problem.

It is noteworthy that our approach to full openness based on resource ownership has been
recognized by other researchers [92] as an essential foundation for future systems based on market-
ing concepts.

Service Provision

The view of services as being encapsulated within servers supports hiding implementation
details, as do concepts of other models such as modules, monitors, and objects. The unified view of
services in the FOCS model extends this hiding to any service. The simple semantics of service
invocation allows multiple models of communication to coexist. We chose synchronous service
invocation over asynchronous or time-bounded service invocations, because the former is simpler
and potentially more efficient. The rejected paradigms can be accomplished via scheduling services.
Moreover, as other researchers have observed [27], programmers prefer to use synchronous com-
munication primitives over asynchronous ones.

Service invocation is modeled to combine the benefits of two paradigms: local and remote
procedure calls. With adequate optimization techniques at the design and implementation levels, a
service invocation can be nearly as efficient as a procedure call. A service invocation is similar to a
remote procedure call [25] or a remote invocation [28, 114], and allows simple cross-address-space
communication and different modes of synchronization. However, service invocation avoids the
time-consuming chores of parameter packing, unpacking, and message passing.

Activities

The decision that an activity spans multiple servers stems from the need to convey the pre-
cedence and the execution state of a computation to the services it uses. Otherwise, scheduling of
the activity would be left solely to the discretion of each server in the activity’s chain. This decision
is based also on efficiency considerations: there is no need to create a new activity to carry out the
service at each invocation. Otherwise, frequent communication among servers implementing dif-
ferent service layers [44, 121] could be unbearably costly.
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An activity is analogous to a light-weight process in other systems [12,81]. It is designed to
combine the benefits of two approaches to light-weight processes. Like Mach threads, activities can
be dispatched concurrently and hence applications can achieve a higher degree of parallelism. Like
Mesa processes, a server has control over the activities that run at the server because it can switch
among them. Moreover, the OSB associates only minimal state information with an activity. Thus,
activities can be created and destroyed cheaply. Activities are appropriate for different levels of
granularity of execution as required by real-time applications {111]. Each application can associate
more state with its activities, and thus give them “heavier” weight.

Customized Protection and Security

The level of protection supported by default allows an application of mutually-trusted servers
to communicate without protection overhead. The imposed verification of bindings is necessary,
regardless of trust, in order to destroy obsolete bindings. This verification is similar to detecting
dangling pointers in programs. Checking invocation parameters is not imposed. It can be easily
achieved by a server’s runtime package. The low-level protection mechanism fits systems that
implement different security policies. For instance, DBMS’s want the OS to accommodate orderly
invocation of their services; once a customer “enters” the DBMS, the latter wants to use its own pro-
tection mechanisms to achieve more sophisticated and less inefficient security policies [94].
Higher-level protection mechanisms can be accomplished through service parameters (e.g. a pass-
word) or private capabilities. Further research is needed to determine whether a specific architecture
can support such capabilities, so that their management is not entirely—and inefficiently—
performed by software.

Bindings and Permits as Light-Weight Capabilities

Bindings and permits sharply contrast with generic, heavy-weight capabilities in other sys-
tems [87]. We selected them in order to allow each application to tailor them to its needs. Not all
resources and services need equally complex capabilities 77]. For reasons of efficiency, we rejected
the idea of combining bindings and permits to one form of capability. Although sometimes when a
server passes a permit it should pass also a binding for a service to use the resource, it might be the
case that the receiver of the permit already holds the appropriate binding. Likewise, passing a bind-
ing for a service that uses its “own” resources does not necessitate passing a permit.

Creation and Birth Inheritance

Creation of servers, resources and services is not controlled by the OSB, so that applications
can choose the computation/communication models and the inheritance semantics as they see fit.
Activities are an exception because their execution states need to be protected, but still their manage-
ment is left to their owners. It is left to the design level to appropriately support unique naming and
identification. Since bindings and permits are regular data structures stored in the space of any ordi-
nary server, diverse inheritance schemes can be easily implemented.
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Termination, Cleanup, and Inheritance after Death

If termination were controlled by the OSB, then the OSB would impose its own termination
semantics. How would the OSB know death-inheritance rules for resources it does not control, or
avoid unnecessary cleanup chores when an entire application terminates?

Although servers and activities can be terminated by any server, some means to guarantee ord-
erly termination are needed. In the model’s view, termination can be announced via service invoca-
tions or via exceptions (that is, prior to termination or by another server). Termination can be
discovered through the OSB, which validates server and activity ids. When a server terminates,
other servers are not automatically notified because such notification is rarely necessary.
Notification is left to whoever terminates or discovers the termination of a server. The resources
owned by a deceased server are inherited by other servers; each host supports inheritance semantics
appropriate to its resource.

Exceptions

An exception raised by a current server of an activity is useful as a “self-addressed”
notification, to be noticed when the server is re-executed by that activity. A server cannot achieve
this task through its data structures, since the server would have to check for an exception when it is
re-executed by that activity, namely, checking would be required at virtually every instruction.
Exceptions can be used to notify an activity of a preempted resource and to trigger the activity to
recover its state.

Data Abstraction and Hiding Hardware Dependencies

Modern languages and operating systems encourage hiding of implementation details from the
user. So does the FOCS model. Implementation details can be hidden from a customer that prefers
a higher view of resources and services. But a server that wants to directly access physical resources
or manipulate virtual-to-physical resource mapping canrot do so efficiently through another agent.
Therefore, that server can (and in fact must) be aware of the underlying architecture, hardware,
access protocol, and any low-level mechanism. This argument is similar to what other researchers
call the “don’t hide power” principle [27, 82].

Upcalls and Trust

Some systems propose special mechanisms to allow backward procedure invocations between
system layers [44]. We believe that structuring a system based on trust between components is more
appropriate than defining rigid layers. With the semantics of service provision, “upcalls”, “down-
calls”, or “sidecalls” are uniformly supported. Hypothetical layers are formed dynamically by pass-
ing bindings. Data transfer between layers in either direction is simplified with permits. An “upcall”
invocation of an untrusted “layer” can be handled asynchronously, aborting the activity when its exe-
cution exceeds a time limit.

A binding is modeled as a capability that can be created on the fly, without particular rights,
so that procedure parameters can be passed efficiently. Such parameters are needed, for instance, to
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announce service completion or, as in an extendible DBMS, to consult a higher layer (a customer)
about different options in an access method [126, 127].

Charging for Resource Usage and Services

Charging is needed to help reduce contention for scarce resources, or support fair distribution
of them. Even in a friendly environment charging is useful to detect erroneous or malicious mono-
polization of resources by some user or application [29]. Charges can also serve as a trace for usage
statistics. The charging mechanism, however, could be unfair or overly inefficient — two problems
which should be coped with at the design and implementation levels.
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Chapter 4

A System Design

4.1. Overview

This chapter details a system design based on the model. The main purpose of the chapter is
to illustrate the efficiency and complexity issues of a fully open system. Other purposes are to
explore mechanisms that support protected openness, to derive possible policies of the OSB, and to
examine the interfaces needed in certain service domains such as naming, CPU management and
memory management.

We present services and techniques by which the abstract system outlined in the previous
chapter can be realized. They are presented bottom-up starting from the mandatory services of the
OSB and continuing through its optional services, conventions in an installation, and services of an
example COS. In various cases where different services or interfaces can accomplish a given func-
tion, we describe the problems involved with accomplishing the function, illustrate a possible solu-
tion, and discuss alternate or extended solutions.

4.2. The OSB

4.2.1. Introduction

This section presents the OSB services, focusing on services to support CPU management,
activity management, recovery, and accounting. A resource-allocation policy of the OSB and possi-
ble extensions of the OSB services are discussed. This discussion highlights the trade-offs between
protection, efficiency, complexity, and fairness. The intent of this section is to show that the basic
services are simple and can be efficiently implemented.

A system is started as follows. The primordial server is the Initiator. It creates the Universe
into which the OSB is mapped. Then it creates and loads the OSB into memory. This stage includes
taking inventory of system resources and creating their hosts. The actions of the Initiator are guided
by a configuration schema, which is an initialization plan prescribed by the System Administrator.
The schema also tells which bindings are required initially, defines the ordering of CPU ownership
(i.e., CPU priorities) and of other system resources, and specifies accounting information. The OSB
then creates the application-level servers which are required initially, such as the initiators of a COS
and of other predefined applications.

The OSB imposes three requirements on naming and addressing that are necessary for the pro-
vision of its services. First, a virtual address which references another Space is interpreted as the
pair (Space id, address within the Space). The Space id should contain the id of the memory host to
which the Space is mapped, as shown in Figure 4-1. This requirement is necessary so that a CPU
can submit references to the appropriate memory host. It implies that a memory host and any p-host
that is stored in its private memory must be registered with the OSB to obtain a unique identifier.
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The OSB is oblivious to the way that the memory host interprets the Space id and the address within
the Space. Later we will discuss an addressing scheme supported by the example COS.

Second, a server is identified by the Space it is stored in. Servers may have other identifiers to
which the OSB is oblivious. It is assumed (but nor required) that the Space id is invalidated by the
U-mgr when the server terminates and its Space is released. Failing to do so is considered a misser-
vice of the U-mgr to its customers because obsolete references to that Space may confuse the state of
a newer customer stored in the Space. For example, a return address from a previous invocation
made by the deceased server is not detected as invalid.

Last, a binding for a service consists of two lists (see Figure 4-2). One list is held by a custo-
mer and is used for service invocations; it consists of the a key, a target address, and optional attri-
butes. The other list is stored at the target address at the service provider; it consists of a lock value
and a list of references to the operations that implement this service. As discussed shortly, a custo-
mer specifies at service invocation the binding and the operation chosen. The CPU verifies the bind-
ing by comparing the key against the lock, then transfers control to the requested operation. This
structure of a binding enables servers to create, copy, and invalidate bindings efficiently. Later we
will present additional, non-mandatory conventions about bindings, aimed to simplify communica-
tion between servers. For simplicity of presentation, a customer’s list is henceforth referred to as the
binding, and the server’s list as the binding’s origin.

Various OSB services obtain permits to access buffers in their customers’ virtual memory.
Each such permit is similarly assumed to be a data structure that contains a target address and
optional attributes. The attributes are passed to the memory host of the target address for verification
at access time.

An Address

Memory
Host A/\"‘

Space id address within Space

Figure 4-1: An address
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4.2.2. Services for Activity Management

Activities can be created transparently to the OSB. However, since the OSB protects the exe-
cution state of the activities that use the CPU’s, such activities must be registered with the OSB in
order to be allocated activity context descriptors (ACD). In this section we discuss the OSB services
for activity creation, service invocation, service return, and handling exceptions.

Creation

A creator of an activity announces it to the OSB, via the NewACD service. (Appendix A.l
provides a summary of the interface of OSB services for activity management.) The invoker of
NewACD becomes the owner of the allocated ACD and is considered also the owner of the activity.
It can therefore initialize the state of the activity by manipulating the ACD, modify the ACD later,
and dispose of it when the activity terminates. An owner can let other servers perform these tasks
via permits to the ACD. The OSB guarantees unique ACD ids. From the point of view of the OSB
services, an activity is identified by its ACD.

To initialize the activity’s state, its creator has to specify the first service that the activity will
start to execute, an address to return to from the service, and optional parameters to that service. The
return address is conceivably of the creator’s routine that terminates the activity. In addition, the
creator has to supply an accounting permit, which enables servers in the activity’s chain to charge
the activity for using their resources or services. The owner is supposed to set the activity’s bind-
ings. These bindings (or pointers to them) are stored in the ACD, so that the OSB can easily locate
them when a server in the activity’s chain invokes a service through these bindings. For protection,
the OSB verifies that the specified initial service and return address are either in the creator’s Space
or are referenced by valid bindings. For the same reason, the ACD owner is not allowed to modify
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the environments of services preserved in the ACD and their return addresses.

Service Invocation and Return

A service is invoked via the CPU host’s service Invoke.! The invoker indicates a binding for
the service, which the invoker or a given activity holds, and specifies the selected operation. The
binding’s key, the target address, and the operation are verified. If they are invalid, then the invoca-
tion fails and returns a distinctive indication so that the invoker can recover appropriately. Other-
wise, the CPU host preserves the return address in the activity’s ACD and transfers control to that
operation. The invoked server becomes the activity’s current server. As a matter of efficiency, the
invoker can specify that the invoked service should not return to it, but rather to a former service in
the dynamic chain. This feature is useful in situations where the invoking service’s role is merely to
select an appropriate service for a given case. For instance, a Universe manager’s fault service,
invoked because of a fault caused by a server in the Universe, need not be returned to after invoking
the server’s fault-handling service.

How should parameters be passed to the invoked service and result parameters returned to the
invoking service? We have decided that they are passed in absolutely-addressed memory protected
by the OSB, which for simplicity is called here the CPU registers file. The registers are inaccessible
to other activities; they are preserved in the ACD upon activity switch. This decision is based on
considerations of protection, efficiency, and simplicity. If parameters were passed in a stack that
resides in the invoker’s Space or some other Space, then it would require more than one current
Space per CPU at a time. This requirement increases the complexity and potentially the inefficiency
of address translation. If alternatively the stack were copied at each invocation and return, then it
would render invocations inefficient. Transferring the stack between the Spaces of the invoker and
the invoked server was rejected for complexity reasons, especially since the Spaces might be in dif-
ferent Universes. Moreover, in the last two alternatives it might be complex or imprudent to main-
tain stack consistency when the activity’s quantum exgir'es in the midst of service invocation or
return. In either case, vulnerable values stored in the stack are not protected ~— they can be errone-
ously corrupted by the U-mgr of the invoker or the invoked server. Finally, the alternative of
relegating stack management to the OSB was also rejected. This alternative would put the complex-
ity of stack allocation into the OSB. To avoid having a second current Space would necessitate an
additional mechanism to access this stack, e.g. through special capabilities as proposed by Dennis
and Van Homn [48]. As we will show in the next chapter, with adequate architectural support the
registers file can be viewed as a preallocated stack in absolutely-addressed memory.

The types of arguments expected by the service and the registers n which they are passed are
declared by the service provider. Likewise, it declares the types of the results and the registers in
which they are returned.

To avoid an infinite cycle, the Invoke service is not invoked through Invoke, and likewise does not re-
quire a binding.
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The number of registers may be insufficient when a large amount of data is passed. A parame-
ter, therefore, may be an access permit for a structure where additional parameters are supplied, for a
large buffer, or for a parameter passed by reference. The invoked server/invoker then “pulls” the
parameters whenever it wants. This method is reminiscent of the active Accept primitive of
SODA [74] and the buffer copy by the receiver in V [40]. It is up to the invoker to save—prior to
the invocation—the registers it does not want to be altered or inspected by the invoked service, and
restore them thereafter. It is left to the invoked service to record which activities execute it and what
internal resources they occupy. This information is useful for cleanup at service abortion, or when
recovery chores are performed by another activity.

A service normally returns via the CPU host’s service Return. For recovery purposes, Return
can be forced by the activity’s owner, as will be discussed in §4.2.4. What happens, however, if the
returned-to server has terminated after the invocation, as shown in Figure 4-3? Upon return, the
CPU is notified by the server’s m-host that the return address is invalid. Consequently, the CPU host
forges a return to a former invoker in the chain with a predefined result indication. A similar return
is enforced if during execution or at activity dispatching the CPU finds out that the activity’s current
server has terminated. The intervention of the CPU host in these cases stems from protection con-
siderations: to ensure orderly return to the former server in the chain.

Activity A Actjvity A Activity A
S R rtn(result) m R
ACD (A) 0SB ACD (A) OSB ACD (A) OSB

current: current: current: (0

— : : : :
Y et S@b
Q@a addresses Q@a

(a) (b) (c)

IO I [ e 0|

Figure 4-3: Service return to a deceased server
{a) The return addresses of services in Activity A’s chain are recorded in its ACD.
(b) Server S dies. Its death is discovered when R’s service retums.
(c) The CPU host forges return to @ with an indicative result.
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Context Switch between Activities

The services for activity scheduling are Dispatch, ChangeQntm, and Switch (see Appendix
A.2). Since they interact with the CPU management services, they are discussed in the next section.

Exceptional Events

Inter-activity exceptions (called for short exceptions) are raised via the OSB service Raise.
The invoker of Raise specifies the target activity A, the exception type T, and a value to pass to the
exception handler. As explained in the former chapter, raising an exception is allowed only to A’s
owner and A’s current server. Also, the standard interface includes a protocol for invocations
through exceptions, which defines some standard exception types. T can be one of the standard
types or an application-specific type.

The exception is noticed immediately when A resumes execution. Execution is diverted by
the CPU host to an appropriate handler of A’s current server S. Conceptually, this diversion occurs
as follows. The CPU host notifies the m-host of S of the exception. The m-host subsequently
invokes the U-mgr of S, which invokes a designated service of S. If there is no such service, the U-
mgr may invoke a service preregistered for debugging S, or terminate S altogether.

For reasons of efficiency and simplicity, this sequence of invocations can be cut short as fol-
lows. The standard interface defines where exception handlers or their bindings are found. The CPU
host, therefore, can simulate transfer of control—that is, a procedure call—to the appropriate handler
of S. If such a handler does not exist, the CPU host then fries to invoke the appropriate handler of
§’s U-mgr. If the latter is not found either, then the regular sequence is followed. In either case,
since the exception may imply termination of S’s service, then §, its U-mgr, or its m-host can return
to the former service in A’s chain,

An interesting question is how to pass parameters {0 an exception handler. Parameters cannot
be passed in “ordinaxy’; registers, since an exception occurs asynchronously, without letting the
current server save the registers in use. To avoid having the CPU host manipulate the current
server’s or the U-mgr’s local stacks (what if they don’t have a stack, or what if the stack overflows?),
we adopted another solution: parameters should be passed in CPU registers designated for this pur-
pose. Similar to the ordinary registers, the exception registers are protected by the CPU and are
preserved at activity switch. These requirements are likely to increase the complexity of the CPU
architecture. We will refer to this issue in Chapter 5.

A related question is how to handle a subsequent exception that occurs before a former one
has completed. The solution adopted is that when a second exception is raised and noticed, the CPU
host saves the exception registers and transfers control to the handler of the second exception. For
reasons similar to the above, the exception registers are saved in a stack associated with the activity
and maintained by the CPU host. Consequently, at exception-handling completion the handler
should indicate this fact to the CPU host by invoking ReturnFromExcpt, in order to restore the
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environment of the former exception.”

A minor extension of the mechanism of exception raising allows a former server in an
activity’s chain to Raise an exception that the server itself would handle when it is reexecuted by
that activity. This feature is useful in a situation when a server S notices or generates an event that
affects the course of execution of another activity A, of which § is not the current server. For exam-
ple, S preempts a critical section from A, and so S wants this event to be noticed by A once it
resumes running at §. The motivation for this feature is to simplify the programming of servers so
that explicit checking for exceptions is not required at each service return. This kind of exception is
similarly treated by the CPU host.

Another group of exceptions are intra-activity exceptions. In this group we distinguish

between language-based exceptions, such as exceptions in Ada® [72], and traps. The former are
raised invisibly to the CPU. They should be handled by language-provided tools (see [18], for exam-
ple) transparently to other activities, servers, and the CPU host.

A trap is an exception condition raised in the course of execution by a CPU or an m-host. A
trap occurs due to an erroneous machine instruction—e.g. invalid operator or operand—or due to an
error caused by that machine instruction—e.g. integer overflow or floating-point underflow. Every
trap is noticed and examined by the CPU host. The action taken is according to a predefined
classification of trap types. If the trap is such that it does not require altering the course of execution,
then an appropriate indication is returned—e.g., a flag is set in a register called Ry, . The trap can

be in the handling domain of the CPU host, e.g. a trap indicating quantum expiration, and thus it is
handled by the latter. In this particular example, the CPU host performs an activity switch. Other-
wise, the trap type is defined to be handled by the current server, its U-mgr, or its m-host. Examples
of such traps are division by zero, a mapping fault, or a reference to an invalid Universe. These traps
trigger the CPU host to transfer control to an exception handler in a fashion similar to handling
inter-activity exceptions.

Finally, an interrupt is a request to reclaim a CPU for urgent work, posted by a p-host or a
former CPU owner. It results in preempting a CPU from a scheduler and suspending the activity
using that CPU. The CPU host would later resume the activity on that CPU or another one. An
interrupt, therefore, does not affect the course of execution of an activity, other than causing a delay.

Service Extensions

Postpone activity switch. A quantum expiration that occurs in the midst of a critical section
or an urgent function is undesirable from the current server’s point of view. Hence, the CPU host
lets a server postpone time expiration for up to a predefined short quantum, after which activity

It is conceivable that in practice only a few exception registers and a short stack of them are needed, for
two reasons. First, only an exception type and none or a few parameters have to be passed to an exception
handler. Second, exceptions are infrequently raised. Hence, the overhead imposed on the OSB to support ex-
ceptions would be minor.

®Ada is a registered trademark of the U S. Department of Defense (Ada Joint Program Office).
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switch is enforced. This feature guarantees that a short critical section or an urgent function can be

performed without interruption, unless they exhibit traps that are handled for a lengthy period.3

Memory replacement of ACD’s. If the OSB lacks sufficient physical memory to store all
ACD’s, some activities will suffer a page fault upon dispatching. Such an event is undesirable for an
activity dispatched for urgent work or a computation with real-time constraints. Therefore, the inter-
face with the OSB can be extended to allow an owner of activities to direct the ACD-replacement
policy of the OSB. Specifically, each owner is allotted a quota of physical memory and is let decide
how this quota is allocated to its activities. Alternatively, the OSB lets an owner dictate which
ACD’s to pin in core and charges a higher price for such a service.

Status. The OSB provides a service to check an activity’s status, such as its remaining quan-
tum, pending exceptions, and how long the activity is idle. This information can help a server decide
whether to reclaim an internal resource from an activity. For instance, when a server finds that a crit-
ical section is occupied by another activity, it can consult this information to decide whether to block
the current activity, to unroll the former activity from the critical section, or to go into a “‘busy-wait”
loop until that activity releases the critical section. A further extension would be to let a server
choose the order of handling the pending exceptions.

4.2.3. Services for CPU Management

The CPU host has two roles: to allocate CPU’s and to verify the allocation and usage of
CPU’s by other servers. The first role includes a mechanism which is described below, and a policy
which is discussed in §4.2.6. The second role includes services to transfer CPU ownership (both
allocation and revocation) and to switch between activities. These services are intended to support
any application-level mechanism or policy in a protected way. Below we describe these services,
discuss problems raised by them, and present our solutions. We discuss the efficiency and complex-
ity of the services and possible service extensions. The interfaces of these services are presented in
Appendix A.2.

v

CPU Ownership

The CPU host allocates CPU’s to a predefined set of applications. The customers specify
demands of CPU time through the GetCPU service. The invoker of the service may specify an
urgency level and the number of CPU’s needed. These parameters are useful to accommodate the
concurrency or responsiveness level of the requester’s customers. The invoker may also indicate
that the demand is a continuous one, namely, to be renewed when the allocated slice is consumed.
This feature solves a potential race condition occurring when that server’s slice expires — if the
server has more work to schedule, but not enough CPU time to invoke GetCPU again.

3As mentioned earlier, longer critical sections can be dealt with by requesting preferred scheduling from
the activity’s scheduler through the activity’s bindings. In any event, a server can Switch to an activity whose
quantum has expired in a critical section, so the formation of a convoy [61] of activities can be avoided.
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The CPU host allocates time in real Time Units. It satisfies a demand partially or gradually
when the level of contention among its customers is high. Since all CPU’s are identical, the CPU
host can distribute an allocation among more (or fewer) CPU’s than requested. To simplify the
interface with the CPU host, a customer is allocated logical CPU numbers mapped dynamically by
the CPU host to specific CPU’s. The mapping is changed transparently to the CPU owner as a result
of interrupts. A potential extension of GetCPU is to let a customer indicate a desired response
level, rather than a concrete quantity of CPU’s and time units. This extension could simplify the
scheduling algorithm of a customer, at the expense of complicating the CPU host’s algorithm.

A CPU owner can transfer ownership via the Allocate service. The allocator can specify
default values such as all or any CPU. This feature reduces the schedulers’ burden of keeping track
of CPU ownership. In addition, since the allocator can name any recipient, a higher level of CPU
sharing is attainable compared with schemes that support a static hierarchy of schedulers [115, 140].

Two related problems with CPU allocation are how to notify the recipient of a slice of that
event, which activity should be dispatched to use the slice. The simplest solution the CPU host may
adopt is to do nothing, letting the allocator decide on both questions. This solution seems appropri-
ate, since Allocate might be invoked because the recipient has asked the allocator for a slice. So, the
allocator can report how much has been allocated via a service return to the recipient. Likewise, the
allocator may dispatch an activity of the latter server to report the event via a service invocation
and/or use the slice. However, all these alternatives are susceptible to quantum expiration: If the
quantum of the activity—by which the allocator tells the event—expires, then the latter server can-

not make use of its slice.* Therefore, the above solution is not always desirable. Another solution is
to let the CPU host dispatch a predefined activity associated with the recipient. This solution
requires that that server preregisters such an activity with the CPU host; it also reduces the flexibility
of the server to decide which activity is dispatched and when.

The solution adopted is to let the allocator choose among the alternatives. Specifically, the
allocator may name the activity to be dispatched, which can be the invoking one. For protection rea-
sons, this activity should be owned by the allocator or the recipient. If no activity is nominated, then
a default activity associated with the latter server (denoted its scheduling activity) is dispatched by
the CPU host. A server can register such an activity via the Register service. If there is no such
activity, then Allocate fails. This solution allows servers to choose the appropriate balance between
flexibility and complexity by adding a small complexity to the OSB.

A former owner of a slice can reclaim the unconsumed portion of it through Revoke. A
current owner can voluntarily Release it. Each released slice is returned to the possession of its
former owner, who is notified by the CPU host. (The notification mechanism will be described
shortly.) An interrupt is a generic version of Revoke. Interrupts are conceivably more frequent and
endure for a shorter time than regular revocations. Hence, for efficiency reasons, an interrupt does
not actually cancel the CPU ownership of current owners. The owners are reallocated a CPU by the

“Notice that adding the entire slice to the current activity's quantum is not possible when the slice is of
one CPU and the activity runs on another CPU. Doing so after the activity’s quantum expires requires the
CPU host to monitor the activity, hence this alternative adds complexity to the CPU host.
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CPU host when one becomes available.

Notice that a CPU owner may get slices from several servers, and it might have allocated its
slice to several servers. Hence, the CPU host has to decide which slice is reclaimed at Revoke, when
this is not obvious from what the invoker of Revoke has specified. For the sake of consistency, the
CPU host records the order of allocations per server and per CPU. It employs a simple rule of First-
Allocated First-Used, which can be implemented simply as a stack. The overhead of this decision
and additional bookkeeping adds minor complexity to the CPU host.

Context Switch between Activities

Dispatching an activity implies a context switch from the activity that is currently running on
the specified CPU to the dispatched activity. Therefore, the Dispatch service suspends the dispatch-
ing activity if it runs on the same CPU; otherwise, Dispatch is analogous to an asynchronous service
invocation. The remaining quanturn of the suspended activity is returned to the possession of its
scheduler. The scheduler can dynamically upgrade the activity’s quantum via the ChangeQntm ser-
vice.

Similar to the problems mentioned above with Allocate, there are two problems with transfer
of control and notification. First, which activity runs after the dispatched one consumes its quan-
tum? Notice that the dispatching activity might no longer be suspended at Dispatch, for instance
because the dispatching was asynchronous, or because the dispatching activity has been itself
dispatched afterwards on another CPU. Second, should the scheduler be told when the dispatched

activity consumes its quantum?’ It is not always possible to notify the scheduler through a result
returned from Dispatch for the same reason as above. Notifying the scheduler by invoking its
predesignated service, similar to notifying the completion of an asynchronous service, raises two
additional problems: Should the CPU host allocate an extra slice to the scheduler to perform the ser-
vice, in case the scheduler has exhausted its CPU ownership before or during that service? If so,
how can it guarantee that this service completes promptly?

The solution adopted to the transfer-of-control problem is again based on the notion of a
scheduling activity. If the server has registered such an activity, it is dispatched whenever a previ-
ously dispatched activity consumes or releases its quantum. Otherwise, control is transferred to the
dispatching activity; if that activity concurrently runs on another CPU, then the transfer is delayed
until the activity idles. The first alternative is simpler when a server dispatches many activities,
because then the server does not have to synchronize scheduling decisions among different activities
that perform its algorithm. Moreover, this alternative avoids the risk that an activity gets suspended
within the scheduling algorithm when its quantum expires, and thus causes a delay of scheduling
decisions until the scheduler can Switch to it, if at all. The other alternative is simple in the simpler
cases, such as when a server infrequently alternates the use of a CPU between a few activities. It

SAn activity does not consume its entire quanturn if the CPU is revoked from its scheduler, or if the ac-
tivity elects to pause or to be blocked. The first event is told to the scheduler by the CPU host; in the other
events the activity tells the scheduler. Hence, no further intervention of the CPU host is necessary in these
events.




53

does not require that a server preregisters an activity, but it might be less efficient since it delays a
transfer of control. In either case, a server can choose the alternative, and again, it can decide the
appropriate balance between complexity and flexibility.

The solution to the notification problem is combined with solutions to similar problems at
CPU allocation and revocation. Specifically, the CPU host enqueues “notifications” that describe the
events and passes them either at service return or via a shared buffer. The exact mechanism is
described shortly.

A server can Switch to another activity of which the server is the current server. The server
can restrict the switching by a specified time limit parameter. This feature is useful in a situation
when a server wants to invoke a given service, and to ensure that the latter service returns within the
time limit. For example, in the midst of an urgent operation a server may want to Unblock another
activity or to notify a customer of an access completion — in both cases without suspending the
current activity for too long. This simple time-bounded invocation does not abort the invoked ser-
vice when the time limit expires. Hence, it is safe since it does not pose the risk of leaving the state
of that service inconsistent.

The parameterless Switch is used to switch back. This option is important for fairness. For
example, imagine that a server executed by activity A finds that a critical section is occupied by
Activity B, and thus switches to be executed by B. When B leaves the critical section, the server can
switch back to A to continue that computation.

Notice that a switched-to activity may switch to another activity, for instance when the
activity running in one critical section must enter another one. The CPU host maintains a graph of
switched activities that tells which activity to reactivate when the switchcd-to activity completes its
subquantum or asks to switch back. This graph may become very complex since activities in the
graph might be dispatched by their schedulers or Switch to other activities already in the graph. It is
unclear whether the OSB can maintain correct dependency semantics between the activities in such
situations. In practice, however, it is conceivable that Switch is mainly used for short-term transfer
of control. Therefore, the semantics of Switch are defined to support the simple situations
efficiently. Specifically, the graph is maintained until the quantum of the root of the graph—the
dispatched activity—is consumed or released. It is left to the activities to Switch again when they
are redispatched, if the conditions that formerly required the switching still holds. The major reason
for this decision to abandon that graph is that until the “root” activity will be redispatched, other
activities might be dispatched as well, and perhaps resolve the conditions that required the switching.

For a similar reason of simplicity we decided not to reject the dispatching of an activity
already in the switched-to graph, nor maintain a complex graph. Instead, in such an event the former
graph splits and the latter activity becomes the root of a new graph. For instance, suppose A is
dispatched, then switches to B, which switches to C, which switches to D; the graph is A-B-C-D.
Now C is dispatched; the graph splits to A-B and C-D. It is up to B to wait until the condition for
which it has switched to C is resolved. The solution is based on the assumption that such scenarios
will rarely occur, and thus they are not worth the extra complexity of maintaining more sophisticated
graphs. This solution also resolves potential scheduling conflicts between the current server of an
activity (which requested the Switch) and the activity’s scheduler by favoring of the latter.
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Notifications

As discussed above, a server has to be notified when (1) its slice is revoked, (2) a slice it has
allocated to another server is consumed or released, or (3) an activity dispatched by the server con-
sumes its quantum. It is not always possible to furnish a notification as a result returned from the
service relevant to the event, and not prudent to invoke an acknowledgement service of the customer.
In addition, when a server is asked to make scheduling decisions, it wants to be kept up-to-date with
the results of its former scheduling requests. Hence, the CPU host has to queue the notifications. If
the server has furnished a buffer, then the notifications are stored there in a list. In this way, the
server can be up-to-date simply and efficiently. This sharing of a buffer raises three problems: (1)
The concurrent write problem, in which both the CPU host and the server try to modify the list, (2)
The concurrent read~write problem, in which the CPU tries to modify a list entry while the server
reads it, and (3) a buffer overflow problem when the CPU host generates notifications faster than the
rate at which the server reads them. To avoid the first problem, only the CPU host should modify the
list. The server can only modify an indicator which tells how far it has inspected the list. A mutual-
exclusion mechanism is employed to avoid the second problem, based on architectural features such
as memory locks or a test-and-set machine instruction.® If the buffer overflows or if the server has
not provided a buffer, then the CPU host queues the notifications in the OSB, up to some
implementation-dependent limit. These notifications are passed to the server either upon a subse-
quent return from a service such as Allocate or Dispatch, or when the server explicitly requires the
notifications by invoking a GetNotices service.

Handshaking with Schedulers

Two services let servers establish their interface with the CPU host. A server can use the
Register service to declare which activity is its scheduling activity and to supply a buffer for
notifications. The YourCustomer service is used by a server to become the CPU host’s customer of
CPU allocation.

Service Extensions

Status Information. The interface with servers can be extended to help them recover from lost
notifications and to tell them global scheduling information. The former task is supported by letting
a server check the “balance” of its CPU ownership, the status of a given activity, and the result of the
last dispatching of the activity. To provide global information, the CPU host maintains system load
statistics, such as the number of schedulers and activities, as well as averages of CPU demand and
CPU consumption. The statistics can be reported either via a new service or by giving servers read-
only access permits to the memory area where these statistics are accumulated. This information can
improve schedulers’ decisions with regard to CPU demand and allocation since, as explained shortly,

®Having the buffer in the server’s address space raises a risk: a mapping fault may occur when the CPU
host tries to put a notification there, and the server’s U-mgr may does not resolve the fault in a short time, thus
delaying the CPU host from serving other customers. To avoid this risk, the invocation of the U-mgr’s fault
handler is delayed until the above server is allocated CPU time, so that the server’s U-mgr consumes its time.
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the CPU host charges for CPU allocation as well as for CPU demand.

Detached Mode. There is an inherent inefficiency in activity dispatching: when a quantum
expires, another activity of the scheduler is dispatched, in some cases only to immediately dispatch
another activity. The interface with schedulers can be extended to allow a scheduler to be periodi-
cally detached from short-term scheduling operations. The scheduler, however, should be able to
make short-term scheduling decisions, as well as decide when not to be detached. To support the
extended interface, a scheduler should supply an access permit to a list of scheduling orders in its
address space. The list has a predefined, CPU-host-dependent structure. When a detached scheduler
owns a CPU, the CPU host dispatches activities from this list, and updates it. If the scheduler indi-
cates that it is no longer in detached mode, an order is incorrect, or the list is empty, then the CPU
host dispatches the server’s scheduling activity. The scheduler can easily react to changing require-
ments by dynamically rearranging the list and changing quanta. It can also easily inspect the results
of previous dispatches marked in the list, or switch dynamically between being detached or involved
in short-term scheduling operations. Likewise, it can put an activity in the list which periodically
makes decisions or performs housekeeping chores.

Summary

In summary, we note that most of the CPU management services are very simple. They
require the OSB to consult simple data structures to validate ownership without deciding policy
issues. Therefore, they can presumably be implemented efficiently. GetCPU is more complex
because it requires the OSB to arbitrate among conflicting demands when the contention for CPU’s
exceeds availability. Some of the complexity involved in services for CPU allocation, revocation,
and activity scheduling is inherent to the environment of multiple CPU’s. We carefully crafted them
to cope with concurrency problems as well as the problem of time expiration in critical situations.
For example, ChangeQntm allows a scheduler to increase the quantum of an activity executing its
service so that the service is not suspended before completion. Switch and the service to suspend
quantum expiration allow any server to avoid time expifation in a critical section. The notification
mechanism should be simple in cases when a server supplies a buffer, dispatches a few activities, or
dispatches them sequentially.

The services above allow dynamic sharing of CPU resources and immediate revocation when
needs change. Although the services are tailored to support any hierarchy of schedulers, it is con-
ceivable that the dynamic hierarchy will be relatively flat and so that negotiations and allocation will
not be very complex.

4.2.4. Support for Authentication and Recovery

An additional role of the OSB is to support authentication. Accordingly, the OSB guarantees
unique identifiers for activities and memory hosts. The Accountant authenticates account permits,
accounts, and the users associated with accounts (discussed later). This service allows servers to
base their protection mechanism and allocation decisions on the identity of user customers, rather
than server ids. The OSB does not guarantee server ids to be unique, since it may be reasonable for
some U-mgr or server manager to associate a single id with multiple servers. The OSB, however,



56

provides a service to validate a given server id. It is left to the interface between servers to further
authenticate each other, e.g. by using passwords or logical names.

Two additional OSB services for authentication are intended to simplify other tasks of servers.
First, a server can find out the id of an activity running at the server. This service helps the server to
record allotments of internal resources per activity and easily reclaim them when the activity aborts.
Second, a server can find out the (server) id of its invoker so that reauthentication at each invocation
is not necessary. The id of an invoker is taken from the binding that is used to invoke its own ser-
vice. For the sake of efficiency, these activity and server ids are stored in CPU registers readable by
any server, denoted CurrAct and PrevSrv.

The service to check whether a given server id is still valid enables a server to reclaim
resources from deceased servers. For example, if server § maintains a mutually-exclusive lock
which is held by server R and for which other servers are waiting, it wants to free the lock once R
terminates. However, it would be very inefficient if every server must continuously check whether
the servers it is associated with are still alive. Putting the complexity of announcing servers’ death
into the OSB imposes the overhead on the OSB. Hence, it is left to intermediary servers to provide
such checking services. For example, imagine the existence of a “watchdog” server, which periodi-
cally checks whether servers from a given list are still alive. S can ask that server to watch R, and
hands a binding for a “reply” service. When the watchdog discovers R’s death, it reports the event to
§ through the reply service. (An analogous method is used in Swift [44] for a similar problem, but
there the complexity and the overhead of distributing death notices are put in the kernel.)

The OSB helps servers recover from the termination of an activity or of its owner. An acﬁvit.y
whose owner has terminated cannot be dispatched any more. Consequently, servers in the dynamic
chain of such a dangling activity might be unable to recover their state, especially the activity’s
current server who has not had the opportunity to save its state. Therefore, for protection reasons,
the OSB inherits the activity and schedules it for orderly termination. Specifically, the OSB raises
an exception of a predefined type, and dispatches the activity. The exception triggers the handler of
the activity’s current server to perform cleanup and to report the exception to a former server in the
chain, and so forth until the chain is “untangled”. When the activity’s original service returns, the
OSB can safely dispose of the activity. This scenario resembles language-based recovery methods
such as that of Mesa [81].

What if the untangling process takes longer than the scheduler allows, for instance because
some service either requires a very long cleanup period or it loops forever? The OSB handles such a
case by setting a predefined limit on the time allotted to each server in the chain. If a server does not
return within that limit, then a return is forced by the OSB. The returned-to service is notified of the
event with a predefined result indication, such as ReturnForced ActivityTerminates. This time limit
has to be decided at the implementation level. It should suffice ar least for creating an activity and
assigning to it the task of cleanup, e.g. by copying the state of the terminating activity to the new
activity. In this way, a well-behaved server that has to perform lengthy cleanup chores is protected,
while the overhead and complexity imposed on the OSB is minimal.

For analogous reasons, intervention of the OSB is necessary at activity termination. Suppose
that a well-behaved activity owner raises an exception on the activity to notify the activity’s current
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server of its intent to terminate the activity. But as in the scenario above, the untangling does not
complete. (Recall that the owner may inspect the activity’s chain and find out whether the untan-
gling proceeds properly.) As above, the owner may invoke Return on behalf of the activity, and the
OSB returns a similar indication to the returned-to service.

One might ask how the OSB can impose “good behavior” on the activity’s owner in order to
protect the servers in the activity’s chain. After all, the owner itself might be terminating, or it might
lack CPU time to dispatch the activity, or an impatient user might dictate an urgent termination of
the computation. We adopted the following solution, combining it with the solution described
above: an owner may force the activity to return to a preceding service in its chain by invoking
Return(Activity id, # of hops). To protect the servers “hopped over”, the OSB enables them to per-
form cleanup as before. Specifically, as illustrated in Figure 4-4, popping m chain-hops from
activity A that has an n-hop chain (n 2 m), creates a new activity B with a chain of the last m hops of
A. Activity A remains owned by its previous owner. Activity B, however, is inherited by the OSB,
which schedules it to complete cleanup as described above. In order to prevent an activity owner
from flooding the system with such dangling activities, the OSB may refuse that Return if it reaches
a limit on the number of activities per system or per owner. Furthermore, Activity B is assigned the
accounting permit of A, so it does not get resources or services for free. Notice that this mechanism
allows servers to implement a time-bounded service invocation, while the invoked server is assured
the opportunity to recover an aborted invocation in an orderly manner.

Activity A Activity A Activity B

ACD (A) CPU Host ACD (A) ACD (B)
1 current: U , current: S I I current: U l
T@d v : : . T@d
S@c ™~ retumn
R@b addresses R@b
g@a Q@a
(a) (b)

Figure 4-4: Splitting an Activity
(a) Activity A runs at Server U when its owner asks the OSB to remove two hops from A's chain. (b) Activity B is
created and is assigned the chain (T, U); A retains the remaining chain.
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4.2.5. The Accounting Services

This section presents mechanisms that allow servers to charge for their services and resources.
We first draw a basic mechanism that allows whoever submits a permit for an account to debit that
account. This mechanism does not allow an account owner to protect the account from being
debited excessively or too frequently. Two extensions to support this protection are subsequently
presented, and their added complexity and overhead are discussed.

Elements

Table 4-1 summarizes the elements of the accounting mechanism. For simplicity, a single
currency system and a centralized banker—the Accountant—are assumed. Extensions to multiple
currencies as in Amoeba [95] and multiple bankers as suggested by Miller et al [93]. are possible,
but require more complex accounting mechanisms. Such extensions are not discussed here.

As in Dennis and Van Hom’s work [48], principals are the users of the system. They are
represented by servers and activities. A principal would conceivably control several applications in
the system. It can assign an account to each application and a subaccount to each activity or server.
The motivation for supporting subaccounts is to let several servers share the balance of one
account—that is, to dynamically balance each other’s credits and debits—while each server can
issue distinct accounting permits, can have a distinct history of transactions, and can be restricted by
a private balance. Figure 4-5 illustrates the accounting hierarchy supported by the Accountant. The

principal A user or a group of users responsible for the “expenditures” accumu-
lated in an account.

account A logical resource owned by one or more servers. An account is asso-
ciated with one principal, and is credited and debited by servers. It
records the sequence of such credit and debit requests and the cumu-
lative balance that results from these operations.

subaccount An account A can be a merged account of accounts Al, An, in that
and credit and debit operations on each of A, ..., A_are reflected also in
merged account  A’s balance. Accounts A, ..., A_are called subaccounts of A.
accounting An allowance to debit a specified account with an optional limit on the
permit amount that can be debited. For brevity it is denoted a cheque.”
currency The unit of accounting transactions (credits and debits) supported by
unit the Accountant.
accountant A server responsible for maintaining accounts and their balances.

The Accountant is a generally-trusted server included in the OSB.

Table 4-1: The elements of the accounting subsystem
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dashed lines represent optional levels. Each subaccount can be further divided into subaccounts. In
practice, the depth of the hierarchy is restricted to some implementation-dependent number of levels.
The Accountant’s services that support these functions are summarized in Appendix A.3.

Paying the bill for accumulated expenditures in an account bears installation-dependent
semantics. In one installation a bill can be paid with real-world currency, while in another installa-
tion bills are merely used to record resource utilization. It is left to each installation to decide
whether accounts are allowed to accumulate unlimited debts, or whether they have “debit limits”
which cannot be exceeded.

Principals and Accounts: Creation and Termination

A new principal is introduced to the Accountant by the System Administrator. A new account
is then created to record all the principal’s transactions in the system and is credited with the
principal’s initial budget. If there is a debit limit imposed on the principal, it is recorded in that
account. A principal is identified by a secret key established then. Any server presenting this key
can perform operations on behalf of that principal.

An account is identified by a public id and a private key. Any server presenting that key is
considered the account’s owner. All owners of an account have equal rights to it. An owner is eligi-
ble to create subaccounts under this account, to issue cheques, and to close the account or its subac-
counts. This feature allows a server to close accounts that were spun off its account by “child”
servers. An account owner can also change the account’s private key. This operation invalidates all
outstanding cheques. It may also take away ownership from other owners.

Accountant

System Administrator

Prir_lcipal

"‘(mergecyl) accountv”'

ﬁ (sub) ‘a'c:»count

Figure 4-5: Accounting hierarchy

"We chose the spelling “cheque” over “check” in order to distinguish it from other uses of “check”.
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Charging with Cheques

The basic mechanism assumes a complete trust of customers in their service providers. There-
fore, a cheque issued by a customer is an unrestricted authorization to charge its account. Any
holder of a cheque can Deposit it to a specified account and thus charge the customer’s account as
many times as the holder wishes. It may freely pass the cheque to other service providers.

A cheque is the pair (FromAccount, Signature), where
Signature := Sign ( FromAccount, Account’s private key ),
and Sign is a publicly known one-way function. Sign can be a library routine or a machine instruc-
tion, so that issuing a cheque is simple and efficient. Cheques are transferred between servers as reg-
ular data structures. The Accountant merely verifies the signature at a Verify or Deposit request by
using the same Sign function.

Charging with Cheques: Extended Mechanism

The major drawback of the former mechanism is that the OSB does not allow servers to pro-
tect themselves. An account owner cannot restrict the amount that can be charged, prevent reusing a
cheque, or cancel a cheque. Therefore, cheques are extended to include a maximal amount and a
serial number. Specifically, a cheque is the quadruple

| FromAccount | Serial # | Max amount | Signature |

Signature := Sign ( FromAccount, Serial #, Max amount, Account’s private key ),
and Sign is as before.

In this mechanism, Deposit can charge only a limited amount, and a cheque can be Cancelled.
The Accountant records the serial numbers of cheques that have been cleared (that is, deposited or
cancelled), and verifies the serial number of a cheque at Deposit. Appendix A.3 presents the algo-
rithm used by the Accountant for recording and verification. If the issuer of a cheque does not need
this protection, it can sign the cheque with gny amount orva serial number of none.

This mechanism allows a cheque holder to charge the relevant account gradually via Partial-
Deposit. For instance, a file server can charge file owners periodically instead of charging them
once for the entire life span of their files. This service relieves a customer from furnishing multiple
cheques, which is an inefficient or sometime impractical alternative. However, this service imposes
the complexity of remembering the remaining amount of the cheque, in order to protect the cheque
issuer from holders that overuse the cheque. To relieve the Accountant from recording such infor-
mation for each cheque, the Accountant replaces the cheque by a new one with the remaining
amount. In addition, the new cheque includes a reference to the original one, so that the issuer can
cancel the cheques that spun off its cheque. Another problem is that the serial number of the new
cheque should be different from any number assigned by the account owner, since otherwise one
cheque will invalidate the other. For simplicity, a convention should be observed, for instance that
account owners assign positive serial numbers and the Accountant negative ones.
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It is desirable in some cases to let a cheque holder split the cheque between a number of
servers. For example, a file server may want to credit its account by part of the amount of a
customer’s cheque; it may want to use the rest to pay for resources and services of other servers used
to maintain the customer’s files, such as disk space and communication services. Consequently,
SplitCheque allows substituting two cheques for one cheque — one for a specified amount, the other
for the remainder.

Further Extensions

There is still a protection gap in the former mechanism. The issuer of a cheque cannot enforce
that a cheque is indeed gradually used, if that is its intended use. Nor can the issuer limit the amount
charged at each PartialDeposit request, nor the time interval between consecutive charging requests.
Such protection, for example, might be desired by a suspicious customer of the file server in the
former example, to ensure that the file server does not charge more frequently than every n time
units. A possible extension of the accounting mechanism is to define a cheque as the tuple

From Serial # Max Max Time Time Signature
Account amount | eachtime | of charge | interval

where Signature and Sign are analogous to the former ones. Time of charge is the earliest time the
cheque can be deposited. Max each time is the maximal amount that can be charged at Partial-
Deposit. Time interval is the frequency of charging. The time of charge is set by the Accountant at
every PartialDeposit or SplitCheque of a cheque, again so that the Accountant does not have to
record these values for every cheque.

The services presented above do not change except for additional protection, execution over-
head, and complexity. The provider’s algorithm of charging for resources and services becomes
more complex too, since it has to deal with scheduling the deposition of cheques. Moreover, a cus-
tomer now has to meet the requirements of resource/service providers regarding the amount and the
frequency of charging. And since cheques are passed around, they have to meet the requirements of
any potential holder. If a provider employs a dynamic pricing function, it would be difficult to pro-
duce adequate cheques. Hence, presumably more services and resources would be denied to custo-
mers because of inadequate cheques. Providers and users would have to negotiate frequently to
agree on the appropriate charging schemes and/or replace refused cheques. Therefore, this mechan-
ism imposes higher overhead and complexity.

Discussion

Each of the three mechanisms in turn improves the protection level of accounts at a cost of
higher complexity and execution overhead. None of them, however, can offer the ultimate protec-
tion of requiring a provider of services or resources to charge reasonable prices, to distribute the
charges fairly among its customers, or even to provide the service/resource for which it charges.
Since it is assumed that a customer trusts its service provider with respect to the service, we may
presume that the server can be trusted with the customer’s resources as well, including its accounting
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budget. Thus, the basic mechanism should be sufficient for most users.

Since a server is allowed to credit any account, a more efficient and direct charging for
resources is possible by eliminating hierarchical charging. A host of a given resource may charge
the current owners or users of the resource rather than charging the initial owners, which then charge
later owners, and so forth. In fact, the CPU host charges the current owner of each CPU and the
dispatched activities directly. Moreover, this feature allows a host to easily refund a server from
whom a resource is revoked.

The Accountant records the transactions of each account, up to some implementation-
dependent limit of volume or rate of transactions. It is left to the implementation to guarantee that
these logs do not produce impractically voluminous data. The implementation can either restrict the
frequency of charging or record only the most recent transactions and summaries of older transac-
tions. Since the Accountant does not remember the uncleared cheques forever, the implementation
should also guarantee that valid cheques are not made obsolete too soon by space-efficiency con-
stderations. Otherwise, servers would have to PartialDeposit cheques very often, or negotiate with
the cheque issuers to replace rejected cheques — two outcomes that increase overhead and complex-
ity.

In order to maintain usage statistics, Deposit and PartialDeposit can be extended to indicate
the resource or the service provided. Another server would then provide statistics of resource usage
by summarizing the logs produced by the Accountant. These statistics help in finding bottlenecks in
the system, as well as in identifying users or applications that are too “greedy.” The Accountant may
support tracing the logs as well as undoing unreasonable charges. Likewise, the Accountant can let
users ask about principals, accounts, and subaccounts, in order to check their balances and their pro-
portional usage of resources. In an installation where balances are not restricted by debit limits nor
paid by “hard” currency (e.g., the UW-Madison computer sciences department), such reports pres-
sure users to avoid overly demanding or inconsiderate usage of shared resources.

v

4.2.6. Allocation Policy and Algorithms

This section presents a general policy and mechanism employed by the OSB for system
resource allocation. It then discusses them in the context of CPU allocation, and draws several allo-
cation algorithms. The resource allocation policy of the OSB is based on the following considera-
tions:

(1)  Openness: The OSB honors the requirements of its customers as expressed by their demands,
and lets them implement their policies and mechanisms.

(2) Priority: When demands exceed availability, resources should be allocated to the most impor-
tant demands, based on some estimation of the OSB,

(3) Fairness: Even the demands of the less-preferred customers are granted, according to some
installation-dependent fairness criteria.

(4)  Simplicity: The OSB is designed to function as a coarse-grain allocator, in the sense that it
allocates resources to a few customers, in relatively large amounts, and for lengthy periods. It
is left to these customers to deal with the needs of particular applications, computations, or
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other allocators.

The allocation mechanism is as follows. Each customer poses a demand in real units, e.g. real
CPU Time Units. The demand represents the accumulative resource requirements of its customers’
work. Since in general the OSB is oblivious to the relative importance of its customers’ work, they
include importance indicators in their demands, such as an urgency level. The pricing system is used
to deter customers from overdemanding. The OSB charges more for urgent demands. For some
resources it can give “credits” to customers that abstain from demanding them. These credits can be
later used to backup urgent demands. (A similar method based on microeconomics models was sug-
gested to regulate demands in a slotted Aloha multiaccess communication channel [79], giving
credits to “‘silent” stations.) An extension to this mechanism is to let customers bid for resources.
Similar to some scheduling algorithms for real-time systems [106, 145], arbitration is based on bids.
This mechanism assumes that more important customers have higher budgets (or rather that richer
customers are more important).

The allocation mechanism can be parametrically tuned to support fairness considerations. The
preferred degree of faimess is decided at each installation. To achieve a low degree of fairness such
as simply avoiding starvation, old demands are promoted by getting credits or higher bids. A
medium degree of fairness can be achieved by guaranteeing a minimal allocation to every customer.
The minimal amount is defined as either an absolute value or as a fraction of a demand. To support a
higher dcgree of fairness such as balanced allocation, each customer is allocated equal portion of the
resources, normalized by the estimated number of its customers.

Since the above considerations are not conflict-free, there is no optimal policy that satisfies
them all. It is left as an open problem to devise good allocation algorithms in a FOCS. We have
designed a preliminary algorithm of CPU allocation that illustrates the issues discussed above. Itis a
multilevel feedback algorithm that accepts customer demands via the GetCPU service, and adjusts
them by considerations of fairness and utilization efficiency. The algorithm is presented in stepwise
approximations, each of which improves on these considerations at the expense of complexity and
efficiency.

First Approximation:

The basic algorithm is a multi-priority, preempt-resume, which allocates CPU’s based on the
notion of urgency. It uses two parameters: a maximal allocation in order to avoid starvation of non-
urgent demands, and a minimal allocation to prevent thrashing. These parameters are installation-
dependent; they can be scalars or functions of the global demand.

The CPU host maintains a single queue of demands, ordered by their urgency level. The
queue is scanned sequentially. Since there are multiple CPU’s, several demands can be honored
concurrently. A new demand preempts CPU’s from demands of lower urgency that are currently
granted CPU’s. When the new demand consumes or releases its allocation, the preempted demands
are granted back their CPU’s, and the scanning of the queue resumes. If a demand is larger than the
maximal parameter, only that much is allocated in a given scan of the queue, and the rest is deferred
for the next scan.

Problem: A nonurgent demand may starve if more urgent demands arrive frequently.
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Second Approximation:

The algorithm is extended to include multilevel queues of demands, each level being for a dif-
ferent range of urgency levels. For instance, there are three queues for pressing, rush and normal
demands. The algorithm uses additional parameters for fairness. There is an upper limit on alloca-
tions per queue; demands are promoted to better positions in their queues or to higher queues if they
are not satisfied within some time threshold.

The queues are scanned sequentially, level after level. Each of them is scanned sequentially
and repetitively; demands in the queue are honored in a round-robin fashion. Newly-arrived urgent
requests preempt less urgent ones, as before. A demand that is not fully satisfied in one scan, or one
that stays in a lower queue for “long time” is promoted to a better position in its queue or in a higher
queue. Likewise, frequent, urgent demands of one scheduler are demoted to lower queues. The

parameters for promotion and demotion are also installation dependent.
Problem: Nonurgent demands may delay an urgent one for a long time, if the latter is not satisfied by its
initial allocation. For instance, a demand larger than the maximal parameter of its urgency level receives
an initial allocation and then waits until the scanning of all other queues completes and returns to its

queue.

Third Approximation:

The algorithm is extended to include different groups of multilevel queues of demands. Each
group is designated for a different magnitude of allocation so that urgent and non-urgent demands
can be simultaneously satisfied. For instance, one group is of demands for “few” CPU’s for “short
time”, one for few CPU’s for “quite-long” time, and the other of any number of CPU’s for “long”
time. “Few”, “short” and “long” are installation-dependent parameters.

The CPU host divides CPU’s into several pools, one for each group. (In a single-CPU instal-
lation, the CPU will alternate among the groups.) The size of pools adjusts dynamically to the rela-
tive contention for them. Similar to the former approximation, there are several queues per pool
based on urgency, which are scanned in a similar fashion‘as before. However, the number of queues,
the maximal- and minimal-allocation parameters, and the method for promoting and demoting
demands between queues can vary in each pool.

This algorithm allows concurrent scheduling of urgent and nonurgent work. Depending on the
tuning of the parameters, short, urgent demands—such as to handle I/O interrupts—can be satisfied
instantly without aborting normal work. The algorithm gives higher preference to a scheduler that
controls an I/O-bound mix over one with a computation-bound mix, assuming the former requests
fewer CPU’s for shorter time. To simplify the execution of the algorithm, the CPU host devotes an
activity per pool, which acts as the pool’s allocator; another activity runs periodically to rearrange
the pools.

Possible extensions:

The algorithm does not address all aspects of utilization efficiency and fairness. For instance,
how can a selfish, utility-maximizing scheduler be truly prevented from overdemanding CPU’s? On
the other hand, how can a demand that must be satisfied indeed be satisfied, even if it is very large
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(e.g. an important simulation that requires n CPU’s for few hours)? Several features can be used to
support these requirements.

(1)  The CPU host can charge for demands as well as for actual allocations. As mentioned above,
higher prices can apply to more urgent requests. Charging for a demand should increase
linearly with the amount requested, so that a scheduler that serves a large community of
activities does not pay more per activity than a scheduler of a smaller community of activities.

(2)  GetCPU can be augmented with a bidding parameter, to be used to upgrade the position of a
demand in the queues.

(3)  The CPU host can maintain periodic averages of CPU usage per customer give credits to cus-
tomers with low averages. Credits can be used to factor a customer’s demand and accordingly
to position the demands in the queues. in the form that the customer’s demand is factored by
its relative CPU usage, and the demand positioned higher in the queues.

(4)  Customers of the CPU host can be ranked according to their importance. Ranking can be
altered dynamically by the System Administrator. Demands can be factored by the relative
ranks of customers. So for example, the scheduler of the ED DBMS can be ranked highly
with respect to getting one CPU, which implies that a CPU would be dedicated to that
scheduler as long as it needs one.

4.2.7. The System Administrator

The System Administrator is the initial principal in the system. Its account is credited with an
infinite budget. This fact makes the System Administrator a privileged user, but otherwise it does
not need any privileged services from the Accountant. To create new principals, the System
Administrator merely creates their accounts as the subaccounts of its own account. Therefore, it can
always close these accounts. It can also credit any account or clear a balance by transferring funds
from its own account.

4

The System Administrator is represented by a server which is the first owner of all system
resources. Therefore, its right to dictate the primordial ordering of resource ownership derives from
being their owner. It can dynamically change the ordering or dedicate resources to given servers by
merely revoking the resources from their current owners and allocating them to the chosen servers.
So, for instance, to let a given scheduler have a partition of n CPU’s exclusively for m Time Units,
the System Administrator’s server would revoke n CPU’s and allocate them to that scheduler
through Allocate.

4.3. A Standard Interface

A standard interface is a set of conventions for services which a server might be obliged to
use, as discussed in Chapter 3. A minimal standard interface is defined by the system designer.
Each installation may set additional conventions for service interfaces, names, addresses, and for
representations of entities such as bindings and permits. Such conventions simplify programming
and improve the level of sharing between applications because they allow servers to select services
without concerning themselves with the particular interfaces of the services. For example, a server
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that needs a “standard” window management service can choose anyone that conforms to the stan-
dard, without having to leamn the service’s particular interface in advance.

It should be emphasized that conventions are not mandatory: If a server provides a service of
the standard interface which does not conform with the conventions, then the server may harm its
customers. This situation is similar to providing a faulty service. For example, suppose the standard
interface defines operation O to be provided by each owner of an activity. If the current server of
activity A invokes O but the invocation fails, then the server can decide to refuse the service
currently executed by A, and hence abort its computation. Likewise, if the owner provides O but
with “nonstandard” parameters, then the owner may either perform the service wrongly or return an
incorrect result, which again may cause the computation to abort in either case.

At the design level a standard interface contains three components:
(1) Names and parameters of services for specific service domains, e.g. for memory management,
(2) Names and parameters of services for exception handling.
(3) Specifications of where the bindings for these services are found.

At the implémentation level, a standard interface specifies the data types of the parameters and in
what registers they are passed.

We believe that a minimal standard interface should specify operations for four service
domains:

(1) Activity management, to allow a server in the thread of an activity to pose scheduling require-
ments to the activity’s scheduler.

(2) Memory management, so that a server can use a customer’s buffer by invoking the customer’s
U-mgr or m-host.

(3) Interactive I/O, to allow different servers of an interactive computation to communicate with
the user.

14

(4) File 1/0 services, so that multiple servers in the thread of an activity can share a common file to
read service parameters and to write execution traces or error messages.

Appendix B presents an example standard interface which lists the operations for activity manage-
ment and memory management. Only a few standard operations are defined for each service
domain. The other two service domains require simple operations on byte streams, such as Open,
Close, Read, and Write. For simplicity, a single binding per service domain references all the opera-
tions defined for that domain. The bindings are posted in the ACD of each activity. In this way, a
server that wants to invoke Block, for example, simply uses binding #1 of the current activity. It is
similarly simple for the /nvoke service to locate the binding. Bindings for memory management ser-
vices are not included in the ACD — they should be transferred together with buffer permits.

The example standard interface lists two additional operations. TerminateBinding is a generic
operation to be included in every binding. It can be invoked in order to terminate a binding by the
binding’s holder or by whoever terminates the holder. This operation allows the service provider to
properly clean up the state associated with the binding’s holder.
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ExcptHandler is a generic operation to be invoked to handle any exception, including traps.
We have decided in favor of a single handler for all exceptions unlike Unix [109] or Charlotte [16],
each of which uses a vector of handlers indexed by exception type. This decision is motivated to
support virtually any exception type. The same handler is invoked to handle an exception related to
a server controlled by the invokee, e.g. when the invokee is the U-mgr of a faulty server that does not
have an exception handler. For simplicity, the address of a handler or a binding thereof is prescribed
by every server in a well-defined location in its Space. It can be easily located by the CPU upon
exception, and can be dynamically changed by the server. The exact location is defined at the imple-
mentation level.

4.4. System Provided Services: A Customized OS

This section discusses services provided by an example customized OS (COS). The services
are intended to support the basic computational needs of applications. They are not mandatory and
can be provided by other applications as well. The focus of this discussion is on services for
memory management, services to match service providers with their customers, and on language
support services.

4.4.1. Memory Management Services

In this section we assume that the COS includes a Universe manager, and that a physical m-
host is included in the OSB or the COS. The following issues of memory management are
presented:

. A structure of the Universe of the COS. This structure allows efficient and flexible sharing of
both virtual and physical spaces among the servers stored in the Universe.

. An interface between the m-host and U-mgrs. This interface allows the m-host to perform
address translation efficiently. If lets a U-mgr manipulate the structure and the mapping of its
Universe dynamically and efficiently.

. Services provided by an m-host and a U-mgr to their customers.
Universe Structure

As discussed in Chapter 3, a Universe is composed of Spaces, and a server can be stored in
each Space. In order to accommodate efficient sharing between servers, a Space is divided into seg-
ments. A segment is a virtual address space which is separately mapped to physical memory. By
sharing a segment, servers in one application can share code or data structures global to the applica-
tion more efficiently than doing so via permits. Segment sharing, however, raises a problem: a seg-
ment shared by several Spaces would have to be identically numbered in each Space, or else be
addressed via an extra level of indirection as in Multics [23]. To avoid the complexity and the
inefficiency that this problem incurs, the mapping information of a segment is shared, not the seg-
ment itself. Namely, segments in different Spaces may share the same memory map. (For simpli-
city of presentation, we continue to refer to these segments as shared segments.) This form of shar-
ing does not solve the problem of a reference stored in a shared segment, since the reference needs to
be interpreted differently for each Space sharing that segment. We will discuss in Chapter 5 simple
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solutions to this problem, e.g. using base registers for those segments which are referenced through
shared segments.

It would be undesirable to require that segments will be mapped to a contiguous region of
physical memory, for reasons of memory utilization and of allocation complexity. Therefore, a seg-
ment is divided into pages, each of which is mapped to a frame. Though each Universe in the sys-
tem may support different page sizes, pages must be mapped to the m-host-dependent frame size(s).
For protection reasons, access rights are associated with each segment, not with each page. Thus,
different servers sharing code and structures via shared segments may have different rights to access
them. To protect the other servers, a server cannot extend the access rights of a shared segment.

The specific mapping structure that supports sharing of segments and frames depends on the
mapping scheme employed by the m-host. There are two basic mapping schemes: A direct-
mapping, index-based scheme as in the VAX® (3], and an inverted-mapping scheme, as in the IBM
RT/PC [38] or the HP Spectrum [136]. In the former scheme, a per-segment page table specifies the
frame each page is mapped to. A frame can be shared by having different pages of different seg-
ments pointing at the frame. The U-mgr maintains a descriptor for each segment which includes a
pointer to the segment’s page table and its size. A virtual address space is thus shared by having
multiple segment descriptors pointing to the same page table.

In an inverted-mapping scheme, a single frame table is maintained by the m-host. Each frame
has a descriptor which specifies the pages mapped to that frame. To support sharing of a frame by
multiple segments, a frame descriptor indicates two pairs of (group id, page number). The first pair
allows multiple servers to access a given frame by each having a segment marked with that group id.
(A segment’s group id is specified in the segment’s descriptor.) The second pair allows the segments
of the U-mgr to share every frame it owns with its customers; moreover, the frames can be refer-
enced with virtual addresses. The m-host allows a U-mgr to manipulate the descriptors of the frames
itowns. In the rest of this section we discuss a direct-mapping, index-based scheme.

In order to allow efficient address translation by thre m-host, the structural and mapping infor-
mation of a Universe is grouped into several predefined, m-host-dependent structures. These struc-
tures are contained in a single segment of the Universe, called its base segment. Since these struc-
tures are also manipulated by the m-host, it is henceforth assumed for simplicity of design that a
Universe is mapped to a single physical memory. The mapping of the base segment to physical
memory should be known to the m-host during translation, so that virtual addresses relevant to the
base seg:nent (e.g. the address of a given structure) can be translated by the m-host too. Therefore,
the location of the maps is provided by the manager at Universe-creation time. The base segment is
an “ordinary” segment of a Space. Since a U-mgr can store itself in that Space, it can modify the
structural and mapping information contained in the base segment via virtual addresses. Hence,
there is no need for a privileged mode or for an extra translation mechanism.

The base segment includes a Spaces Table, which lists all the Spaces in a Universe (see Fig-
ure 4-6). An entry contains information about a Space, including a descriptor for each segment of

®VAX is a registered trademark of Digital Equipment Corporation.
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Figure 4-6: Universe Structure and Mapping in a Direct-Mapping Scheme

the Space. Since entries are of fixed size, the m-host can locate the necessary information of a refer-
enced Space by using the Space number as an index in the table and the segment number as an index
in the entry. Notice that this feature does not limit the number of segments per Space, because an
entry can be extended with “overflow buckets” of segment descriptors. This extension, however,
may incur translation delay if overflow buckets must be searcheds! In addition to the fields shown in
Figure 4-6, a segment descriptor contains control information used by the U-mgr, such as sharing
information or an indication to copy the segment when a shared segment is modified (that is, a
copy-on-write indication).

The base segment also contains the page tables, including its own page table (denoted BSPT).
The BSPT is core resident, in order to avoid cyclic page faults during address translation.
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(Assuming a contiguous table, a manager therefore must own at least one contiguous physical
memory area of the table’s size.) A page table entry (PTE) is similar to its counterpart in a conven-
tional architecture, except for the lack of access rights. The validity field of a PTE can indicate
Load-on-Demand, which means that the page has yet to be loaded into memory for the first time.
This indicator implies that upon a page fault the U-mgr should consult the particular loading service
for the server stored in the relevant Space.

The m-host keeps a Universes Table, with an entry for each Universe mapped to this physical
memory. An entry includes the physical address of a BSPT and the virtual address of a fault handler.

Address Translation

The following example illustrates how the m-host translates virtual-to-physical addresses.
Suppose the current Space is <123, 3>, that is, Space 3 in Universe 123, and the referenced address
is <4, 2, 32>, Translation takes the following steps.

(1)  The m-host locates the BSPT of Universe 123.

(2)  The virtual address of the entry of Space 3 in the Spaces Table is calculated; using the BSPT,
this address is translated and the entry is fetched from physical memory.

(3)  The descriptor of segment 4 is located.
(4) The eniry of page 2 in the segment’s page table is similarly calculated and fetched.
(5) Finally, 32 is added to the frame number specified in the PTE to yield the physical address.

Notice that steps (1) and (2) need not be repeated at every address translation. For efficiency, the
m-host performs these steps when Space <123, 3> becomes the current Space of a given CPU, and
keeps the structures in a cache. Similarly, step (3) can be omitted on repetitive references to the seg-
ment 4. Consequently, a U-mgr should notify the m-host whenever it changes any of these entries,
so that they are removed from the cache. If the m-host maintains a cache of recent translations, then
step (4) can also be omitted if the PTE is found in the cache.

During the translation process the m-host verifies the validity of the Space, segment and page
numbers, as well as the validity of their entries in the respective tables. It verifies the validity of the
access by checking that every frame accessed during the translation, as well as the referenced frame,
is owned by the U-mgr. It also checks access eligibility, namely, that the intended access operation
does not conflict with the segment’s access rights. If any of these checks fails due to a bad pointer,
to invalid information, or to a page fault, the U-mgr’s handler is invoked by the m-host.

Universe Creation

The m-host accommodates the creation of new Universes. A new Universe is created by a
server stored in an existing Universe. The following is a possible scenario of Universe creation. The
creator obtains frames, at least as many as necessary to store the portion of the base segment that has
to be core-resident. It then defines the structure of the new Universe in one of its segments, and
invokes a service of the m-host to declare a new Universe. At that point the server named as the
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Universe manager is allocated these frames and is copied by the m-host from its “current” Universe
into the new Universe. The manager further defines the structure of the Universe and initializes the
mapping information. Note that the creator does not disappear. It can serve for recovery of that
Universe. For example, if the manager fails to handle a fault in its Universe because the fault-
handling service itself is paged out, then a predesignated service of the creator may be invoked to
recover that Universe.

Services of the Universe Manager

We turn now to discuss the interface of a U-mgr with its customers. (The service interface of
the U-mgr of the COS is presented in Appendix C.1.) A new Space is allocated via the New service.
The U-mgr assigns a unique Space number for the new Space, which consists of the Universe and
the m-host numbers, an index into the Spaces Table, and a random identifier. These components
allow the CPU to direct references to that m-host and allow the m-host to perform address transla-
tion. As mentioned earlier, for all aspects of memory management and addressing, a server is
identified with the id of the Space in which the server is stored.

The creator of a new Space indicates the initial structure of the Space in terms of how many
segments it includes, the size of each segment and its access rights. This information is needed by
the U-mgr to set the respective tables appropriately. The structure can be later modified by the
server stored in the Space or by the creator. A creator of a new Space specifies sharing information,
that is, whether a new segment is a copied from another existing segment Sg or whether the segment
shares the page table of S . For protection reasons, the creator should either own the Space in which
Sg is, or else it should ha;/e an adequate permit to Sg. For the simplicity of the design, shared seg-
ments must be in the same Universe. The creator becomes the owner of the new Space, which
enables the creator to load a new server and initialize its state. At Space creation, as well as at seg-
ment creation and at memory copy, a customer can specify that the copy operation is delayed until

the source or the target is modified (copy-on-write). This feature accommodates fast Space/segment
creation and efficient exchange of buffers between servers.

Loading a server into the new Space is the responsibility of the Space’s creator. Suppose the
U-mgr employs a pure demand-paging policy. Upon a page fault, the page needs to be copied from
an auxiliary storage space into memory. However, the server’s image might reside at various storage
spaces, or be maintained by various file servers. Hence, the U-mgr needs to invoke some service
which can load the page into memory. This service is provided by the creator or by some file server
to which the creator is bound. The interface of this service is predefined by the U-mgr. The creator
has to hand a handle for the service to the U-mgr; the handle includes a binding for that service and a
permit for the server’s image file. (An analogous method is used in the Accent [56] and Mach [134]
systems.) For efficiency, the U-mgr maintains a swap area, into which it copies pages upon replace-
ment. Hence, a subsequent fault on that page is handled by the U-mgr.

The U-mgr supports the Pin and UnPin operations of the standard interface. In addition, it
lets a customer request that a given region of a Space that it owns be fixed in physical memory. This
region then remains core-resident as long as contention for physical memory permits. MemCopy is
used to copy data across Space boundaries. For protection reasons, the invoker of this service must
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own the Spaces from and into which the copying is performed, or must present valid permits to
access those areas.

The permit formats that the U-mgr supports are depicted in Figure 4-7. Like a binding, a per-
mit consists of two lists. One is presented by a server that wants to access the referenced area
(Server S ), and it consists of a target address and a key. The other list is stored at the target address,

which is in the Space of the permit issuer (Server S)); it consists of a lock and a description of the
referenced area. That area can be in the issuer’s Space or in a different Space S, owned by the
issuer. The U-mgr verifies that the key matches the lock, and that S, owns §,. We chose these for-

mats because they allow a server to easily issue permits to Spaces it owns and to pass them to other
servers without needing the U-mgr’s help. The server can easily invalidate each permit separately.
Furthermore, any permit issued by a given server is automatically invalidated when the server
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Figure 4-7: Permits to access virtual memory
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terminates, or when it loses ownership of the Space referenced in the permit.

Access across different Spaces raises a problem: what if Space S, is not in the same Universe

as the others mentioned above? The solution adopted is that the U-mgr of that Space is invoked to
verify the ownership of S, over S,. Likewise, if §; and S are in different Universes, then the U-mgr

of S, is invoked to verify the permit. If the operation is a memory copy, then the invocation and the

copy are performed via the m-host. The protocol of the invocations is a convention defined by the
m-host. This protocol can be more efficient if (1) Space-ownership information is visible to the m-
host, e.g. by indicating ownership in the Spaces table, and (2) all Universes mapped to this physical
memory support standard permit formats. In such a case, the m-host can perform the verification and
the copy without the intervention of the target U-mgr, a process which is analogous to address trans-
lation. In a more complicated scenario, the Universes are mapped to different physical memories. In
this case, the intervention of several m-hosts is needed. Such cases require an elaborate protocol
between various U-mgrs and m-hosts, which we do not detail here.

To support recovery and debugging, the U-mgr allows a Space owner to Freeze the Space in
order to check or modify its contents and to take a SnapShot of its state. A “frozen” Space can be
later reinstated via the UnFreeze service, or else it can be Disposed. Furthermore, if a Space is
disposed of by the server stored in it, then the U-mgr notifies the “guardian” of that Space, if any, so
. that the latter can debug or recover it. The guardian is simply a service associated with that Space, a
binding for which is handed to the U-mgr at Space creation.

4.4.2, Matchmaking Services

A matchmaker is used as a repository of bindings. Service providers deposit bindings for their
advertised services, associated with descriptive names and types. A server can associate a resource
name with a binding, indicating that the relevant service is used for accessing that resource. (This
feature would require the matchmaker to define some standard resource names.) Service users look
up the services they need and obtain bindings for them. A service provider may leave a “reincarna-
tion order”, which will be used by the matchmaker to regenerate the server if its services are
requested after it has terminated. Applications may have private matchmakers to bind their servers
to each other. In this section we outline the services of the COS Matchmaker, which serves as a cen-
tralized name clearinghouse for servers in different applications. The interface of the Matchmaker’s
services is summarized in Appendix C.2.

A service provider can announce the service and furnish a binding for it via Expose. A service
is declared with a unique (server name, service name) pair. Servers must choose unique names for
themselves so that potential customers are not mislead. Disputes about “name rights” should be

resolved transparently to the Matchmaker.® For simplicity, the Matchmaker supports a flat name
space without aliasing. A server that wants to Expose a service under several different server or

$Note: In the particular event that a server is restarted and tries to Expose the same services as it did be-
fore termination, Expose is not rejected because the Matchmaker recognizes that the new server is a reincama-
tion of the former one, as explained shortly.
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service names can do so by exposing it with different bindings. These bindings are considered by
the Matchmaker independently of each other. This decision is based on experience with Charlotte,
in which the SwitchBoard name server supports aliasing [5S4]. The designers concluded that the
infrequent use of aliasing is not worth the complexity of supporting it.

A type is associated with a binding. The type can be one of a predefined list of types sug-
gested by the Matchmaker or an application-defined type. A type can indicate a resource name. For
simplicity, the Matchmaker supports types merely as (sub)names, used to assist service users in
locating a desired service. Hence the Matchmaker does not verify types.

A service user obtains a binding for the service via Bind. For the sake of convenience, a ser-
vice can be located by using a list of names or types to describe the service. This feature is useful
when a service provider advertises the service under different names or types. For simplicity, the
customer may omit the server’s name from the Bind request. This feature is useful when an identical
service is provided by a community of servers, all of which adhere to the same interface, or when a
customer expects only one server to provide that service. Notice that the Matchmaker does not
check the eligibility of the invoker to become a customer of the requested service. This task is left to
the service provider.

For storage efficiency, the Matchmaker occasionally archives bindings that were not requested
for long a time or removes them if their providers have terminated. Bindings are also removed upon
request. A service provider can announce that it no longer wants to provide a given service (or al/l
services) by invoking the Close service. The Matchmaker removes the relevant binding(s) from its
store. This operation, however, cannot invalidate copies of the bindings held by other customers or
matchmakers. To disable invocations of the service altogether, the provider should remove the
binding’s origin or modify its lock. A server may Close services exposed by another server only if
the latter has terminated. This feature allows the creator of a server or its U-mgr to remove the
server’s bindings upon its abrupt termination.

A customerless service provider may want to disappear until its services are requested. For
instance, a compiler used infrequently can terminate until some server needs its service. It can leave
a reincarnation order at the Matchmaker via Revive, or another server can do so on its behalf. The
invoker of Revive specifies how to reload the server and, if necessary, how to reload its loader, recur-
sively. This feature allows a hierarchy of servers to disappear when they are not needed, and to be
reactivated on demand. When a server terminates, the Matchmaker does not remove the bindings
that the server has deposited, but rather freezes them. When one of these bindings is requested by a
customer, the Matchmaker asks the server’s loader to load it. The Matchmaker activates the bind-
ings by placing the new id of the revived server in them. Should the server be revived for another
reason, e.g. by being triggered by a user command, it can invoke lamAlive to activate its bindings
and to remove a former Revive order. For protection reasons, the latter server has to authenticate
itself as the former one via a secret id which has been specified in a former invocation of Revive.

4.4.3. Other Services

The COS includes a battery of additional servers which support activity and server manage-
ment, disk storage, filing, network communication, and debugging services. We now present a
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preliminary design of some of these servers.

Server Management

Servers are created through a server manager (denoted S-mgr). The creator specifies where
the image of the new server is. The image should contain a descriptor in a format defined by the S-
mgr, which tells the structure of the server and its initial service. This information is passed to the
U-mgr so that it may structure the Space into which the server is loaded by the S-mgr. The S-mgr
creates an activity to invoke the initial service of the new server, which initializes the server. A set
of bindings is passed to this service, including a binding to a matchmaker, to the server’s U-mgr, and
to the S-mgr.

It is left to the creator to decide and implement any resource-inheritance policy. Accordingly,
the creator asks the hosts whose resources it owns to allocate the resources to the new server, or to
share them with the new server. For example, suppose Server S owns file f, whose host is a file
server F§ (see Figure 4-8a); S asks the S-mgr to fork a new server (Figure 4-8b); S-mgr creates S’
and returns its id to S; finally, S tells S to allocate fto §” (Figure 4-8c). This scheme puts the bur-
den of birth-inheritance announcements on each server. A simpler scheme is to let the S-mgr
announce the birth of §” to all interested servers, e.g. the above FS. However, the latter scheme
requires dictating conventions regarding the methods by which such servers would tell the S-mgr
that they are interested in being notified of new offspring servers of S.

The S-mgr functions as a “watchdog” over the servers that it manages. As discussed earlier, a
server can specify a list of servers to be watched. It can choose to be blocked until any of these
servers terminates, or to be notified of their termination via a “reply” service.

Server § Server S Server S-Mgr Server § Server S-Mgr
remm(S)
*alloc(f, S")
owner: S owner: S
file f file f
Server FS Server FS Server §’ Server FS Server §’
(a) (b) ©)

Figure 4-8: Birth-Inheritance of a Resource — an Example
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Disk Services

A disk host is included in the COS to provide low-level disk management services. It divides
the disk space into blocks, which are the units of allocation. For simplicity of design, the disk host
allocates blocks by their physical addresses; it does not maintain mapping of customer-relative block
addresses to disk addresses. For reasons of access efficiency, a customer may request that an allo-
cated region be of contiguous blocks. It may also indicate the address at which the region should
start or end, so that the region can be coalesced with a region the customer already owns. The server
ids of the owners of each block are stored in the block itself, so ownership verification does not
require an extra disk access.

To allow a customer some flexibility in scheduling disk accesses, the customer can specify
that a Read or a Write request be nonblocking. In such a case, the disk host acknowledges the access
completion by invoking a predesignated handler supplied by the customer. Moreover, a customer
can indicate that a Read or a Write request be carried out immediately. The disk host enqueues such
a request in a queue of urgent accesses which are performed before ordinary ones. To prevent custo-
mers from abusing this feature, the disk host charges more for it. In addition, non-urgent requests
are promoted to the urgent queue after some time threshold to prevent their starvation.

Filing Services

Suppose that a file server in the COS provides Unix-like file services. When a file is created,
the principal whose accounting permit the creator has supplied becomes the file’s owner. Any server
who uses that principal’s account can access the file with the same rights. There are two alternative
methods to repr:sent file permits. First, the file server associates a key with each file. The file owner
creates permits by using a one-way function in a manner similar to producing accounting permits.
This method is simple and efficient but does not support invalidation of individual permits to a given
file. Second, a permit’s origin is created for each permit issued by the file owner, to be used to verify
these permits — similar to the method described earlier regarding memory access permits. How-
ever, a permit’s origin cannot be stored in the address space of its issuer, since a permit might be
used after the issuer has terminated. Therefore, there is provision to store permits in “control” files,
e.g. file “xx.prmt”. This method solves the problem of the former method at the expense of extra
disk accesses to write and to validate permits.

~ When a file is opened, the file server returns an access permit, which is analogous to a file
descriptor returned by the Unix kernel. The customer can share the file with other servers by
transferring the permit to them. Consequently, when a customer dies, the file server does not
automatically close the files that were opened by that customer; the files can be closed by whoever
holds a permit to them. Files that are not accessed for more than a predefined period of time are
closed by the file server so that they are not left dangling. The file server writes in a closed file the
file’s current state, so if there are still valid permits to the file, the file can be reopened transparently
to 1ts users.
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Network Communication

A single machine can be connected to other machines via one or more networks. Each net-
work connection is controlled by a network-communication host. Assume that one such host is
included in the COS. The resource is the communication bandwidth, and the unit of allocation is a
time slot to send packets. Packets are received by the host whenever they arrive, no matter who
owns the resource at that time. The bandwidth is allocated to senders employing a dynamic pre-
cedence scheme similar to the one used in CPU allocation.

The host provides Send and Receive services on byte streams. Reliability and flow control are
relegated to communication servers implementing higher-level protocols. Each server defines a port
into which received messages are queued. The server associates a logical name with a port, so that
remote peers do not have to rely on special handshaking protocols in order to locate the port. The
port owner supplies access permits for buffers where messages can be placed. Send and Receive are
nonblocking. At a completion of Send or Receive, the host tells the customer by invoking a
predesignated handler of the customer.

4.4.4. Language Extensions, Compiler and Runtime Services

This section proposes new programming language features aimed to simplify the writing of
servers. It is shown how the features spare programmers the burdens of declaring bindings, allocat-
ing resources to activities, maintaining bookkeeping of such allocations, synchronizing activities,
accessing shared structures and verifying service invocations. We describe the support functions of a
hypothetical compiler and a runtime package which assist servers in obtaining bindings and invoking
services efficiently. The discussion in this section follows an example server that provides calendar
management services. Excerpts of the server’s program are listed in Figure 4-9.

A server declares the services it uses and provides in the clauses use and provide (lines 4-9).
These new clauses are reminiscent of the export and import clauses of modular programming
languages such as Ada and Modula [142]. Each service js assigned to a variable which can be used
in references to the service. For instance, at program initialization, the server calls library routines
(lines 113-119) to Expose its service and Bind to the file server’s “Sequential files” service. These
library routines would invoke the Matchmaker’s services and check for correctness of the result.
The variable F'S (line 5) is of a first-class type binding, and is used to invoke the appropriate service
(line 71). Likewise S/ represents a binding’s origin. Bindings and permits can also be created “on
the fly,” using built-in functions such as MakeBinding and MakePermit (line 71).

A service operation is defined as an entry procedure (lines 63-84) which are similar to those in
languages that support remote invocations [114]. It is listed in the provide list (line 9) so that the
compiler can include it in the binding’s origin. The compiler inserts code at the beginning of an
entry procedure to obtain internal structures needed at each invocation, e.g. a stack frame. Code is
inserted at the end of an entry procedure to release these structures. Likewise, the compiler gen-
erates code to save registers prior to a service invocation, to restore them thereafter, and to check for
any exceptional returned values.

To mutually exclude accesses to data structures shared by multiple activities, one can embed
these accesses in a monitor, e.g. in a Modula-like interface module [141]. Alternatively, one may
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1 module main;

2 import

3 Advertise, Locate;

4 use

5 FS = “Universal FS8” . “Sequential files” :
6 Open, Close, Read, Write, Seek;
7 provide

8 Sl = “CAL” . “Calendar Mgmt”

9 SetAppt, Cancel, Enquire;

15 type

16 #include "/usr/ios/includes/fs/sfntypes.h"

17 #include "../includes/cal‘types.h"

21 var

22 exclusive buff : array e of char;

23 file~permit : record

27 end file~permit;

28 resident info : array Ca of ... ;

41 module Cal_ services;

42 export SetAppt, Cancel, Enquire;

43 import MakePermit:;

63 entry Enquire ( ... ) returns Appt Descriptor;
64 begin

70 with buff do

71 if FS.Read (file_permit, MakePermit (buff)) # OK
72 then - - - -~

75 else - - - -

79 endif ;

80 od;

81 << - - -

82 - - - >> .

84 end Enguire;

99 end Cal services;

116 begin main

117 Initialize ( ... ):
118 Locate (FS):
119 Advertise (S1);

120 end main.

Figure 4-9: A server providing calendar management services

use compiler-provided code to accomplish this protection. For instance, a variable can be defined as
exclusive (line 22), Uses of the variable that require concurrency control can be embedded in a with
statement (lines 70-80). The compiler would generate code at the beginning of such a statement to
check whether the variable is used by another activity with a conflicting access right. If so the
activity’s scheduler’s Block service is invoked. Likewise, code would be added at the end of the
with statement to check if another activity is blocked awaiting the variable, and if so, to UnBlock
that activity. This code would aiso handle the bookkeeping of structures occupied by an activity so




79

that the runtime package can recover the structures when the activity terminates. Similarly, declar-
ing a procedure or a variable as resident (line 28) tells the compiler to generate invocations to Pin
them in core.

The language simplifies the mechanism for protecting short critical sections. The programmer
can define a critical section by bracketing a sequence of statements (lines 81-82). The compiler then
inserts instructions to postpone quantum expiration during the critical section. If the the compiler
suspects that the execution of the section will be lengthy, it adds invocations of the activity’s
scheduler’s Prio service to increase the activity’s precedence before the section, and to reduce it
thereafter.

To further simplify programming, the compiler automatically includes bindings for
installation-default or language-default services. For example, when the compiler detects calls to
external Read or Send operations which are not declared in any wse clause, it generates the use
declarations of the appropriate default services as well as the necessary Bind requests. These tasks
can alternatively be relegated to an interface-definition language preprocessor like the Accent
Matchmaker [67]. Based on operation names detected in a program, it can insert the necessary
language constructs for binding creation, invocation, protection, concurrency, and exception han-
dling.

A server might want to provide different services by using various subsets of a given set of
operations. For example, it might want to declare a service for restricted customers from a restricted
subset of the operations. Likewise, a service provider might want to enforce certain rules for the
order of invocations, e.g. that a Read operation is never invoked before Open. Both requirements
can be supported by extending the notion of Capability Managers of Kieburtz and Silber-
schatz [77,78]. A Services Manager is then included in the runtime support package. It Exposes
the services declared by the programmer and verifies the adequate order of invocations. The
manager defines new services which extend the former ones with additional operations such as
operations for debugging. It inserts an initialization and a termination operation into services, and
performs them.

It is the role of the runtime-support package to implement language-based rules of inheritance.
Therefore, when a server is created, the runtime-support package can pass segment-sharing informa-
tion to the U-mgr and bindings to the new server. In this way, different inheritance philosophies
such as those of Smalltalk [58] and Emerald [28] can presumably be concurrently supported in the
system.

One notorious problem with monitors is that they impose low-level scheduling decisions
which can conflict with those of higher-level schedulers [73]. This is especially a problem in a fully
open system, where a monitor can be used by multiple activities scheduled by different schedulers.
A possible solution is to let a scheduler specify the precedence of a dispatched activity; the pre-
cedence can be discovered via the Check service (see Appendix A.1). A compiler inserts code into
entry procedures of a monitor to find whether the invoking activity has precedence over the one that
currently occupies the monitor. If so, the latter activity would be rolled back, or be switched-to in
order to leave the monitor. Likewise, the declaration statement of a monitor can specify a pre-
cedence level as in Modula, which the compiler translates into invocations of Prio for each activity
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entering the monitor.

4.5. Example Revisited

We return to the example of the ED DBMS presented in §3.6.5, discussing it at the design
level. Each of the major specific requirements of ED is discussed in turn, and it is shown how ED
meets its requirements. This discussion argues that the particular service needs of database systems
can indeed be satisfied in a FOCS.

Memory Management

The Universe of ED is created as a segment of a server running in the Universe of a Unix-like
system. This server acquires a partition of physical memory in one or more contiguous region(s)
through its U-mgr. It then creates a new Universe into which it is loaded to become the manager.
The ED U-mgr then creates the permanent servers of ED (see Figure 3-11), assigns them to Spaces,
and creates their initial bindings.

Suppose that for the purpose of efficient sharing between ED servers the structure of the
Universe is similar to the Universe of the COS. Data structures shared by all or most of ED servers,
such as the buffer pool, are mapped into one segment. This segment is added to the Space of every
ED server that requests access to it. Since the shared segment has a single page table, any
modification of a buffer or its mapping to physical memory is visible to all ED servers. This method
of sharing extends other proposals based on segmented virtual memory [17, 138]. If the ED U-mgr
owns a sufficient amount of physical memory, the entire segment is core resident. In addition, ED
servers may indicate to their U-mgr which structures or code to pin in core.

Buffer Management

The ED U-mgr serves also as a buffer manager in order to efficiently coordinate memory and
buffering services. It acts as a monitor for buffer allocation and access synchronization. Though
each ED server can access the entire buffer pool directly, for integrity purposes a server must be allo-
cated a buffer before accessing one. When an ED server makes an allocation request, it specifies a
buffer size, the urgency of the demand, and indicates whether the buffer should be mapped to con-
tiguous physical memory. (This feature is important only when the disk host uses physical addresses
to access data and it does not support data chaining.) If the buifer manager cannot map the allocated
buffer to contiguous physical memory and the urgency is high, then it preempts frames from other
servers until a contiguous region is formed. If the urgency is low, then the buffer manager invokes
the scheduler’s Block service to suspend the current activity. The sizes of the buffer pool or of indi-
vidual buffers need not be “tuned” in advance to any anticipated demand level. The buffer pool can
grow dynamically in virtual memory, and likewise in physical memory if the ED U-mgr owns a
sufficient number of frames. This property allows the U-mgr to support sophisticated buffer-
allocation algorithms such as DBMin [43]

When a buffer is allocated, its address in the shared segment is returned. The allocated server
can share the buffer with other servers by passing a pointer to them. This method eliminates the
inefficiency problem of transferring data between the components of a DBMS in a conventional




81

system [125]. No buffer permits are needed since the ED servers trust each other. If it is possible
that different activities would attempt to read and modify the same buffer concurrently, then they
need to acquire locks through the buffer manager.

It is important for every DBMS to preserve logical dependencies between records, e.g.
between update records and their relevant log records in a write-ahead-log protocol [61]. These
dependencies imply the order in which the buffers that store the records should be written to disk.
Hence, ED servers can specify dependencies between buffers to the buffer manager. When a buffer
fills, or a buffer needs to be replaced, or a transaction has to commit immediately, the buffer
manager schedules disk requests in the order of the dependency graph rooted at the focal buffer. In
addition, ED servers specify which buffer updates should survive crashes. Accordingly, the buffer
manager occasionally flushes modified buffers to disk.

Disk Access

Similar to the COS disk host described earlier, the ED disk host lets its customers choose
between blocking and nonblocking Read and Write requests. An ED server can specify the order of
its Write requests. Requests with specified numbers are performed in the sorted order of their
numbers (per customer). Write requests with no numbers are performed in any order based on the
disk-head scheluling algorithm of the host. Optionally, a Write request can supply a list of blocks,
which are written in that order. This feature is used mainly by the buffer manager. If a request is
made by an activity with a high precedence, e.g. when an immediate commit is required, then the
disk host issues the access immediately.

Query Processing

ED compiles a query on demand and generates a “query module” for it. Two important issues
are: how efficiently can a query module be linked to other ED servers, and how can access methods
be shared by servers executing queries? These questions are of common concern to database sys-
tems [37,124]. A degmented-memory architecture simplifies this task: Since addresses are
segment-relative, no address reconciliation is needed at load time as long as the segments of a query
module are placed in fixed positions in all Spaces. Therefore in ED a query is compiled into two
segments. A module is loaded into an existing frame of a server (see Figure 4-10a), which consists
of data structures, bindings, and the mechanism necessary to execute a query. As illustrated in Fig-
ure 4-10b, each query module consists of segments 2 and 3 containing the query’s specific access
methods and data structures. At execution time, each query module is loaded into a new replica of
the “query executer”. However, except for the query-module segments, all other segments of the
query executers (e.g. servers S and R in Figure 4-10b) are not duplicated — they share the same vir-
tual and physical address spaces. This design supports the loading of queries in a simple way.
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Figure 4-10: Compiled queries in ED

Scheduling Activities

Suppose that ED prefers non-preemptive query scheduling, allowing queries to block only
when awaiting data. Since the customers of ED issue queries via activities controlled by different
schedulers, ED cannot impose a non-preemption policy on them. Instead, the ED Query Interface
Server or the Transaction Manager asks the scheduler of each customer’s activity to Block it. Then
another activity is selected from a pool of idle activities controlled by the scheduler of ED to per-
form the query. The selected activity is notified of its task through a work queue shared by ED
servers. When the activity completes its task, it makes a request to UnBlock the customer’s activity
and returns to the pool.

Security

ED maintains its own object-ownership information. Therefore, when an object is created, it
becomes owned by the principal that owns the customer’s account. The creator may transfer access
permits or ownership to other servers or principals. Upon access, the Security Manager verifies that
the requester either represents that principal, or that it has a valid permit to access the object.

Upcalls

Suppose that a customer of ED prefers to refine a query while it is processed, for instance
because of curtain data dependencies discovered dynamically, or because the query requires specific
operations on an abstract data type not supported by ED. The customer can specify a procedure to
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be consulted during query processing by providing a binding for the procedure. Invoking a
customer’s procedure is unsafe [127], and contemporary DBMS’s have not found a simple solution
to this problem. In our design ED can invoke such procedures on the customer’s activity. Alterna-
tively, an ED server can set a time limit on the duration of the procedure by simply telling the
scheduler to abort the activity when the time limit is exceeded.
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Chapter 5

Implementation Issues

5.1. Overview

This chapter examines the feasibility of an implementation of the design. The main purpose
of the examination is to shed light on the implied execution efficiency in a FOCS and the complexity
of the required architectural support. We chose to discuss certain components and features of the
design that require a closer examination with regard to these aspects. The discussion focuses on
OSB services, service invocation, representation of servers, p-hosts, and activities, as well as on
issues of addressing and memory management.

The physical environment assumed in this chapter is depicted in Figure 5-1. It consists of a
collection of CPU’s, memories, and I/O resources connected via a common bus — similar to the
emerging class of multiprocessor systems known as multis {22,5,9]. The major characteristics of
this environment are the ability of each component to address any other component, and the ease
with which components are added or removed. Such an environment allows an open architecture in
which only minor restrictions apply to attaching customized equipment.

O O T |
illl[ L [N
CPU CPU l::j ‘Fmem- mem- mem- !

i ~mem|~{ ~|{mem—] : @ CPU
: | I ;

to a communication network

Figure 5-1: The physical environment
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5.2. Representation of Servers

Servers are implemented in all three levels of hardware, firmware,! and software. The imple-
mentation of software servers follows directly from the design of memory management. Each server
is mapped to a Space and its services are executed on the CPU’s. Services of a p-host can be imple-
mented in hardware or firmware in the device that contains the p-host’s resource.

It is desirable to allow merging of cooperating software servers into a single Space in order to
reduce the overhead of crossing Space boundaries. Each server in the merged collection would
remain functionally a separate server for its customers. This merging can be done statically, analo-
gous to linking Ada packages or Modula modules to form a single program. It can be done dynami-
cally by adding a new server to a Space which already stores another server, as follows. Assuming a
segmented virtual memory, each server may have “private” segments. In such a case, the segment
numbers in compiled addresses are either updated at load time, or segments are referenced via
pointers which are set dynamically. Alternatively, counterpart program components (e.g. code seg-
ments) can be merged to form a single segment, reconciling addresses in references to them. In such
a case, a segment that contains references to other segments cannot be shared with other servers
because the reference are changed. Otherwise, the segment can be shared if it uses base registers to
references other segments in the Space, similar to the base registers used in the IBM Sys-
tem/360 [26].

The ability to merge servers raises questions as to whether merged servers can have individual
ids or separate exception handlers. One way to support such a distinction between servers in a single
Space is to extend server ids to include an index within the Space in addition to a Space id. Each
Space would then contain a dynamic vector of “server descriptors.” Each descriptor contains a flag
indicating whether the respective server is valid and an address of an exception handler. The vector
is at a well-defined location, say at the Space-relative address 0. It is prepared by the servers’ loader
and can be modified by the servers themselves. A CPU validates a given server id by inspecting the
appropriate entry in the vector using the server id as an index, for instance at service invocation and
upon exceptions. The advantage of this organization is its simplicity; however, it adds overhead to
the above CPU services.

In order to reduce the binding time of a new server, a system-wide convention about the initial
bindings required by a server can be defined by the implementor. Information about these bindings,
e.g. the provider’s and service’s names, would be grouped in a predefined structure similar to a sym-
bol table of a separately-compiled program module [13]. The loader would inspect the structure and
fill it in. This method saves the search time for commonly used bindings.

The memory of a device or its processor might be too limited in its capacity or sophistication
to support all the services of a p-host. In particular, it might lack the ability to maintain ownership
information, to support concurrent service invocations, or to schedule activities on a CPU to com-
municate with customers. Rather than complicating the I/O architecture in a FOCS, these tasks can
be relegated to a software component of a p-host. This component would be a “front-end” server for

'As a convenient simplification, we consider the terms firmware and microcode to be synonymous.
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the users of the p-host. It is analogous to a device driver embedded in a conventional OS ker-
nel [109], except that it does not require a privileged mode to access the device. 1t is the responsibil-
ity of the device-resident component of a p-host to verify the eligibility of its “driver” to access the
physical resource.

5.3. Activity Management

5.3.1. Service Invocation

A hardwired or microcoded service of a p-host is invoked through the bus. A binding for such
a service includes the bus address of the device in which the p-host resides, plus a device key. The
key and an operation selector are passed through the control lines, and the invocation parameters
through the data lines {62]. They are verified by the device. The invocation of such services can be
via generic machine instructions, similar to the I/O instructions of the IBM System/360 and other
conventional architectures. For protection reasons, the bus controller or a CPU adds an artificial
delay to a failed invocation, for instance by busy waiting for a predefined period, in order to reduce
the effect of erroneous invocations or intruders on bus contention.

As mentioned earlier, at the invocation of software services the CPU verifies the target address
and the key of a binding, and transfers control to the selected operation. To locate an operation
efficiently, it is ussumed that the binding’s origin contains a vector of addresses, one for each opera-
tion. The zeroth entry is reserved for a termination operation. It is left to the compiler to translate an
operation name in an invocation request to an index into the vector, based on the specification of the
service in the provide clause.

If different services expect their parameters to be passed in some of the same registers, then
service invocation bears the extra overhead of saving the registers that wili be /ive after the service
returns, and restoring them thereafter. To reduce this overhead, the CPU architecture can support a
register window per invocation, as in the Berkeley RISC-I1[103], BBN C/70 [2], and Bellmac-8 [35]
architectures. In such an architecture, register saving is not required at service invocation, since win-
dows overlap (see Figure 5-2a). Register windows can be viewed as a stack in absolutely addressed
memory, protected by the CPU. Since part of the window used by the invoking service is invisible
to the invoked service, the return address as well as other vulnerable values can be hidden there.
Hence, this attribute saves the overhead of maintaining local stack frames (by servers) and maintain-
ing the return address stack (by the CPU). Furthermore, if register windows are used for procedure
calls as well, the two stacks can be combined as shown in Figure 5-2b. Each window of a service
invocation may include multiple windows for procedures and exception handlers invoked during the
service. The implications of register windows on the CPU architecture are mixed: they require extra
architectural support, but on the other hand they eliminate the need to support stacks in memory.
CPU support for exception handling is also simplified, since the exception stack can be mapped onto
“ordinary” register windows.

The actual sizes of the register file and windows are a tradeoff between the efficiency of Space
switch and activity switch: the larger these sizes, the more overhead register saving incurs on activity
switch. In order to reduce this overhead, each CPU may include a per-window bitmap of registers in
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Figure 5-2: Register windows
(a) Fixed-size register windows, one per service invocation. '
(b) Variable-size register windows, one per service invocation. Each window includes multiple windows for pro-
cedure calls and exception invocations.

use, and a dynamic window count. The bitmap is statically set at compile time. It would be dynami-
cally modified at register allocation and service invocation. At activity switch, the CPU would con-
sult the bitmap and window count in order to avoid unnecessary register copy. This feature extends
a similar one employed in the VAX [3] to store and save registers at procedure call and return.

How large should a register file be in order to support common patterns of service invocation?
Suppose scrvice invocations will exhibit a pattern similar to kernel calls in (conventional) RISC-
based systems. If so, 6 registers per window should suffice, as in the CLIPPER architecture [97].
Alternatively, if service invocations will exhibit procedure-call patterns, then we can adopt a window
size of 8 to 16 registers as in most of the implenientations of fixed-size window registers [64].
Therefore, a practical window size can perhaps be of 6 to 16 registers. We presume that the length



88

of dynamic chains of invocations will usually be short, say three hops or fewer. This presumption is
based on the observation that there are not many services that form a linear dependency (where ser-
vice A invokes B which invokes C and so forth). In addition, recursive service invocation—a poten-
tial source of long dynamic chains—imnakes little sense in practice. Consequentially, it is conceiv-
able that about 64 registers would suffice. Suppose that additional 32-64 registers are used for
parameters and locals of procedures called during a given service. Hence, the size of the register file
can be on the order of 300 to 400 registers, which is a medium-size file compared with other archi-
tectures. If one adopts a large register-file size of 1024 registers or more, as in some contemporary
architectures {2, 50], the above assumptions about window size and length of dynamic chaing can be
largely relaxed. That is, the number of windows and their sizes will suffice for most patterns of ser-
vice invocation.

On some occasions the length of a dynamic chain may exceed the number of windows in a
fixed-size window architecture or the size of the registers file. To solve this problem, additional win-
dows can be mapped into the physical memory controlled by the OSB, as shown in Figure 5-2a. A
similar approach is taken by the RISC 1I architecture {64, 130]. This window spill-out is transparent
to the invoking and invoked services (or calling and called procedures) and is protected by the OSB.
However, this solution relegates memory allocation tasks to the OSB, which consequently may
impose a limit on the length of dynamic chains.

5.3.2. Activity Context Descriptors

Two important issues of activity management are the efficiency of activity creation and the
overhead of maintaining the context of activities. These issues are examined through the activity’s
context descriptor (ACD), an example of which is shown in Figure 5-3. An activity id includes a
pointer to its ACD and a random number which is stored there. This number is modified upon
activity creation and termination to guarantee unique and verifiable ids. The key in the ACD is used
to generate a verifiable permit which allows its holder to modify certain fields in the ACD. Other
fields in the ACD are straightforward; most relate to issues discussed in previous chapters. The
return address stack and the exception stack are eliminated in a register-window CPU architecture.
The priority value would be set by the activity’s scheduler. As discussed earlier, it can be consulted
by a server to decide whether to preempt a mutually-exclusive resource or a critical section from
another activity of a lesser priority. The aliased to field is used when an activity splits into two
activities during abnormal termination (see §4.2.4). Since servers use an activity id to locate the
internal resources they have allotted to the activity, they would be confused by the new activity id ——
hence the aliasing to the old id. The statistics field is an optional extension to help servers make
decisions. For instance, the idle since field can help a server in the activity’s chain decide whether
to preempt an internal resource from the activity.

How efficiently can activities be created? Only a few fields need to be set initially: the ran-
dom number, key, owner id, current server, bindings, a return address, and parameters to the initial
service. Some of these fields are copied from the parameters supplied in the NewACD service.
Other fields can be set directly through the SetACD operation, which can be implemented as a
machine instruction similar to the mzpr (move to processor register) instruction of the VAX.
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Figure 5-3: An Activity Context Descriptor
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Observe that activity creation does not require manipulation of memory-mapping structures. Thus,
activity creation is conceivably simple and incurs little overhead.

Another issue of concern is how many activities can be supported by the OSB. This question
is important, since if activity creation is cheap, applications may want to employ many activities in
order to achieve high computational concurrency. If many activities can be supported, a server
would be able to create an activity for each logical task; writing concurrent programs would be

simplified. In the following discussion we develop an estimate of the number of activities which can
reasonably be supported.

Most of the fields in an ACD are short; they are Boolean flags, small numbers, or pointers into
the heap area of the OSB where ACD’s and their structures are stored. Thus, the size of an ACD
(except for the bindings and the saved registers) would conceivably be on the order of 32 bytes
(32B). The saved registers occupy a variable-size area of, say 256B on the average (assuming 64



registers of 4B each). The bindings occupy an additional fixed-size area of, say, 48B (assuming 4
bindings of 12B each, of which 8B is a target address and 4B is the key). The two stacks are each of
a variable size, but probably short on the average, perhaps 1 to 4 entries of 16B each. Therefore, an
ACD with its structures may occupy about 400 to 500 bytes.

Assume furthermore that the number of activities is bounded by the number of CPU’s, and
that on the average only up to a few tens of activities would exist per CPU. (Otherwise, the perfor-
mance of all of them will sharply degrade.) Hence, a few KB of virtual memory per CPU is needed
to store ACD’s and their structures, say 4KB to 10KB. Since the amount of physical memory per
CPU in current multiprocessor systems is about 1 to 4 megabytes (MB) [8,9,22], about 0.2% to
0.5% of physical memory is required to keep all ACD’s core resident. We conclude that the space
overhead of activity management is relatively small, and that thereby tens of activities per CPU can
coexist.

Observe that only a small fraction of the space overhead of supporting activities derives
purely from considerations of openness. Any implementation of light-weight processes must allo-
cate space to save each process’s registers and other context. For example, in a more simplistic and
less open implementation of threads in Mach [135], each thread is allocated a fixed-size stack. In
fact, the cumulative sizes of stacks of a computation across multiple “servers” in Mach might be
larger then the size of an ACD, since several threads represent the computation which is represented
by a single activity in our design.

5.4. The O S B: Structure and Services

The OSB is implemented as a single software component---analogous to a reduced OS kernel
in a conventional system—and a collection of software, hardware, or microcoded p-hosts of system
resources. As for any other p-host, an OSB p-host may have a front-end server. This server is linked
to the “kernel” at compile time or at load time, or it runs separately, analogous to an OS utility in a
conventional system. This merging of OSB servers is not mandatory. It is desirable for efficiency
considerations, in order to reduce the overhead of service invocations among OSB components.

For reasons of protection and simplicity, the OSB can disable interrupts in its critical sections
so it never depends on the schedulers of activities executing its services. Services that need not
await the completion of certain events, such as Allocate or Invoke, would be performed atomically.
However, OSB services are vulnerable to page faults in a customer’s address space, e.g. when verify-
ing a binding. In such an event, prior to invoking the application-level fault handler, the OSB
restores the integrity of its data structures that have been modified by the activity, and preempts any
critical section or resource occupied by the activity. This prevents an application from compromis-
ing the services of the OSB.

Data structures shared by all CPU’s, such as ACD’s and CPU ownership information, are
stored in the memory of the OSB. Their locations can be statically fixed at compile time or at sys-
tem boot time. Thus, the structures are accessible to every CPU, locating them does not incur execu-
tion overhead, and OSB services are simplified. This fact enhances the ability to migrate OSB ser-
vices to the firmware, hardware, or the CPU architecture levels.
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The CPU host maintains a per-CPU stack of owners and a per-scheduler stack of ownership
information, as illustrated in Figure 5-4. These stacks are consulted and updated at slice allocation
and revocation, as well as at activity dispatching and quantum expiration. The pointers shown are
not referenced until the current quantum expires. Hence, the management of ownership information
does not incur overhead during execution. The slight overhead for verifying and updating these
values occurs at the infrequent events of activity dispatching, and at the presumably less frequent
events of CPU allocation and revocation. Based on the above assumptions we conclude that most
machine instructions will not suffer execution overhead due to openness in CPU management.

Some of the CPU host’s services are relatively simple and thus can be implemented as
machine instructions. No Space switch would occur when they are invoked, so they can be per-
formed more efficiently. We presume that this will be the case for Allocate, Release, Dispatch,
ChangeQntm and Switch, which are the more frequently used services of CPU management. These
services need to verify only a few parameters and must check the eligibility of the invoker to per-
form the operation. Such verification can be done by comparing two scalars: the invoker’s id with
the owner’s id. Similarly, it is conceivable that the more frequent services of activity
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Figure 5-4: CPU ownership information
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management—/nvoke, Return, Raise, UnRaise, ReturnFromExcpt and Check—are so simple that
they can be migrated to the CPU architecture or microcode. For example, Rerurn is only slightly
more complex then an ordinary procedure-return instruction. ReturnFromExcpt is analogous to the
rte (Return from Exception) machine instruction supported by the MC68000 architecture (4] or the
rtifreti (Return from Interrupt) supported by VAX [3] and CLIPPER [97].

Appendix D outlines the algorithms of /nvoke, Dispatch, and Allocate. The following obser-
vations can be made. First, these algorithms employ rudimentary checking and simple manipulation
of data structures. Second, the data structures themselves are either in local registers of a CPU or in
fixed locations in the OSB. The most complex structure is a list of per scheduler CPU ownership,
which is simple and conceivably will be short. Third, the dependency on a customer’s data struc-
tures is minimal. These observations support our earlier assumptions that the particular services can
be implemented in machine instructions.

5.5. Addressing and Memory Management Issues

This section discusses the formats of the addresses assumed in the design. It examines their
impact on aspects of execution and storage efficiency. We analyze the implications of the Universe
structure on the number of servers and segments that can coexist and discuss the efficiency of
address translation. The discussion assumes a Universe structure as presented in §4.4.1, and a direct,
index-based mapping architecture.

5.5.1. Addresses and Address Spaces

A full virtual address is the tuple <Universe id, Space number, segment number, page number,
offset>, as shown in Figure 5-5a. This address is globally unique; it is used in bindings, permits, and
return addresses of services. Such an address can be obtained statically if the referenced Space id is
known at compile time. A working address denotes an address within a Space. A short address is
within a segment, and is independent of the position of the segment in a Space. The latter two for-
mats are generated by the CPU. A Space id is shown in Figure 5-5b.

Table 5-1 presents several alternative schemes of bit distribution among the components of an
address, and the implied sizes of virtual spaces. These schemes assume that the number of different
physical memories in a system will be small (8 to 64), and likewise the number of Universes per host
(16 to 64). Nonetheless, these numbers are still large when compared to contemporary computing
systems which support a single physical memory and a single Universe.

The lengths of addresses vary between 25 and 32 bits for a working address and between 438
and 64 bits for a full address. 64-bit long addresses are not uncommon in contemporary architec-
tures [38]. A full address is generated infrequently at Space switch time. During normal execution
only working and short addresses are generated in a current Space. According to the schemes of
Table 5-1, these addresses are equivalent in size or shorter than those supported by most conven-
tional architectures. Hence, the extra bits required due to openness, i.e. the Space id, incur
translation-time overhead infrequently; they incur minor space overhead, since only bindings and
permits use full addresses.
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X per Y (# of bits) a b c d e
bytes / page 2048  (11) 1024 (10) 4096 (12) 4096  (12) 8192  (13)
pages/segment 1024 (10) | 1024 (10) | 4096 (12) 256 (8) 8192 (13)
segments/Space 32 (&) 4096 (12) 256 (8) 32 5 64 (6)
Spaces/Universe 4096  (12) 4096 (12) 4096 (12) 1024 (10) 4096 (12)
Universes/host 32 64 (6) 64 (6) 16 @ 64 (6)
memory hosts 16 (4) 64 (6) 64 (6) 8 (3) 64 (6
random # ) &) (8) 6) (8)
Size (# of bits)
page 2KB (11) | 1KB (10) | 4KB (12) | 4XB (12) | 8KB (13)
segment 2MB (2D | I1MB  (20) | I6MB (24) IMB (20) | 64 MB  (26)
Space 64MB (26) | 4GB (32) 4GB (32) | 32MB  (25) 4GB (32)
Total # of bits
(working) [full] 26y  [55] 32) [64] (32) [64] 25y {48} 32y [64]

Table 5-1: Some alternative address sizes

The segment size in schemes (b), (¢), and (e}—which offer conventional address sizes—varies
between 1MB and 64MB. The Space size in this schemes is fixed at 4 gigabytes (GB), which is
comparable to a process size offered by most 32-bit architectures. Observe that a Universe size is 16
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terabytes (16,000GB!). Hence, an application that uses data structures larger than 4GB can create a
Universe and distribute its structures among several Spaces. Each server would access some struc-
tures locally and others via service invocations. This option, therefore, increases the size of the
available virtual space at the cost of access overhead and increased complexity in managing a
Universe.

Below we examine the implications of these address lengths on other aspects of memory
management. According to the schemes above, a page table would have 256 to 8K entries. Since an
entry is short (see Figure 4-6), it may occupy 4 bytes. Hence, a full-size page table will require 1KB
to 32KB of virtual space. Assume that most of the virtual space of the base segment is allocated to
page tables. (This assumption will be justified shortly.) A base segment of 1MB to 2MB long, as in
schemes (a), (b), and (d), can thus store between 256 and 1024 page tables, respectively. That is,
256 to 1,024 full-size segments can be concurrently allocated in a Universe. A base segment 16 MB
or 64MB long, as in the other schemes, can support 1K or 2K segments. Since presumably most
segments are partially full, page tables are smaller, and thus the number of coexisting segments per
Universe can be much larger then the above figures.

Assuming that on the average each Space will consist of only a few segments at a time,
several hundred servers can coexist in each Universe. Segment sharing among Spaces can increase
that number. Therefore, these schemes can support a large community of servers.

If the base segment’s page table is organized as a regular page table, then it requires 1KB to
32KB of physical storage. This requirement is not prohibitively large. However, this table can be
much smaller. A Universe manager will presumably own a few large, contiguous memory areas
rather than many small, dispersed ones. Therefore, each entry in the base segment’s page table only
requires a starting address and a size; thereby, the table will require only a small amount of physical
memory. This saving implies slower translation, since the table must be searched rather than
indexed. Finally, in an inverted-mapping architecture the base segment does not contain page tables.
Thus, it can be much smaller, and many more segments can be supported.

Assuming 4K Spaces per Universe, a full-fledged Spaces Table requires 4K entries. A seg-
ment descriptor is short (see Figure 4-6) and thus may occupy about 2 to 4 bytes. Suppose that most
Spaces rarely exceed 8 segments. An entry in the above table may contain 8 descriptors (totaling
16B to 32B) plus a pointer to an overflow bucket of additional segment descriptors (3 bytes). With
an additional random number (1 byte) and status flag (a few bits), an entry in the fixed-size portion
of the table would be 21 to 37 bytes long. Hence, the entire table will occupy 84KB to 148KB of the
base segment’s virtual address space (about 0.5-8.4%). This calculation supports our earlier assump-
tion that most of the virtual space of the base segment is devoted to page tables.

A page fault may occur during address translation at two occasions: (1) at locating a Space’s
entry in the base segment, and (2) at fetching an entry in a page table. (Additional page faults may
occur when searching for a segment descriptor in an overflow bucket.) Assume that normally at
most a few hundred servers will coexist in each Universe, say 250. Hence, only a small fraction of
all Spaces will be allocated at a time. Namely, about 6KB to 10KB of physical memory is needed to
keep that portion of the Spaces Table in core und thereby avoid any double page fault during address
translation. Next we discuss caching techniques that can further reduce the frequency of page faults.
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5.5.2. Translation and Caches

A CPU interfaces with the memory subsystem through an attached memory management unit
(MMU). The MMU contains a cache of recent or anticipated accesses. Assume a virtually
addressed cache [118], in which every entry is prefixed by a unique identifier, such as the pair
<Space id, segment number>. This assumption is in accordance with recent trends in cache
design [42,47], although current architectures support shorter prefixes—typically 8 to 16 bits long.
As a result, there would be no need to flush the cache upon Space switch. This saving, in turn,
reduces the overhead of service invocation, service return, and dispatching. The space overhead of
the cache is minor: the suggested prefix is about 3 to 4 bytes long (see Table 5-1), whereas a com-
mon cache entry in most architectures is a few hundred bytes long, typically 128 to 256 bytes. On
the other hand, long prefixes fnay significantly increase the complexity of the cache hardware, and
consequently increase access latency.

In order to maintain cache consistency, memory hosts would use the system bus to update
caches, e.g. to invalidate or to replace modified entries in other caches. In addition, when a
Universe manager modifies the mapping information of some segment, it should update or invalidate
any stale copies of this information held at other CPU’s. This operation can be accomplished by a
regular machine instruction. It should be noted that the Universe manager needs not run in a special
privileged mode in order to be permitted this service, since it can only affect translation information
relevant to its Universe.

If supporting virtually addressed caches with relatively long prefixes is too complex, then
caches could be indexed by physical addresses. An MMU must then also contain a translation look-
aside buffer (TLB) to avoid searching the cache. A TLB stores <virtual address, physical address>
pairs and is searched without translation. A translation-and-access request is passed to the appropri-
ate m-host only on TLB or cache misses; the m-host returns the resulting physical address together
with its contents. It might be impractical to construct a TLB large enough to hold such pairs for all
the entries in a cache, since the search might become prohibitively slow. Therefore, an alternative
solution would be to let each MMU perform address translation. This alternative implies that all
memories should employ the same mapping scheme. Such a restriction, however, does not restrain
openness in other aspects, such as frame size and access speed.

If caches are associated with individual CPU’s, a server which is executed frequently by con-
currently running activities is duplicated in multiple caches. Consequently, modifications of its data
structures will result in high cache replacement or invalidation traffic and many memory update
requests. One way to overcome this problem is to let a Universe manager, or perhaps any server,
specify via a bus instruction that certain memory blocks should not be cached. Such an instruction is
supported (or has been proposed) in some architectures [118]. Alternatively, a cache can be placed
at a memory host, or as an independent module on the system bus. If so, a cache can be shared by
several CPU’s, so only one or a few copies of a shared server are cached. The access time to a
shared cache would presumably be faster than to main memory [118]. Simple versions of shared
caches are supported in Amdahl 470 computers [1], where a cache is shared by a CPU and one or

more 1/O processors, as well as in the UNIVAC 1100 [31] and in the Multimax® [9], where a cache
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is shared by two CPU’s.

To simplify memory-ownership verification during address translation, each frame is marked
with a key that identifies its current owner. This key equals the Universe number, so that at each
memory access it suffices to simply compare the key with the Universe-number fraction of the
current Space id. Notice that at memory access only one key is verified — that of the current owner.
so verification is efficient. Other keys are verified during the conceivably less frequent operation of
memory revocation. There is no need to verify the key when an addressed datum is found in a
cache, provided all cached references of a given frame are flushed by the memory host when the
frame changes owners. This use of keys is analogous to the protection method employed in the IBM
System/360 [26]. The key can be stored in the frame or in a single inverted table at the memory
host, similar to the table shown in Figure 4-6. Each entry in such a table would contain a stack of
owner ids. For reasons of space efficiency, an implementation-dependent limit would apply to the
size of these stacks and hence to the number of concurrent owners of each frame.

5.5.3. Register Padding

Another aspect of addressing is the size of general-purpose registers. A commonplace register
size in contemporary architectures is 32 bits. In our design, however, parameters are passed in regis-
ters, and some parameters would be longer than 32 bits (e.g. bindings and permits). Requiring larger
registers or special registers leads to extra architectural complexity. Instead, we assume that a
sequence of registers can be padded to form long or contiguous values, as with locations in physical
memory. For instance, to store a datum 8 bytes long in registers R, and R, each of which is 4 bytes

long, one should be able to specify the target address as R of length 2. A similar architectural
extension is used in the C-Machine [50].

5.6. Miscellaneous

Several architectural features that support atomic actions can help simplify programming.
First, memory locks can be associated with various memory locations, as in Multimax [9]. Thus, a
server can implement a simple mechanism of atomic mutual-exclusion for activities that share its
data structures. Second, a simple machine instruction can be provided to postpone timer interrupts
during a critical section. This instruction would merely set a flag in the CPU. I the timer interrupts
to indicate a quantum expiration while the flag is on, then the CPU grants a short additional quantum
to the cwmrent activity. During this quantum that instruction is disabled, so a server cannot
dishonestly or erroneously monopolize a CPU. If an activity switch does not occur during that
period, then the switch is enforced thereafter. Third, other machine instructions common to architec-
tures that support multiprocessing, such as Test-and-Set [8,9] and queueing operations [3, 8], can
accommodate atomic actions without fear of loosing the CPU during the operation. Notice that a
page fault may occur during such an instruction; thereby, the operation cannot be guaranteed to.com-
plete within the current quantum, since the fault is handled by an application-level U-mgr. However,
the action of changing a shared queue or variable is atomic, since it can be undone on a page fault

®Multimax is a registered trademark of Encore Computers.
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Chapter 6

Lessons on System Openness

This chapter summarizes the contribution of our study to the understanding of the issues involved in
system openness. Its purpose is to present the lessons on the extent of openness and the interplay
between the various aspects of openness which derive from the discussion in the three preceding
chapters. In the following discussion we recapitulate observations made in previous chapters and
add insights from our experimentations with defining the system.

6.1. Overview

Our major lessons on system openness are the following:

. A fully open system is viable.

. Protection requirements only slightly restrict the ability of applications to customize policies
and mechanism.

. Our analysis suggests that protected openness will not result in large degradation of execution
efficiency.

o A FOCS requires specialized architecture and microcoded services, but it can employ or

extend features of contemporary architectures.

o The programming complexity of writing simple programs would be comparable to that of
writing them in conventional systems. Writing utility programs in a FOCS would be simpler
in some aspects than writing them in a conventional systcm, but easier in other aspects where
direct control of execution is necessary. Most 6f the programming complexity, however,
derives from concurrent execution, not openness.

. Hierarchies can be supported efficiently when they are not rigid, and levels can be bypassed
dynamically.

Below we elaborate on each of these lessons.

6.2. The Extent of Openness: General Lessons

The major lesson of our study is that despite protection restrictions, different applications can
simultaneously satisfy conflicting demands in a shared environment. An application may have
private resources and provide its own services independently of services provided by other applica-
tions. Openness is restricted by the application’s dependency on the OSB services. However, of
these services, only the CPU allocation and activity creation services may potentially restrict the pol-
icies or mechanisms employed by the application. But if an application initially creates all the
activities it needs and is allocated CPU’s on a long-term basis, then during that time it can effec-
tively and independently employ whatever policies it likes. Moreover, the only OSB services it must
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use during execution are the services for service invocation and activity dispatching. Assuming that
these services are implemented in machine instructions, then the application runs without interac-
tion with any OS (in the traditional view of an OS)!

A significant restriction on full openness is that applications cannot replace system resources.
In addition, not every application will be able to supplement all the resources that it needs. Thus,
policies and mechanisms used by applications are not fully open — they depend on allocation poli-
cies and access mechanisms employed by hosts of resources they use. However, we learned that this
dependency may only slightly restrict openness. According to the model, the hosts should provide
rudimentary mechanisms that accommodate resource owners which want to implement more ela-
borate mechanisms and allocation policies. Therefore, once an application can bid for resources and
become their owner, it can implement policies and mechanisms as it likes.

Openness extends to the computer architecture as well. Of all the physical resources, only the
CPU’s and a clock must be in the OSB. Applications may choose whatever interfaces they want for
private physical devices. The sole restriction on the choice of interfaces is that devices adhere to a
common bus interface. Memories have to comply with a uniform addressing structure. In the case
where MMU’s perform address translation, memories must also comply with a uniform mapping
scheme.

Openness requires that servers communicate with each other, although they might not know
each other’s protocols. For example, a file server might need to tell different memory managers to
pin the buffers of its customers in memory. This communication requirement necessitates the
definition of either a standard interface or a complex protocol by which servers can dynamically
learn each other’s service interface. The standard interface that we chose does not restrict the seman-
tics of services, nor is it mandatory. A server that provides services included in the standard inter-
face may extend or ignore the suggested interface, at the risk of compromising the services provided
to its customers by other servers.

Another lesson is that IPC can be made fully oper by reducing the mandatory IPC facility of
the OS to merely support protected invocations of services across address-space boundaries. Our
model and design demonstrate that multiple paradigms of communication can coexist, constructed
above the rudimentary facility of service invocation and activity dispatching. An interserver com-
munication server can support any communication facility: connection-based, connectionless, urgent
messages, communication via shared memory, and other paradigms.

An additional restriction on openness derives from the limited number of components defined
by the model and the design. Only a single execution entity and a single invocation paradigm are
supported. The design supports only a few hierarchically structured memory entities and requires
that a virtual space is mapped to a single physical memory. However, openness is only slightly res-
tricted by these facts, since not all components are mandatory, and since the semantics attached to
them are minimal. The levels of granularity of memory buffers, execution units, I/O transfer units,
or communication units are problem oriented, defined independently by each application. An appli-
cation can support a variety of semantics for sharing and inheritance. For instance, memory can be
shared in various levels. Universe managers can share physical memory through allocation. Each of
them can decide how physical memory is shared among its customers. Spaces can share segments
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through mapping, each with possibly different access rights. Servers can share address spaces by
being merged into one Space, by sharing segments, or by having access permits to each other’s
Space.

6.3. Openness vs. Protection

The major lessons from our work regarding the interplay between openness and protection are
that protection can be open too, and that a minimal set of protection restrictions allows opening the
services and resources customarily provided by the OS to applfcations. The notions of encapsulation
and light-weight capabilities allow applications to tailor their protection mechanisms and security
policies as they see fit. Since a server is guaranteed that its services are entered in an orderly
manner, it can impose further application-specific restrictions. Bindings and permits are light-weight
capabilities with respect to their protection flavor and their overhead. First, they reside in the
address space of any server so that they can be created and distributed without OS support. Second,
they do not specify generic rights. Therefore, such capabilities allow openness of access mechan-
isms as well as of inheritance. Because these capabilities can be used and passed around efficiently,
they support openness of low-level and frequent services that use them.

Protection considerations constrain the openness in CPU and execution management, whereas
protection does not restrict the management of virtual and physical spaces. For protection considera-
tions, the model encloses the CPU’s and a clock in the protected domain of the OSB. Except for the
memory in which the OSB is loaded, memories are open to applications. Likewise, the execution
domain of the traditional process abstraction is not fully open, whereas the space domain is fully
open. Activities are created, terminated, and dispatched in a protected way through the OSB, since
they cross address-space boundaries; servers and resources can be created and terminated without the
intervention of the OSB. Traditionally, process management has been retained in the OS in order to
guarantee protected communication and authentication. One of the major lessons from our separa-
tion of the space and execution domains into servers and activities is that the role of server manage-
ment can be relegated to applications without compromi§ing protection objectives. Communication
can be protected as discussed above. To support unique server ids, a hierarchical addressing scheme
is employed which is reminiscent of naming methods used in distributed systems. The OSB pro-
vides rudimentary authentication services, above which applications can construct higher-level
authentication schemes.

Support for orderly termination and recovery are two traditional roles of operating systems.
We have leammed that these roles, too, can be taken out of the protected domain of the OS, as long as
it is guaranteed that servers can discover the termination of other servers, and that servers can protect
themselves from a failing server. Furthermore, openness motivated relegating the tasks of activity
scheduling and termination to ordinary servers, but protection considerations necessitated that the
OSB help servers to recover from unorderly termination of activities.

The issues involved in critical sections and in passing parameters (i.e. registers vs. stack)
demonstrate the tradeoffs between openness and protection, as well as the interplay of these aspects
with efficiency. A critical section raises the conilict of needing to protect it from the activities exe-
cuting it—that is, allowing the server in which the critical section resides to fully control it—and to
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protect a CPU from being monopolized by that server. This conflict motivated the model’s dual
view of the activity—server relationship; namely, to let a server switch between activities, and to
allow servers to temporarily postpone quantum expiration. The solutions adopted at the model and
the design levels are a lesson in resolving the above conflict.

Passing parameters in a stack raises similar protection—openness conflicts. A stack stored in
some Space would be unprotected; protecting stacks by the OSB implies restrictions. Furthermore,
putting the stacks in the OSB would impose access inefficiency or would necessitate a special capa-
bility management mechanism as in [48], which has adverse implications on the complexity of the
hardware. As shown in the previous chapter, registers can be viewed as automatically-allocated
stacks protected by the CPU.

The bottom line of the interplay between openness and protection is twofold. First, despite
restrictions on openness set by protection requirements, an application can choose the services and
resources that it needs. Second, a secure, open system can be constructed from untrustworthy com-
ponents, provided one component is generally trustworthy, and each application can choose the com-
ponents that it trusts as well as be protected from those it does not trust.

6.4. Protection vs. Efficiency

Protection inherently incurs execution overhead because it requires separation of entities and
hence checking of rights at protection boundaries. The overhead can be minor if checking is done
efficiently and infrequently. Below we discuss various facilities where this lesson is clearly illus-
trated, such as activity management, accounting services, and service invocation. The discussion
emphasizes the tradeoffs between protection and efficiency offered by several design alternatives.

Protection of resources incurs the overhead of verifying ownership and permits. As we
pointed out, this overhead will not be large since the checking can be simple and performed infre-
quent. It involves comparing a scalar, e.g. a Universe id, or a vector of values, e.g. the fields of a
permit. Although ownership itself can be hierarchical, ownership verification needs not be hierarchi-
cal, and hence can be efficient. Likewise, having hierarchical resource ownership without requiring
multilevel mapping of virtual resources to physical resources contributes to the efficiency of access-
ing resources. Moreover, the effective overhead can be further reduced by reducing the frequency of
verification. As shown with CPU management, the overhead of protection can occur relatively infre-
quently at context switch and allocation. The overhead of an extra mapping level on accesses to
physical memory can be circumvented by appropriate caching techniques or interfaces between
memory hosts and Universe managers.

Protection of services has required that invocations use verifiable bindings. The overhead of
verification should be minor, as illustrated in Chapter 5 and in Appendix D. Acquisition of bindings
can be efficient, since bindings can be obtained at compile time, at load time, or only on demand,
and they can be obtained in groups.

The decomposition of the system to separate servers incurs overhead on service invocation.
The various techniques discussed in Chapters 4 and 5, such as caching, register windows, and elim-
inating automatic manipulation of stacks can reduce this overhead. We therefore believe that a ser-
vice invocation can be performed nearly as efficiently as calling a procedure in a different locality.
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The efficiency of service invocations decreases when the invoker or the invoked server must
preserve the state of a service in a local stack frame, since then each invocation will require extract-
ing a frame from a heap and later freeing it. This execution overhead can be reduced by employing
simple heap allocation techniques, such as keeping a list of free stack frames sorted by frame size.
In addition, frame sizes can be fixed or decided at compile time {S0], trading space efficiency for
execution efficiency. Passing parameters via buffers, which themselves are passed via access per-
mits, incurs overhead on accessing these buffers. We presume that this overhead should be smaller
than that incurred by the heavier IPC mechanisms of conventional systems, in which buffers are
transferred back and forth in messages.

The protection mechanisms offered by the model and by the design illuminate a well-known
lesson: supporting the simple cases efficiently can improve the general efficiency, although some
cases might experience higher overheads. The default protection mechanism can be efficient since it
is crafted to be as low as can fit the minimal protection needs of mutually trusted servers. The over-
head of protection, however, grows with the level of mistrust. Mutually suspicious servers or servers
shared by different applications must protect their resources or services by additional means. Hence,
they might suffer greater overhead in implementing their own protection mechanisms. Relegating
capability mechanisms to servers will probably be less efficient than if capabilities were supported
directly by the architecture. But imposing capabilities on all servers runs counter to openness and
efficiency. 1t is left for further investigation to find whether some extended, non-mandatory capabil-
ity mechanism ‘hat is supported by the architecture can be beneficial in terms of the balance between
protection, efficiency, and architectural complexity.

Another lesson about tradeoffs between protection and efficiency is illustrated by the amount
of control over the distribution of capabilities. Conventional capability-based systems suffer large
overheads due to the centralized control over capability management. In our approach, bindings,
permits and application-specific capabilities can be passed efficiently, since a server who passes
them to a customer (or vice versa) cannot restrict the other server from passing them to others.
Alternatively, a server may provide an intermediary service for accessing a resource rather to give a
permit for the resource, and thereby increase the access overhead.

The design of activities demonstrates additional lessons on the tradeoffs between efficiency
and protection. Since an activity can span multiple servers, a single entity carries a transaction from
the end-user’s server down to the lowest-level resource. Therefore, a transaction or any computation
that crosses server boundaries will be executed more efficiently than if it were composed of different
threads as in Mach — because in our approach service invocations do not require a context switch,
only an address-space switch. However, the need to protect servers from activities has motivated
protecting ACD’s in the OSB. This protection will presumably increase the cost of activity creation
and termination. The same need has motivated the elimination of stacks, which itself has a mixed
mmpact on the overhead of invocations: service invocations can be made more efficient if variable-
size register windows are supported, or when a service does not need a stack; in all other cases, ser-
vice invocations will bear more overhead. Furthermore, for protection reasons a server executed by
multiple activities has to keep track of the internal resources occupied by them. The dependency of
a server on the schedulers of the activities threatens the server’s ability to recover its resources when
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activities terminate abnormally. Hence such protection must be guaranteed by the OSB. Likewise,
in order to protect itself from uncooperative schedulers, a server can schedule its own activities to
carry out service invocations or recovery operations, thus increasing the cxecution cost of its ser-
vices.

An analogous dependency exists between a server and its customer during “reply” invocations
or obliged invocations. For example, this dependency arises when a server invokes a customer’s ser-
vice to announce the completion of an asynchronous operation or to consult a customer about a ser-
vice option. Similar dependency arises when a server invokes another service provider of its custo-
mer, for instance to unblock an activity or to copy data from a customer’s buffer. Similar dependen-
cies exist in closed, layered systems [44]. In these situations the invoker might not trust the invoked
server with respect to the time taken to perform the service. Hence, the invoker may use a less
efficient asynchronous invocation mechanism in order to protect itself,

The accounting subsystem has provided another angle to examine the interplay between pro-
tection and efficiency. A provider of a service or a resource needs a reliable accounting service to
handle charges. But the customer’s account has to be protected too. The discussion in §4.2.5 illus-
trates possible protection levels and their implied overheads.

6.5. Architectural Complexity

A major conclusion of our study regarding architectural support is that a FOCS cannot be real-
ized with standard, off-the-shelf hardware components. Several frequent operations must be sup-
ported by the architecture or be implemented in microcode, since emulating them in software would
be prohibitively slow. However, this requirement does not necessitate drastically different architec-
tures.

One of the main requirements of architectural support is to perform virtual-to-physical address
translation and memory ownership verification. If these functions are performed in software, they
cannot attain reasonable efficiency. Openness has necessjtated an extra mapping level to support dif-
ferent Universes, which should increase the complexity of the translation mechanism. However, the
mapping structure suggested in the design is an extension of the VAX memory architecture, in which
page tables reside in the kernel’s address space. In our design the latter scheme is extended to sup-
port multiple memory management “kernels.” The scheme is further extended by allowing a vari-
able number of segments per server, and by allowing segment sharing. Overall, we believe that
these extensions would not preclude the ability to perform efficient address translation by the archi-
tecture. Moreover, avoiding segment sharing via an extra level of indirection (as in Multics) helps
simplify the architectural support. We believe therefore that the complexity should be lower than
that of systems that support structured memory mapping such as the iAPX-432 [99]. A designer of a
specific system can choose to reduce the architectural complexity by reducing flexibility, e.g. by
fixing the number of segments per Space. It should be noted that this architectural complexity buys
access efficiency and supports direct manipulation of mapping information.

Ownership verification conceivably will not increase the complexity of the memory architec-
ture, since it requires merely comparing two scalars. Changing ownership can be done in microcode
or even software. Verifying access permits is merely a matter of comparing a vector of scalars.
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Other techniques discussed in Chapter 5, such as virtually-addressed caches, shared caches,
and register windows, extend notions found in other architectures. Although no extension is radical,
their combination might incur considerable complexity on the architecture of a FOCS. This issue is
left for further investigation.

An additional source for architectural complexity is the implementation of OSB services as
machine instructions. However, most of these services are simple, as argued in Chapter 5. The ser-
vices increase the complexity of the CPU architecture only slightly, since they add a few machine
instructions and a few registers. Some of these instructions are similar to or slightly extend machine
instructions found in contemporary architectures.

6.6. Programming Complexity

In discussing the programming complexity of a FOCS, we distinguish between three levels of
program sophistication: an end-user server which is a simple server providing no services to any
server; a utiliry server providing high-level services or logical resources, including user-interface,
compiling, and runtime support services; and a physical-resource manager serving either as a p-host
or as a server that manages the allocation of physical resources, e.g. a scheduler or a U-mgr. An
end-user server is typically executed by a single activity, whereas the others are executed by multiple
activities. A physical-resource manager is the counterpart of a process embedded within the OS ker-
nel in conventional systems, or an OS utility providing low-level services. Of course, servers
classified in one level can be of diverse sophistication. We discuss the programming complexity
incurred by protected openness in general, and by our approach in particular. These complexities are
compared with the complexity of writing the counterpart programs in conventional systems.

The major complexities of writing an end-user server are to select resources, services, and to
obtain their bindings. However, services can be selected by a compiler or by a preprocessor utility.
The programmer will merely name the functions needed, e.g. Read, or explicitly include a given
library, e.g. by writing #include stdio.lib. A novice programmer may be oblivious to the structure
and semantics of the underlying service layers used by the program. Bindings can be obtained either
by the compiler, by the loader, by the runtime support package, or through a library package. There-
fore, the complexity of writing an end-user server in a fully open system will be comparable to doing
so in capability-based, object-oriented, or message-based systems that support dynamic selection of
objects or operations.

There are several additional complexities involved in writing a utility server. First, the server
has to choose the services upon which its services depend, and to ensure that they fit semantically.
For instance, an interserver communication service that supports urgent messages has to choose
scheduling services that support urgent scheduling. The complexity of choosing such services is
essentially similar to that of choosing services in a distributed system. This complexity can be miti-
gated by name servers that support association of types or semantic information with bindings.

Second, a utility server has to coordinate between multiple activities executing its services
concurrently. This task includes synchronization, sharing, exclusion, and recovery from failed or
aborted activities. Most of the complexity involved in these tasks stems from the concurrent execu-
tion of activities. This complexity is conceptually analogous to the complexity of managing
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multiple threads in other multiprocessor systems, and can be mitigated through monitors or support
packages such as the Mach C-Threads package [135]. The bookkeeping that a server must under-
take in order to be able to recover resources from a customer or an activity is comparable to the
bookkeeping a shared utility in a conventional system must perform. In a fully open system, the
management of concurrent activities raises additional complexities because the activities are
scheduled by different servers, some of which might not be trusted by the focal utility server. These
complexities are reduced by the mechanisms of the OSB to recover from abnormal activity termina-
tion, to postpone quantum expiration, and to switch between activities. In fact, the latter feature
simplifies the handling of conflicts between activities as compared with the management of threads
in Mach.

Third, the need to communicate with unrelated servers exposes another source of complexity
in writing a utility server. This complexity should be greater in our approach, since activities span
multiple servers. The standard interface should mitigate this problem with respect to the services
that one must invoke. We believe that opting for a facility that allows a server to dynamically learn
the interface of other services would result in much more complex programming. Each installation
may add other conventions to service interfaces in order to simplify communication.

Fourth, charging for resource usage and for services adds programming complexity and execu-
tion inefficiency to servers. The major complexity is in deciding prices and in distributing charges
fairly among customers. The principle of charging is not peculiar to a FOCS — other systems [131]
employ similar notions, and incur comparable complexity or inefficiency. Some attempts in devis-
ing pricing strategies in an open system have been made [51], but the problem is still open. As
shown in §4.2.5, different levels of protection of user accounts can distribute the complexity of deal-
ing with charges differently between customers, service pioviders, and the OSB.

Lastly, a utility server has to own certain resources in order to implement its services. The
complexity of obtaining them depends solely on the provider—customer relationship. For instance,
writing a scheduler can be simplified if it is allocated as much virtual time as it needs. It is harder to
write a scheduler if it has to compete with other schedulers for CPU time in a free-market style.

Writing a compiler, a library, or a runtime package bears extra complexity in an open system
due to the additional architectural features and the dynamic binding between servers. As alluded to
earlier, we opted to increase the complexity of writing such programs in order to reduce the com-
plexity imposed on less sophisticated programs. This choice is based on the assumptions that the
former programs are written by sophisticated programmers, and infrequently.

We conclude that writing a utility server in a fully open system should be more complex than
writing counterpart programs in other systems. However, the mechanisms supported by the OSB,
compilers, and other servers should mitigate the complexity. In some aspects this support will make
writing a utility server even simpler.

Several aspects of writing a physical-resource manager are simplified in a FOCS. Only
problem-oriented semantics, that is, of a particular application or a group of similar applications,
need to be addressed. For instance, it is simpler to write the memory manager of a particular DBMS
than to write one for all DBMS’s, because the programmer can choose the services that support the
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required semantics. Moreover, since an application may have private p-hosts or imnplement services
above the low-level service interface of a p-host, there will be no extra complexity involved in trying
to bypass or undo unwanted facilities as in closed systems [94,112,125]. We believe that in general
it is simpler to implement a policy than to tell a monolithic OS the preferred policies. A great deal
of simplification is achieved by letting customers specify absolutes instead of hints. Additionally,
the support of activities simplifies the interaction with p-hosts, since a single activity is devoted to a
transaction. On the other hand, it is more complex to write such a manager in our approach, since
allocation of physical resources must be negotiated.

6.7. Other Complexities

Aborting a transaction can be a complex task in any system where a transaction consists of
language-level threads (as in Lynx), or of threads visible to the OS (as in Mach). In a FOCS this task
might be harder, since in a system that is decomposed there are potentially more servers involved in
the transaction. Our choice of an activity as a continuous thread that spans multiple servers
simplifies this task, especially since the OSB supports recovery.

Resource inheritance can be implemented in a simple way in a closed system such as Unix,
where the OS owns the resources and maintains the context information of processes. It is much
more difficult in a FOCS, because the OS does not own all the resources and servers. Complex pro-
tocols might be required to transfer ownership at server creation and at termination. This problem
can be mitigated with the support of libraries that communicate the requests of inheritance to the
appropriate hosts. Obviously, if an application is constructed so that a single server controls the
ownership information of several resources and the server management functions, then inheritance is
supported simply as a side effect of server management functions.

Similarly, deadlock avoidance or detection is more complex in a FOCS, because the manage-
ment of rescurces is dispersed among many servers. To detect a deadlock and resolve it, one needs
to define complex protocols and hope that servers are willing to adhere to them. We have designed a
preliminary protocol for deadlock detection. But, because of possible mistrust among servers, not
every deadlock can be detected or resolved. It should be noted that these issues are complex even in
conventional systems, and hence have been abandoned by most general-purpose OS’s [133]. A simi-
larly complex task in a FOCS is debugging. In order to discover the source of a bug, one might need
to inspect the state of several servers, not all of which might trust the debugger.

6.8. On Dependencies between Service Domains

We have shown the viability of a unified view of services in which each service can be
independently selected. Specifically, using or replacing a set of services in a given service domain
(e.g. memory management) does not restrict the flexibility of selecting services in related service
domains (e.g. buffering and CPU scheduling). This separation has the advantage that one can gradu-
ally customize the services one needs.

However, it might be hard to achieve such separation when the support of particular semantics
in one domain demands very specific service; in another domain. Moreover, efficiency concerns
might necessitate the coordination of services in different domains. For instance, the scheduler and
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the U-mgr of a given application may need to coordinate their policies to achieve better perfor-
mance. As an example, before scheduling an urgent computation, the scheduler would prompt the
U-mgrs of the involved servers (if known) to prepage their working sets. This task might be a com-
plex one if different servers are involved dynamically.

6.9. On Hierarchies

It is conceivable that in an open system multiple hierarchies will be formed, since service pro-
vision and resource allocation are inherently hierarchical. For instance, a mail server might use DB
services, which use some structured filing services, which in turn use flat filing services, which use
disk access services. Or, a scheduler can itself be scheduled by another scheduler, and so forth.
Some of these hierarchies must be dynamically constructed, since it might be the case that only at
execution time it is known which services are needed. For efficiency reasons, it should be possible
to construct other hierarchies statically.

An important lesson of the model and design is how to support both dynamic and static hierar-
chies in a single service domain as well as across service domains. The FOCS model does not
impose hierarchies. There is no need to explicitly define new levels as in some other hierarchical
systems [63, 115]. Moreover, since hierarchies are represented merely by bindings and ownerships,
they can virtually be of infinite depth. (As a practical matter, however, the number of owners of a
given resource unit might be limited.) Service domains can be mutually independent in their
hierarchical structures.

A hierarchy of resource users usually implies that users at the higher levels may access only
virtual resources. The model’s view of ownership illustrates a lesson in combining a hierarchy of
resource users with a flat scheme of access; the scheme allows resource users to bypass all intermedi-
ate owners when resources are accessed. As discussed earlier, the latter feature is invaluable for
allowing servers at different hierarchical levels to efficiently perform frequent or urgent functions
such as CPU scheduling, memory mapping, and handlingvpage faults.

The inefficiency of a rigid hierarchy motivates components at different levels to make special
“deals” which complicate the hierarchy. Extra complexity is incurred when a deal breaks. For
example, it is difficult to undo a deal when one of the involved parties terminates abnormally. To
avoid such a problem, we made the deals visible and supported. Resource-allocation deals among
servers at different logical hierarchical levels are possible. They are made through the resource’s
host or through a resource manager that controls the allocation. Death-inheritance rules allow undo-
ing a deal when a participating server dies abruptly.
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Chapter 7

Conclusion

Ever since people first founded societies to organize the sharing of common wealth, they have had to
resolve the conflict between freedom and order: On the one hand, it is desirable to let members use
private or shared resources in the way they like. On the other hand, a centralized authority must
supervise resource usage in order to optimize the benefits to the society as a whole. Computing sys-
tems are no exception in this respect — such a conflict has always been a dilemma in designing
operating systems. Early OS designs resolved the conflict by choosing one of two extremes. They
have either included most of the resource-control facilities in the OS, allowing users only limited
decision-making capabilities; or they have included a limited set of facilities in the OS, imposing on
users the burden of supplementing the necessary services. The trend of modern OS designs, how-
ever, is to open up the OS services and interfaces to users. In the last two decades, systems have
increasingly allowed users to be more involved in the decision making of the OS, as well as to cus-
tomize the OS services and interfaces.

The goal of this research was to explore the feasibility and implications of continuing this
trend to its ultimate etent. We have studied how to construct a fully open computing system and
investigated the interplay between openness, protection, efficiency, and complexity in a multiuser
environment. In Chapters 3 through 5 we presented a detailed model of such a system, examined a
variety of components of a specific design, and addressed implementation issues. These chapters
show that a fully open computing system is viable. Our approach to constructing such a system
employs a unified view of resources and of services. It is based on the notions of resource ownership
and service provision. The role of the OS is radically reduced to providing rudimentary mechanisms
to protect resources and applications. The OS allows amrapplication to select the resources and ser-
vices it needs, as well as to share them with other applications. Physical resources can be directly
controlled by unprivileged, and in fact untrustworthy, applications. Our analysis suggests that such
openness can be supported without breaching protection, undermining efficiency, or requiring exten-
sive architectural support.

Our research method manifests that a system should be evaluated at different levels of abstrac-
tion, starting from understanding the crucial problems at the conceptual level. This method contrasts
the more common, ad-hoc process of first designing—or even implementing—a specific system, and
then redefining the problem.

7.1. Contributions

We view our work as basic research in computing systems design. It is a pioneering attempt
to study full openness in a methodological way. The major contributions of this dissertation to com-
puter science are in the field of systems design in general, and operating systems design in particular:
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The viability of constructing a fully open computing system was shown, and the interplay
between the various aspects of openness was analyzed.

The dissertation identified the minimal bounds on system openness due to protection requirements. It
examined many facets in which protected openness interacts with execution efficiency and resource utili-
zation. It provided insights into programming complexity in such a system and into the complexity of the
required architecture.

A novel model of a computing system was defined.

The model presented an abstract, fully open computing system and exposed problems with openness.
This model, and in particular the notions of resource ownership and of charging for resources and ser-
vices, has been recognized as a promising foundation for future, market-oriented open systems [92].
Some of the concepts introduced by the model, such as the dual view of server—activity relationship, are
amenable to less open systems.

In the course of defining a fully open computing system, the dissertation presented several mechan-
isms which offer novel approaches to computation and communication. In this respect, the disserta-
tion contributes to a number of research areas in Computer Science:

The dissertation provides a novel view of resource management.

It presented a unified view of logical and physical resources. Resources can be owned by a hierarchy of
servers but are accessed directly. Applications may own private or shared resources and provide the poli-
cies as well as the mechanisms for using them.

The dissertation redefines the role of the OS.

It defines the role of an OS as the provider of rudimentary services necessary to protect system resources
and applications. In contrast with the traditional definition of an OS as the resource
manager [55, 104, 133], the dissertation relegated the management of resources to applications. The trad-
itional roles of an OS as the process manager and as the provider of an IPC facility were also relegated to
application-level servers. In contrast with other “minimalist” systems, our approach emphasizes sharing
in a multiuser environment.

The dissertation offers a powerful multithreading facility.

The activity abstraction extends recent attempts to support threads of control by the OS [10, 11, 12,75].
It seems to fit better than such threads in representing computations that span multiple address spaces,
since it easily conveys state information. Our facility allows simpler propagation of exceptions, abortion
of transactions that span multiple servers, and recovery. It also offers the advantages of a language-based
approach to multithreacing, which allows each server to control the threads executing its code. The
separation of the space and execution realms into servers and activities, together with activity-
management support services, provide an attractive alternative to the traditional process model employed
by conventional systems.
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= The dissertation introduced a simple but flexible communication facility.

The service invocation and retuin facility extends the semantics of a local procedure call to a cross-
address-space call. This facility, however, offers simple semantics similar to those of low-level opera-
tions in traditional systems, e.g. a copy machine instruction. It is simpler and should be more efficient
then contemporary message-based, remote-procedure-call facilities. The synchronous invocation para-
digm also supports asynchronous invocations and asynchronous service provision.

7.2. Directions for Future Research

Our work provides a framework for continuing research in system openness by investigating
policies appropriate for an open environment and extending the definition of a fully open computing
system. Such extension is needed in all three levels of abstraction — extending the model to support
distributed systems, and expanding our design. An implementation is needed to verify our assess-
ments about the implications of protection on efficiency and complexity. We suggest three major
avenues to continue our research:

Developing a Testbed

A prototype implementation should be constructed to further scrutinize the complexity aspects and
study the performance of a FOCS. The development process will refine some of the general lessons
on system openness presented in Chapter 6. An implemented FOCS will allow us to quantify and to
further qualify the tradeoffs between protected openness, efficiency, and complexity. Such an
environment can serve a pedagogical purpose, allowing students of OS classes to concurrently mani-
pulate components of an OS.

This avenue includes several possibilities:

= A prototype implementation, possibly by simulating or emulating some of its components. We
plan to pursue this possibility in the near future.

»  Designing additional services of the OSB or a COS, language processors and specific applica-
tions.

»  Elaborate design and evaluation of the computer architecture.
Devising Policies and Algorithms

A fully open system offers an environment for more sophisticated policies and algorithms for
resource management. The dissertation sketched a few such policies and discussed two algorithms.
There is a need to devise more detailed policies for various resources, both the levels of the OSB and
individual servers. A quantitative evaluation of allocation algorithms is also needed.

This avenue includes several possibilities:

«  Examining policy issues for charging, such as pricing strategies that servers can adopt, fairness
in pricing, and distribution of charges among customers.

«  Defining policies and evaluating algorithms for resource allocation.
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«  Devising algorithms for deadlock detection, recovery, and debugging.
Extensions to Distributed Systems and Networks

Currently the FOCS model is tailored to a shared-memory environment. It does not support owner-
ship of machines, scheduling activities on different machines, and cross-machine service invocation.
We have started to examine the possibility of extending the model to define a fully open, distributed
computing systems, as well as to support sharing between fully open independent machines con-
nected in a network.

This research avenue includes the following possibilities:
»  Extending the model to support distributed transactions composed of “local” activities.

»  Extending the notion of resource ownership to “ownership in-the-large,” namely, ownership of
resources across machine boundaries.

»  Supporting server migration between heterogeneous machines, each of which runs a uniform
OSB.
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Appendix A

OSB services

A.1. Services for Activity Management

NewACD! ( StartService, EndReturn, accounting permit, ( args ) )
returns { A-id, InvalidReturn, InvalidPrmt, NoMore };

DisposeACD ( A-id )
returns { OK, InvalidAid, NotOwner };

Invoke ( binding, op [, rtm addr, NoRm] )
returns [ InvalidBndg, InvalidOp, InvalidRtn, InvalidSrvr ];

Return [ A-id, # of hops ]
returns [ NotOwner J;

Raise ( A-id, ExcpType [, Vaiue] [, UponRm] )
returns { OK, InvalidAid, NoRight };

UnRaise ( A-id [, ExcpType] )
returns { OK, InvalidAid, NoRight };

ReturnFromExcpt ()
returns ( );

SetACD ( ACD permit, field, value)
returns { OK, InvalidPrmt, NotOwner, Invalid... };

Check ( [A-id] [, what])
returns ( quantum [, precedence] [, switched] [, excptns] );

Table A-1: Services for activity management

Activity Creation and Termination

NewACD : startservice is a binding for a service at which the new activity will start, or an
address in the invoker’s Space. EndReturn specifies the return address from startService. Args
is a list of arguments to StartService. Accounting permit is associated with the activity, to be

'We denote a service invocation simply as a function call
Operation ( arguments ) returns ( results );
We use the following list notations:
() allitemsincluded; [] optional — oneitem ornone; {} exclusive — one item only




113

used by servers in the activity’s chain to charge the activity for using their services and resources.
The invoker of NewACD becomes the activity’s owner. If the request is satisfied, the returned a-id
indicates the new activity’s id. NoMore indicates that the request has failed because a system-wide
or a per-scheduler limit on the number of activities has been reached.

DisposeACD terminates the activity a-id and frees its ACD. This request is rejected if the
invoker is not the activity’s owner,

Service Invocation and Return

Invoke . This service is used to invoke any other service. Binding points to a binding held
by the invoker server, the current activity, or some other activity. op names an operation of the ser-
vice selected by the binding. Rtn Addr is an optional return address (default: the one following this
invocation). NoRktn indicates that the invoker does not want to be retwrned to at the end of the
invoked service. An error result indicates whether the binding, the operation, or the server id is
incorrect. Invoke does not return any result if the invocation takes place — a result is returned by
the invoked service or by the OSB in the event of enforced abortion of that service.

Return : A return from a service to the address indicated in the ACD. It always succeeds,
even if the returned-to server has died. A Return with arguments can be invoked by the activity’s
owner. The # of hops can be all (i.e., emptying the activity’s chain), last n or first n (i.e., remov-
ing from the activity’s chain » hops or all but the first n hops, respectively).

Exception Raising

Raise and UnRaise : For symmetry, an exception can be removed by the server who has
Raise-d it. a-id names the target activity. ExcpType can be any. Value is an optional argument
to the exception handler. Raise with Uponrtn may be used by any server in the activity’s chain; it
means that the exception would be noticed when the invoker is executed by activity a-id. Other-
wise, the invoker should be the activity’s owner or current server.

ReturnFromExcpt indicates the end of handling an exception or a trap. For efficiency,
ReturnFromExcpt can be combined with service Return and procedure return.

Miscellaneous

SetACD allows any server who presents a valid permit to an ACD to set certain fields in it,
such as its bindings, accounting permit, and priority indicator. The owner of the activity can also
name another server as an owner — either immediately or upon the former’s death.

Check lets any server discover the remaining quantum of activity a-id (default: current
activity), its precedence level or exceptions pending for the activity, or whether the activity is
dispatched or Switch-ed to.
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A.2. Services for CPU Management

GetCPU ( # of CPU’s, (demand list), ... )
returns ( allocation list );

Allocate ( to server, CPU, slice [, A-id] )
returns { OK, InvalidSrvr, InvalidCPU, InvalidSlice, InvalidA-id, NotOwner };

Revoke ( from server, CPU, slice [, reason])
returns { ( revocation list ), InvalidSrvr, InvalidCPU, NotOwner };

Release { reservation #, ( {CPU,] (slice] ) }
returns { OK, InvalidCPU, InvalidSlice, NotOwner };

Dispatch ( A-id [, CPU] [,quantum] )
returns { OK, InvalidQntm, InvalidAid, NotActOwner,
InvalidCPU, NotCPUOwner, AlreadyRunning };

ChangeQntm ( A-id [+] [,quantum] )
returns { OK, InvalidAid, InvalidQntm };

Switch ( A-id [, subquantum] )
returns { OK, InvalidAid, InvalidQntm, NoCurrent, AlreadyRunning };

Switch ()
returns [ NoFormer ];

Register ( A-id [, buffer] )
returns { OK, InvalidAid, InvalidBffr };

YourCustomer ( accnt permit, TU’s, id, ...)
returns { OK, Invalidld, InvalidPrmt, InvalidTU };

Table A-2: CPU management services

Control of CPU Ownership

GetCPU : This service is invoked by the CPU host’s customers of CPU allocation. # of
cpu’ s specifies the minimal number of CPU’s the invoker needs. It can be any, all, or a specific
number. The demand 1ist consists of the sublists (TU’s [,urgency] [,cont] [,reservation #]). Tu's
specifies the amount of Time Units requested, which can be any; urgency indicates the urgency
level of the request, if any. In order to establish a standard range of urgency values to which all
servers comply, urgency is the distance from a real or an imaginary deadline, specified in Time
Units. cont means that this demand is a continuous one, to be renewed when the allocated slice is
consumed. This feature saves repetitive invocations of GetCPU. The reservation # is used as a
tag, so a regretful server can Release a demand even before it has been granted. The CPU host’s
decision is made known through the returned allocation 1list, which consists of the sublists
(which CPU, TU’s). Obviously, this list might be empty. A later allocation decision of the CPU




host is made known through a notification. GetCPU service can be extended with additional argu-
ments, such as a rReason to justify this demand.

Allocate : This service is used by a server to allocate a portion of its ownership (cpu and
slice) t0 to server. cPUand slice may indicate all that the invoker owns. If the allocation is
valid and cpu names the CPU which the invoker is currently using, then the invoker is suspended
until the allocation is consumed. a-id indicates which activity to schedule to consume the alloca-
tion. It can be myself. Otherwise, the activity should be owned by the allocator or the recipient.
The default activity to be dispatched is the recipient’s preregistered scheduling activity (see Regis-
ter). A possible extension of this service is to let the invoker specify a list of allocations.

Revoke is used by a former owner of a given slice to reclaim it. From server specifies the
server to whom the slice was allocated earlier. From server and cpu each may name a particular
one, any or all. slice specifies Time Units or all. If the named server had further allocated that
slice, it is reclaimed from those allocated servers(s) — as much as is necessary to satisfy the Revoke
request. An Interrupt request is equal to Revoke (any, any, all). A possible extension of Revoke is
to let the revoker specify a list of revocations. The returned revocation list specifies the uncon-
sumed slices that the CPU host salvaged from the revoked server(s), if any. This list consists of the
sublists (CPU, slice). A revoked scheduler is notified of the revocation by the CPU host. Reason is
an optional argument to be passed to the revoked server via this notification.

Release is invoked to give away CPU ownership. If reservation # is specified, the relevant
demand(s) are cancelled; this argument can specify all. Alternatively, the specified cpu and slice
are released. cpu indicates a specific one or all (default: the one used to invoke this service).
Slice specifies Time Units (default: the remainder slice of the invoker for the released CPU(s).

Context Switch between Activities

Dispatch : This service is used by a scheduler to dispatch activity a-id which the scheduler
owns, for a given quantum of Time Units and on a givenr cpu. The default cpu is the one which the
invoker uses. The default quantum is the remainder slice of the invoker for that CPU. If the named
activity has been dispatched on another CPU, Dispatch is rejected.

Switch is used to switch execution to another activity a-id, of which the invoker is the
current server. The subquantum (default: the remainder of the current activity’s quantum) allows
the invoker to set a time limit on this switching, after which the invoking activity resumes execution.
If the switched-to activity is already running on another CPU, this request is rejected. The parame-
terless version of Switch is used to switch back.

ChangeQntm is invoked by activity a-id’s scheduler to increase or decrease the activity’s
quantum. 2-id can be myself.
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Handshaking with Schedulers

Register allows a server to register an activity a-id as its scheduling activity. a-id can be
the current activity (CurrAcr). The server can supply a buffer into which the CPU host places
notifications of CPU allocation, revocation, and consumption.

YourCustomer : This service is invoked by a server who wants to become the CPU host’s cus-
tomer of CPU allocations. An accounting permit (acent permit) is supplied, which the CPU host
uses to charge for demands and for allocations. Tu’s is an initial allocation request, specified in
Time Units. 1disa password or a customer’s name, used to identify the invoker.

A.3. The Accountant’s Services

Basic Mechanism

NewAccount ( merged account id, mkey, credit [, debit limit] [, new keyl)
returns { (account id, key), Invalid... };

DisposeAccount ( account id, key [, subaccount ids] )
returns { OK, Invalid... };

MergeAccounts ( (ToAccount id, key), ( account id, key ) [, subaccount ids] )
returns { OK, Invalid... };

ChangeKey ( account id, key [, new key])
returns { key, InvalidAcnt, InvalidKey };

Verify ( cheque )
returns { OK, InvalidChq };

Deposit ( amount [, cheque] [, ToAccount])
returns { OK, MaxCharge, InvalidChq, InvalidAcnt };

Extended Mechanism (Additional Services)

Cancel ( cheque )
returns { OK, InvalidChgq };

Verify ( cheque )
returns { OK, InvalidChq, Cleared };

PartialDeposit ( amount [, cheque] [, ToAccount] )
returns { OK, new cheque, MaxCharge, InvalidChgq,
InvalidAmnt, InvalidAcnt };

SplitCheque ( Sum, cheque )
returns { (new cheque 1, new cheque 2), Invalid... };

Table A-3: The Accountant’s services

Basic Mechanism

A cheque is the pair (FromAccount, Signature), where
Signature := Sign ( FromAccount, Account’s private key), and Sign is a publicly known one-way
function.
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NewAccount is invoked to open a new account, which becomes the subaccount of merged
account. mkey is the merged account’s private key. It is supplied to prove that the invoker has the
right to open subaccounts for that account. The new account is assigned a private key, which is the
Same as new key if the creator has supplied one. The owner can set the account’s initial credit
and debit limit,

DisposeAccount closes an account (account id), or its subaccounts if subaccount ids i§
supplied. The invoker must be the account’s owner, that is, it must present a valid xey for the
account. For any account that is closed, its subaccounts are closed too, recursively. Any cheque
referencing a closed account is invalidated.

MergeAccounts makes account id or its subaccount ids become the subaccounts of
Tohccount id. The invoker must present valid keys for both accounts.

ChangeKey allows changing the key of an account id, which effectively invalidates any
outstanding cheque of that account.

Verify returns whether the signature of cheque is valid. Deposit is used to charge the
FromAccount specified in the cheque. The default cheque is the current activity’s one. This
account is debited with amount. ToAccount (if specified) is credited with the same amount. The
Accountant verifies Signature by using the same Sign function and FromAccount’s key. Deposit is
refused if the cheque is invalid, FromAccount does not exist, or if the balance in that account will
exceed the debit limit with this Operation. MaxCharge indicates the maximal amount one can
charge at that point.

Extended Mechanism

The operations of the extended mechanism assume that a cheque is either the quadruple

| FromAccount | Serial # | Max amount l Signature |

or the tuple v
From Serial # Max Max Time Time Signature
Account amount | each time | of charge | interval

where the Signatures are analogous to the former one. Time of charge i$ the earliest time the
cheque can be deposited. The serial # can be none. The Max amount, Max each time, time
of charge, and time interval can be any,

Cancel allows any holder of cheque to cancel it, so it cannot be deposited later. Verify vali-
dates the Signature of the cheque and that it has not been cleared before (that is, deposited or can-
celled).

Deposit is now restricted by the Max amount prescribed in the cheque, which is the default if
amount is missing. The Accountant verifies that the cheque has not been cleared before. If the larger
cheque format (seven-tuple) is used, Deposit can be invoked no sooner than the time of charge
prescribed in the cheque, and amount is limited to Max each time.
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PartialDeposit is similar to Deposit, except that only amount is debited or credited. In addi-
tion, if the larger cheque is used, the Accountant verifies that amount does not exceed Maxz each
time, and that time of charge does not exceed the current time. If the operation is valid and
amount i§ smaller than Max amount, then the Accountant returns a new cheque. This cheque has
the same FromAccount as the former one, has a new serial #, and its Max amount is the former
one reduced by amount. In the large cheque format, the new time of charge is set to be the
former one increase by time interval. The cheque is Sign-ed by the account’s private key, which
is known to the Accountant.

SplitCheque allows a holder of cheque to split it into two cheques, one for the specified
amount and the other for the remainder of Max: amount. Both cheques are written under Fromac-
count and as before, Sign-ed with the account’s secret key.

The Accountant’s Algorithm

The Accountant’s algorithm is used to record and to check the serial numbers of cheques that
have cleared. The algorithm is designed to be efficient both in execution time and storage space, in
order to reduce the Accountant’s overhead in verifying cheques. For efficiency, it is assumed that
servers usually issue cheques in sequential order, and that most of the cheques are cleared roughly in
the order they have been issued. A lost cheque, that is, one whose only holder terminates, is
removed from the Accountant’s store.

Associated with each account are two sets of serial numbers of the cheques that have not yet
cleared. One set is for the serial numbers assigned by the account owner, the other for those
assigned by the Accountant. Since these sets arc infinitely large, the Accountant keeps two windows
of size w per account. For a faster search, each window is a list of sequential numbers. It is
represented by a base number (first in the window) and a bitmap of length w. Clearing a cheque fol-
lows these steps:

(1)  Initially all numbers in a window are unmarked. -

(2)  Suppose the cheque’s number falls in the relevant window. If it is already marked in-
valid, then the cheque is rejected; else, the number is marked invalid.

(3)  Suppose the number is beyond the relevant window, that is, the cheque is newer. The
window moves to include the new number, which is marked invalid. When the window
moves, some numbers of cheques which have not been yet cleared (that is, older cheques)
may drop out of the window. They are added to a database of old cheques.

(4)  Otherwise the number is below the relevant window, that is, it is an old cheque. The da-
tabase is searched. If the number is found there, then it is deleted from the database; oth-
erwise, the cheque is rejected.

(5)  For search efficiency, the database is organized in a hierarchy of stores, from old to very
old serial numbers. Numbers in the lower level are removed after that level is filled or
after a threshold period, assuming they became lost cheques.
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Notice that the algorithm is correct, albeit inefficient, when the above assumptions do not
hold. If the account is owned by several servers, each of which issues cheques in different orders, or
if a single owner issues cheques out-of-order, then windows change rapidly, increasing the expected
search time in the account’s database. If the owners issue multiple cheques of the same serial
number, then all but the first of them are invalid, and the algorithm will reject them. If an account
owner has written a cheque for gradual use over a long time, the cheque is renewed each time it is
PartialDeposit-ed, and thus never becomes obsolete. If a holder of a cheque dies and the cheque is
lost, the Accountant’s algorithm will eventually spill it out of the database and not record it forever.
To improve storage efficiency, the Accountant charges for space occupied by each account’s data-
base, encouraging servers to cancel cheques they will no longer use.
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Appendix B

An Example Standard Interface

Activity Management
Pause [ how long ] returns ( );
Block () returns ( );
UnBlock [ A-id ] returns [ InvalidA-id, NotAllowed J;
TerminateActivity ( [A-id] [, Reason] ) returns [ InvalidA-id, NotAllowed ]
Prio ( [A-id] [urgency] [Reason]) returns { OK, InvalidA-id };
AbortService ( A-id, Reason ) returns { OK, InvalidA-id };

Memory Management

Pin ( virt mem access permit [, translate] )
returns { OK, InvalidPrmt, phys mem access permit };

UnPin ( virt mem access pennit ) returns { OK, InvalidPrmt };
Store ( access permit, data } returns { OK, InvalidPrmt };

Fetch ( access permnit ) returns { data, InvalidPrmt };

General Operations
TerminateBinding [ server id ] returns { OK, InvalidBndg };
ExcptHandler ( [server id], exception type [, args] ) returns ();

Return Codes

ServiceAborted ServerDied ~ Retum enforced because the invokee has terminated

Exception Types .

GonnaTerminate The activity will terminate.

AbortCurrService <Reason >  As requested by a server in an activity’s chain

Table B-1: Standard operations and parameters

Activity Management

These operations may be invoked by servers in the activity’s chain. In operations where
activity id (a-id) is omitted or is optional, the request refers to the current activity. Pause indicates
that the invoker releases the CPU because it has nothing to do. How long is a hint to the activity’s
scheduler to avoid dispatching that activity for that time frame, specified in Time Units. Termina-
teActivity, Prio, and AbortService are used to tell an activity’s scheduler to terminate the activity, to
increase or reduce the activity’s priority, or to indicate to the activity’s current server to abort its ser-
vice, respectively. Reason is one of a standard list or an application-specific one. We have not
enumerated a comprehensive list. As an example, Reason for Prio can be: EnterCriSec,
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LeaveCriSec—indicating that a critical section 1is entered or exited, respectively,
RealTime—indicating that this activity must meet a real-time deadline, and
BlockingOthers—indicating that the activity holds an internal resource that delays other activities.
In order to establish a standard range for urgency levels, the urgency for Prio is specified as the dis-
tance from a real or an imaginary deadline. A none urgency level (the default) means that the
activity’s priority can be reduced to a former level.

Memory Management

Pin and UnPin are provided by Universe Managers. The virt mem access permit indi-
cates which area of virtual space to fix or unfix in physical memory. Translate indicates that the
invoker wants an access permit to physical memory to be returned. This translation, for example,
might be required by a p-host in order to access a buffer referenced by virt memory access per-
mit more efficiently. Store and Fetch are operations provided by a memory host.

General Operations

TerminateBinding is an operation associated with any binding. It may be invoked on behalf
of the binding holder (sexver id) by a server that terminates the holder. The default server id is
the invoker. ExcptHandler is a generic exception handler, invoked for any exception (including
traps). The exception type is one of the types defined below or of the types defined by the CPU
host, e.g. InvalidAddress and Invalidlnstruction. server id indicates that the exception relates to
another server, not the invokee. This is the case when the U-mgr or a debugger of server id is
invoked to handle an exception that should be handled by that server. args are specific to each
exception type. For example, an argument can be the address where the exception occurred.

Return Codes

The only return code listed here might be returned by a CPU host, U-mgr, or any other server
on behalf of an aborted service.

Exception Types

GonnaTerminate and AbortCurrService are exceptions raised by an activity’s owner.
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Appendix C

System Provided Services

C.1. Services of the COS Universe Manager

New ( accounting permit, (structure info), (sharing info) [, Dispose handler] )
returns { Space id, InvalidPrmt, InvalidSegs, InvalidShr, NoMore };

Pin  (* See Appendix B *)

UnPin  (* See Appendix B *)

Fix ( start addr, size ) returns { OK, InvalidAddr 1
UnFix ((start addr, size ) returns { OK, InvalidAddr };

MemCopy ( from, to [, copy-on-wrt] [, align {page,seg} 1)
returns { OK, InvalidPrmt, permit to a new area };

Expand ( size, acc Rts, [, Space id] [, seg #] [, shared seg] [, copy-on-wrt] )
returns { OK, InvalidSeg, Invalidld, Invalid... IR

Dispose [ Space id] returns [ OK, Invalidld, NotOwner J:
Freeze (Space id ) returns ( new id, Invalidld, NotOwner Y

UnFreeze ( new Space id )
returns ( OK, Invalidld, NotOwner );

SnapShot ( Space id ) returns ( (seg #, info), ..., (seg #, info) );

Table C-1: Memory management services

New is invoked to get a Space. Structure info is list of (seg #, size, access Rits) per seg-
ment, and indicates the initial structure of the allocated Space. Sharing information indicates
that a given segment should be a copy of an existing segment or share its mapping. The invoker
should have a valid permit to the shared segment or own the Space containing the segment. For sim-
plicity, shared segments must be in the Universe of the COS. The accounting permit is needed by
the U-mgr to charge for resources such as virtual store, frames, and disk blocks used for swapping.
Dispose handler i§ an address or a binding for a handler, to be invoked by the U-mgr when the
server stored in the new Space terminates itself. NoMore indicates that the request has failed
because a limit on the number of allocated Spaces per Universe has been reached. If the request
succeeds, a new space id is returned, of which the invoker becomes the owner.
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Pin and UnPin are standard-interface operations (see Appendix B). Fix is used similarly to
request that a given region remains core resident. However, Fix is invoked by the owner of the
Space in which the region resides, and it is assumed that the fixing is required on a long-term basis.

MemCopy is used to copy across address spaces. From and/or to are access permits to
another server’s Space. Each can be an address in the invoker’s Space or in another Space owned by
the invoker. copy-on-wrt indicates that the target buffer should be shared, and that a copy should
be performed if either the target or the source buffer is modified. This feature is allowed only if both
the source and the target buffers are in the Universe of the COS. To may indicate that a new virtual
area should be allocated with the copy. In this case, an optional align page O align seg indi-
cates whether the new area is aligned on a page or segment boundary.

Expand IS a request to create a new segment of the indicated size, access Rts, and
(optional) number. If the number indicates an existing segment, then this segment is expanded.
space id indicates in whose Space the segment is created (default: myself). The invoker should be
the owner of that Space. shared indicates that the new segment should share the mapping of the
specified seg, possibly with copy-on-wrt as above.

Dispose is invoked to terminate oneself or to release a Space of a terminated server. The
invoker should be the owner of space id. The default space id is myself, in which case the
operation succeeds (with no reply). In this case, the dispose handler specified in New is invoked
and notified of the event. The Space id is invalidated by the U-mgr when the Space is released.

Freeze is invoked by the owner of space id (other than the server stored there) in order to
inspect the state of the Space, correct errors, or copy its contents to an auxiliary storage space.
While the Space is frozen, its id is changed to new id so that accesses to that Space are refused.
The owner can later Dispose the Space or Unfreeze it, in which case its former id is restored.
SnapShot allows the owner of space id to obtain information about every segment of that Space.
This information includes the segment’s size and indications whether the segment has been
expanded or has been modified. :
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C.2. The Matchmaker’s Services

Expose ( server name, service name, binding [, service type] [, once-only]
[, accounting permit] ( add’l args ) )
returns { OK, Duplicate, InvalidPrmt };

Bind ([ server name ], { (service names), (service types) } )
returns { binding, NoMatch, TooMany };

Close ( {server name, server id} [, service name] )
returns { OK, NotAllowed, NoMatch };

Revive ( server name, secret id, binding, loading info [, loader name] )
returns { OK, InvalidLdrName };

IamAlive ( server name, secretid )
returns { OK, InvalidName, Invalidid ;

Table C-2: The Matchmaker’s services

Expose is used to announce a service and to furnish a binding for it. The invoker should be
the service provider—that is, PrevSrv should match the server id in the binding’s target address—
so that another server cannot expose a service which its provider does not want to be exposed. The
service is identified by @ server name and a service name, each of which is a string of characters
up to some implementation-dependent length. If some other server has already deposited a binding
with the same server name, this invocation is rejected with the bDuplicate indication. The service
provider may associate service type with the binding. once-only is a hint to the Matchmaker to
remove the binding from its store after the first customer has acquired the binding. This feature is
useful when a server expects a single customer, e.g. when cooperative servers form a pipeline
configuration. An accounting permit is supplied if the server has not supplied one before. The
Matchmaker uses this permit to charge for services and storage space. A list of additional argu-
ments can be supplied to Expose, to be passed to an acquirer of this binding. This list conceivably
specifies service attributes that the acquirer should know before using the binding.

Bind is used to locate a service and obtain its binding. The customer may specify a list of
service names OF a list of service types, each of which may contain an implementation-
dependent number of items. A server name can be omitted. A binding is returned if a service
name or a service type matches one of the items in the respective list. If several bindings match the
specified names or types, TooMany is indicated.

Close is invoked to declare that a service is no longer provided, and hence the Matchmaker
should remove its binding. The service name may specify all (the default). If Close is invoked by
other than the provider of that service, then the specified service name (or all) is closed only if the
provider has terminated.

Revive is invoked to tell the Matchmaker how to restart a server if its services are requested
after the server has terminated. The invoker supplies a binding for a loading service of some




“loader”. That service is invoked by the Matchmaker to regenerate the focal server. The descriptive
loading info is passed to the loader to indicate whom to load. The invocation protocol of the load-
ing service should be in accordance with a protocol defined by the Matchmaker. If it is possible that
the loader would not exist when needed, then Revive should specify a loader name too. The
Matchmaker will attempt to regenerate that loader prior to loading the focal server, recursively, pro-
vided the loader has left a Revive notification too. The secret id is used to authenticate the server
in JamAlive. The bindings of a terminated server who has left a Revive notification are “frozen” and
not deleted from the Matchmaker’s store.

lamAlive is invoked by a revived server, regardless whether its revival was triggered by the
Matchmaker or another server. If secret id matches the one associated with a server that has pre-
viously invoked Revive, then all the frozen bindings of the latter server are reactivated.
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Appendix D

Algorithms of Three OSB services

D.1. The Invoke Service

entry Invoke (Binding, Op [, Rtn addr, NoReturn ] ) returns
[InvEndg, InvOp, InvSrvr, Iantn];

( Addr, Key ) := fetch Binding’s target address and key;
(* if Binding is an activity’s binding, it is found in the ACD;
check also that the invoker is in the activity’s thread *)
if fetch is rejected then return ( InvBndg); fi;
(* if fetch causes a page fault —
the appropriate handler is invoked by the OSB elsewhere *)
current Space := Addr. Space id,; (*it’s a Space switch *)
Lock := fetch the lock at Addr;
if fetch is rejected then return ( invsrvr); fi;
if Key # Lock then return ( InvBndg); fi;
OpAddr := fetch op by indexing Addr;
if fetch fails then return ( Invop ); fi;
(* Note: The following compound IF is eliminated
in a registers-window CPU architecture *)
if Rtn addr # null then
if Rtn addr < current Space then
push Rtn addr on CurrAct’s return-addresses stack;
else return ( InvRtn );
fi;
elsif not NoReturn then
push program counter on CurrAct’s stack of return addresses;
PrevSrv = CurrAct’s current server,
CurrAct’s current server = current Space;
program counter := OpAddr;
(* continues to execute at the invoked op *)
end Invoke;
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D.2. The Dispatch Service

entry Dispatch (aid [,cpu] [, quantum]) returns
{OK, InvAid, InvCPU, InvQntm, NotActOwner, NotCPUOwner,
AlreadyRunning };

if invalid (2id | cpU | quantum) then
return ( Invaid | InvcPU | InvQntm); fi;
if CurrSrv # nid’s owner then return ( NotaActowner); fi;
if cpu = null then cru = thisCPU; fi
if CurrSrv # cpu’s owner then return ( NotCPUOwner ); fi;
if nid -> State = running then
if aid is in a Switch queue then split the queue; (*see §4.2.3 %)
else return ( AlreadyRunning );
fi; fi;
(* so far so good *)
if cpu = thisCPU then ContextSwitch (aid, CPU, guantum);
(* the doomed activity resumes here when redispatched *)
else
halt ceu; (* to avoid a race condition *)
signal cpu to ContextSwitch ( Aid, CPU, quantum);
return ( oK ); (* and do NOT block *)
fi;
end Dispatch;

procedure ContextSwitch (aid, cPU, quantum) returns();

DoomedAid := current activity at cpu;  (* doomed for preemption *)
DoomedAid -> State = idle;

add DoomedAid’s remaining quantum to DoomedAid -> owner -> slice;
push (registers ) unto DoomedAid’s context descriptor;

(* optional: update statistics: total CPU time; idle since now *)

aid -> State := running @ cpv;

if (quantum = null) | (quantum > Aid ->owner -> glice) then
quantum = Aid -> owner -> slice; fi;

aid -> owner -> slice = aid ->owner -> slice - quantum;

SetTimer ( quantum );

(* optional: update statistics: not idle *)

CurrAct = aid; (* cru’s current activity *)

pop (registers) from aid’s context descriptor;
(* including CurrSrv, PrevSrv, and the program counter *)
(* continues now at the popped program counter *)

end ContextSwitch;
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D.3. The Allocate Service

entry Allocate (to server, CPU, slice [, Aid]) returns
{OK, InvSrvr, InvCPU, InvSlice, InvAid, NotOwner };

if invalid (to server | ¢PU | slice | Aid) then
return ( InvSrvr | InvCPU | Invsiice | Invaid); fi;
a := allocator’s list of ownership;

(* find invoker’s (= CurrSrv’s) entry in “schedulers information area”,
fetch and lock it *)

if 2 = () then return ( NotOwner); fi;
B = to server’s list of ownership; (* similar to A *)

if 8 = () then create an entry for it in scheduler’s information area; fi;
if aid = null then

aid = recipient’s dispatching activity;
if nid = null then return ( Invaiq); fi;
fi;
if cpu = all then
for each (CPU, slice ) in 2 do
if A2B (A, B, slice, CPU, slice ) then cw = true; fi;
rof;
else
find (CPUX, slicex) in A so that cru = CPUX;
if nu/l then return ( NotOwner ); fi;
cw = A2B (A, B, slice, CPUX, slicex);
fi;
if cw then ContextSwitch ( aid, thisCPU, slice); fi; (* see above *)

(* will resume here when the former activity gets redispatched *)
return ( oK );
end Allocate;

procedure A2B (A, B, slice, CPUX, slicex) returns Boolean;

if (slice = all) | (slice > slice ) then slice = slice; fi;
push (CPU,, slice) unto B;
replace (CPUX, slicex) in a by (CPUX, slicex- slice);

if CPU, = rhisCPU then !
push recipient on thisCPU’s owners stack;
return ( true ); (* namely, do ContextSwitch *)
else
halt CPU ; (* to avoid a race condition *)

push recipient oOn CPUX’S owners stack;
signal CPU_ to ContextSwitch (aid, CPU,, slice); (*see above *)
return (false); '

end, A2B;
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GLOSSARY

The following is a brief summary of the terms introduced in Chapter 3.

Accountant A server of the OSB which provides services to manage accounts, charge and credit
them.

Activity A thread of control that executes services. It is an independently schedulable entity
that can span multiple servers.

Allocation  Transfer of ownership of a resource,

Application  Any logical collection of non-OSB servers.

Binding A reference to a service that enables invocations of that service. It is a light-weight
capability.
Chain A sequence of services (servers) which have been invoked by a given activity and

which have not yet returned.
Clock host A host of the OSB, necessary to indicate time expiration.
Computing System

A collection of servers (of which one distinguished set of servers is the OSB). It
includes p-hosts and other servers.

CoSs An application which provides services customarily provided by operating systems.
CPU host A server included in the OSB which encapsulates all the CPU’s in the system.

Current Server/Service
The last server (service) in an activity’s dynamic chain.
Current Space
The Space in which the currently running activity (per CPU) is running.

Customized OS

See COS.
Dispatch A service of the CPU host which allows an activity to execute on a specified CPU.
Host A server that encapsulates a given resource.
Initiator A server of the OSB which creates the OSB at system-initialization time.

Matchmaker A server that allows service providers to announce their services by depositing bind-
ings, and service users to obtain the bindings.

Memory A distinguished type of resource, necessary to store servers.

OSB A collection of generally-trusted servers which provide the minimal set of services
necessary to protect resources and servers.

Operating System Base
See OSB.



130

Ownership

Permit

P-host

Processor

Resource

Revocation

Server

Service

Space

Allows a server to access the owned resource, to issue permits, and to allocate the
resource. See Allocation.

A reference to a resource that enables accessing the resource with specific access
rights. It is a light-weight capability.

Denotes a host of a physical resource. A p-host may have private processors and
memories.

A distinguished type of resource, necessary for execution. The shared resources are
called CPU’s. P-hosts may have private processors.

An entity encapsulated within one server—its host. A resource is divided to units of
allocation, each of which can be owned by multiple servers.

Reclaiming a resource from its current owner(s), which then loose their ownership.
Revocation is allowed to any former owner of the resource.

A dynamic representation of a program that implements services.

An abstraction of a set of actions that uses resources to carry out a logical function. A
service can be performed synchronously or asynchronously.

A reference environment in which a server is stored. It is the unit of allocation of a
Universe.

Standard Interface

A set of conventions that defines the invocation protocols for a given set of services.
These are services which a server might be obliged to invoke without knowing their
invocation protocols.

System Administrator

A user, the primordial owner of all accounts, whose servers are the primordial owners
of the system resources.

[

System Resources

Universe

User

An installation-dependent list of resources shared by all servers. The host of these
resources must be in the OSB.

A logical resource which stores multiple servers. It is composed of Spaces and is
mapped into physical memory.

A person or a group of people using the computing system. A user is represented in
the system by servers and activities.
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