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Abstract

This paper presents parallel algorithms for the solution of generalized network op-
timization problems on a shared-memory multiprocessor. These algorithms exploit the
quasi-tree forest basis structure of generalized networks by attempting to perform multiple
simplex pivot operations in parallel on disconnected subtrees. We consider algorithms for
both single-period generalized networks and multi-period generalized networks. In the lat-
ter case, the multi-period structure is utilized in the initial stage of the algorithms in order
to initially partition the problem among processors. Computational experience on the Se-
quent Balance 21000 multiprocessor is presented that demonstrates linear and sometimes
superlinear speedup for a large class of test problems.
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1. Introduction

In this paper we discuss two distributed algorithms for the solution of generalized
network flow problems. These problems are of the following form:

min cx
st Az =10 (GP)
0<z<u

where the matrix 4 € R™*" has no more than two non-zero elements
in each column.

In order to pose GP in a form resembling a regular network flow problem, the variables
can be scaled so that columns of A containing two non-zero elements are such that one
of the elements is 1, and the other non-zero entry is then interpreted as a flow multiplier.
If the flow multiplier is -1, then the arc is a regular network arc. In general though,
the flow multiplier can be positive or negative and can have magnitude equal to 1, less
than 1, or greater than 1. If the flow multiplier for a column is in the range (0,—1),
the column corresponds to an arc which loses flow. If the flow multiplier is in the range
(—1,—00) then the column corresponds to an arc which gains flow. A column which has
just one nonzero element corresponds to a root-arc, an arc which is incident to just one
node. Generalized network flow problems have applications in the areas of scheduling, cash
management and production and are discussed in [Glover, et al., 73] and [Glover, et al.,
78]. A specialization of the primal simplex algorithm for GP is described in [Jensen and
Barnes 80] and [Kennington and Helgason 80]. As with the regular network flow problem,
which we designate as NP, the simplex algorithm for GP can be executed on a graph. One
difference between GP and NP is that the graph of any basis for NP consists of one rooted
tree, while the graph of a basis for GP is a forest of quasi-trees. A quasi-tree is a tree
with one additional arc, making it either a rooted tree or a tree with exactly one cycle.
Figure 1.1 shows a forest of quasi-trees. In [Engquist and Chang 85] data structures for
GP are discussed which are primarily based on those of [Adolphson 82] and [Barr, Glover
and Klingman 79]. These data structures were used to implement GRNET [Engquist and
Chang 85], a sequential version of the primal simplex algorithm for GP. [Engquist and
Chang 85] establishes that on a CYBER 170/750, GRNET is about 50 times faster than
MINOS [Murtagh and Saunders 78], a standard LP code, on problems of the form GP.

The distributed algorithms for GP discussed below are made possible by the discon-
nected nature of the basis graph as described above. Iixecuting a pivot involves updating
only one or two quasi-trees in the basis. Therefore, two or more processors can execute
pivots simultaneously, as long as they operate on different quasi-trees. A description of
how this approach was used to develop PAGEN-K, a distributed version of GRNET, can
be found in [Chang, et al., 87]. PAGEN-K uses a user specified number k of processors.
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Figure 1.1 A Forest of Quasi-Trees
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Figure 1.2 Multi-period Constraints




While one processor, the “master” processor, computes the reduced costs on arcs between
nodes belonging to different processors, the remaining (¥ — 1) processors compute reduced
costs on “local” arcs belonging to the trees assigned to them and execute pivots. Some
impressive results were reported in [Chang, et al., 87] for a group of multi-period problems
for which the matrix A has the staircase structure given in figure 1.2. The results, however,
neglect the communication time between processors.

In our work, we are using a tightly coupled system, the Sequent Balance 21000. This
is a time sharing system which permits the user to select the number of processors to
be used. Sequent provides a parallel programming library which includes commands that
fork processes and coordinate processors. Communication time on this machine is essen-
tially negligible because all processors access a common memory. However, there is an
overhead associated with references to memory because there is just one bus connecting
the processors to the memory, and processors must take turns using the bus. This can
hurt performance. Also, any algorithm for GP written for this machine must ensure that
only one processor updates a quasi-tree at any given time. Otherwise, the tree functions
may not be updated correctly. To ensure mutual exclusion from quasi-trees, we lock the
quasi-trees. This is done with hardware locks which use an atomic write operation to set
a flag in a boolean array. Processors incur an overhead cost when locking and unlocking
quasi-trees, and this can also hurt performance.

Despite the bus bottleneck and the cost of locking and unlocking, the shared memory
machine seems to be an appropriate architecture for the solution of generalized network
flow problems. We have developed a distributed version of GRNET called PGRNET,
which solves a range of generalized network flow problems with a linear and sometimes
superlinear speedup. This algorithm and the corresponding computational results are
presented in section 2. Our second algorithm, MPGRNET, is a variant of PGRNET for
multi-period problems. This second algorithm, described in section 3, uses PGRNET late
in the solution process, but does most of the pivoting in a stage in which processors are
allocated a particular set of quasi-trees and are permitted to execute pivots only on those
quasi-trees. This mimics the loosely coupled environment, and eliminates the need for
locking quasi-trees in that stage.

In addition to the investigation of issues related to parallelism, we introduce below a
heuristic for candidates for pivoting in the simplex method that reduces computing time
by as much as 45% in the test problems considered.



2. PGRNET, a distributed version of GRNET

2.1 The Algorithm

In this section we describe the sequential program GRNET and our parallel version
PGRNET. A rough flow chart of both will be given. In section 2.2, we will discuss a
heuristic which we have added to GRNET, and we will describe computational results.

GRNET uses an artificial starting basis discussed in [Glover, et al., 74]. An artificial
root arc with a high (bigdd) cost is attached to each node forming a quasi-tree with just
one node and one arc. An example starting basis is shown in figure 2.0. Each artificial arc
is given a flow that satisfies the demand of the corresponding node. After the starting basis
has been generated, GRNET solves the problem in two main stages. In STAGE 1, the
processor malkes a candidate list of size listsize containing pivot eligible arcs. This is done
by sweeping through the list of arcs and adding pivot eligible arcs to the list when they
are found. When the list has listsize entries, the processor can begin pivoting. To find a
pivot arc during STAGE 1, the processor looks through its candidate list to find the pivot
eligible arc with the greatest reduced cost in absolute value. The processor executes the
pivot, removes the arc from the list and looks for another pivot eligible arc in the candidate
list. If there are no pivot eligible arcs in the list, or if the list has fewer than (listsize/2)
entries, a new list is made. If, in the process of making a new candidate list, fewer than
(listsize/2) pivot eligible arcs are found in the entire arc list, STAGE 2 is begun. In
STAGE 2, optimality is achieved by sweeping through the list of arcs and pivoting on any
that are pivot eligible. Optimality is verified when the processor can sweep through all
arcs, finding none that are pivot eligible.

In developing a distributed version of GRNET, we tried a number of different strate-
gies. The best results came from what we call an arc ownership algorithm. Processors are
given a specific subset of the arc list (rather than a subset of the quasi-trees), and each
processor selects pivot arcs from that subset and executes the pivots. Arcs are divided
evenly between processors. If there are m arcs and P processors, then processor 1 gets
arcs (1) through (m/P), processor 2 gets arcs (m/P + 1) through (2m/P) and so forth.
Optimality is reached when all processors make a sweep through their arcs finding none
that are pivot eligible. The dual variables of all the nodes, the predecessor threads, the
successor threads and all other tree functions are stored in the shared memory and are
available to all processors. The program that each processor executes is almost identical
to GRNET. During a parallel pivoting stage, STAGE 1, each processor makes a candidate
list of pivot eligible arcs. The candidate lists are made in the same way the the (single)
candidate list is made in GRNET, except that the individual processors look only through
their own subset of the arc list to find pivot eligible arcs. A processor p choses from its
candidate list the pivot eligible arc which has the greatest reduced cost in absolute value.
If the quasi-trees at the ends of the arc have not been locked by another processor, p locks
the quasi-trees, performs the pivot and removes the arc from the candidate list. If the
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quasi-trees are already locked, processor p removes the arc from the candidate list and
choses another arc. When half of the arcs in the candidate list have been removed, a new
candidate list is made. If the new candidate list has listsize/2 or fewer entries, STAGE 2
is begun.

STAGE 2 corresponds to the verification of optimality stage in GRNET. Optimality
is achieved by performing any remaining pivots. Processors sweep through their arc lists
looking for pivot eligible arcs. If processor p finds one, it locks the quasi-trees at either end
of the arc, executes the pivot, and interrupts the other processors. The interrupt is not an
interrupt in the usual sense. It involves setting a flag in a shared array, and all processors
check this array frequently during STAGE 2. The interrupt mechanism is needed because
a pivot executed by p might cause an arc owned by another processor to become pivot
eligible. When the other processors find that they have been interrupted, they restart their
sweep. If p finds that one of the trees at the ends of a pivot eligible arc is locked, it simply
interrupts the other processors and continues its sweep.

artificial arc with Big M cost

LA dhhb L

Figure 2.0 Artificial Starting Basis for GRNET
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In summary, the (sequential) GRNET algorithm is:

INITIALIZATION

The processor generates an initial feasible solution to a big M problem and proceeds
to STAGE 1.

STAGE 1 (pivoting)
The processor scans the arc list to make a candidate list. Pivot arcs are chosen from
the candidate list and pivots are executed. When it is not possible to make a candidate
list with more than (lzstsize/2) entries, the processor proceeds to STAGE 2.

STAGE 2 (verification of optimality)
The processor scans the arc list to find any remaining pivot eligible arcs. If it finds a
pivot eligible arc, it performs the pivot. If a complete sweep through the arc list can
be made without finding any pivot eligible arcs, optimality has been reached.

The (parallel) PGRNET algorithm is:

INITIALIZATION

Processor 1 generates an initial feasible solution to a big M problem.

STAGE 1 (parallel pivoting)
Processors scan their arc lists to develop candidate lists. Pivot arcs are chosen from the
candidate lists, and quasi-trees are locked before pivots are made. When a processor
cannot develop a candidate list with more than (Iistsize/2) entries, that processor
proceeds to Stage 2.

STAGE 2 (verification of optimality)
Processors scan their arc lists simultaneously to locate any remaining pivot eligible
arcs. If a processor finds a pivot eligible arc, it locks the trees involved, performs the
pivot and interrupts the other processors. If all processors make a sweep through their

lists without being interrupted and without finding any pivot eligible arcs, optimality
has been reached.



2.2 Pricing Heuristics and Granularity

The sequential program GRNET uses a pivoting strategy due to [Mulvey 78]. This
involves periodically developing a list of pivot eligible arcs called a candidate list and
choosing pivot arcs from this list on the basis of their reduced costs. We have added a
heuristic to GRNET which allows the list length, or list size, to start at 2, and then grow
if necessary to a maximum size of 32. We say that a problem is large-grained if the quasi-
trees in the basis are large, and small-grained otherwise. If the problem being solved is
very large-grained, the maximum list size of 32 will generally be attained. We have found
that GRNET solves small-grained problems more quickly with a short candidate list.

The initial starting basis is very small-grained because each quasi-tree contains only
one arc. In this situation, candidate lists of pivot eligible arcs should be relatively short.
Our heuristic for tuning the size of the candidate list starts the list size at 2. If a pivot
unites two quasi-trees, the following code is executed, and may increase listsize, the size of
the list. (Parameters in this section of code are discussed below.)

measure = 275 % (T(root)/nodes - per - period)

if ((measure.gt.listsize) .and. (listsize.lt.32)) then
listsize = listsize + 2

endif

The number of nodes in the newly formed quasi-tree is T'(root). The number nodes -
per - period is equal to the number of nodes n in the problem, unless the problem is a multi-
period problem. In this case nodes - per - period gives the average number of nodes per
period. The code computes the relative size of the newly formed quasi-tree and increments
listsize if the quasi-tree is sufficiently large. The list size never increases by more than two
during a pivot. This means that it becomes large only if many pivots are executed which
coalesce large quasi-trees. The results below show the effects of using this variable list size
heuristic compared to a fixed list size of 32.

The most significant factor in the efliciency of our algorithm is the granularity of the
problem being solved. If the number of quasi-trees in the basis is small, it is less likely
that a processor p will find that the quasi-trees at the ends of a pivot arc are not locked. If
they are locked, p removes the arc from the list and looks look for another in its candidate
list. Thus when the number of quasi-trees in the basis is small, processors are likely to
reject “best” arcs chosen from their candidate lists, and this tends to increase the total
number of pivots required to reach optimality. Candidate lists are also exhausted quickly
because many arcs that are chosen turn out to connect locked quasi-trees. This increases
the total amount of time that is spent making candidate lists. A problem which had only
one quasi-tree in the optimal solution might be solved only slightly faster by PGRNET
than by GRNET.

The performance of PGRNET is also degraded when nodes are distributed unevenly
between the quasi-trees. A problem can be small-grained in the sense that it involves a
large number of quasi-trees, but if most of the nodes belong to just one quasi-tree, that
quasi-tree will be locked most of the time. In this case, the processors compete for access
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to one quasi-tree. Candidate lists are exhausted quickly because most pivot eligible arcs
have an end in this quasi-tree.

Alternatives to rejecting arcs with an end in a locked quasi-tree might be to store
them in a temporary stack, or simply to wait until the quasi-tree becomes available. Our
experience indicates that these alternatives are less efficient than the algorithm we are
using. In section 4 we discuss research directions for problems having a small number of
quasi-trees in the basis.

We measure the performance of PGRNET by calculating the speedup for various
problems. For a given problem, we define the speedup for P processors in the following
way:

CPU time required by one processor
speedup(P) =

CPU time required by P processors

The DYNIX operating system on the Sequent Balance 21000 provides the user time
and the system time needed to execute a command. Due to the multi-processor nature of
DYNIX, it is possible for the CPU time (user + system time) to greatly exceed the real
time. Also, the system time reported can depend on the number of users on the system.
For these reasons, we report only the user time as the CPU time.

Our goal is to achieve “linear” speedup for all test problems. In other words, we would
like the speedup on P processors to equal P, regardless of the nature of the problem being
solved. If the speedup is greater than P for a given problem, we say that the speedup is
superlinear, and if the speedup is less than P, we say it’s sublinear. A sublinear speedup is
undesirable because it indicates that processors are not being used as efficiently as possible.
A superlinear speedup can indicate that improvement is needed in the sequential program.
PGRNET exhibits superlinear speedup for a number of problems discussed below, because
it does fewer pivots than the sequential version in solving these problems. This means that
PGRNET selects a better sequence of pivots than GRNET. Since PGRNET selects pivots
according to the magnitude of their reduced costs and according to the availability of the
associated quasi-trees, it’s hard to determine how one might adapt the pivot selection in
GRNET to get the same sequence of pivots as PGRNET. The occasional unavailability of
quasi-trees is something that would be difficult to incorporate into the sequential program.
This is another interesting area for further research.

2.3 Computational Results for PGRNET

The following test problems are organized in two main groups. Group 1 is a set of
problems all having 2000 source nodes, 2000 destination nodes, and roughly 25000 arcs.
We call these problems single-period problems because the system matrix does not have
the multi-period structure shown in figure 1.2. The problems in Group 1 were generated
in such a way that the granularity is somewhat different for each of the problems, and they
are organized so that problem A has the largest granularity and problem G the smallest.
An interesting observation is that the total run-time for the large-grained problems is
considerably greater than the run-time for the small-grained problems. The sequential
CPU time for problem A in Table 2.1 is 12503 seconds, while the sequential CPU time for
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problem G is only 208 seconds. This malkes it clear that the large-grained problems are the
most difficult ones, and they are the ones for which efficient parallel algorithms are most
needed. All problems in Group 1 were run both with and without the variable list size
heuristic. Table 2.1 gives run-time information with the heuristic, and Table 2.2 gives the
same information without the heuristic. Group 2 is a set of problems which we generated
in order to determine whether or not the efficiency of the parallel program depends on
the ratio (#nodes)/(#arcs) in a given problem. Each table gives results for a subgroup
of problems with approximately the same granularity, but with differing numbers of arcs.
The subgroups themselves are arranged in terms of decreasing granularity. All problems
were run with and without the variable list size heuristic, and the results for these two
runs are given in adjacent columns. If a problem name contains the number “32,” then
that problem was run with a fixed list size of 32. If a problem name contains the letters
“va” then that problem was run using the variable list size heuristic. All of the problems
in Group 2 have 1000 source nodes, and 1000 destination nodes. Problems having the
number “06” in their name have between 8000 and 9000 arcs, and problems whose names
include the numbers “10” or “20” have a number of arcs in the range 12000 to 13500 or
22000 to 23500 respectively. All problems in Groups 1 and 2 were generated by GTGEN
[Chang and Engquist 86] which is based on NETGENG [Glover, et al., 78]. GTGEN allows
the user to specify, roughly, the number of quasi-trees in the optimal basis.

For the Group 1 problems, figures 2.1 and 2.2 both indicate that the efliciency of
PGRNET depends on the granularity of the problem being solved. The data on both of
these tables shows that the speedup improves as the number of quasi-trees in the optimal
basis is reduced from 1829 to 149. PGRNET solves problem C with a speedup of 8.8 when
the fixed list size is used, and a speedup of 10.6 when the variable list size heuristic is
used. Both of these results are superlinear because only 7 (the maximum number available
at the time in the University of Wisconsin Balance 21000) processors were used to solve
the problem. Problem C has the optimal granularity for PGRNET, because the speedup
is lower for all problems with either larger or smaller granularity. Both runs of problem
C yielded an optimal basis with 149 quasi-trees. When the number of quasi-trees in the
basis is reduced below 149 the speedup of PGRNET seems to decrease substantially. For
example, the speedup for problem A, with 60 quasi-trees, is only 5.5 when the variable list
size heuristic is used, and only 4.8 when the fixed list size is used. Notice, however, that the
speedup for problem A is superlinear when 4 processors are used. This happens because 4
processors can share 60 quasi-trees more easily than 7 processors. The speedup for problem
G is sublinear. This is because PGRNET does more pivots and makes more candidate lists
than GRNET, regardless of whether or not the list size is fixed. It appears from this that
PGRNET does more work than GRNET to solve this small-grained problem. Note that
the variable list size heuristic reduces the run time for problem G from 319 seconds to
208, an improvement of 34%, but the heuristic also reduces the speedup from 5.9 to 5.2.
The reduction in speedup is probably due to the reduction in run-time in the sequential
case, since the smaller sequential CPU time is more difficult to improve on. The results
for problem F are similar. The speedup for problem F is sublinear, because PGRNET
does more work than GRNET to solve this problem. The most interesting part of the
results in Tables 2.1 and 2.2 are the superlinear speedups shown for problems C,D and
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E. Looking at Table 2.2, the number of pivots needed by GRNET to solve problem C
is 106559, while the number of pivots needed by PGRNET is only 85810. This helps to
explain the superlinear speedup, because more CPU time is spent by GRNET executing
pivots than by PGRNET. The number of candidate lists made by PGRNET, however, is
14396. This is more than twice the number of candidate lists made by GRNET, namely
6786. This suggests that more CPU time is spent by PGRNET computing reduced costs
than by GRNET. Since making a candidate list might require computing the reduced cost
on all of the arcs belonging to a given processor, making a candidate list can be more
expensive than executing a pivot. Nevertheless, the superlinear speedups for problems
C,D and E, indicate that the overhead paid by GRNET for doing more pivots outweighed
the overhead paid by PGRNET for computing more reduced costs.

For the Group 2 problems, we tried to determine whether or not the efficiency of
PGRNET depends on the ratio (#nodes)/(#arcs) of the problem being solved. The
results given in Tables 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8 suggest that the performance of
PGRNET improves as this ratio decreases. For most of the problems listed in these tables,
the “20” problem has a greater speedup than the “06” problem. The “20” problem has
a smaller ratio of nodes to arcs. Since a fairly wide range of problems is listed, this
suggests that the efficiency of PGRNET improves as the ratio of nodes to arcs decreases.
The other information in these tables seems to be consistent with the information in
Tables 2.1 and 2.2. For example, the large-grained problems with the “va” suffix usually
have better speedup than the corresponding “32” problems. Some exceptions to this are
problems E-20 and D-06. The large-grain problems in Group 2 are similar to the large-grain
problems in Group 1, in that the total number of pivots done by PGRNET is slightly less
than the number done by GRNET, and the number of candidate lists made by PGRNET
is considerably greater than the number made by GRNET. The extra pricing done by
PGRNET explains the sublinear speedup obtained for Group 2, subgroup D. Another
feature of the problems in Group 2 which is consistent with the problems in Group 1
is that there is an optimal granularity for PGRNET. The speedup is best for problems
F and E, and it is worse for problems with either a larger or smaller granularity. The
speedup for problem F-20-va is 8.9 on 7 processors, and the speedup is 7.4 for problem
E-20-32. Both of these speedups are superlinear. For Group 1, the problems with optimal
granularity had roughly 140 or 190 quasi-trees in the optimal basis, while the problems
with optimal granularity in Group 2 have 80 to 140 quasi-trees in the optimal basis. This
suggests that the performance of the program depends not just on the number of quasi-
trees in the basis, but it must also depend on the number of quasi-trees relative to the
total number of nodes in the problem. The effects of the variable list size heuristic are
summarized in Tables 2.9 through 2.13. Each column gives the name of a problem, the
CPU time required by GRNET to solve it using a fixed list size, the time required using
the variable list size heuristic, and the percentage decrease (if any). The heuristic seems to
give some improvement for almost all problems, but the most significant improvement is for
the small-grained problems. The best improvement is for some small-grained multi-period
problems which will be discussed in the next section.
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Figure 2.1 Speedup, Variable List Size Strategy

Variable List Size A B C D E F G
No. gtrees at optimality 60 81 149 194 287 1038 1829
No. Nodes 4000 4000 4000 4000 4000 4000 4000
No. Arcs 24621 24642 24710 | 24755 | 24848 | 25599 | 26390
No. pivots sequential 134351 | 125001 | 105778 | 96529 | 84237 | 52148 | 39424
No. pivots 7 procs 109737 | 102700 | 92339 | 88441 | 82363 | 51499 | 40422
No. candidate lists sequential | 25492 25219 23185 | 23058 | 25050 | 52148 | 39424
No. candidate lists 7 procs 130951 | 79170 48700 | 47762 | 55625 | 50647 | 40504
CPU secs sequential 12503 9846 4590 3379 1920 348 208
CPU secs 7 procs 2248 1358 429 340 225 58 39
speedup 7 procs 5.5 7.2 10.6 9.9 8.50 59 52

Table 2.1 Groupl, Variable List Size Strategy
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Figure 2.2 Speedup, Fixed List Size Strategy

List Size = 32 A B C D E F G
No. gtrees at optimality 60 81 149 194 287 1038 1829
No. Nodes 4000 4000 4000 4000 4000 | 4000 4000
No. Arcs 24621 24642 24710 | 24755 | 24848 | 25599 | 26390
No. pivots sequential 132572 | 122776 | 106559 | 97191 | 82491 | 46593 | 35800
No. pivots 7 procs 109398 | 100790 | 85810 | 82057 | 72633 | 45668 | 35968
No. candidate lists sequential 8966 8085 6786 6148 5163 2912 2238
No. candidate lists 7 procs 126061 | 57282 14396 | 11015 | 7182 2980 2269
CPU secs sequential 12368 9356 4753 3663 1956 476 319
CPU secs 7 procs 2561 1442 538 428 261 80 53
speedup 7 procs 4.8 6.4 8.8 8.5 7.4 5.9 59

Table 2.2 Group 1, Fixed List Size Strategy
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Figure 2.3 Speedup, Problem Set D
List Size 32/ Var List Size | D-06-32 b-06-va D-10-32 D-10-va | D-20-32 D-20-va
No. girees at optimality 48 48 42 42 44 44
No. Nodes 2000 2000 2000 2000 2000 2000
No. Arcs 8381 8381 12356 12356 22309 22309
No. pivots sequential 32859 31888 55233 56233 111229 108264
No. pivots 7 procs 29093 29535 49730 48482 91318 90840
No. candidate lists sequential 2190 7462 3716 11550 7563 19640
No. candidate lists 7 procs 18614 38645 48790 57674 82934 77357
CPU secs sequential 1575 1338 3009 2989 6258 5855
CPU secs 7 procs 394 347 946 712 1617 1304
speedup 7 procs 39 3.8 3.1 4.1 3.8 44

Table 2.3 Group 2, Problem Set D
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Figure 2.4 Speedup, Problem Set E

List Size 32/ Var List Size | E-06-32 E-06-va | E-10-32 E-10-va | E-20-32 E-20-va

No. gtrees at optimality 80 80 67 67 76 76

No. Nodes 2000 2000 2000 2000 2000 2000

No. Arcs 8413 8413 12381 12381 22341 22341

No. pivots sequential 28793 29465 50797 49853 97449 96526

No. pivots 7 procs 25903 27678 42542 44137 77599 81471

No. candidate lists sequential 1855 7991 3312 10767 6409 19236

No. candidate lists 7 procs 7573 23066 12055 27177 16800 43943

CPU secs sequential 953 900 2032 1958 3912 3794
CPU secs 7 procs 194 135 332 283 527 521
speedup 7 procs 4.9 6.6 6.1 6.9 7.4 7.2

Table 2.4 Group 2, Problem Set E
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Figure 2.5 Speedup, Problem Set F

List Size 32/ Var List Size | F-06-32 F-06-va | F-10-32 F-10-va | F-20-32 F-20-va

No. qtrees at optimality 139 139 144 144 147 147
No. Nodes 2000 2000 2000 2000 2000 2000
No. Arcs 8472 8472 12458 12458 22412 22412
No. pivots sequential 23865 24668 39676 41035 77510 78628
No. pivots 7 procs 21702 24625 34591 37639 66856 72495

No. candidate lists sequential 1498 8097 2495 11190 4899 17890
No. candidate lists 7 procs 2635 17154 3981 22060 8196 42201

CPU secs scquential 482 416 840 810 1780 1768
CPU secs 7 procs 81 70 125 99 258 196
speedup 7 procs 5.8 59 6.6 8.1 6.8 8.9

Table 2.5 Group 2, Problem Set F
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Figure 2.6 Speedup, Problem Set G

List Size 32/ Var List Size G-06-32 G-06-va | G-10-32 G-10-va | G-20-32 G-20-va

No. gtrees at optimality 333 333 332 332 323 323
No. Nodes 2000 2000 2000 2000 2000 2000
No. Arcs 8666 8666 12646 12646 22588 22588
No. pivots sequential 17516 19194 28130 30907 54407 58453
No. pivots 7 procs 16524 19725 27150 31732 51182 59151

No. candidate lists sequential 1095 13036 1759 17837 3401 23813
No. candidate lists 7 procs 1210 19508 2077 28776 4035 50088

CPU secs sequential 202 150 336 267 684 568
CPU secs 7 procs 33 27 58 45 113 87
speedup 7 procs 6.1 54 5.7 5.8 6.0 6.4

Table 2.6 Group 2, Problem Set G
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Figure 2.7 Speedup, Problem Set H

List Size 32/ Var List Size | H-06-32 H-06-va | H-10-32 H-10-va | H-20-32 H-20-va
No. gtrees at optimality 538 538 513 513 540 540
No. Nodes 2000 2000 2000 2000 2000 2000
No. Arcs 8871 8371 12827 12827 22805 22805
No. pivots sequential 14539 16018 23674 26047 42756 47205
No. pivots 7 procs 14703 16390 23193 26528 41999 48602
No. candidate lists sequential 910 11984 1481 17538 2674 31736
No. candidate lists 7 procs 982 16652 1571 27047 2827 46468
CPU secs sequential 140 96 238 167 432 308
CPU secs 7 procs 25 18 41 30 72 55
speedup 7 procs 5.5 5.3 5.8 55 5.9 5.5

Table 2.7 Group 2, Problem Set H
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Figure 2.8 Speedup, Problem Set I
List Size 32/ Var List Size | 1-06-32 1-06-va | 1-10-32 I-10-va | I-20-32 I-20-va
No. qtrees at optimality 921 920 912 912 914 914
No. Nodes 2000 2000 2000 2000 2000 2000
No. Arcs 9254 0254 13226 13226 23179 23179
No. pivots sequential 12112 13426 18114 20171 33181 36569
No. pivots 7 procs 12155 13247 18110 20243 32767 37147
No. candidate lists sequential 757 13426 1133 20171 2075 36569
No. candidate lists 7 procs 781 13307 1154 20337 2084 37316
CPU secs sequential 103 66 158 101 291 185
CPU secs 7 procs 18 12 26 19 48 35
speedup 7 procs 5.6 52 59 5.3 6.0 52

Table 2.8 Group 2, Problem Set I
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Problem Name B C D E F G
CPU time with list size 32 12368 9356 4753 3663 1956 476 319
CPU time with var. list size 12503 9846 4590 3379 1920 348 208
Percent decrease in CPU time 1% ——— 3% 7% 1% 26% 34%
Table 2.9 Group 1, Improvement of Sequential CPU Time

Problem Name D-06 D-10 D-20 | E-06 E-10 E-20

CPU time with list size 32 1575 3009 6258 | 953 2032 3912

CPU time with var. list size 1338 2989 5855 | 900 1958 3794

Percent decrease in CPU time | 15% 1% 6% 5% 3% 3%

Table 2.10 Group 2, Improvement of Sequential CPU Time, subgroups D and E

Problem Name F-06 F-10 F-20 | G-06 G-10 G-20
CPU time with list size 32 482 840 1780 | 202 336 684
CPU time with var, list size 416 810 1768 150 267 568
Percent decrease in CPU time | 13% 3% 1% 25% 20% 16%

Table 2.11 Group 2, Improvement of Sequential CPU Time, subgroups F and G

Problem Name H-06 H-10 H-20 | 106 110 1-20

CPU time with list size 32 140 238 432 103 158 291
CPU time with var. list size 96 167 308 66 101 185
Percent decrease inCPUtime | 31% 29% 28% | 35% 36% 36%

Table 2.12 Group 2, Improvement of Sequential CPU Time, subgroups H and I
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3. A Variant of PGRNET for Multiperiod Problems

3.1 Multiperiod problems

Multiperiod problems have the following form:
min ¢z

st. Gz=1>
0<ze<u

As before, G has no more than two non-zero elements in each column, and in addition,
G has the form given in figure 1.2. In our test problems, there are two to twelve blocks of
arcs running diagonally through the matrix G, and a small number of variables extending
between adjacent blocks. In applications, the blocks correspond to different time periods,
and the arcs between blocks represent inventory or back order (or backlogging) arcs. In-
depth studies of multi-period problems can be found in [Fong and Srinivasan 76], [Hausman
and Gilmour 67], and [Klingman and Mote 82]. MPGEN [Chang, et al., 87] generates such
problems, and generates backlogging arcs with a user specified density. MPGEN is based
on GTGEN [Chang and Engquist 86].

Since [Chang, et al., 87] reported quite good results for multi-period problems using
a code named PAGEN-K on the CRYSTAL Multicomputer [Chang, et al., 87], we decided
to use a similar approach to improve PGRNET. We will briefly describe PAGEN-K before
discussing our algorithm, MPGRNET, in detail. PAGEN-K exploits the fact that the
majority of all pivots are done on arcs joining nodes in the same period (block). PAGEN-
K uses (k+1) processors for a k period problem, and it gives all of the nodes corresponding
to one period to a single processor. A processor p then solves its local problem to optimality,
ignoring the cross arcs that extend to processors p — 1 and p+ 1. When all processors
have finished their local problems, a master processor directs a transfer of quasi-trees
between processors, giving to each processor a new local problem. Initially the cross arcs
are the backlogging arcs, but after the first transfer of quasi-trees, the set of cross arcs can
include arcs that are local to a period. This approach yielded some impressive speed-ups
on CRYSTAL provided that communication time was neglected.

In our algorithm, MPGRNET, each processor is given a list of arcs rather than a list
of nodes. Each list is made up of arcs connecting nodes in a single-period or in a group of
periods allocated to a given processor, and no backlogging arcs appear in any of the lists.
During STAGE 0, processors chose pivot eligible arcs from their lists and perform pivots
without the need for locking quasi-trees. Locking quasi-trees is an expensive operation
which is unnecessary as long as backlogging arcs are not used as pivot arcs. Much of the
efficiency of MPGRNET is due to the elimination of quasi-tree locking. Since processors
pivot only on local arcs during STAGE 0, this stage is similar to PAGEN-K. When a
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processor p completes STAGE 0, it goes to STAGE 1 and waits for the other processors
to get there. This is the only part of the algorithm in which processors are idle. If one
processor needed much more time to complete its local optimization than the others, then
a significant loss in efficiency might result from processors sitting idle in STAGE 1. In our
test problems, however, processors solved their local problems in nearly the same amount
of time, and therefore no processor wasted much time waiting in STAGE 1. STAGE 2 and
STAGE 3 are the same as STAGE 1 and STAGE 2 in PGRNET. In other words, in STAGE
2 of MPGRNET, backlogging arcs are added to the lists, and processors perform pivots
simultaneously. Flagging quasi-trees is necessary in STAGE 2 because now it may happen
that two or more processors will need to modify the same tree. In STAGE 3, optimality is
achieved and verified.

In summary, the (parallel) MPGRNET algorithm is as follows:

INITTIALIZATION
Processor 1 generates an initial feasible solution and malkes a list of local arcs for each
of the processors. Processor 1 then requests additional processors and all processors
go to Stage 0.

STAGE 0 (parallel pivoting without locking)
All processors develop candidate lists and perform pivots without locking quasi-trees.
Processors remain in Stage 0 until a candidate list is made with 4 or fewer entries.
When this happens, processors proceed to Stage 1.

STAGE 1

Processors wait here until all processors get to this point, and then all proceed to
Stage 2.

STAGE 2 (parallel pivoting with locking)
Same as STAGE 1 of PGRNET

STAGE 3 (werification of optimality)
Same as STAGE 2 of PGRNET

MPGRNET has the same data structures as PAGEN-K for storing tree functions and
problem data. MPGRNET has an additional boolean array of length m which contains the
value (locked or unlocked) of each quasi-tree lock. Thus, MPGRNET has memory demands
that are slightly greater than those of PAGEN-K. The algorithmic differences between the
two programs are more pronounced. MPGRNET executes STAGE 0 only once. During
this stage, processors solve their local problems and use this solution as an advanced start
for STAGE 2. Mutual exclusion from shared data structures is provided during STAGE 2
by hardware locks, and optimality is verified in parallel. (In PAGEN-K, processors solve
a sequence of local problems given to them by the master processor. Mutual exclusion
during most of the run is provided by assigning quasi-trees to processors. At the end of
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the PAGEN-K run, all quasi-trees are sent to one processor which executes the remaining
pivots and verifies optimality.)

3.2 Computational Results for Multiperiod Problems

The following test problems are organized into Groups 3,4 and 5. Group 3 is a set of
multi-period problems generated by MPGEN [Chang, et al., 87]. Each table gives results
for a subgroup of problems with roughly the same granularity, but with differing densities
in the backlogging arcs. All of the problems in Group 3 are multi-period problems with 12
periods, and each period has 100 source nodes and 400 destination nodes. The names for
these problems have three parts. The left part is a 2-digit number indicating the granularity
of the periods. If this number is small, the number of quasi-trees in the optimal basis is
small, and thus, the granularity of the periods is large. The middle part of a name is a
1-digit number indicating the density of the backlogging arcs. If this number is 1, roughly
2% of all arcs are backlogging arcs. If this numberis 5 or 9, roughly 4% or 7% of all arcs are
backlogging arcs respectively. The last part of each name is a “32” or a “va.” The number
“32” indicates that the problem was run using the fixed list size strategy, and the letters
“va” indicate that the variable list size strategy was used. The data for the “va” and “32”
runs of any given problem are given in adjacent columns of Tables 3.1 through 3.5. Group 4
is a selection of problems from Group 3 solved by PGRNET rather than MPGRNET. The
results from Group 4 are useful in determining the decrease in CPU time that results from
the advanced start heuristic used by MPGRNET in STAGE 0. These results are given
in Tables 3.6 and 3.7. Group 5 is a set of single-period problems solved by PGRNET.
Table 3.8 gives results for these problems when the list size is fixed at 32, and Table 3.9
gives results for the variable list size heuristic. These tables fit best with the multi-period
results because they have the same number of source nodes and destination nodes as the
multi-period problems, and they have roughly the same number of arcs as the multi-period
problems. The problems in Group 5 help to indicate how the presence of backlogging arcs
in the problem affect the performance of PGRNET.

For the Group 3 problems, the specialization of PGRNET, called MPGRNET, was
run on a Sequent Balance 21000 at Argonne National Laboratories. This machine has 24
processors, and a single user may use up to 23 of these in executing a program. We used
at most 12 processors.

MPGRNET yielded superlinear speedup for all of the problems, as shown in Table
3.1, and the superlinearity of the speedup for most of the problems improves as the number
of processors increases. For example, speedup(6)/6 = 1.9 and speedup(12)/12 = 3.0 for
problem 05-9-va. Speedup(6)/6 = 2.2, and speedup(12)/12 = 2.8 for problem 05-9-32.
The improvement in this ratio and the superlinear speedup both suggest that the solution
technique used by the parallel program is superior to the technique used by the sequential
program. The sequential program, GRNET, could probably be improved by incorporating
into it the advanced start used by MPGRNET. GRNET could solve subproblems corre-
sponding to different periods before solving the problem as a whole. This would mimic
STAGE 0, the stage in MPGRNET in which processors solve local problems in parallel.
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The problems listed in tables 3.1 and 3.2 are all large-grained problems. For most of
these, the speedup for the “va” problem is greater than the speedup for the “32” problem.
More testing is needed to see if this continues when the grain size is made even larger.
For problems with smaller granularity, the “32” problems show a better speedup. As with
the single-period problems, the variable list size heuristic seems to yield a decrease in the
run-time for almost all multi-period problems. Sequential CPU times for multi-period
problems are given in Tables 3.10,3.11 and 3.12. The times for both the fixed list size
strategy and the variable list size strategy are given, along with the percent improvement.
The best improvement was 45% for problem 90-1. The best improvement for any single-
period problem was 36% . Overall, the variable list size heuristic seems to have a more
pronounced effect for the multi-period problems than it does for the single-period problems.

A noticeable feature of the problems in Tables 3.1 through 3.3 is that the speedup
improves as the density of the backlogging arcs increases. For example, maximum speedup
for problem 05-1-va was 14.9, while the maximum speedup for problem 05-9-va is 36.9. The
maximum speedup for problem 10-1-32 is 14.5, while the maximum speedup for problem
10-9-32 1s 28.9. This is a result of the fact that increasing the density of the backlogging
arcs makes the problem more difficult for the sequential code, but has little effect on the
performance of the parallel code. Notice also that the number of quasi-trees in the optimal
basis is the same for all of the problems in any given subgroup. This means that the
backlogging arcs probably don’t have much effect on the nature of the optimal solution.
They do, however, increase the total run time by a substantial amount. The sequential
CPU time for problem 05-32-1 is 1009 seconds, while the sequential CPU time for 05-32-9
is 3072 seconds, an increase of 200% .

To explain the superlinear speedup in terms of the amount of work done by the
sequential program and the parallel program, one can look at the number of pivots executed
and the number of candidate lists made. GRNET does 44046 pivots to solve problem 05-9-
32, while MPGRNET solves it with only 33452 pivots. Clearly GRNET is spending more
CPU time executing pivots. The number of candidate lists made by the programs gives
an indication of the amount of work done computing reduced costs. GRNET made 3088
lists while solving problem problem 05-9-32, while MPGRNET made 2930. Apparently
both programs did roughly the same amount of work in making candidate lists, so the
total speedup of 34.4 for this problem must be explained by the discrepancy in the number
of pivots. But if this were the only factor, then the speedup would be roughly 16, not
34.4. It is possible that due to the locking of quasi-trees in STAGE 2 and STAGE 3,
MPGRNET is more likely than the sequential program to pivot on arcs that connect
leaves of a single quasi-tree, as opposed to arcs that connect two quasi-trees. If this were
true, then MPGRNET might develop a basis forest in which the nodes are more evenly
distributed between the quasi-trees. The effect of this would be to make pivots less costly
for MPGRNET than for GRNET. This is one possible explanation for the high speedup
of problem 05-9-32.

The speedup results listed in Table 3.4 are all slightly sublinear. Looking at the “32”
problems, one sees that the sequential program and the parallel program both do roughly
the same number of pivots, and they both make roughly the same number of candidate
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lists. It is difficult to judge how much work is done by the two programs making candidate
lists for the “va” problems because the sequential program and the parallel program can
select different list sizes. GRNET solved the “va” problems with slightly more pivots than
MPGRNET, but somehow MPGRNET did more work than GRNET to solve the problems
in this subgroup because the speedup is sublinear. The speedup for the “va” problems is
less than 11 for all of these problems, and the speedup for all of the “32” problems is greater
than 11. So in this respect, the fixed list size strategy seems to be behaving better than
the variable list size strategy for these problems. The variable list size strategy, however,
yields a lower overall run time. The speedup results listed in Table 3.5 are similar to
those of Table 3.4 in the sense that the speedups are higher for the “32” problems than
for the “va” problems. For this subgroup, the variable list size heuristic makes quite an
improvement in total run-time over the fixed list size strategy. GRNET solved problem
90-1-32 in 210 seconds, and it solved problem 90-1-va in 115 seconds This means that the
variable list size yielded an improvement of 45% .

Tables 3.6 and 3.7 show the results for the problems in Group 4. These are multi-period
problems solved by PGRNET as if they were single-period problems. The problems listed
in Tables 3.6 and 3.7 are the same as the problems listed in Tables 3.1 and 3.5 respectively.
The speedups listed on Table 3.6 are all superlinear. This means that problems 05-1, 05-5
and 05-9 have a granularity that permits efficient solution by PGRNET, and this helps to
explain the highly superlinear results given in Table 3.1. Since MPGRNET uses PGRNET
in STAGE 2 and STAGE 3, the high performance of PGRNET for this subgroup gives
MPGRNET an extra boost.

Comparing Tables 3.1 and 3.6, the parallel CPU time for problem 05-9-va is 136
seconds when solved by PGRNET and only 75 seconds when solved by MPGRNET, a
44% improvement. MPGRNET solves (in parallel) subproblems corresponding different
periods before solving the problem as a whole. The reduction in CPU time from 136
seconds to 75 seconds shows that the advanced start provided by the solution of these
subproblems is a heuristic which gives a substantial improvement in overall runtime. This
heuristic gives a slight improvement for problem 05-1, a larger improvement for problem
for problem 05-5, and the the largest improvement for problem 05-9. Since the sequential
CPU time for problem 05-9 is almost three times as great as the sequential CPU time for
problem 05-1, the heuristic seems to be working the best for the problems which are most
difficult in the sense that they require much CPU time.

Comparing Tables 3.5 and 3.7, the parallel CPU time for problem 90-9-32 is 18 sec-
onds when solved by PGRNET and 15 seconds when solved by MPGRNET. If the same
comparison is made for problems 90-1 and 90-5, the CPU time reduction is similar or
smaller. This means that for these small-grained multi-period problems, the advanced
start heuristic gives only a slight improvement.

Data for the Group 5 problems given in Tables 3.8 and 3.9 give some useful infor-
mation about the performance of PGRNET when solving single-period problems similar
in topology to the multi-period problems. The problems in Tables 3.8 and 3.9 have the
same ratio of source nodes to destination nodes and roughly same number of arcs as the
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multi-period problems. Also, the number of quasi-trees in the optimal bases of these prob-
lems ranges from 85 to 1097, and the number of quasi-trees in the optimal bases of the
multi-period problems ranges from 84 to 1104. So in these respects, the problems in Group
5 are similar to the multi-period problems. The speedups, however, are not as impressive
as the speedups given in Tables 3.6 and 3.7. In particular, the speedup for problem “a”
run on 7 processors is 8.7 with variable list size and 7.1 with fixed list size. Some of the
multi-period problems listed in Table 3.6 show a much higher speedup (ranging from 8
to 15) on 7 processors, even though they have nearly the same number of quasi-trees in
the optimal basis. This indicates that the block structure of the multi-period problems
makes them more amenable to parallel solution. This result suggests that the solution
of single-period problems may benefit from a warm start in which the optimal quasi-tree
structure of a related problem is used to establish an initial arc allocation to processors.
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Figure 3.1 Speedup Graph for Problem Set 05
list size = 32 / var. list size | 05-1-32  05-1-va | 05-5-32  05-5-va | 05-9-32 05-9-va
No. qtrees at optimality 84 84 84 84 84 84
No. Nodes 6000 6000 6000 6300 6000 6000
No. Arcs 14952 14952 15367 15367 15742 15742
No. pivots sequential 32523 33374 38405 38295 44046 42676
No. pivots 12 procs 31578 32345 32441 33400 33452 34440
No. cand. lists sequential 2208 13294 2696 13666 3088 12476
No. cand. lists 12 procs 2189 7052 2513 9380 2930 10294
CPU secs sequential 1009 964 2157 1848 3072 2776
CPU secs 12 procs 67 64 76 72 89 75
speedup 12 procs 14.9 14.9 28.3 25.3 344 36.9

Table 3.1 Multi-Period Problem Set 05
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Figure 3.2 Speedup Graph for Problem Set 10
list size = 32 / var. list size | 10-1-32  10-1-va | 10-5-32  10-5-va | 10-9-32  10-9-va
No. gtrees at optimality 132 132 132 132 132 132
No. Nodes 6000 6000 6000 6000 6000 6000
No. Arcs 15037 15037 15433 15433 15793 15793
No. pivots sequential 30656 32023 35302 35730 39462 39157
No. pivots 12 procs 29828 30807 30413 31016 31560 32214
No. cand. lists sequential 2054 13341 2395 13968 2716 12996
No. cand. lists 12 procs 1994 6901 2184 9176 2201 10162
CPU secs sequential 779 702 1368 1440 1929 1899
CPU secs 12 procs 53 55 60 53 66 65
speedup 12 procs 14.5 12.7 22.5 27.0 28.9 29.1

Table 3.2 Multi-Period Problem Set 10
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Figure 3.3 Speedup Graph for Problem Set 30
list size = 32/ var. list size | 30-1-32  30-1-va | 30-5-32  30-5-va | 30-9-32  30-9-va
No. qtrees at optimality 408 408 408 408 408 408
No. Nodes 6000 6000 6000 6000 6000 6000
No. Arcs 15528 15528 15817 15817 16087 16087
No. pivots sequential 25108 27311 26258 27599 27072 28645
No. pivots 12 procs 24340 25377 25049 25789 25574 26194
No. cand. lists sequential 1597 16335 1668 14598 1719 14219
No. cand. lists 12 procs 1585 10397 1626 10606 1702 10826
CPU secs sequential 303 232 356 270 373 340
CPU secs 12 procs 27 21 31 24 33 26
speedup 12 procs 11.1 10.7 11.48 11.1 11.2 13.0

Table 3.3 Multi-Period Problem Set 30
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Figure 3.4 Speedup Graph for Problem Set 50
list size = 32 / var. list size | 50-1-32  50-1-va | 50-5-32  50-5-va | 50-9-32  50-9-va
No. gtrees at optimality 624 624 624 624 624 624
No. Nodes 6000 6000 6000 6000 6000 6000
No. Arcs 15918 15918 16133 16133 16324 16324
No. pivots sequential 22982 25418 23438 26035 24097 26501
No. pivots 12 procs 22229 23118 22824 23646 23026 24095
No. cand. lists sequential 1451 18938 1491 19914 1526 20832
No. cand. lists 12 procs 1429 11147 1473 11265 1502 11817
CPU secs sequential 249 172 272 183 282 198
CPU secs 12 procs 21 16 23 18 25 19
speedup 12 procs 11.6 10.5 114 9.7 11.1 10.2

Table 3.4 Multi-Period Problem Set 50
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Figure 3.5 Speedup Graph for Problem Set 90
list size = 32 / var. list size | 90-1-32  90-1-va | 90-5-32  90-5-va | 90-9-32  90-9-va
No. gtrees at optimality 1104 1104 1104 1104 1104 1104
No. Nodes 6000 6000 6000 6000 6000 6000
No. Arcs 16785 16785 16822 16822 16849 16849
No. pivots sequential 20011 21840 20022 22088 20171 22046
No. pivots 12 procs 19165 20402 19146 20548 19148 20377
No. cand. lists sequential 1264 21841 1264 22089 1274 22047
No. cand. lists 12 procs 1225 13574 1228 13383 1230 12939
CPU secs sequential 210 115 208 116 210 117
CPU secs 12 procs 15 11 16 11 15 11
speedup 12 procs 13.1 10.2 12,6 9.7 13.2 9.8

Table 3.5 Multi-Period Problem Set 90
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Figure 3.6 Specdup Graph for Problem Set 05
List Size 32/ Var List Size | 05-1-32  05-1-va | 05-5-32  05-5-va | 05-9-32 05-9-va
No. gtrees at optimality 84 84 84 84 84 84
No. Nodes 6000 6000 6000 6000 6000 6000
No. Arcs 14952 14952 15367 15367 15742 15742
No. pivots sequential 32523 33374 38405 38295 43590 42676
No. pivots 12 procs 32960 36583 35809 39127 38366 41861
No. candidate lists sequential 2208 13294 2696 13666 3082 12476
No. candidate lists 12 procs 3223 23785 6266 32131 9671 44433
CPU secs sequential 1011 962 2160 1848 3078 2773
CPU secs 12 procs 78 69 116 109 158 136
speedup 12 procs 12.9 13.8 18.5 16.8 194 20.2

Table 3.6 Multi-Period Problem Set 05 Solved By PGRNET
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Figure 3.7 Speedup Graph for Problem Set 90

List Size 32/ Var List Size | 90-1-32  90-1-va | 90-5-32  90-5-va | 90-9-32  90-9-va

No. gtrees at optimality 1104 1104 1104 1104 1104 1104

No. Nodes 6000 6000 6000 6000 6000 6000

No. Arcs 16785 16785 16822 16822 16849 16849

No. pivots sequential 20011 21840 20022 22088 20171 22046

No. pivots 12 procs 19630 21392 19922 21467 19614 21266

No. candidate lists sequential 1264 21841 1264 22089 1274 22047

No. candidate lists 12 procs 1253 21430 1266 21467 1248 21308
CPU secs sequential 210 115 207 116 211 116
CPU secs 12 procs 18 13 18 13 18 13
speedup 12 procs 11.6 8.6 111 8.8 11.7 8.8

Table 3.7 Multi-Period Problem 90 Solved By PGRNET
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Figure 3.8 Speedup Graph for Single Period Problems
List Size = 32 a b c d
No. glrees at optimality 85 176 620 1097
No. Nodes 6000 6000 6000 6000
No. Arcs 14841 | 14932 | 15376 | 15853
No. pivots sequential 44595 | 34953 | 22605 | 19125
No. pivots 7 procs 39190 | 32603 | 22676 | 19049
No. candidate lists sequential | 2836 2188 1413 1197
No. candidate lists 7 procs 8047 3110 1481 1212
CPU secs sequential 2292 800 226 172
CPU secs 7 procs 319 123 40 30
speedup 7 procs 7.1 6.5 5.6 5.7

Table 3.8 Results for Single Period Problems of Comparable Size
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Figure 3.9 Speedup Graph for Single Period Problems
Variable List Size a b c d
No. gtrees at optimality 85 176 620 1097
No. Nodes 6000 6000 6000 6000
No. Arcs 14841 | 14932 | 15376 | 15853
No. pivots sequential 44703 | 36907 | 24528 | 20436
No. pivots 7 procs 42552 | 36642 | 24674 | 20304
No. candidate lists sequential | 15029 | 17688 | 24528 | 20436
No. candidate lists 7 procs 33738 | 26462 | 24874 | 20344
CPU secs sequential 2271 759 159 107
CPU secs 7 procs 259 111 30 21
speedup 7 procs 8.7 6.8 52 4.9

Table 3.9 Results for Single Period Problems of Comparable Size
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Problem Name 05-1 055 059 | 10-1 10-5 109

CPU time with list size 32 1009 2159 3072 | 779 1368 1929

CPU time with var. list size 964 1848 2776 | 702 1440 1899
Percent decrease in CPU time | 4% 4% 9% | 10% - 1%

Table 3.10 Group 3, Improvement of Sequential CPU Time, subgroups 05 and 10

Problem Name 30-1  30-5 30-9

CPU time with list size 32 303 356 373
CPU time with var. list size 232 270 340
Percent decrease in CPUtime | 23% 24% 8%

Table 3.11 Group 3, Improvement of Sequential CPU Time, subgroup 30

Problem Name 50-1 50-5 509 | 90-1 90-5 90-9

CPU time with list size 32 249 272 282 210 208 210
CPU time with var. list size 172 183 198 115 116 117
Percentdecrease in CPUtime | 30% 32% 29% | 45% 44% 44%

Table 3.12 Group 3, Improvement of Sequential CPU Time, subgroups 50 and 90



4. Future Directions

We have developed two algorithms for the solution of generalized network flow prob-
lems. The first, PGRNET, yields superlinear speedup results for a range of generalized
network flow problems. The second yields superlinear speedup for a range of multi-period
problems. Both algorithms, however, behave poorly when grain size gets quite large. In
other words, both algorithms yield a poor speedup when the number of quasi-trees in the
optimal basis is small.

We hope to widen the range of problems for which PGRNET performs well by de-
veloping new algorithms for large-grain problems. One strategy could involve a shared
candidate list. Rather than having each processor make its own candidate list, all proces-
sors might cooperate in making a shared list, and they would take turns executing pivots.
This strategy has the advantage that a sequence of pivots can be chosen which is highly
optimal in the sense that all processors would contribute toward the selection of the pivot
arc, rather than just one processor. No quasi-tree locking would be needed in this situation,
because only one pivot would be executed at a time. The method of executing pivots one
at a time would have the disadvantage that this work would not be done in parallel, even if
the basis is somewhat disconnected. Another strategy that we are currently investigating
involves the use of warm starts, i.e., the use of optimal basis information from a related
problem to initalize the allocation of arcs to processors.

In the short term, we plan to make some simple modifications to these programs to
improve their performance. We will distribute the task of creating the initial starting basis.
Since this is a simple operation involving only the initialization of some arrays, this can be
easily distributed between processors. We would also like to reduce the idle time associated
with synchronization in STAGE 1 of MPGRNET by having the first processor to arrive
there interrupt the others. Thus, no processor will sit idle during this coordination stage.

Finally, we would like to investigate the application of these strategies to pure network
problems. These may be thought of as generalized networks in which the flow multiplier
is -1 for all arcs. Similar tree locking or parallel pricing mechanisms may be exploited,
although the locking in this case will be performed on cycles rather than quasi-trees.
Preliminary computational results in this area have been promising.
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